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Abstract

In this thesis, we study a technique enabling the manipulation of the phase
and intensity distribution of a laser beam by means of a digital micromirror
device and possible implementations in ultracold quantum gas experiments.
The scheme presented can be used to correct phase aberrations present in
the system leading to diffraction-limited laser patterns. These patterns have
broad applications. They can be used for example to address single atoms in an
optical lattice, single ions or NV-centers in diamonds. Furthermore, the control
over the laser beams intensity distribution allows a multitude of different beam
profiles.

In a second part of the thesis, I will describe our work with ultracold,
magnetic erbium atoms loaded into a three-dimensional optical lattice. Here
I first introduce the extended Bose-Hubbard model, which includes magnetic
dipole-dipole interaction. We study the superfluid to Mott insulator transition
and observe for the first time nearest-neighbour interaction between the atoms,
leading to an orientation-dependent energy gap in the spectrum of excitation
in a Mott phase.
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Introduction

Around 1924, when quantum theory was only a few decades old, an elegant
derivation of Planck’s formula, was described by Satyendranath Bose [Bos24].
His approach allowed Bose to deduce the frequency distribution of photons
(which are bosons) of the radiation from a black-body. Picking up this ap-
proach, Albert Einstein derived the statistical behaviour of (massive) bosons,
which is nowadays called Bose-Einstein statistics [Ein24]. In his work, Einstein
showed first, that the statistics for bosons differs from the classical Maxwell
statistics for ideal, classical particles. Secondly, he could predict a novel matter
state for bosons, called Bose-Einstein condensate (BEC). This new state man-
ifests itself in the appearance of a macroscopic occupation of a single quantum
state.

It took around 70 years, from Einstein’s theoretical predictions to the first
experimental observations of BECs [And95, Dav95, Bra95]. One of the major
technical developments towards the production of BECs, was the invention of
the laser. It is a key ingredient, to cool and trap atoms. These first experiments
were carried out with dilute clouds of alkali atoms, cooled down to tempera-
tures on the order of hundreds of nanokelvin. At these temperatures the atoms
accumulate in the lowest energy state of the used trap.

Up to date, 13 different atomic species could be Bose-Einstein condensed:
• alkali metals: Na [Dav95], Rb [And95], Li [Bra95], K [Mod01], Cs [Web02],
• alkaline-earth metals: Ca [Kra09] and Sr [Ste09]
• lathanides: Yb [Tak03], Dy [Lu11] and Er [Aik12]
• transition metals: Cr [Gri05]
• and H [Fri98], He [Rob01].

These different elements vary in their atomic properties. For example Cr, Dy
and Er exhibit a large magnetic dipole moment, which gives an additional
interaction between the atoms, known as the dipole-dipole interaction. The
alkaline-earth species exhibit a non magnetic ground state and a narrow inter-
combination line, which makes them suitable for the implementation of highly
precise clocks [Deg05, Blo14].
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0 INTRODUCTION

The technological knowledge for creating Bose-Einstein condensates was
also used to cool fermions, which follow a different fundamental statistic. Iden-
tical fermions are not allowed, by Pauli exclusion-principle, to occupy the same
state. Therefore fermions, cooled to ultracold temperatures simply fill up all
quantum states in the system, from the lowest one up to a certain Fermi en-
ergy. Here the cloud of ultracold fermions is called a degenerate Fermi gas
(DFG).

Over the last two decades, experiments with BECs and DFGs lead to a
deeper understanding of the physical nature of these fundamental quantum
systems. We have learned to control the interatomic scattering properties
with Feshbach resonances, which allows to experimentally tune the interac-
tion between the atoms from attractive to repulsive [Chi10]. These Feshbach
resonances allowed to associate two atoms to weakly bound molecules like
for example in Ref. [Joc03]. From there, they could be transferred with laser
pulses into their ro-vibrational ground state [Ni08, Dei08, Tak14]. Some of
them (heteronuclear molecules) can exhibit a large electric dipole moment,
which opens up another strong and tunable interaction, additionally to the
magnetic atoms. With Feshbach resonances also a tool to study the so-called
BEC-BCS crossover became available [Bou04].

Bose-Einstein condensates and degenerate Fermi gases are also promising
candidates for implementing quantum simulators, to simulate the behaviour
of crystals. Here the atoms are loaded into optical lattices, which provide a
periodic potential structure. First, main experimental results were obtained
by observing the superfluid to Mott transition [Gre02] with bosons in a three-
dimensional lattice. These systems can be used to investigate so called Hubbard
models with bosons and fermions. Different species like heteronuclear molecules
or the above mentioned magnetic elements Cr, Dy or Er can add additional
interaction terms to these Hubbard models.

All these experiments rely on precise control of the used laser light. On the
one hand, small defects in the lasers beam shape can lead to imperfections in
the system and therefore to systematic errors. On the other hand, additional
beam shapes would enable experiments to create even more complex systems.

The main goal of this master thesis was to develop knowledge for so called
spatial light modulation techniques within our group. These techniques enable
the control over the intensity and phase distribution of a laser beam. Therefore
they can be used to shape laser beams in different manners, depending on the
experiments needs. These methods have been used by several groups with ul-
tracold atoms to achieve for example Bose-Einstein condensation in a uniform
potential [Gau13], to address single atoms in an optical lattice [Fuk13] or for
Bragg spectroscopy [Ha15].
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In Chapter 1 I will give an introduction into spatial light modulation and
explain two main devices, that are used for ultracold atom experiments, in
more detail. These two devices are liquid crystal spatial light modulators (LC
SLM) and digital micromirror devices (DMD).

Since we have decided to use a DMD, Chapter 2 will explain in more detail
how a DMD can be used to create different potentials. After discussing the
imaging setup, more emphasis is put on the Fourier setup in combination with
a binary grating. The latter can be used not only to create different beam
shapes, but also to correct phase aberrations present in the optical setup.

Chapter 3 will then present the experimental realisation of the Fourier setup
with a DMD and will give results on what beam shapes could be created. The
correction of phase aberrations is shown and also the limitations of the setup
are discussed.

During the time of my thesis, I was also involved in the experiments of the
ERBIUM group in Innsbruck. Therefore, Chapter 4 describes what we have
achieved with erbium atoms loaded into a three-dimensional lattice. This sys-
tem allowed us to investigate one of the above mentioned Bose-Hubbard models
with an extension for magnetic, dipolar interactions. Here we could measure
an additional term in the systems Hamiltonian, the so called nearest neigh-
bour interaction for the very first time. In this chapter I will briefly summarise
the apparatus and recent results of the experiment in Innsbruck. Then I will
explain how optical lattices can be engineered and how our system can be
described with the extended Bose-Hubbard Hamiltonian. Afterwards the mea-
surement procedure and the final results are presented.

I conclude my thesis with an outlook on how our tested DMD setup could
be used to perform Bragg spectroscopy.
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Chapter 1

Basic concept of spatial light
modulation

The term spatial light modulation summarises different techniques that enable
control over the phase and intensity distribution of a light beam. This allows
to ’shape’ a laser beam according to the experimental needs. The importance
of precise control of laser light, explains the use of spatial light modulation in
various scientific fields. In astronomy it is used for example in adaptive optical
systems to correct wavefront aberrations coming from the earth’s atmosphere
[Day02]. Spatial light modulation has also found its way into biology, where it is
used for a lot of applications like retina imaging [Mu06, Abr10] or spatial light
interference microscopy [Wan11], to name two examples. In physics spatial
light modulation is used for example to shape femtosecond pulses [Wei00], to
manipulate single atomic spins [Fuk13] or to prepare lines of atoms [Pre15] in
optical lattices.

There are different techniques to achieve spatial light modulation. They
vary mainly in their specific realisations, but the basic idea can be understood
with Fig. 1.1. An incoming laser beam (sketched by green arrows) interacts
with a so called spatial light modulator (SLM). Depending on which device
one uses, the SLM can change the amplitude, the phase or both of the laser
beam in a pixelated way. After the modulator an optical setup is needed, which
defines a plane in which the shaped beam lies. This can be for example the
Fourier plane of a single lense or the image plane of a microscope objective.

This thesis will focus on the application of spatial light modulation for
ultracold atom experiments, where laser light is used to exert forces on the
atoms. Here, the light is usually far detuned from any atomic resonance, which
results in an approximately conservative potential - proportional to the inten-
sity of the laser light, see Ref. [Gri00]. Therefore the created beam shapes can
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1 BASIC CONCEPT OF SPATIAL LIGHT MODULATION

spatial light modulator

generic optical setup

modulated plane

Figure 1.1: Main ingredients for spatial light modulation. A laser beam (green
arrows), a spatial light modulator and an optical setup is needed to modulate
the laser beam in a specific plane. For more information see text.

be used as a tunable light potential for atoms.
If we choose the Fourier plane of a single lens, the collimated laser light

can be focussed down. This results in small patterns which allow high intensi-
ties in the created profiles. However due to Fourier limits, these beam shapes
will be limited in edge sharpness (see for example [Zup13]). In contrast, the
image plane allows bigger beam shapes with sharper edges, see Ref. [Bel11].
Additionally the imaging setup usually requires a good objective to scale the
patterns down to typical sizes of ultracold atomic clouds, which range between
a few micrometers in small traps up to tens of micrometers [Bil08, Mad00].

In this chapter I will discuss the two main SLMs, used to realise spatial
light modulation. The liquid crystal spatial light modulator (LC SLM) and the
digital micromirror device (DMD). However, for different applications there are
also other tools on the market. Spatial light modulation can also be achieved
with deformable mirrors [Dal05b] or piston mirror arrays. Since these two are
not suitable for the realisation of this thesis, because of their low pixel number1,
they will be just mentioned here.

1.1 Liquid Crystal SLM
At the end of the 19th century Friedrich Reinitzer investigated cholesterol and
observed an additional ’melting point’, as he called it. When heating solid

1Currently the piston mirror array offers possible pixel numbers of only a few thousands.
However, this might change in the future since they are still under development.
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temperature

solid liquid crystal liquid

Figure 1.2: Different phases for liquid crystal materials. In the solid phase
the molecules possess positional and orientational order, which are not present
in the liquid phase. In between different liquid crystal phases can exist. The
molecules do have a residual orientational order, but can for example move
randomly. The phase illustrated here is called the nematic phase.

cholesterol up it turns into a diffuse liquid. When increasing its temperature
even further it suddenly turns into a transparent liquid, see [Rei88]. This was
one of the first observations of a liquid crystal phase, which some materials
exhibit in between their solid and liquid state. I will now briefly introduce
liquid crystals and discuss some of their basic properties, as it is at the basis
of the LC SLM described here. For a more complete introduction, I refer to
Ref. [Col90].

Liquid crystal phase

Usually materials with a liquid crystal phase consist of rod-shaped, complex
molecules. In the solid phase, these molecules sit at a distinct place and have a
certain orientation, they are called to have positional and orientational order.
In contrast, the liquid phase has no order at all, here the molecules have a ran-
dom position and orientation. In between, a state exists, where the molecules
have lost its positional order from the solid phase but still have a residual ori-
entational order. Thus the molecules can move randomly but have on average
a certain direction in which they point together, see Fig. 1.2. This direction is
usually called the director.

There exist a multitude of different liquid crystal phases. The phase shown
in Fig. 1.2 is called nematic phase. There are two more prominent other phases.
One is the twisted nematic phase, where the molecules do not align each other
in parallel, but rather form a helical structure. The other is the smectic phase,
where the molecules orientate each other in the same direction and organise

7



1 BASIC CONCEPT OF SPATIAL LIGHT MODULATION

rubbed glass plate

no electric field with electric field

Figure 1.3: Left: When liquid crystals are placed between rubbed glass plates,
the molecules align each other in the rubbing direction (small arrows). Right:
An external electric field causes a rotation of the molecules in the more central
region until a stable configuration is reached. The molecules at the glass plates
do not rotate.

themselves in layers. Therefore a positional order in one dimension is here still
preserved. Both types are thoroughly discussed in Ref. [Col90]. The twisted
nematic phase is also widely used for spatial light modulators.

Liquid crystal molecules can either have a permanent electrical dipole mo-
ment or an induced dipole moment, when they are exposed to an electric field.
In both cases, an external electric field rotates the molecules along the field
lines. Therefore, the director of the liquid crystal phase will follow the electric
field and can be tilted.

Light modulation with liquid crystals

For spatial light modulators, the liquid crystal is embedded between two glass
plates. These glass plates are treated for example with chemicals, evaporated
material or can be rubbed in a certain direction. This treatment gives rise to
a preferred orientation of the liquid crystal as it ensures that the molecules
close to the two plates have a fixed orientation, which they impart on the
other molecules. In this way a preferred direction of the LC can be engineered,
see Fig. 1.3 (left). When the molecules are now exposed to an electric field
perpendicular to the glass plates, the molecules in the central region tilt in the
direction of the field. During tilting, they pull their neighbouring molecules to
adopt the same orientation. However, the molecules close to the glass plates do
not rotate. This leads to a stable configuration of the LC which is depending
on the electric field strength, see Fig. 1.3 (right).

One important property of liquid crystals is their birefringent character.
Their director defines an optical axis, as in birefringent crystals. Depending

8



1.1. Liquid Crystal SLM

on the incoming lights polarisation the light beam will see certain indices of
refraction corresponding to no for its ordinary ray and ne for the extraordinary
ray. The ordinary ray is polarised perpendicular to the plane, spanned by the
optical axis (the director) and the travelling direction of the incoming laser
light. The extraordinary ray is polarised in this plane and therefore has part
of its polarisation along the optical axis. We assume now, that the incoming
light is polarised along the orientation of the molecules shown in Fig. 1.3 (left),
meaning that we put all the light into the extraordinary beam. When an electric
field is applied, the direction of the optical axis of the liquid crystal changes.
This changes the refractive index of the extraordinary beam ne(V ) with the
voltage V used for the electric field. As has been pointed out in Ref. [Hu04] for
this configuration one finds a retardation of the lights phase

δ =
2πd

λ

(
ne(V )− no

)
(1.1)

for the transmitted beam. It depends on the lights wavelength λ, on the dis-
tance d between the glass plates and on ne(V ). From this it can be seen, that
by increasing the electric field, we can change the phase of the transmitted
beam.

Liquid crystal SLMs can be operated in a transmitting or a reflecting con-
figuration. The latter case is shown in Fig. 1.4. Here the incoming light enters
from the top and gets reflected back on the mirror underneath the liquid crys-
tal cell. The electric field is created with transparent electrodes on the upper
glass plate and rectangular pixel electrodes under the mirror. These electrodes
define single pixels of the liquid crystal SLM and they allow different electric
fields in different pixels of the SLM. The molecules in these pixels will rotate
more or less, depending on the electric field strength, leading to different phase
retardations δ.

This constitutes one phase-only spatial light modulator. There are also
phase-only modulators available with twisted-nematic phases, see for example
[Kon88]. Besides phase-only modulators, there are also spatial light modulators
that allow to change a beams intensity in a pixelated way. Here the reader is
again referred to Ref. [Col90].

9



1 BASIC CONCEPT OF SPATIAL LIGHT MODULATION

x

voltage

glass plate

glass plate
mirror
pixel electrodes

incoming polarised
laser light

wavefront of
reflected beam

Figure 1.4: Schematic idea, how liquid crystals can be used to change the
phase of an incoming laser beam in a pixelated way. The beam travels through
the liquid crystal and reflects back at a mirror after wards. Individual electrodes
underneath the mirror create electric fields across different regions of the LC.
This allows a spatially resolved phase shift of the laser beam.

1.2 Digital Micromirror Device
Another spatial light modulator used nowadays is the digital micromirror de-
vice (DMD). The following section covers its basic properties and working
principle. A complete description can be found in the manufacturers2 manual
in Ref. [TI13].

A DMD can be seen as a grid of about one million individual mirrors.
Each mirror has an area of about 10x10µm2 and is mounted on a yoke that
is attached to a torsion hinge, see Fig. 1.5. It can be tilted only to two angles,
+12◦ and -12◦. These two angles correspond to an ON and OFF configuration.
Therefore the DMD is said to have only binary pixels. Depending on which
angle the mirror is tilted it can reflect light into one of two specific beam paths.
The mirror position is set via two electrodes, that are situated underneath one
diagonal of the mirror. Under each mirror there is a dual CMOS memory that
defines the states of both electrodes complementary. First the memory is loaded
with the state bits. One electrode is assigned with bit 1 and the other with
the complementary bit 1̄. All mirrors and yokes share a common potential.
This potential keeps in combination with the electrodes the mirror in its final
position, see Ref. [Zup13]. Once a mirror is put into its position, it can stay

2Texas Instruments Inc.
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1.2. Digital Micromirror Device

±12°

mirror

torsion hinge

yoke

electrodes

Figure 1.5: Schematic sketch of a DMD pixel. A mirror on a yoke is mounted
on a torsion hinge that allows to tilt the mirror to two angles - +12◦ and
−12◦. Electrodes underneath the diagonal of the mirror are used to define
which position the mirror shall be tilted. Also plotted is a small array of the
mirrors.

there until a new position is set. The maximum switching rate for the mirrors
can be from 4 kHz up to 32 kHz, depending on the device.

All the mirrors are sitting on a mirror board. They usually span a rectangu-
lar area of about 1-2 cm2, which is called active area. Besides this mirror board,
an interface board is needed. This second board establishes the communica-
tion between the mirrors and a computer. It carries the necessary hard- and
firmware and FPGA (field-programmable gate array) logic to control the be-
haviour of the whole device. It receives uploaded pictures from the computer,
translates them into the necessary mirror states and sets the mirrors accord-
ingly. The interface board contains usually an onboard RAM (random access
memory), which allows to store pictures directly on the board. This is needed,
if pictures shall be displayed with a frame rate, higher than the connection
between the computer and the interface board allows.

Additionally a function library comes with the interface board. It allows
to easily communicate with the board from the computer via a USB cable.
Uploading, storing and displaying sequences can then be done easily by calling
the appropriate function on the computer. The DMD used in this thesis is
explained in more detail in Sec. 3.1.

11



1 BASIC CONCEPT OF SPATIAL LIGHT MODULATION

1.3 Applications in ultracold atom experiments
Both devices, the LC SLM and the DMD, have been successfully used in ul-
tracold atom experiments. In Ref. [Nog14] a phase-only LC SLM could be used
to generate arrays of micro sized traps for rubidium atoms with nearest neigh-
bour spacings down to a few µm. Here a phase pattern was imprinted on the
laser beam with the SLM, leading to the desired trap geometries in the Fourier
plane of a high numerical aperture (NA) lense.

Another experiment used a phase-only LC SLM to generate a quasi-uniform
potential for Rubidium atoms [Gau13]. Here a blue detuned (repulsive) laser
light was used to trap the atoms inside cylindrical-shaped potential walls. The
precooled atoms could be Bose-Einstein condensed in this uniform potential.

The digital micromirror device was used to address single atoms in an
optical lattice [Fuk13]. Here small patterns were created to induce light shifts
on single lattice sites. These light shifts could then be used to resonantly drive
spin flips of the corresponding atoms. The big advantage of the DMD here was
that the atoms could sit in the image plane of a high NA objective. The image
plane allowed to assign a small number of pixels directly to one lattice site.
This allowed different lattice sites to be individually addressed at the same
time.

One other experiment used the image plane of a DMD to perform Bragg-
spectroscopy, see Ref. [Ha15]. Here a sinusoidal light pattern was moved over the
atoms. From the speed of the moved pattern and its wave vector, the energy-
momentum dispersion relation of a trapped atomic cloud could be mapped out.
In addition the roton-maxon excitation spectrum of an ultracold atomic sample
in a shaken optical lattice could also be measured with the same technique.

1.4 Comparison DMD and LC SLM
Some important properties of both devices are listed in Tab. 1.1 for comparison.
For both SLM devices high resolution versions are available. Getting a concrete
value for the diffraction efficiency3 is difficult, since it depends strongly on the
device and the used laser wavelength. Therefore the listed values should give
just a rough estimate. Regarding the degrees of freedom (DoF) per pixel the
LC SLM clearly outplays the DMD. Whereas the DMD only has binary pixels,
the LC SLM typically offers more than 256 different voltage levels, which can
be applied to one pixel.

3The amount of light that enters from the incoming beam into the modulated one.
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1.4. Comparison DMD and LC SLM

The light utilisation4 (LU) depends strongly on the created beam profile.
In Ref. [Bel11] a phase only LC SLM with a Fourier setup yielded experimental
LUs around 25%. In the same thesis the DMD was used in an image configura-
tion, where the LU for the same patterns was between 1 and 10%, depending
on the created pattern shape. In principle also patterns with a light utilisa-
tion of around 50% are possible. As shown in this thesis, a DMD in a Fourier
plane in combination with a binary, uploaded grating yields LUs with only
around 1%. Here, the low light utilisation of the DMD is due to simply dump-
ing beam power by turning mirrors OFF and is definitely the DMD’s major
disadvantage.

There is one important disadvantage of LC SLMs for ultracold atom ex-
periments. If these liquid crystals are exposed to a constant electric field,
the molecules undergo electro-chemical reactions over time and are destroyed.
Therefore not a constant electric field, but rather an alternating one has to be
used. This frame rate lies typically between a few Hz and 1 kHz, depending on
the device. As has been shown in Ref. [Bel11], this results in intensity noise
of the modulated beam, that has spectral peaks for frequencies of the switch-
ing rate and higher harmonics. Since trap and lattice frequencies in ultracold
atom experiments lie typically in this regime, heating has to be expected com-
ing from this switching rate. We have finally decided to use a DMD because
here we do not expect intrinsic heating, due its static behaviour.

Liquid Crystal SLM DMD

resolution (pixels) up to 1920x1080 up to 1920x1080
diffraction efficiency 60-95% <86%
DoF per pixel ≥ 256 2 (ON/OFF)
intrinsic frame rate between few Hz and 1 kHz none
wavelength region VIS, NIR VIS, NIR

Table 1.1: Comparison of some main properties of a liquid crystal spatial light
modulator and a digital micromirror device. Values for the diffraction efficien-
cies for the DMD are stated in different datasheets from Texas instruments but
can in general be lower, since the mirrors diffraction efficiency depends also on
the lights wavelength.

4What percentage of the diffracted light after the SLM is really used to achieve certain
beam shapes.
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Chapter 2

The digital micromirror device

The digital micromirror device (DMD) and its basic working principle is ex-
plained in Sec. 1.2. This section will show how it can be used for spatial light
modulation. I will explain how the DMD can be seen as a blazed grating and
how its main diffraction order can be found. Once the main order is known,
it can be used for spatial light modulation. Afterwards the image setup and
the Fourier setup is discussed. The latter one will be described in more detail,
since it describes the basis of this work.

2.1 Blazed grating and phase aberrations
As mentioned in Sec. 1.2 the DMD consists of many tiny mirrors that are sitting
next to each other. Therefore, the whole mirror area acts like a two dimen-
sional blazed grating. This means, that the DMD itself inherently diffracts an
incoming laser beam into different orders, see Fig. 2.1. For a given blaze grating
geometry, one can calculate the main diffraction order m [Pal05], which carries
most of the intensity1, via

mλ = 2dsin(ΘB). (2.1)

Here λ is the lasers wavelength, ΘB is the tilt angle of the mirrors and d is the
mirror spacing. For spatial light modulation, only this main order m is used.
Once m is known, we can use the grating equation from Ref. [Pal05]

mλ = d(sin(Θin) + sin(Θout)), (2.2)

which connects the angle of the incoming laser beam Θin with the angle of the
outgoing beam Θout for our main order m. We impose the that the main order

1The other orders carry in general less intensity and are not used for spatial light mod-
ulation.
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2 THE DIGITAL MICROMIRROR DEVICE

ΘB

mirrors

incoming beam

d

other orders

main order

Figure 2.1: The mirrors of the DMD constitute a blazed grating. Therefore
an incoming beam is diffracted in different orders. Depending on the mirror
tilt angle ΘB, the mirror spacing d and the wavelength of the laser light, a
main order m will carry most of the intensity while the other orders will carry
less.

beam travels perpendicular to the mirror area. Therefore we choose Θout = 0◦

and calculate the needed Θin under which we direct the beam on the DMD.
One important thing, which became visible during working on my master

thesis, are phase aberrations induced by the DMD itself. These phase aberra-
tions lead to a reduced beam quality after the DMD. According to Ref. [Zup13],
these aberrations are coming mainly from the mirror area itself. The whole
mirror array is pressed on a heating sink during manufacturing. This process
bends the mirror area slightly, which distorts the wave fronts of the diffracted
beam.

2.2 Image plane
One straightforward way to achieve modulation of the diffracted laser beam,
is to image the plane of the DMD mirrors in an image plane. This is usually
done with an objective, see Fig. 2.2. Here one pixel is imaged to a specific point
in the image plane. For ultracold atom experiments, the created patterns are
typically in the size of a few micrometer up to tens of micrometer. This has
two important consequences. First of all, a good objective needs to be used,

16



2.3. Fourier setup
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Figure 2.2: Image setup of the DMD. An objective is used to image the plane
of the DMD pixels into an image plane, where for example ultracold atoms sit
in an experiment.

to guarantee a high image quality at these small sizes. This limits the working
distance of the objective, meaning the distance between the last lense and the
image plane. Secondly, at this small sizes individual pixels can not be resolved
by the objective and are washed out. Therefore multiple pixels contribute to
specific areas in the image plane, which is good, because it allows for different
intensity levels. For example, if 4x4 pixels contribute to one area in the image
plane, than 16 different intensity levels can be applied by switching a certain
number of pixels OFF.

A simple box-shaped potential can be generated like follows, see Ref. [Bel11].
First, a box of pixels on the DMD are turned simply ON and all the others
OFF. This cuts out a square-profile out of the Gaussian incoming beam. How-
ever, the truncated beam still has a Gaussian envelope on top of the box shape.
This can be corrected, by turning certain mirrors OFF in the more central re-
gion, to reduce the intensity coming from this region. This technique uses the
so called error diffusion algorithm, which allows to calculate which specific
mirrors need to be turned OFF to achieve a certain intensity profile in the
end. With this setup, one can directly ’cut’ out a multitude of beam shapes
like rings, walls, lines and so on.

2.3 Fourier setup
Another approach to achieve spatial light modulation is to take a Fourier setup.
Here a single lense can define a Fourier plane, see Fig. 2.3. The connection
between the diffracted beam at the mirror plane and the Fourier plane is
now given by the Fourier transformation. Compared to an imaging setup, no
objective is needed and, since all the light of the beam is focussed down, higher
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Figure 2.3: Fourier setup for spatial light modulation. The diffracted beam
is focussed in the Fourier plane of a single lense.

intensities can be reached. However, these advantages come at the cost of edge
sharpness of the beam shapes, because the patterns will be Fourier limited.
Here, for an infinitely sharp potential, like a box, an infinite number of Fourier
components would be needed. However, these can not be provided due to the
finite size of the DMD mirror area.

Compared to the imaging setup, there exist techniques that allow to correct
phase aberrations in the Fourier plane. In this section I will introduce the idea
of a programmable grating, that can be uploaded on the DMD and used for
correcting phase aberrations in the setup and also for displaying different inten-
sity patterns. The main ideas come from another master’s thesis, Ref. [Zup13],
where the whole technique has been demonstrated with great success.

Capabilities of a displayed grating

Since the DMD allows us to program the state of each individual mirror inde-
pendently, we can upload any imaginable pattern within the resolution of the
device. This also means, that we can upload a binary grating pattern on the
DMD, by tilting stripes of mirrors ON and other stripes of mirrors OFF. The
width of one of these stripes is given by the amount of neighbouring mirrors
that are turned to an ON state. We can change the width of these stripes in
certain regions of the grating, as we want. Additionally, these stripes do not
have to be straight lines, but can be bended.

To see how powerful these properties of a programmable grating are, we
have a closer look at it on Fig. 2.4. Here a (one dimensional) grating is repre-
sented by black slits. It reflects an incoming laser beam into different orders,
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shift position shrink width

phase shifted amplitude
decreased

1st order

incoming light

Figure 2.4: The first order of a grating can be used for spatial light modula-
tion. The grating allows us to change the beams phase, via shifting the grating,
and lower its amplitude via shrinking the width of its stripes. The combination
of both enables us to create arbitrary wavefronts of the first order.

from whose only the first order is important for now2. As explained above, the
programmable grating allows us to change both, the width and the position of
our stripes locally on the DMD. On the one hand, a shift of the stripes posi-
tions will shift the phase of the diffracted beam (one simple picture is that the
incoming wavefront sees the grating at a different time). On the other hand,
a decreased stripe width will attenuated the beams intensity. This results in a
complete control over the first order beams phase and amplitude even though

2It is important to notice that this uploaded grating gives us diffraction orders 0,±1,. . . on
top of the used m order of the blazed grating, that the DMD constitutes. So also the weaker
other orders of the blazed grating show these diffraction orders of the uploaded grating on
top of them, but with much less intensity.
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Figure 2.5: Binarisation of a grating function. The DMD can take only the two
values 0 (white) for OFF and 1 (black) for ON for the mirror states. Therefore
the values for a sinusoidal grating (left) need to be mapped into the either 0
or 1. The most straight forward way is to round the grating value. One pixel
on the binarised grating (right) corresponds to one mirror state. This example
is for a square of 100x100 mirrors.

our DMD itself can only affect the amplitude of the incoming beam.
Keeping these two properties in mind, we will see in this Chapter how

we can correct phase aberrations in our system and how we can change the
intensity distribution in our final, phase-corrected beam shape. Especially a
good correction for phase aberrations will be necessary for diffraction-limited
performance of our light modulation setup.

We first need to find a formula fgrating(x, y) which allows us to create a
grating pattern, that we can upload on the DMD. This formula is then applied
to a two dimensional matrix, in which each entry corresponds to the state of
one mirror, such that one mirror represents one pixel in the grating pattern.
After uploading this final matrix on the DMD, the grating pattern is displayed
and shall result in the needed beam profile in the Fourier plane. Since the
DMD can interpret only two integer values (0 as OFF and 1 as ON), one
straight forward way to initialise the mirror states is to round each pixel value
generated by fgrating. This gives us a binary grating pattern where each matrix
element has either 0 or 1, see Fig. 2.5.

One possibility to represent a grating is to use

fgrating(x, y) =
1

2

(
sin
(
~k · (~x+ ~y) + φ(x, y)

)
+ 1
)
. (2.3)

Here fgrating defines a two dimensional sinusoidal pattern that has a wave vector
in direction ~k and has values between 0 and 1. Additionally, a phase φ(x, y)
can be added, which will allow us to modify our grating. For example if

φ(x, y) = constant
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the original grating is simply shifted, which simply shifts the whole phase of
our first order beam. It is straightforward from Eq. (2.3), that a linear phase
gradient

φ(x, y) = ~k′(~x+ ~y)

results simply in another linear grating with a new wave vector ~knew = ~k + ~k′.
Note that this different wave vector results in a different refraction angle of
the first order beam and therefore will shift its position in the Fourier plane.

If one considers more complex phases φ(x, y) one can imagine, that the
original grating gets more and more distorted, but also that certain parts of
our first order beam can have different phases and positions in the Fourier
plane.

In an ideal optical setup, the first order beam of our programmable grating
would be again a Gaussian beam (assuming the incoming beam is Gaussian).
However, the lense used for the Fourier plane and the DMD itself introduce
aberrations, which lead to a distorted beam in the Fourier plane. Therefore
it is necessary to measure these phase aberrations and correct for them with
the grating, in order to get an ideal Gaussian beam shape back. We will see in
the following section, how these aberrations can be measured. Once we have
a map for our phase aberrations, we can directly apply the conjugated phase
map φ(x, y) to the grating in Eq. (2.3).

In the following two sections I will introduce the concept of the phase map,
which directly contains all necessary information to correct aberrations, the
intensity map and the profile map, which in the end gives us the intensity
distribution of our shaped beam profile.

The phase map

As discussed before, by introducing a phase map φ(x, y) for our grating, we
can control the phase and the position of different parts of our first order beam
in the Fourier plane.

The first goal is to measure the phase aberrations present in the whole
optical system to be able to correct them. To measure the (relative) phase
aberrations in different regions of our setup, we need to define a reference
phase. This can be done by displaying a small rectangular part of our grating,
which we call reference patch. This reference patch results in a small beam
with a certain phase in the Fourier plane, where we can put a camera. When
displaying a second sampling patch, the corresponding beam will interfere with
the beam associated with the reference patch, see Fig. 2.6. From the resulting
interference pattern we can retrieve the relative phase difference between the
sampling and the reference patch, as we will see now. The two beams can be
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Figure 2.6: To measure the relative phase aberrations, one needs to display
two small patches of our grating. One reference patch and a sampling patch.
Both patches will create two beams that will interfere in the Fourier plane.
From the interference pattern, we can extract the phase aberration between
these two patches.

described by plane waves that are travelling under certain angles3 β1 and β2

to the optical axis x

E1 = Aeik(sin(β1)z+cos(β1)x+∆φ) (2.4)

E2 = Beik(sin(β2)z+cos(β2)x). (2.5)

Here, z is the axis between the two patches, k = 2π/λ is the lasers wavenumber
and A and B the amplitudes of the electric fields. Additionally a phase ∆φ
for the sampling beam is used, which considers the phase aberration from the
setup. Looking at the interference pattern in the Fourier plane at x = f , we
get

|E1 + E2|2 = A2 +B2 + 2ABcos
[
k
(
zsin(β2)− fcos(β2)−

− zsin(β1) + fcos(β1)
)

+ ∆φ
]

(2.6)

with f being the focal length of the lense. We see that we get an interference
pattern with a wave vector, which depends on the angle of our beams, and
with a shifted phase ∆φ that comes from aberrations. In Ref. [Zup13], the
interference pattern was moved over a photodiode with a small pinhole in front.
In our experimental setup in Chapter 3 we will use a CCD camera, which gives
us directly a full picture of the interference pattern, which we then can fit with

3For simplicity we neglect the lights polarisation here.
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2.3. Fourier setup

Eq. (2.6). From this fit, we can extract ∆φ. It is now straightforward to scan
the position of our sampling patch to get the phase aberrations ∆φ for a region
around our reference patch.

Typically, the pixel size of the CCD camera is in the order of a few microm-
eters (or bigger) and hence does not allow to measure the phase aberrations
with the same reference patch for all scanned patches. The reason is, that
for bigger distances between reference and sampling patch, the wave vector
of the interference pattern gets bigger. For bigger distances between the two
patches, the angles β1 and β2 in Eq. (2.6) get bigger and the distances in the
interference pattern become smaller. Therefore, at a certain distance between
the two patches our camera will not be able to resolve the interference pattern
any more. Therefore, no fit can be applied and no phase aberration extracted.
We have defined an approach that circumvents this issue and aims to retrieve
a complete phase map for the whole mirror area of the DMD. The idea is to
scan the DMD area with smaller phase maps, which we can resolve with our
camera.

First, we have a look at two different small phase maps. They use different
reference patches, which differ in phase and in position. The difference in phase
comes from the fact that the two beams corresponding to the reference patches
have travelled a different way. The difference in position arises from the fact
that each reference beam is not focussed to the same spot. Now, each small
phase map gives a phase correction with respect to their reference patch. How-
ever, since the reference patches differ, the small phase maps correct light from
the associated sampling region of the DMD differently. Therefore we need to
find a way to match the two small phase maps by matching their two reference
patches. Considering Eq. (2.3) we can add to one of the two small phase maps
another phase map

φmatch(x, y) = constant + ~k′(~x+ ~y) (2.7)

that has a constant and a linear contribution. it is possible to choose this
contribution such that the position and the phase of our two reference beams
coincide, which directly matches the two small phase maps.

To compute φmatch(x, y) one possibility is to measure two small phase maps
that overlap. Taking the difference will directly give us the constant offset and
the linear gradient that we need. It can be added to one of the two small phase
maps and results in a matched bigger phase map. Then, this scheme can be
applied to a next small phase map, and so on, until the full phase map is
recovered from multiple small phase maps. How good this method works and
what its limits are, will be exposed in Chapter 3.
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The intensity and profile map

Once we have a phase map, that corrects for phase aberrations, we are back
on the ideal configuration, where the first order beam has a Gaussian shape.
If we want to create different beam profiles, we have to cut our pattern out of
this Gaussian beam. This is done by locally decreasing the stripe widths of our
grating and therefore the intensity coming from different regions of the DMD.

The intensity distribution on the Fourier plane depends on the intensity
distribution on the DMD mirrors. For that reason, we first need to measure
the intensity distribution of our incoming laser beam. This can be done by
displaying a single grating patch on the DMD and integrate the intensity of
the first order on the camera. By scanning again the position of this patch,
we get an intensity map Aint(x, y) whose resolution is set by our patch size.
Since we expect our incoming beam to be smooth and Gaussian, a bigger patch
size than for the phase map can be used. This map can be normalised and is
proportional the intensity distribution of our incoming beam. It is used to take
the different incoming intensities on each DMD mirror into account.

In a next step we create a normalised profile map Aprofile(x, y), which con-
tains the Fourier transform of the pattern we want to create. This can be for
example a TEM03 mode or even a discrete Fourier transformation of our final
pattern. We can define a new locally weighted map

Alocal(x, y) =
Aprofile(x, y)

Aint(x, y)
(2.8)

which is a profile map whose values are weighted by the inverse of the incoming
intensity distribution. This means that points with less incoming intensity get
increased compared to points with higher incoming intensity. The reason for
this can be understood, if one looks at a (one dimensional) box-like profile map
with a Gaussian incoming beam, see Fig. 2.7. If we would simply display a box
profile, the beam after the mirrors would still show a Gaussian envelope on
top, due to the Gaussian incoming intensity. Therefore the amplitude of the
profile map has to be decreased in the center region to recover a flat intensity4
directly after the DMD.

The final locally weighted map Alocal(x, y) is used to assign stripe widths
to our grating. After normalising Alocal(x, y), each point defines us a cutoff for
our grating in Eq. (2.3). Its value can be calculated from a one dimensional
cosine wave to

ccut(x, y) =
1

2

(
cos
(
asin(Alocal(x, y))

)
+ 1
)
. (2.9)

4Notice here, that a box shaped profile pattern on the DMD would yield in the Fourier
plane a two dimensional sinc-shaped pattern.
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Aprofile

Aint

Alocal

÷

=

Figure 2.7: Schematic idea of the locally weighted map Alocal. The profile
map Aprofile is defined by the Fourier transform of the final pattern. In order to
compensate for an inhomogeneous incoming intensity distribution, an intensity
map Aint needs to be measured whose inverse acts as a weight for the profile
map. For more information see text.

If the value of our grating fgrating(x, y) is now bigger than ccut(x, y) the corre-
sponding pixel is turned ON. If the value is lower, the mirror is turned OFF.
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Chapter 3

Experimental realisation

Once we have decided for the DMD, we could choose between an imaging setup,
where usually a high NA objective is used, or a Fourier setup. Both approaches
have been implemented with great success in optical lattice experiments with
single-site resolution [Fuk13, Pre15]. The current Erbium experiment in Inns-
bruck has no possibility for optical access with high numerical apertures, since
the viewports of the main chamber limit us to NA≈0.1. Therefore it can be
hard to get qualitatively good and small light patterns at the point of the
atoms. One would have to think about an optical setup that demagnifies the
beam coming from the DMD by a factor of 50 to 100 to get shapes in the
size of 100µm. Additionally the distance between the last lense and the image
plane should be around 10 cm working distance. The impossibility of correct-
ing phase aberrations in an image setup yields even more carefully designed
optics. On the other hand the Fourier plane seemed more appropriate for our
purposes, since one single lense can already give a Fourier plane that can lie at
a far enough distance after the lense to be implementable in the experiment.

This Chapter discusses the experimental realisation of light modulation
with a Fourier plane. I will first describe the characteristics of the DMD and our
optical setup. I will then describe how the phase map and the intensity map can
realised. Using these two maps, we can directly start creating patterns, which
will then be analysed in more detail. Finally, the possibilities, the limitations
and future improvements of this Fourier approach for the DMD are discussed.
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3 EXPERIMENTAL REALISATION

mirrors

45°

Figure 3.1: Tilting of the mirrors about its diagonal axis. To keep the reflected
beams in the same horizontal plane, the DMD has to be mounted at 45◦.

3.1 Technical characteristics of the DMD and
the optical setup

Our DMD1 consists of two boards: The mirror board2 on which 1080x1920 alu-
minium mirrors are mounted and the controller board3, which is the interface
between the computer and the mirror board. The latter can be directly at-
tached via USB to a computer. The two boards are connected via two flexible
cables.

Each square mirror has an area of 10.8x10.8µm2 and can be tilted to two
stable angles +12◦ and -12◦ (corresponding to ON resp. OFF state). The mir-
rors have a maximum switching rate of 17.8 kHz. Additionally the controller
board has an onboard RAM (random access memory) which allows the stor-
age of 31.000 binary patterns. This allows us to upload sequences of patterns
directly on the DMD and display them with high pattern rates.

When installing the DMD we need a mount for the mirror board and a
casing for the controller board. Especially for the mirror board one has to con-
sider a few factors. First of all, the mirror board should be mounted as stable
as possible to avoid temporal and spatial noise of the final pattern. Secondly,
when a mirror is switched, it tilts about its diagonal axis, see Fig. 3.1. A ro-
tational axis, at an angle of 45◦ from the vertical, would reflect the incoming
laser beam out of the horizontal plane of the optical table. Therefore the whole
DMD needs to be tilted by these 45◦, to have the rotational axis of the mirrors
pointing vertically. This allows to flip the mirrors along the vertical axis and
keeps all reflected beams in the same horizontal plane. To fulfil these require-
ments, I have designed a mounting for the mirror board. It was machined in
the universities mechanical workshop.

1Discovery 4100 Development Kit from Vialux
2DMD 0.95 inch 1080p VIS from Vialux
3DLP Discovery 4100 Main Board from Vialux
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Figure 3.2: Casing for the DMD. The mirror board (front) is mounted on a
self designed holder. For the controller board (back) a normal aluminium box
is used. It is also mounted at 45◦ angle to avoid shearing forces on the flexible
cables.

The casing for the controller board is not as critical as the mount for the
mirror board. Here I simply modified an aluminium box which is air cooled by
two fans. To avoid shearing forces on the flexible cables, the controller board
is also mounted at 45◦. The whole DMD is shown in Fig. 3.2.

As illustrated in Fig. 3.3, we test the DMD with a simple optical setup.
We use a few milliwatts of 532 nm laser light from a diode-pumped, frequency
doubled laser4. The light is delivered from the main optical table via a fiber.
After the fiber, a polarising beam splitter (PBS) cube is used to clean the
light polarisation. The light is then sent through an acusto optical modulator5
(AOM) with a driving signal frequency of 110MHz. The AOM splits the light
into different orders 0,±1,. . . , that are travelling in slightly different directions.
All orders, except the +1 order, are blocked with an iris. The intensity of

4VerdiTM V-10 single frequency, diode-pumped laser with 10Watt max. output from
Coherent.

5AOMO 3110-120 from Gooch & Housego
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Figure 3.3: Setup for beam preparation. The laser light comes from a fiber
and is first polarisation cleaned via a PBS cube. The first order of an AOM
in combination with a photodiode and a PID controller allows to stabilise the
intensity of the laser beam. Afterwards a double telescope expands the beam
to a waist of roughly 1 cm. For further details see text.

the +1 order depends on the amplitude of the AOMs driving signal. A beam
sampler after the iris reflects a small portion of the beam on a photodiode. The
photodiode signal can now be stabilised with a proportional-integral-derivative
controller (PID). The PID has two inputs and one output part. One input is for
the photodiode signal, the other is used as a set value, which can be externally
varied. The output port is connected to the amplitude of the driving signal
for the AOM. The PID now keeps the photodiode signal at the set value, by
changing the driving amplitude. This stabilises the +1 order of the AOM,
which is then used for the DMD.

After the beam sampler, we expand the beam to a waist of roughly 1 cm,
to cover all the mirrors of the DMD. This is done via two telescopes that are
shown in Fig. 3.3.

As explained in Sec. 2.1, the DMD acts like a two dimensional blazed grat-
ing. Therefore, it diffracts an incoming laser beam into different diffraction
orders, from which one order m carries most of the intensity. From Eq. (2.1),
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we calculate the main diffraction order of the DMD to

m ≈ 6.

From Eq. (2.2) and considering Θout = 0◦ we obtain an incoming angle of

Θin ≈ 17.5◦.

The expanded laser beam is then directed on the DMD under Θin (measured
from the axis perpendicular to the mirror area), see Fig. 3.3.

After the DMD we use an achromatic, two-inch lense with a focal length
of f = 500mm. Its numerical aperture is NA = sin(α) ≈ 0.05 where α is the
half angle of the maximum light cone. For a wavelength of λ = 532 nm we get
a resolving power, according to Ref. [Joh60], of R = 1.22λ

2NA ≈ 3.2µm.
In the Fourier plane of the lense we put a CCD camera6 with 1360x1024

pixels and a pixel size of 4.65x4.65µm2. With this camera we will now mea-
sure the phase aberrations, the amplitude map, and check the created beam
patterns.

3.2 Phase and amplitude map
After setting up the optical setup, we first put all mirrors to an ON state.
On the CCD camera we see the bright m = 6 order of the blazed grating
appearing7.

Phase map
We follow the approach discussed in Sec. 2.3. A grating pattern is uploaded on
the controller board of the DMD and the mirrors are set accordingly. On the
camera, the main m = 6 diffraction order shows now three diffraction orders of
the uploaded grating. One is the main order which carries most of the intensity
and the other two are first orders, see Fig. 3.4. Higher orders are not visible8
on the camera. One of these two first orders can be used to implement spatial
light modulation as described in Sec. 2.3. We therefore restrict our camera area
to one of this first orders.

6mvBlueFox-233G from Matrix Vision
7Compared to the m = 6 order, the other orders of the blazed grating are only visible on

the CCD camera for longer exposure times.
8Note again, that these main and first orders are coming from the same m = 6 order of

the diffracted beam from the blazed grating.
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Figure 3.4: After uploading a grating pattern on the DMD, the m = 6 order
beam of the blazed grating splits in three orders, one main order and two first
orders. For spatial light modulation, only one of the two first order beams are
used.

At the beginning, the phase aberrations need to be measured. First, only
a reference patch of 20x20 mirrors is displayed on the DMD, which gives a
Gaussian spot on the camera. From this we extract the center position of the
pattern via a Gaussian fit. This center position is taken as a reference point
for phase aberration φ, which is measured in a next step. Secondly, a 20x20
mirrors sampling patch is displayed in addition. The reference patch is now
kept at a fixed position, while the sampling patch is scanned over an area of
15x15 patches, see Fig. 3.5 (left). Each position of the sampling patch results,
in combination with the reference patch, in an interference pattern on the
camera, see Fig. 3.5 (right).

Each of these interference patterns are fitted with a plane wave and a
Gaussian envelope9. The center of the Gaussian envelope is fixed by the center
position of the precursory Gaussian fit, where only the reference patch was
displayed on the DMD.

For each interference pattern we get a phase value ∆φ from its fit, which
can be assigned to the corresponding sampling patch. What we get is a small
phase map corresponding to the 15x15 area of sampling patches, see Fig. 3.6 a).
Since our fits of the interference patterns can only extract phase aberrations
modulo 2π, this small phase map first needs to be unwrapped. This is done

9We have also implemented a fit of a plane wave without Gaussian envelope, around the
central region of the interference pattern. The resulting phase φ is the same, but the time
for calculating decreased dramatically, because less pixels need to be fitted.
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Figure 3.5: Left: Scan of a small are of 15x15 patches on the DMD. The
phase aberrations are measured between a reference patch and a sampling
patch. The grey background illustrates the used grating, which is not displayed.
Right: Interference pattern between reference patch and a sampling patch in
the Fourier plane, taken with the camera. From this interference pattern the
phase aberration is extracted with a fit.

with an unwrapping algorithm10 which corrects for 2π jumps. The unwrapped
small phase map is illustrated in Fig. 3.6 b). For some maps the unwrapping
did not work for border pixels. Therefore we decided to always cut away one
line of pixels at the border, to fully automate the calculation procedure. There
are still some bad points inside the small phase map, which are coming from
a failed fitting of some interference patterns. These points can be eliminated,
by fitting the whole small phase map with a two dimensional locally weighted
regression11. In the end, a smooth phase map for our sampling area is obtained,
see Fig. 3.6 c). This would already allow a phase correction for this specific area
of the DMD.

Since we want to use as much mirror area of the DMD as possible, we now
have to measure small phase maps all over the DMD area and match them.
According to our approach in Sec. 2.3, the matching of two small phase maps
can be done by adding a linear gradient map to one of them. Since this linear
gradient is calculated from the difference of the overlap of the two phase maps,
an equal overlap between all neighbouring small phase maps is favourable.
First, two small phase maps are matched. Then, we can match them together
with a third small phase map, which again has an overlap. By continuously
matching small phase maps with the precursory matched ones, we can retrieve

10Constantini phase unwrapping algorithm for Matlab by Bruno Luong
11’loess’ fit in Matlab with additional parameters ’Robust’ and ’Bisquare’
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Figure 3.6: Phase map associated with a sampling region of 15x15 patches.
a) shows the wrapped phase map we get directly from the fitting of the inter-
ference patterns. b) shows the unwrapped phase map and c) the final phase
map, fitted with a locally weighted regression.
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Figure 3.7: Retrieving the full phase map is done via measuring overlapping
small phase maps across the DMD area. For the real setup for the first and
second run 6x3 phase maps were recorded.

the full phase map for the DMD.
The measurement of all the small phase maps is done in two steps, see

Fig. 3.7. First, we measure phase maps (bright blue) to cover the whole DMD
area. Secondly, we take phase maps (dark blue) that are shifted by half its
width in x and y. These small phase maps allow us now, to retrieve a full
phase map for the whole DMD area.

To begin the matching procedure, we take two overlapping small phase
maps on the border region of the DMD area, see Fig. 3.8. These first two
neighbouring phase maps can be matched by taking the difference of their
overlap, see Fig. 3.8 c). This difference is fitted with a two dimensional linear

34



3.2. Phase and amplitude map

0

5

10

15

20
0 5 10 15 20

0

5

10

15

20
0 5 10 15 20

0

5

10

15

20
0 5

a) phase map 1 b) phase map 2

patch number x

p
at

ch
 n

u
m

b
er

 y

0

5

10

15

20
0 5 10 15 20

0

5

10

15

20
0 5 10 15 20

c) difference combined
0

5

10

15

20
0 5 10 15 20

0

5

10

15

20
0 5 10 15 20

d) matched

−15

−10

−5

0

5

10

p
h
as

e 
(r

ad
s)

Figure 3.8: Matching procedure for two phase maps. First the difference of
the overlap is calculated. This can be fitted with a linear gradient and an offset,
which can the added to one of the maps to achieve a smooth transition between
the two maps.

gradient map with an offset

φmatch(x, y) = a+ b1x+ b2y. (3.1)

Adding this gradient to one of the two phase maps results in a smooth tran-
sition between them, see Fig. 3.8 d). Next, we take these two matched phase
maps and a third small phase map, that also overlaps with the already matched
maps. Again the difference between the overlap gives a linear gradient, that
can be added to the third map. This matches the third small phase map to
the first two phase maps. To these three matched maps, a fourth one can be
matched, and so on. This is done successively with each small phase map,
until all maps are matched to one big phase map for the whole DMD. One
important thing to notice is, that by adding gradients from small phase map
to small phase map, an overall gradient is added to our final, big phase map.
This leads to a shift of our used first order beam and therefore to a different
beam path in the optical setup. To account for that, we add another linear
gradient to the full phase map to flatten it back.

The complete phase map φphase for the DMD is shown in Fig. 3.9. It is
difficult to distinguish aberrations, that are coming from the DMD itself and
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Figure 3.9: Complete phase map for the DMD. There are strong aberrations
especially in the border region of the mirror area.

the ones coming from the lenses in the optical setup. While working with the
DMD we noticed strong aberrations in the border region of the mirror area.
This can be also seen in the final phase map in Fig. 3.9 where the correction
has values between +3 · 2π and -11 · 2π at the border region.

Intensity map
The next step is to create the intensity map Aint, as described in Sec. 2.3.
Patches of 60x60 mirrors are displayed. The value for the intensity can be
measured simply by integrating the first order beam on the camera. We end up
with an intensity map shown in Fig. 3.10. One can clearly see, that the beam is
covering the full mirror area. At this point we have all necessary maps to start
creating different beam shapes. The phase map will correct phase aberrations,
present in the system and the intensity map accounts for the inhomogeneous
incoming light intensity.
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Figure 3.10: Intensity map for the setup. Scanned with a patch size of
60x60mirrors.

3.3 Experimental results and created patterns
The two maps obtained in Sec. 3.2 can now be used to create different patterns.
As explained in Sec. 2.3, besides the phase and intensity map, we also need a
profile map, that contains the Fourier transformation of our desired beam
shape. As a first example we will look at a simple Gaussian beam. Then we
will move on to more complex shapes like higher order Hermite-Gaussian and
Laguerre-Gaussian profiles.

Gaussian beam
As a first step, a normal Gaussian beam is created. To see the effect of the
phase correction, we first apply only our intensity and profile map without the
phase map on our grating, see Fig. 3.11 a). One clearly sees that the beam is
completely deformed because of the aberrations present in the setup. However,
when the phase map is applied, the aberrations are well compensated and we
recover a nice Gaussian beam back, see Fig. 3.11 b).

Comparing Fig. 3.11 a) with b) one sees that the center of the beam pattern
is shifted when applying the phase map. This comes from the fact, as discussed
in Sec. 3.2, that still an overall gradient is present from the matching of the
small phase maps. In principle one could also add another linear gradient to
the phase map to shift the position of the corrected pattern completely back.

The corrected Gaussian beam is fitted with a two dimensional Gaussian
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Figure 3.11: Gaussian beam displayed with the DMD. a) shows the displayed
pattern without the phase map. Here all phase aberrations in the setup are
present which washes the pattern out. In b) the phase map is applied. One
clearly sees the correction of the aberrations in the appearance of a nice Gaus-
sian beam shape.

fit. With an exclusion of values lower than 0.03 of the normalised maximum
amplitude the fit yields a root-mean-square error of 1.13%12. In Fig. 3.12 a-d)
a cut along two directions is shown. Especially a logarithmic plot reveals, that
the pattern is Gaussian almost down to two orders of magnitude. At a value of
4·10−3 an inhomogeneous background appears. Since this value is the lowest
one, we can resolve with our 8 bit camera, it is not fully sure whether these
single counts are real photons coming from background light or if they come
from thermal excitations.

12The root-mean-square error is ∝ 1/
√
N with N being the number of fitted points. If all

points from a camera picture are included in the fit, the background points would decrease
the error, because less weight is putted on the actual pattern. Therefore a (arbitrary) cutoff
of 0.03 was chosen and used for all other fits.
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Figure 3.12: Cuts along two directions of the Gaussian beam, shown in
Fig. 3.11. One sees that the pattern follows a Gaussian profile down to almost
two orders of magnitude.

Hermite-Gaussian beams
One interesting set of patterns are TEMnx,ny modes which appear for example
in optical resonators. They can be described by a profile map

Aprofile,hermite(x, y) = Hnx

(√2x

w

)
· Hny

(√2y

w

)
e−

x2+y2

w2 (3.2)

where Hn is the one dimensional Hermite polynomial of order n. Here w defines
the size of the pattern. Important to notice here is that the Hermite polyno-
mials can be antisymmetric and hence can give negative values for the profile
map. We cannot work with negative values, since we can only decrease the
intensity coming from a certain DMD region. One nice way how these negative
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Figure 3.13: Complete grating for a Hermite-Gaussian mode. For comparison
the full DMD area (black box) is drawn.

values can be treated is shown in Ref. [Zup13]. Here, simply a phase factor of
eiπ = −1 is added in the regions for negative amplitudes. We can then use
the absolute value of our profile map Aprofile with this additional phase map
φprofile(x, y) to create the patterns.

To summarize: We have a phase map φphase and an intensity map Aint.
We then create a profile map according to Eq. (3.2). From this profile map a
new phase map for negative values φprofile is calculated. Combining all of these
maps, we end up with a grating shown in Fig. 3.13. Here, the size of the used
grating compared to the full DMD area is illustrated. We will address a clearer
insight into the possible pattern sizes and other limitations in Sec. 3.4.

In Fig. 3.14 we see a gallery of different camera pictures for TEMnx,ny modes
that could be created with the DMD. The rms-errors of these pictures, taken
from a two dimensional fit, range from 1.5% for the (nx,ny) = (1,1) mode
up to 3.6% for (nx,ny) = (15,15). For the fits again points less than 0.03
of the maximum amplitude were excluded. To get a more quantitative view
of the created patterns a cut through the (nx,ny)=(4,4) order and its two
dimensional fit is shown in Fig. 3.14. When looking at the logarithmic scale,
one sees that also here the patterns shape fits down to almost two orders of
magnitude. On the linear plot, one sees that the peak amplitudes are varying
slightly. This results from errors in our phase or amplitude map. As we have
seen for the Gaussian beam, an imperfect correction for aberrations leads to
a wrong intensity distribution and a blurring of our patterns. However, also
errors in our intensity map could account for less amplitude in certain regions
of our pattern.

By increasing the order (nx,ny) of our profile the structures on the grating
get smaller and smaller. When these structures are as big as our grating period,
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Figure 3.14: Different Hermite-Gaussian modes displayed with the DMD.

the grating cannot resolve them any more. Therefore it happens that each small
peak in the grating pattern has a different number of mirrors available, which
results again in different amplitudes in our beam pattern13. Therefore a bigger
size for higher order grating patterns had to be chosen, which results in more
sensitivity for phase map errors. This effect can be seen for (nx,ny)=(15,15),
where the pattern shows already slight bending.

13Notice that on the camera we are looking at the Fourier transform of the grating pattern.
Even though the Hermite-Gaussian modes are Fourier invariant, intensity coming from one
peak on the grating pattern spreads over the full Fourier pattern. Therefore one small peak
effects the full pattern on the camera.
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Laguerre-Gaussian beams
Besides Hermite-Gaussian profiles we also prepare Laguerre-Gaussian profiles,
described by

Aprofile,laguerre(r) = r|l|Llp
(

2
2r2

w2

)
eilφe−

r2

w2 . (3.3)

Here r =
√
x2 + y2 and φ = atan2(y, x) is the arcus tangent for all four

quadrants. Llp is the generalised Laguerre polynomial with p radial nodes. The
profile map has an inherent phase profile, coming from eilφ. To all other phase
maps that we have encountered so far, this is an additional one. It gives rise
to a phase vortex of our beam in the Fourier plane, which leads to a vanishing
intensity in the center for l > 0.

The different Laguerre-Gaussian modes are shown in Fig. 3.15. One nicely
sees that the intensity is vanishing at the center, due to the phase vortex for
l > 0. We created patterns up to l = 2. By increasing l more light is used from
the outer DMD region of the pattern, which again results in more sensitivity
for errors in our phase map. For l = 0 the main intensity is coming from
the more central region of the pattern, where relative errors are less present,
therefore the error for these modes are smaller. Especially when looking on the
(l,p) = (3,2) mode one sees variances of the intensity across each ring.
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Figure 3.15: Laguerre-Gaussian beams displayed with the DMD.

3.4 Limitations and further improvements
So far we have seen possible beam profiles that can be created with the DMD.
This section aims to discuss the limitations of the Fourier setup. I will go into
more detail about the origin of different errors in the phase map. Then one
important issue for the DMD is discussed, its power utilisation for the created
patterns.

Phase map

Here I would like to give a clearer insight into the real sizes of our grating
patterns, since this sets the number of pixels and therefore the degrees of
freedom which we can use to create a beam profile. As mentioned already for
the Hermite- and Laguerre-Gaussian beams, when increasing the size of our
grating pattern problems from our phase map occurs. Therefore it is necessary
to investigate this map further.

As a first test, the pattern was displayed on different regions of the DMD
with the same size. In the central region of the mirror area the rms-error
stayed nearly the same. Only for the border region, where strong aberrations
are present, the beam shape gets worse, see Fig. 3.16. Here the rms-error raised
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Figure 3.16: Displaying the pattern on the border region of the mirror area
results in a worse beam shape. Here aberrations from the DMD area stronger
and cannot be nicely compensated by the phase map.

up to 3.69%. The aberrations here rapidly change the phase of our beam from
0 to 2π per roughly 50 pixels. Since this cannot be resolved with the used patch
size, the phase unwrapping afterwards fails here. In principle a finer resolution
could reduce this errors, but results in longer calculation time for the fitting
procedure.

Since in the central region the phase errors do not depend on the position of
the grating pattern. However, increasing the size of the patterns results again
in a bigger rms error. Therefore, it becomes evident that the matching of the
smaller phase maps introduces an error. Each time we add a linear gradient,
which has a certain error, we introduce an error in the matched small phase
map. These errors can now accumulate over more and more matched maps
from a certain point. Therefore patterns, that use only neighbouring patterns
show less error, because closer phase maps fit better together. If the pattern
size is increased, further away phase maps are needed which have a bigger
error relative to the central map. For the images shown in Sec. 3.3 only sizes
of about 4x4 small phase maps are used. To improve this further, one should
use a camera with a higher resolution, or use a pinhole with a photodiode
as in Ref. [Zup13]. This would yield bigger single phase maps. Bigger phase
maps would allow for more overlap between them and therefore less error of
the linear gradient. Nevertheless, the used number of mirrors here, seems to
be sufficient to create beam shapes, which fit to about 2 orders of magnitude.
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Light utilisation

A very important issue concerning the DMD is its light utilisation. As men-
tioned already in Sec. 1.2 the beam shaping is done by simply switching certain
mirrors to an OFF state. Thus inherently a lot of light power is simply dumped
by the DMD. To get an estimate for the final power in our shaped beam pro-
files, we quickly recap the light utilisations at different steps. First losses occur
because the DMD has a measured diffraction efficiency for our wavelength
of about 75%. Secondly, the DMD constitutes a blazed grating (see Sec. 2.1).
Even though the blaze condition is fulfilled, only about 92% of the overall
diffracted power could be sent into the m = 6 order. The rest is separated
between the other orders. When displaying a plane grating all over the mirror
area, already 50% of our mirrors are switched OFF. Therefore only 50% of
the m = 6 orders light can be used after the DMD. The first order beam of our
grating, which we use for beam shaping, carries only 10% of this power since
most of it is in the zero order. At this point it is clear, that our approach here
is significantly limited in the utilisation of light. Up to here, only about 3.5%
of the incoming light is really used for the first order of the uploaded grating.

Finally, to achieve different beam patterns the profile map has to be applied.
Depending how different the shaped beam profile is compared to the incoming
Gaussian beam, more or less mirrors need to be turned OFF to achieve the
final pattern. Therefore it is clear, that maximally very few percent of the
incoming laser light are really used for the modulated beam shape. Here not
much can be improved. The only possibility is to shape the incoming beam to
fit the displayed grating pattern as good as possible. For example if the profile
map has a certain aspect ratio, the incoming beam should be made elliptical
accordingly.
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Chapter 4

Work in the lab: dipolar atoms in
an optical lattice

During my master’s thesis, I had the opportunity to work for about two months
on the ERBIUM experiment in Innsbruck. First, we have exchanged the high
temperature oven for the production of an erbium atomic beam. Then, I was
involved in the first observation of the nearest-neighbour interaction of dipolar
erbium atoms in a three-dimensional optical lattice.

At the beginning of this Chapter, I give a short overview of the current
experiments in our group. Then I describe how laser beams can be used to
create a three-dimensional optical lattice and describe the lattice setup in
the experiment. Additionally, I will discuss the Bose-Hubbard model with an
extension for magnetic, dipolar interactions. From here the nearest neighbour
interaction can be understood. Finally, the measurement procedure and our
results are presented.

4.1 The ERBIUM experiment
The experiment is a fully operating machine working with ultracold bosonic
and fermionic erbium atoms. It can produce Bose-Einstein condesates (BECs)
of bosonic 168Er isotopes, containing up to 105 atoms, see Ref. [Aik12]. The
168Er isotope can also be used to create Er2 molecules via magneto-association
with a Feshbach resonance [Fri15]. Also degenerate Fermi gases (DFG) can be
created with the fermionic 167Er isotope [Aik14].
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Figure 4.1: Chamber setup of the Erbium experiment. Picture taken from
Ref. [Fri14]. With kind permission from Albert Frisch.

Overview of the apparatus

The machine and the working principles of the different components are fully
described in Ref. [Fri14]. The apparatus includes the vacuum chamber and
different laser systems for cooling light at 401 nm and 583 nm and trapping
light at 532 nm, 1064 nm and 1570 nm.

The vacuum chamber is separated in two sections, which are connected
with a differential pumping section. The first section contains a high tem-
perature oven and a transversal cooling stage. The second section contains a
Zeeman slower and the experimental chamber. Additionally both sections have
pumping stages, to keep the needed vacuum level, see Fig. 4.1.

The high temperature oven uses an effusion cell, containing small pieces of
solid erbium. It is typically operated at 1100◦C. At this temperature erbium
atoms can evaporate inside the oven. Additionally, a set of apertures is used
to collimate the erbium beam emitted from the oven.

After the oven, a transversal laser cooling setup is used to transversally cool
and optically collimate the atomic beam. This setup uses the broad 401 nm
transition of erbium and increases the atom flux along the longitudinal di-
rection. After the transversal cooling, the atoms enter a Zeeman slower. The
Zeeman slower light is also operating at 401 nm. Its beam is counterpropagat-
ing with respect to the direction of the atomic beam and slows the atoms down
in the longitudinal direction. Several coils create an inhomogeneous magnetic
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field inside the Zeeman slower. This leads to a space-dependent Zeeman shift of
the atomic resonances and compensates the Doppler shifts due to the reducing
velocity of the atoms. With the Zeeman slower, atoms with a velocity smaller
than 325m/s can be slowed down to about 8m/s.

At this point the atoms are slow enough to get captured by a narrow-line
magneto-optical trap (MOT) [Fri12], operating at 583 nm. The corresponding
transition of the erbium atoms has a linewidth of Γ=2π·190 kHz and therefore
a Doppler temperature TD = ~Γ/(2kB) = 4.6µK. Here kB is Boltzmanns
constant. The MOT cools the atoms down to a temperature of 15µK and
additionally spin-polarises them, with an external bias field, to their lowest
Zeeman sub-state.

To reach degeneracy the atoms are first loaded from the MOT into a hor-
izontal 1064 nm optical dipole trap with a tunable geometry, see Ref. [Bai12].
For bosons an additional vertical 1064 nm laser beam is used to drive a forced
evaporation of the atomic cloud. In the fermionic case, the atoms are loaded
from the tunable 1064 nm trap into a crossed dipole trap similar to the bosonic
case, but operated at 1570 nm. Again forced evaporative cooling is used to reach
degeneracy.

For imaging, the atoms are released from the trap. After a time of flight
of 27ms an absorption image with a 401 nm laser pulse is created on a CCD
camera.

Ultracold gases of erbium atoms

I will now briefly summarise two recent achievements of the ERBIUM team,
achieved before I joined: the creation of the first erbium Bose-Einstein conden-
sate and the first degenerate Fermi gas of erbium.

In 2012, the very first Bose-Einstein condensate (BEC) of 168Er atoms could
be produced, see Ref. [Aik12]. The atoms were first precooled in the narrow-
line MOT and then loaded into the crossed optical dipole trap (ODT). The
vertical beam of the ODT was operated at 1064 nm, whereas the horizontal
beam at 1075 nm. The initial atomic cloud in the MOT had a temperature
of 15µK. The ODT was ramped up within 600ms. After the ramping a total
number of about 106 atoms with a temperature of 42µK were loaded into
the ODT. At this point the phase space density (p.s.d.) of the atomic cloud
was four orders of magnitude below the critical p.s.d. of about 1, where Bose-
Einstein condensation takes place. In a next step, forced evaporative cooling
was performed by ramping down the trap intensities within 5.5 s. This allowed
the hottest atoms to escape, while keeping the atomic sample thermalised. At
a temperature of around 400 nK and an atom number of about 105, the onset
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of Bose-Einstein condensation was seen in a bimodal peak, appearing on the
absorption image of the thermal cloud. By evaporating even further, a pure
BEC of 7 · 104 atoms with a non discernible thermal fraction was obtained.
This erbium BEC provides the base for experiments conducted in the optical
lattice as discussed in Sec. 4.3.

Later, in 2014, also fermionic 167Er was brought to quantum degeneracy,
see Ref. [Aik14]. The experimental procedure was very similar to the one used
for the Bose-Einstein condensation. Again, the atoms were first precooled and
spin polarised in the narrow-line MOT, leading to a gas of 107 atoms with
a temperature of 7µK. The atoms were first loaded from the MOT into a
tunable, horizontal 1064 nm dipole trap and from that into a 1570 nm crossed
ODT. Because of the Pauli exclusion principle, identical fermions do not scat-
ter in s-waves at ultralow temperatures. This means that the atomic sample
cannot thermalise and evaporative cooling will not work with s-wave colli-
sions. A common work-around of this problem is to use fermions with different
spin states, since they are not identical and hence can collide. However, for
Erbium the situation is different, since even identical fermions exhibit a mag-
netic dipole-dipole interaction (DDI). Therefore, they can not collide in s-wave
collisions, but via DDI. This feature was used to evaporatively cool identical
fermions similar to the bosonic case. Finally, a degenerate Fermi gas (DFG)
of 3·104 atoms could be achieved with a temperature as low as 0.11TF. Here
TF = 1.06(5)µK is the Fermi temperature of the system, see Ref. [Fri14].

4.2 The Bose-Hubbard model with dipolar, mag-
netic interactions

In this Section I will introduce the key ingredients to study the physics of
ultracold erbium in a crystal made out of light. This includes an optical lat-
tice, into which we later load the ultracold erbium atoms. Then, the magnetic
dipole-dipole interaction, which is a main feature of erbium, is presented. Fi-
nally, the full Bose-Hubbard Hamiltonian of the system, will be discussed in
more detail.

Optical lattice

A one-dimensional opical lattice is created using a retroreflected laser beam.
The incoming and reflected beams interfere and create a periodic potential for
the atoms. This potential resembles to a standing wave with a period of half
the laser wavelength λ, see Fig. 4.2. By using retroreflecting beams in all three

50



4.2. The Bose-Hubbard model with dipolar, magnetic interactions
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Figure 4.2: An atom in a standing wave potential, created by a retroreflected
laser beam.

directions a three-dimensional optical lattice potential is formed. The different
valleys define points in space, called lattice sites, on which the atoms can sit
and tunnel in between.

The optical lattice potential can be described by

V (x) = −Vxe
−2 y2+z2

w2
x sin2(kxx)− Vye

−2x2+z2

w2
y sin2(kyy)− Vze

−2x2+y2

w2
z sin2(kzz).

(4.1)
It can be seen as a superposition of one-dimensional standing waves with an
amplitude Vi, a wave vector ki = 2π/λi and a Gaussian envelope. Since the
atomic cloud is usually smaller than the used beam waists wi, the Gaussian
envelope of the potential can be approximated by

V (x) ≈ −Vxsin2(kxx)− Vysin2(kyy)− Vzsin2(kzz)︸ ︷︷ ︸
=Vlat(x)

+
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2︸ ︷︷ ︸
=Vext(x)

)
.

(4.2)
Here

ωx =

√
4

m

(Vy
w2
y

+
Vz
w2
z

)
is the resulting trapping frequency (cyclic permutated for y and z) of this
harmonic approximation, see [Gre03]. From Eq. (4.2) we see, that the potential
can be separated into two parts, a periodic three dimensional lattice and an
additional harmonic confinement

V (x) ≈ Vlat(x) + Vext(x).
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Θ
|x-x'|

Figure 4.3: Schematic view of the magnetic dipole-dipole interaction between
two parallel orientated atoms. The interaction sign and strength depend on the
angle Θ and the distance |x− x′| between the atoms.

Dipole-dipole interaction

Because of its large magnetic moment of µ = 7µB (µB is Bohr’s magneton),
erbium exhibits a sizable dipole-dipole interaction (DDI) in addition to the
usual contact interaction. This DDI provides further aspects for ultracold lat-
tice experiments and enriches the Hamiltonian of the system.

Since our atomic cloud is spin-polarised during the cooling in the MOT,
all atomic dipoles are orientated in the same direction. Therefore the DDI
potential between them is given by

UDDI(x,x′) =
µ0µ

2

4π

1− 3 cos2Θ

|x− x′|3
, (4.3)

with µ0 being the vacuum permeability. The potential is proportional to the
square of the magnetic moment. Additionally it shows an angle dependence Θ,
which is the angle between the interatomic axis and the direction of polarisa-
tion, see Fig. 4.3. The interaction strength falls of with the third power of the
distance |x− x′| between the atoms.

From Eq. (4.3) we see that the potential energy between the atoms vary
continuously from attractive (Θ=0) to repulsive (Θ=90). In the following, we
describe how the DDI enters into the Hamiltonian that describes our full sys-
tem.

Extended Bose-Hubbard model

The Bose-Hubbard model is used to describe the behaviour of bosonic atoms,
loaded into an optical lattice. So far, the majority of theoretical studies and
all the experiments that studied Bose-Hubbard physics with ultracold atoms
focussed on particles, interacting with short-range and isotropic (contact) in-
teraction. For erbium, the DDI allows us to consider additional interaction
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terms in the Bose-Hubbard Hamiltonian, that are usually neglected. We there-
fore speak of an extended Bose-Hubbard model, see Ref. [Dut15] for a thorough
derivation.

To derive the Hamiltonian for our lattice system, we will start with its
general form in second quantisation

Ĥ =

∫
dxψ̂†(x)

[
− ~2

2m
∆ + Vlat(x) + Vext(x)

]
ψ̂(x)+

+
1

2

∫ ∫
dxdx′ψ̂†(x)ψ̂†(x′)

[ 4π~2as
m

δ(x− x′)︸ ︷︷ ︸
contact interaction

+
µ0µ

2

4π

1− 3 cos2Θ

|x− x′|3︸ ︷︷ ︸
DDI

]
ψ̂(x′)ψ̂(x).

(4.4)

Here ψ̂(x) (resp. ψ̂†(x)) describes the bosonic field operator, that destroys
(creates) one particle at position x. The first integral describes the single-
particle part with its kinetic and potential energy coming from the lattice.
The second part describes the atom-atom interaction, which consists of the
contact interaction, proportional to the scattering length as, and the magetic
dipole-dipole interaction. As shown in Ref. [Jak98], one can expand the bosonic
field operators into a basis of Wannier-functions

ψ̂(x) =
∑
i

b̂i · w(x− xi) and ψ̂†(x) =
∑
j

b̂†j · w∗(x− xj). (4.5)

The three-dimensional Wannier functions w(x − xi) are wave functions that
are maximally localised on one single lattice site xi. They offer a possible
wavefunction for an atom, that is well located on a single site, see Ref. [Dal05a].
The new operator b̂i (b̂†j) is the bosonic annihilation (creation) operator, that
destroys (creates) a particle on lattice site i (resp. j).

Inserting Eq. (4.5) into Eq. (4.4) we obtain integrals over Wannier functions
on all possible lattice sites. Since these Wannier functions are well localised on
their single lattice site, the overlap between two functions on different sites is
in general small and most of the integrals can be neglected, see AppendixA.

The full Hamiltonian from Eq. (4.4) can be approximated in the following
form

Ĥ = −
∑
〈i,j〉

Jb̂†i b̂j +
1

2

(
Uc + Udd

)∑
i

n̂i(n̂i − 1) +
∑
i

εib̂
†
i b̂i +

1

2

∑
〈i,j〉

UNNI n̂in̂j.

(4.6)
Here the first term desribes the tunnelling rate J for an atom on one lattice site
to the next lattice site. The second term is called on-site interaction and is non-
zero if more than one atom sits on the same lattice site. The on-site interaction
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attraction
UNNI<0

repulsion
UNNI>0

Figure 4.4: The nearest-neighbour interaction UNNI depends on the orienta-
tion of the dipoles. For neighbouring lattice sites along the dipole orientation
UNNI is smaller than zero because the dipoles attract each other. For sites
perpendicular to the dipoles UNNI is bigger than zero.

has one contribution Uc from contact interaction (or s-wave scattering) between
the atoms and one contribution Udd from the magnetic DDI. The third term
gives an energy offset εi due to the harmonic confinement of the lattice. This
leads to smaller potential depths on lattice sites in the outer region of the
lattice.

The last term in Eq. (4.6) is the magnetic DDI between neighbouring lattice
sites 〈i, j〉. It is called the nearest-neighbour interaction (NNI) and is

UNNI =
µ0µ

2

4π

∫ ∫
dxdx′|w(x− xi)|2

1− 3 cos2Θ

|x− x′|3
|w(x′ − xj)|2. (4.7)

As can be seen in Eq. (4.7), the strength and the sign of the nearest neighbour
interaction UNNI depends on the orientation of the atomic dipoles. For neigh-
bouring lattice sites along the orientation of the dipoles, the attraction between
the atoms allows a lowering of their energy, thus UNNI < 0. In the other case,
for lattice sites orientated perpendicular to the dipole orientation the energy of
the atoms increase, because they repel each other, and UNNI > 0, see Fig. 4.4.
For an atom at a specific lattice site, all neighbouring atoms contribute to its
total energy and all UNNI have to be summed up.
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4.3 Measuring the nearest neighbour interaction
with erbium in an optical lattice

Here, the experimental procedure for measuring the nearest-neighbour inter-
action is presented. First, the preparation of the system and the used optical
lattice is discussed in more detail. Afterwards the measurement procedure and
the final results are given.

Preparation of the lattice system

We first create a BEC of 168Er atoms, as described in Sec. 4.1. The BEC typi-
cally contains 8 ·104 atoms and has a thermal fraction of about 20%. After the
evaporation the lattice beams are adiabatically ramped up with a time con-
stant of 150ms to their final value. We use a wavelength of 532 nm (green) for
our two horizontal lattice beams. Each lattice beam is created from a retro-
reflected laser beam with 150µm waist. The green light gives a distance of
266 nm between neighbouring lattice sites in the horizontal plane. In the ver-
tical direction, we use a retro-reflected 1064 nm laser beam with a waist of
250µm. This light results in a vertical lattice spacing of 532 nm, see Fig. 4.5.

The green 532 nm light is provided by a diode pumped laser1. We have
about 1W of green light available for each lattice beam. The 1064 nm light is
delivered from a high-power, single-mode, ultra-narrow linewidth laser2, that
is also used for the horizontal dipole trap during the evaporation.

Usually the depth of the lattice potential is given in units of recoil energies
ER =

~2k2L
2m

, which is for 532 nm (1064 nm) laser light 2π ·4196Hz (2π ·1049Hz).
Here m is the atomic mass, kL is the lasers wave vector and ~ the reduced
Planck constant.

With the available power for the different lattice beams, we can achieve
lattice depths in the horizontal plane up to 30ER. In the vertical direction
we have possible lattice depths up to 200ER. This range allows us to tune
the tunnelling rate J along each lattice beam. For lattice depths of only a
few recoil energies, tunnelling processes establish a phase correlation between
the atoms on different lattice sites. This is know as the superfluid phase. For
lattice depths bigger than about 14ER, the tunnelling processes are suppressed
and the atoms are pinned to specific lattice sites. This phase is the so called
Mott insulator where no phase correlations between the atoms are present, see
Ref. [Jak98, Gre03]. We therefore have the possibility to investigate the phase

1VerdiTM V-10 single frequency, diode-pumped laser with 10Watt max. output from
Coherent.

2Mephisto MOPA, 42W, from Innolight (now Coherent)
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Figure 4.5: Lattice structure of the optical lattice. In the horizontal x-y-plane
two 532 nm lattice beams create a lattice spacing of 266 nm. In the vertical z-
direction a 1064 nm lattice beam creates a lattice spacing of 532 nm.

transition between these two phases with our erbium atoms.
As mentioned in Sec. 4.2 the dipolar character of erbium results in addi-

tional interaction terms in the Hamiltonian for our lattice system. In the fol-
lowing I will describe our measurements of the nearest-neighbour interaction
UNNI, which were carried out for the very first time.

Measurement procedure

Since our lattice spacing in the horizontal direction is 266 nm and 532 nm in the
vertical direction, we have smaller spaced horizontal lattice sites and a bigger
spacing in the vertical direction. Because the DDI falls off with |x − x′|3 the
interaction between atoms on different layers is much weaker than for atoms
inside one layer. Therefore, we can restrict our following considerations to a
two dimensional crystal of atoms.

After the MOT the dipoles are polarised along the vertical direction. The
polarisation direction of the atomic dipoles can then be controlled with an
external magnetic field. We rotate the dipoles adiabatically into the horizontal
plane. For the following measurements, we orient them along one of the two
horizontal lattice beams. After the rotation, the three-dimensional lattice is
ramped up. The horizontal beams are ramped up to final lattice depths between
14ER and 20ER. For the vertical 1064 nm beam we use lattice depths of 30ER

and 40ER. To look for systematic effects in our system, different combinations
of these values are used to test the nearest neighbour interaction for different
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Figure 4.6: Schematic excitation process with parametric heating. Through
intensity modulation of one lattice beam an atom can hop to the next lattice
site, if the modulation frequency matches the energy condition.

lattice depths. It is important to notice that for these lattice depths we ensure
that the atoms are always in a Mott insulating regime, where the tunnelling
is suppressed and the atoms are pinned to a specific lattice site.

In a next step, we apply parametric heating via sinusoidally modulating
the intensity of one of the two horizontal lattice beams, see Ref. [Köh05]. This
modulation allows the atoms to hop to their next lattice site in the direction
of the modulated laser beam. This is illustrated in Fig. 4.6. Here, we consider
for simplicity a one dimensional double well with only two atoms. In the initial
state each atom sits at one lattice site. In this case, the nearest neighbour inter-
action UNNI is the only energy contribution we have to take into account, since
here the tunneling rate J is negligible. Depending on the dipole orientation
again UNNI > 0 or UNNI < 0, which corresponds to an energy shift compared to
non magnetic atoms. After the hopping process, the two atoms sit on the same
lattice site. The energy in this case is the on-site interaction Uonsite (contact
and dipole-dipole), but we have lost the nearest neighbour interaction. The
overall energy difference between this two configurations is therefore

∆U = Uonsite − UNNI. (4.8)

This energy can be calculated into a frequency ∆U/h, with the Planck con-
stant h, and is the frequency that needs to be provided for the atoms via the
modulation frequency of the parametric heating. Meaning, if the modulation
frequency is too small or too high, the atoms will not be able to hop, because
the frequency does not match the hopping condition. Only if our modulation
frequency hits the resonance at ∆U/h the hopping process will occur. This re-
sults in a depletion of the BEC, after ramping the lattice back down and taking
a time-of-flight image. Therefore, by scanning the modulation frequency of the
parametric heating, we get a depletion resonance in the BEC fraction. The
center of this resonance is ∆U/h.
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Figure 4.7: Procedure to measure the nearest-neighbour interaction. We start
with a polarised sample in our optical lattice, where the dipoles are orientated
along one of the horizontal lattice beams a). By modulating the intensity of one
of the two horizontal lattice beams we allow the atoms to hop to a neighbouring
site. Comparing hopping in different directions b) x and c) y allows us to
extract the nearest neighbour interaction from the resonance frequencies. For
more informations see text.

To see nearest-neighbour effects, we search for atom configurations that
differ only by the nearest-neighbour interaction. In a simple model we look at
4x4 lattice sites, see Fig. 4.7. Here we assume that only one atom tunnels. If
we apply parametric heating in x direction, the energy difference between the
initial state and the final state is

∆Umod x = Uonsite − UNNI rep. (4.9)

Again, we get the energy of the on-site interaction but loose one repulsive
nearest-neighbour interaction. This can be seen by simply counting the arrows
in Fig. 4.7.

If we perform the same measurement, but modulate along the y direction,
the energy of the resonance becomes

∆Umod y = Uonsite − UNNI attr. (4.10)

This time we again gain one on-site interaction but loose one attractive nearest-
neighbour interaction (again, by counting the arrows).

By subtracting the resonance positions of the two measurements we end
up with

∆Umod y −∆Umod x = UNNI rep − UNNI attr = ∆UNNI, (4.11)
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giving us the difference between the maximally repulsive and maximally attractive-
nearest neighbour interaction. From Eq. (4.7) the theoretical value can be cal-
culated and is for our system

∆UNNI theo = 89Hz.

Final results

In our measurements we have measured ∆UNNI for two dipole orientations,
along x (first lattice beam) and along y (second lattice beam). This set of four
measurements takes about 4 hours, leading to two data points.

Figure 4.8 shows two resonances for different modulation directions. Here
the dipoles were aligned along the x direction. We scan the modulation fre-
quency from 0 to 4.5 kHz for both lattice beams and fit the resonances with
a Gaussian fit. We see a difference in the width of the resonance, depending
on which beam we modulate. The width of the resonances varies between 0.8
and 1.1 kHz for all measurements. The shape of the resonances also appear
slightly asymmetric, which is not fully understood up to now3. Compared to
the width of the resonances, the shift due to nearest neighbour interaction is
very small. In this specific case of Fig. 4.8 ∆UNNI = 72(30)Hz. When looking
more carefully on Fig. 4.8, the points between 1.1 kHz and 1.5 kHz were ne-
glected. Here a small resonance with half the resonance frequency of the main
peak showed up. This small peak is simply due to higher harmonic excitations
of our modulation.

We also look at the stability of the system via measuring the same configu-
ration for a whole day. There we see a change of the left wing of the resonance.
This leads effectively to a change of the fitted resonance position up to 100Hz
from measurement to measurement. We assume this comes from a change of
our lattice system. Due to an unstable room temperature the lattice alignment
can drift over time, which can lead to different loadings of the BEC into the lat-
tice and also to different lattice depths between the runs. In order to overcome
this drifts we take many data points for high enough statistics. Additionally
the modulation along x and y is measured right after another.

Since the whole lattice had to be calibrated every day after the warm up,
we usually had time for only one set of four measurements each day. In total
we took 23 data points over several weeks. Each data point shows an error
between ± 24Hz and ± 51Hz. The values for these errors are retrieved from
the Gaussian fit of the resonances. A constant fit to all data points, weighted

3It could be due to an off-centered loading of the lattice resulting in an asymmetric
broading of the resonance due to harmonic confinement.
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Figure 4.8: (color online) Frequency spectrum for two parametric heating
measurements. The atomic dipoles are orientated along the x direction. We
see a small shift of the resonance frequency between the modulation along x
(squares) and y (triangles). This difference is due to nearest-neighbour inter-
action.

by the error bars yields a value of

∆UNNI exp = 81(8)Hz

which agrees well with the theory.
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Conclusion and Outlook

The goal of my master thesis was to produce spatially and temporally vari-
able patterns of light using a digital micromirror device and study possible
implementations in the ERBIUM experiment in Innsbruck.

After a literature study about spatial light modulators, it appear clear that
light shaping could be realized with both, a liquid crystal SLM and a DMD.
We opted for a DMD for its time stability. We created an optical setup using
a Fourier configuration, in which the modulation takes place at the focus of
the last lense. We choose this setup because it seems more easy to implement
in our experiment.

The Fourier setup is used in combination with a displayed grating. The first
order of this grating allows us to change the phase of the laser beam locally
and therefore correct for phase aberrations, present in the optical setup. This
can be done by simply shifting (or bending) the grating at specific regions on
the DMD. To measure the phase aberrations two small patches of the grating
can be displayed, where one is kept as a reference patch and the other one is
scanned over a certain area of the DMD. The two patches create an interfer-
ence pattern on a camera in the Fourier plane, from which the phase difference
between the two patches can be calculated. The obtained small phase maps
could then be matched together by adding a two dimensional linear gradient
to the phase maps. With this technique the whole DMD area could be phase
mapped. With the phase map we reached diffraction limited performance of
the optical system. It was possible to recover a nicely Gaussian beam shape
back from an uncorrected blurred spot, see Fig. 3.11 and Fig. 3.12. Addition-
ally, when reducing the stripe widths of the grating locally, one can engineer
different intensity distributions of the beam, which leads to different shapes in
the Fourier plane. Here more complex beam shapes like Hermite-Gaussian and
Laguerre-Gaussian beam shapes could be created, Fig. 3.14 and Fig. 3.15.

In a second part of my thesis work, I focussed on experiments in the ER-
BIUM lab and I was involved in the measurements of the nearest-neighbour
interaction (NNI) of dipolar erbium atoms loaded into a three-dimensional
optical lattice. There, I learned about lattice physics and the Bose-Hubbard
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model with an extension for dipolar long-range interactions. To measure the
NNI we excited the system along the two perpendicular directions of our hor-
izontal lattice beams. The excitation was done by modulating the intensity of
one lattice beam sinusoidally with a certain frequency. If this frequency hits the
resonance condition, the atoms can hop to their neighbouring lattice site along
the direction of the modulated beam. This hopping is associated with a loss
of phase coherence between the atoms, which results in a worse recovery rate
of the BEC when ramping down the lattice. Thus, from the resonance in the
BEC fraction of the atomic cloud, we could extract the excitation frequency.
For modulating along our first horizontal lattice beam, this frequency is the
onsite interaction minus the attractive part of the NNI, see Chapter 4. When
modulating with the second horizontal lattice beam, we again get the reso-
nance frequency, consisting of the same onsite interaction minus the repulsive
part of the NNI, see Fig. 4.8.

Finally, taking the difference between these two resonance frequencies re-
sults in a value for the nearest-neighbour interaction, which is expected to
be 89Hz for our system. To exclude systematic effects, we looked at different
lattice depths and orientations of the erbium dipoles. Since our typical reso-
nance widths lie between 0.8 kHz and 1.1 kHz, the difference due to the NNI is
small. Additionally, we have also seen undirected drifts in our system during
the day. For these two reasons we have taken 23 data points to get high enough
statistics. Our final value of 81(8)Hz agrees well with the theory.
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Momentum-resolved Bragg spectroscopy with a DMD

As an outlook, I would like to discuss one possible implementation of the DMD
in ultracold atoms experiments - the momentum-resolved Bragg spectroscopy -
which allows to measure the excitation spectrum of ultracold atomic clouds.
The following give a short motivation for excitation spectras and emphasis
their big variety depending on the experimental system.

Considering a non-interacting BEC in a homogeneous trap, the atoms show
a simple excitation spectrum, that is the same as a classical, free particle

E(k)non-int =
p2

2m
=

(~k)2

2m
. (4.12)

Here m is the atoms mass and p = ~k its momentum, which can be associated
with a wave vector k. If one takes weak interactions between the atoms into
account, this spectrum changes, and can be well described within the so called
Bogolioubov theory, see Ref. [And04]. Here the interactions between the atoms
give rise to a change in the spectrum of elementary excitations [Ste02]

E(k)weak-int =

√
c2(~k)2 +

[(~k)2

2m

]2

, (4.13)

where c =
√
gn/m with g = 4π~2as/m being the contact interaction strength

and n the constant density of the atomic cloud. For small k the first term
dominates here and the excitation spectrum turns out to be linear in this
regime. This linear regime is called phonon-like. In the region for big k, the
first term in Eq. (4.13) can be neglected and the excitation spectrum becomes
the free-particle excitation of Eq. (4.12).

Not only the interactions can modify the excitation spectrum, but also
the trapping potential itself changes it. For example, if atoms are loaded into
an optical lattice, the periodicity of the potential gives rise to a band struc-
ture spectrum, as in solids. As in solid state physics, the dispersion relation
can be mapped into the first Brillouin zone in momentum space and exhibits
bandgaps, see for example Ref. [Dal05a, Jak98]. When shaking a one dimen-
sional optical lattice, the lowest lying band can exhibit even a Roton-Maxon
feature, as has been experimentally observed in Ref. [Ha15].

Ultracold atoms in different optical traps show a big variety of their ex-
citation spectras. In order to investigate these spectras an experimental tool
is required, that allows to impart the energy E and the momentum k inde-
pendently on the cloud. This can be achieved with momentum-resolved Bragg
spectroscopy.

Bragg spectroscopy of a Bose-Einstein condensate was first demonstrated
in Ref. [Ste99]. Here a BEC of Sodium atoms was created in a magnetic trap.
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Figure 4.9: Momentum transfer of an atom in a Bragg process with two
counterpropagating, detuned laser beams (red arrows). An atom with an initial
momentum kinitial can absorb an atom of one laser beam and stimulatively emit
a photon onto the other laser beam. This process results in a net momentum
transfer kBragg that the atom picks up. However, the transfer only happens, if
the energy provided by the frequency detuning ∆ of the laser beams, matches
the excitation energy to this specific momentum state.

Then two counter propagating, offresonant laser beams (Bragg pulses) were
shone on the BEC, leading to a stand wave interference pattern with a wave
vector kBragg, that is twice the lasers wave vector. A relative frequency detuning
∆ between the two beams results in a movement of the interference pattern.
The two beams allow now for a two photon process, if the detuning ∆ matches
the energy difference between the atoms initial and a final momentum state,
see Fig. 4.9. An atom with an inital momentum kinitial can absorb a photon of
one laser beam and stimulatively emit it into the other one. This results in a
net momentum transfer ~kBragg and the atom is brought to a higher momen-
tum state kfinal. When taking a time-of flight picture, these excited atoms will
separate from the remaining cloud due to their higher momentum. Therefore
one can find a resonance in the remaining atom number, when scanning the
detuning ∆. In Ref. [Ste99] kBragg was not changed, therefore always the same
momentum ~kBragg was imparted on the atoms.

Later approaches like in Ref. [Ern10] implemented variable angles between
the two Bragg pulses and could therefore create different kBragg values. Scan-
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ning again the detuning for each value of kBragg allowed to extract the excitation
energy. This was used to map out the band structure of ultracold atoms in an
optical square lattice.

Recently, another approach for momentum-resolved Bragg spectroscopy
was successfully demonstrated in Ref. [Ha15]. Here a digital micromirror device
in combination with a high NA objective was used. They uploaded a grating
pattern on the DMD and directly imaged it on the atoms. The resulting wave
pattern at the position of the atoms could be moved around, by shifting the
pattern on the DMD. Also the pattern’s wave vector could be easily changed
by changing the slit distances of the grating pattern on the DMD. This tech-
nique does not rely on frequency detunings ∆ between two interfering beams.
The energy for a Bragg process is here provided by the shifting speed v of the
pattern via

E = pv = ~kBraggv. (4.14)

Here v was scanned to find the resonance position at which the atoms are again
pumped into a higher momentum state.

On the following sites, I will give an additional approach to implement
momentum-resolved Bragg spectroscopy. This approach will also use a DMD,
but in combination with a Fourier setup. However, the setup was not imple-
mented up to now in a real experiment. Therefore the following lines will just
present a theoretical idea.

Momentum resolved Bragg spectroscopy with a DMD and
a Fourier setup

The DMD offers us the possibility to display multiple Gaussian beams. These
beams will overlap in the Fourier plane, where the camera or the ultracold
atomic sample sits, and will form different interference patterns. By displaying
three or four Gaussian beams, one can create lattice-like interference patterns,
see Fig. 4.10. However, as we have seen in Sec. 3.4, the Fourier setup has a
low power efficiency in the created beam profiles. Therefore these variable
lattice patterns are not easily implemented to trap atoms, since the resulting
potentials would be too shallow to keep the atoms.

If we now restrict us to the case of two displayed Gaussian beams, we get a
standing wave interference pattern in the Fourier plane, see Fig. 4.11. We can
now modify the wave vector and the direction of the interference pattern, by
changing the distance between our two Gaussian patterns and rotate the full
pattern on the DMD. This allows us to create wave vectors up to

kmax = 2NA · kl, (4.15)
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Figure 4.10: Via displaying multiple Gaussian beams, one can create lattice-
like beam profiles in the Fourier plane. Images taken with a camera.

where kl is the lasers wavelength and NA the numerical aperture of the lense.
This means, that we can change kBragg from around zero to kmax continuously.
One could also think about reflecting one of the two Gaussian beams out of the
setup and direct it under a completely different angle on the atoms. This would
be advantageous, if in the experiment, only a small NA can be achieved. Here
one of the two beams could be shone on the atoms from a different view port.
This would increase the possible wave vectors for the interference patterns even
further.

The next question is, how to create a moving potential from this, so far
static, interference pattern. As we have seen before, a moving potential can
be created by introducing a frequency detuning between the two beams. At
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Figure 4.11: By displaying two Gaussian beams on the DMD, one gets an
interference pattern that resembles a standing wave. Depending on the distance
between the two patterns, one can engineer different wave vectors and angles
for the interference pattern.

this point, we can simulate this frequency detuning by constantly shifting the
phase

φ(t) = v · t

of one of the two beams. This means, that we shift the grating pattern of one
of the two beams with a constant speed v. This gives rise to a frequency shift
of the laser beam

∆ω =
d

dt
(v · t) = v.

Therefore, there is a frequency difference ∆ω between the two beams, which
causes the interference pattern to move. An example is given in Fig. 4.12, where
the phase of one beam is shifted from 0 to 2π. One can clearly see, that the
interference pattern moves along the white arrow (the red dot marks a point
on the picture to make the movement more visible). How fast the interference
pattern moves, depends on the frame rate, with which we shift our grating on
the DMD. And how smooth it shifts depends on the resolution of our device. I
Fig. 4.12, a grating constant of 15 pixels was used. Therefore one can shift the
phase from 0 to 2π with a resolution of 15 steps. The additional pattern rate
of 17.8 kHz for our DMD would therefore allow excitation frequencies of about
1 kHz. This is the maximum value needed in Ref. [Ha15], where the DMD was
also used for Bragg spectroscopy.

At this point, we have everything at hand to perform Bragg spectroscopy.
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Figure 4.12: Shifting of the phase of one displayed Gaussian beam results in
a shift of the interference pattern. The red dot marks the centre of the picture
to see the shift more easily. The white arrow indicated the shifting direction.

We can change the momentum imparted on the atoms by changing the distance
between the two Gaussian beam patterns on the DMD and therefore kBragg.
And by shifting the grating of one of the two beams, we can introduce a
frequency difference, to support energy for the atoms. Both can be individually
varied.

68



Appendix A

Extended Bose-Hubbard
Hamiltonian for dipolar
interactions

For a more thoroughly description, the reader is referred to Ref. [Dut15]. To
derive the Hamiltonian for a lattice system, one can start with its general form
in second quantisation, as in Sec. 4.2,

Ĥ =

∫
dxψ̂†(x)

[
− ~2

2m
∆ + Vlat(x) + Vext(x)

]
ψ̂(x)+

+
1

2

∫ ∫
dxdx′ψ̂†(x)ψ̂†(x′)

[ 4π~2as
m

δ(x− x′)︸ ︷︷ ︸
contact interaction

+
µ0µ

2

4π

1− 3 cos2Θ

|x− x′|3︸ ︷︷ ︸
magnetic dipole int.

]
ψ̂(x′)ψ̂(x).

(A.1)

Again, ψ̂(x) (ψ̂†(x)) describes the bosonic annihilation (creation) operator,
that destroys (creates) one particle at position x. The first integral describes
the single particle part with its kinetic and potential energy coming from
the lattice confinement. The second part describes the atom-atom interaction,
which consists of the contact interaction and the magetic dipole interaction.
As shown in [Jak98], one can expand the bosonic field operators into a basis
of Wannier-functions

ψ̂(x) =
∑
i

b̂i · w(x− xi) and ψ̂†(x) =
∑
j

b̂†j · w∗(x− xj). (A.2)

The three dimensional Wannier functions w(x − xi) are wave functions that
are maximally localised on one single lattice site xi. They offer a possible
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wavefunction for an atom, that is well located on a single site, see Ref. [Jak98,
Dal05a]. The operator b̂i (b̂†j) is the bosonic annihilation (creation) operator,
that destroys (creates) a particle on lattice site i (j).

Inserting Eq. (A.2) into Eq. (A.1) we end up with integrals over Wannier
functions on all possible lattice sites. Since these Wannier functions are well
localised on their single lattice site, the overlap between two functions on
different sites is in general small and most of the integrals can be dropped.

We first want to look at the first part of the Hamiltonian. The integrals over
Vext have a negligible contribution for Wannier functions on different lattice
sites. We therefore neglect them here and only keep integrals over the same
lattice sites

Ĥext =
∑
i

∫
dxVext(x)|w(x− xi)|2b̂†i b̂i ≈

∑
i

Vext(xi)b̂
†
i b̂i =

∑
i

εib̂
†
i b̂i. (A.3)

Usually in the literature Vext(xi) is written as εi, indicating the energy offset
between different lattice sites due to the harmonic confinement.

The integrals over − ~2
2m

∆ + Vlat(x) give a constant energy offset for same
lattice sites, which can be set to zero. To allow tunneling, also integrals over
neighbouring lattice sites 〈i, j〉 are kept:

Ĥtun = −
∑
〈i,j〉

∫
dxw∗(x− xi)

[
− ~2

2m
∆ + Vlat(x)

]
w(x− xj)b̂

†
i b̂j

= −
∑
〈i,j〉

Ji,j b̂
†
i b̂j. (A.4)

Here Ji,j is the tunnelling (or hopping) amplitude, which allows a particle to
tunnel to the next lattice site. In general, it depends on the direction, in which
the atom tunnels.

Regarding the second part of the Hamiltonian, the contact interaction term
can also be restricted to Wannier functions on the same lattice site, which gives
a contact on-site interaction Ucont for two atoms sitting on the same site

Ĥcont. =
1

2

4π~2as
m

∑
i

∫
dx|w(x− xi)|4b̂†i b̂

†
i b̂ib̂i

=
1

2

4π~2as
m

∫
dx|w(x)|4

∑
i

b̂†i

(
b̂ib̂
†
i − 1

)
b̂i

=
1

2
Ucont

∑
i

n̂i(n̂i − 1). (A.5)
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Here we have used the bosonic commutation relations for the operators and
that b̂†i b̂i = n̂i is the number operator for the atom number on lattice site i.

New interesting terms, compared to the standard Bode-Hubbard model,
appear due to the magnetic dipole-dipole interaction in the second part of
the Hamiltonian. We get a contribution from Wannier functions on the same
lattice site

Ĥdd. onsite =
1

2

µ0µ
2

4π

∑
i

∫ ∫
dxdx′|w(x− xi)|2

1− 3 cos2Θ

|x− x′|3
w(x’− xi)|2b̂†i b̂

†
i b̂ib̂i

=
1

2
Udd

∑
i

n̂i(n̂i − 1) (A.6)

which has the same form as the contact on-site interaction. This dipole-dipole
on-site interaction Udd is due to the dipolar interaction between atoms on the
same lattice site. In contrast to Ucont it has an angle dependence Θ. Here, for
non-spherically-symmetric Wannier functions, the on-site interaction can be
changed with the atomic dipole orientation Θ.

The last term, we want to consider here is the magnetic dipole-dipole inter-
action between neighbouring lattice sites. This is called the nearest-neighbour
interaction

ĤNNI = −1

2

µ0µ
2

4π

∑
〈i,j〉

∫ ∫
dxdx′|w(x− xi)|2

1− 3 cos2Θ

|x− x′|3
w(x’− xj)|2b̂†i b̂ib̂

†
j b̂j

=
1

2

∑
〈i,j〉

UNNI,i,j n̂in̂j. (A.7)

As can be seen in Eq. (A.7), the strength and the sign of the nearest-neighbour
interaction UNNI,i,j depends on the orientation of the atomic dipoles with re-
spect to the lattice site i and j.

All this terms sum up to the extended Bose-Hubbard Hamiltonian

Ĥ = −
∑
〈i,j〉

Ji,j b̂
†
i b̂j+

1

2

(
Uc+Udd

)∑
i

n̂i(n̂i−1)+
∑
i

εib̂
†
i b̂i+

1

2

∑
〈i,j〉

UNNI,i,j n̂in̂j.

(A.8)
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