Bloch oscillations and matter-wave localization in erbium!

We study Er atoms in a one-dimensional lattice. We use Bloch oscillations to evaluate the role played by the different interaction terms, and in particular by the quantum fluctuations. We additionally observe a transition–driven by interactions–to a state localized to a single lattice plane. To benchmark our results, we developed a discrete one-dimensional extended Gross-Pitaevskii theory. This model is in quantitative agreement with the experiment, additionally revealing, in our parameter regime, the existence of many different phases: macrodroplets occupying single or many lattice sites and two-dimensional bright solitons.

See the open access paper here: Commun. Phys. 5, 227 (2022)

Goodbye to Alex

Farewell to Alex Patscheider who has been with us since nearly the beginning of the Erbium and Er-Dy labs! Alex did his Masters’ in the Er-Dy labs before moving for his PhD into the Erbium lab, and will be sorely missed by the whole group! Best of luck for the new adventures in Canada 🇨🇦!

Revealing the topological nature of the bond order wave in a strongly correlated quantum system

Now published in PRR with collaborators from ICFO, Barcelona! In the recent years, great effort has been devoted toward the study of symmetry-protected topological phases. We show that the bond order wave (BOW) induced by frustration between competing couplings has a nontrivial topological sector in the presence of chiral symmetry. We reveal its topological nature by finding a nonzero string order correlator and a degenerate entanglement spectrum, and design a realistic experimental scheme involving magnetic atoms trapped in an optical lattice. The latter paves the way towards an efficient quantum simulation of topological phases in many-body quantum systems.

The paper can be accessed here: Phys. Rev. Research, and the pre-print here: arXiv