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Abstract

Remarkable progress in the field of experimental quantum physics has enabled the prepa-
ration of quantum systems across various experimental platforms. The ability to precisely
control and manipulate quantum states by experimental means, allows to study fundamental
laws of quantum mechanics and their impact at the many-body level.

Ultracold atomic gases are a powerful and flexible platform, providing precise control of key
parameters, such as temperature, density, internal and external degrees of freedom, dimen-
sionality, or the trapping geometry. With the access of controllable interparticle interaction,
a plethora of fascinating quantum phenomena has been observed. While the field was pi-
oneered along studies with short-range contact interaction, nowadays dipolar interactions,
featuring a long-range and anisotropic character, are attracting a large attention within the
community.

This thesis reports on the investigation of quantum phenomena emerging from dipolar inter-
actions. As a workhorse for our studies, we use ultracold gases of strongly magnetic erbium
atoms. Erbium has first been Bose-Einstein condensed in 2012 in our laboratory. Shortly
after, we created the first degenerate Fermi gas of erbium. This thesis focuses on the use of
both systems as a resource to investigate dipolar quantum phenomena from the few- to the
many-body level.

With dipolar fermions, we unveil the universal character of ultracold dipolar scattering,
enabling a unique path towards quantum degenerate identical fermions. We further observe
a peculiar dependence of the total elastic scattering cross section on the dipole orientation.
The few-body collisional physics also impacts the behavior of the system at the many-body
level. Reporting on the first observation of a many-body effect in a dipolar Fermi gas, we
demonstrate the deformation of the Fermi surface. With bosonic particles, we investigate
the origin of a strong level repulsion in Feshbach spectra of magnetic lanthanides and trace
it back to the anisotropic van der Waals interaction among the atoms. Utilizing Feshbach
resonances, we report on the first production of dipolar Feshbach molecules and reveal a
universal behavior of the stabilization of inelastic losses in reduced dimensions by dipolar
interactions.

As a major step towards strongly correlated dipolar systems, we investigate the system’s
behavior in a three-dimensional optical lattice. In particular, we report on the realization of
extended Hubbard models with dipolar bosonic and fermionic atoms. In bosonic systems, we
directly observe nearest-neighbor interactions activated by the long-range dipolar interaction.
We demonstrate the strengthening or weakening of the Mott insulator quantum many-body
phase via solely changing the dipole orientation. For the fermionic counterpart, we add the
spin-degree of freedom, giving rise to a large spin-19/2 system. A lattice protection technique
allows to investigate in detail the elastic collisional properties of a two-state mixture. With
our method, we realize for the first time a strongly interacting dipolar Fermi gas.

The successful preparation of extended spinor Fermi Hubbard systems brings exciting
prospects for future investigations at the interface with solid state physics. Offsite terms
emerging from dipolar interactions give rise to clustered states, exotic lattice spin models,
resonant demagnetization dynamics, or exotic quantum phases.
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1
Introduction

1.1. Motivation

The advent of quantum theory at the beginning of the twentieth century has set the foun-
dation for our current understanding of the microscopic world. Remarkably, already in the
early days the theory succeeded in capturing experimental observations such as black-body
radiation [Pla06], or the photoelectric effect [Ein05]. However, the description of strongly
correlated quantum systems remains fairly difficult, already when they consist only of a
relatively small number of particles. Fascinating quantum phenomena emerging in such sys-
tems include low-temperature transport, quantum magnetism or most prominently high tem-
perature superconductivity. While these phenomena have been studied extensively within
condensed matter physics, a comprehensive description is still lacking.

A promising approach to understand such phenomena can be undertaken via an experimental
bottom-up method. By forming a model system, where quantum particles are added one-
by-one, a quantum simulator can be realized, allowing to reveal the properties of a complex
quantum system via the well-understood and well controlled model system. This approach, as
proposed by Richard Feynman [Fey82], requires the experimental control of single quantum
states, a scenario that was formerly thought to be inaccessible.

However, technological developments have made remarkable progress and nowadays coherent
control of single quantum states has been realized across many experimental platforms.
Indeed, experiments allow for the control and manipulation of single quantum particles such
as photons, ions in ion traps, atoms in dipole traps, electrons and nuclei in solid-state systems
such as quantum dots or vacancy centers, but also microwave photons in superconducting
circuits, see Refs. [Lad10, Tra12] for an overview.

Each experimental platform has different advantages and disadvantages and active research is
carried out along distinct lines. A striking advantage of trapped atomic systems, the experi-
mental platform of choice within this thesis, is given by the fact that the used particles are in-
trinsically identical. This enables the preparation of large uniform quantum systems without
suffering from imperfections as often encountered in solid-state systems. An additional ad-
vantage arises from the accessibility of both fundamental classes of quantum particles, namely

1



1.1. MOTIVATION 2

bosons and fermions. For reaching the quantum regime with this platform ultralow temper-
atures are required. In particular, the thermal de-Broglie wavelength of the atoms has to
exceed the interparticle distance. In 1995 a major breakthrough within the field was achieved
with the first production of a Bose-Einstein condensate (BEC) [And95, Bra95, Dav95], a
novel quantum state of matter predicted already 70 years before [Bos24, Ein24].

Since then, a leading research has focused on quantum effects that arise from the macroscopic
coherence of the interacting many-body system, such as matter-wave interference [And97],
the emergence of quantized vortices [Mat99, Mad00], or the creation of a continuous and well-
collimated atomic laser [Hag99, Blo99]. With the successful realization of a degenerate Fermi
gas (dFg) in 1999 [DeM99], the second fundamental class of quantum particles has become
available in experiments. In combination with the observation of Feshbach resonances, which
allow to change the strength and sign of the interparticle interaction, see Ref. [Chi10] for a
review, the door was opened for experimental studies with tunable contact interactions. For
a a two-component Fermi gas the tuning from repulsive to attractive interactions across
the resonance has enabled studies of the well known BEC-to-BCS crossover, see Ref. [Ing07]
for an overview. From peculiar interest has been the unitary regime, i. e. the region in the
vicinity of the Feshbach resonance, which has been shown to be closely related to the physics
of neutron matter in the crusts of neutron stars [Gez08]. Such relations can turn the ultracold
atomic system into a model system of complex quantum matter, as discussed above.

The ability of using ultracold atomic systems as quantum simulators, has further a strong
foundation in a pioneering theoretical proposal of the late 1990s. Here, the experimental
creation of a three-dimensional atomic crystal has been proposed via the use of a three-
dimensional optical lattice [Jak98]. Remarkably, the precise control of the optical poten-
tials in combination with tunable atom-atom interaction allows for the preparation and
detailed study of condensed matter system Hamiltonians such as the Hubbard model, ren-
dering the ultracold atomic system into an analog quantum simulator. The groundbreak-
ing experimental demonstration of the superfluid-to-Mott insulator quantum many-body
phase transition [Gre02], set the start to a large number of experimental studies along this
lines. Those include the realization of Fermi-Hubbard models [Jör08], the study of orbital
physics [Mül07, Wir10], the implementation of superexchange couplings [Tro08], the ex-
ploration of sophisticated band structures [Tar12], or the realization of lattice spin models
[Kra12]. With the experimental advance of single-site resolution for bosonic and fermionic
systems [She10, Bak10, Omr15, Gre16, Che16] via quantum gas microscopes, ultracold atom
experiments have reached a new era for quantum simulation applications, as nicely accounted
for by the spectacular recent experimental preparation of an antiferromagnetic ground state
with long-range order [Maz17b].

A natural requirement for the study of correlated states are interactions. Beside the availabil-
ity of contact interactions, which have been the working horse for almost all the investigations
discussed above, a new type of interaction has become available in recent years, namely the
dipole-dipole interaction (DDI). With its long-range and anisotropic nature it allows to access
unique phenomena and quantum phases [Bar08, Lah09, Bar12]. This type of interaction can
be found in magnetic atoms, ground-state heteronuclear molecules or Rydberg atoms. An
important advantage of magnetic atoms lies in the experimental “simplicity”, as the dipolar
interaction is intrinsically carried by the atoms, without the need of molecule creation or
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Rydberg excitations.

The first magnetic atom brought to quantum degeneracy has been chromium [Gri05, Nay15].
It allowed for the observation of dipolar effects such as demagnetization cooling [Fat06],
a characteristic d-wave collapse [Lah08], or spontanous demagnetization at ultralow mag-
netic fields driven by the DDI [Pas11b]. The realization of even stronger atomic dipoles
in the ultracold regime, as dysprosium [Lu11, Lu12] by the group of Benjamin Lev, and
erbium [Aik12, Aik14] by our group in Innsbruck, has set the start to the strongly magnetic
era. The strong dipolar character of erbium and dysprosium has already led to a fair amount
of observations of dipolar effects, among which several will be reported within the present
thesis.

Importantly, the long-range nature of the DDI gives also promising prospects in the con-
text of quantum simulations of lattice models. Strikingly, nearest-neighbor interactions
emerge purely from offsite interactions and exotic quantum phases with long-range cor-
relations become accessible, see e. g. Ref. [CS10]. Initial studies along this lines have al-
ready been performed with lattice confined samples of polar molecules [Yan13], Rydberg
atoms [Sch12a, Ber17], and dipolar atoms [dP13b, Bai16], as will also be reported within
this thesis. Those promising experimental investigations allow to envision a bright future for
the research direction of systems with DDI.

1.2. Thesis overview

This thesis focuses on the study of dipolar quantum effects by utilizing the experimental
platform of strongly magnetic ultracold erbium atoms. It reports on complementary studies
of the scattering properties of dipolar particles and resonantly interacting lanthanides. A
main focus lies on the experimental realization of an analog quantum simulator with dipolar
particles. The main scientific achievements of this thesis can be divided into three main
sections:

(I) The production of the first degenerate Fermi gas of erbium, which enables clean ob-
servations of dipolar effects on the few- and many-body level.

(II) The study of the emergence of chaotic scattering in lanthanides with anisotropic in-
teractions and the creation of the first strongly dipolar Feshbach molecules.

(III) The realization of extended Hubbard models by means of a three-dimensional optical
lattice, further allowing for the production of the first strongly interacting dipolar
Fermi gas.

On a personal note, I have joined the Erbium team already in 2011 during my master studies.
I have contributed to the first realization of a BEC of erbium and my master thesis project,
in which I have build an optical dipole trap with dynamically tunable trapping volume, has
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served to improve the atom number of our BEC by a factor of three [Bai12a]. As a PhD
student, I have valuably contributed to the above mentioned scientific achievements. In the
first half of my PhD work, the experiment was in the building and understanding phase.
The second part of my PhD work started with the implementation of a three-dimensional
optical lattice to the experiment. The ability to pin the atomic dipoles within a crystalline
structure has transformed our experiment into an analog quantum simulator of extended
Hubbard models. The study of strongly correlated dipolar particles in the optical lattice was
the major goal of my PhD work, and thus covers a main part within this thesis.

Additional scientific achievements, to which I have actively participated but that are not the
central focus of this thesis, are covered in the Appendix.

Thesis outline

This thesis is based on seven scientific publications, which are grouped in thematic chapters.
The main chapters are arranged such that the basic concepts and background information
are given prior to the presentation of the publications.

Chapter 2 reviews the state-of-the-art knowledge of the properties of erbium and gives details
on our experimental setup. It further summarizes the production of degenerate erbium
quantum gases.

Chapter 3 is dedicated to degenerate dipolar Fermi gases. It describes the physics of uni-
versal dipolar interactions, discusses the angular dependence of elastic scattering processes
of atomic dipoles and investigates on a many-body effects of dipolar Fermi gases. The pub-
lication on the production of deeply degenerate Fermi gases via universal dipolar scattering
and the observation of the Fermi surface deformation is also part of the PhD thesis of Albert
Frisch [Fri14a].

Chapter 4 focuses on the Feshbach spectrum of magnetic lanthanides and reports on the
emergence of chaotic scattering. A detailed study of close to treshold molecular bound states
allows to identify the underlying molecular quantum numbers and enables the production of
strongly magnetic Feshbach molecules.

Chapter 5 contains the study of strongly correlated dipolar quantum systems in three-
dimensional optical lattices. The DDI gives rise to extended Hubbard models that are
studied in detail. With the access of higher spin states the creation of a strongly interacting
dipolar Fermi gas is demonstrated.

Finally, Chapter 6 closes the thesis and briefly discusses a possible route for the Erbium
experiment in the future.

Important experimental upgrades, implemented during the course of this thesis, are described
in the Appendices B and C, including the optical setup of the three-dimensional optical lattice
and the setup for active magnetic field stabilization.
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1.3. List of publications

The publications discussed in this thesis are given in chronological order. The thematic
chapters for the publications are indicated. Additional publications are covered in Appendix
A.

(I) Few- and many-body scattering of dipolar fermions (Chapter 3)

• Reaching Fermi Degeneracy via Universal Dipolar Scattering.
Kiyotaka Aikawa, Albert Frisch, Michael Mark, Simon Baier, Rudolf Grimm, and
Francesca Ferlaino,
Physical Review Letters 112, 010404 (2014).

• Observation of Fermi surface deformation in a dipolar quantum gas.
Kiyotaka Aikawa, Simon Baier, Albert Frisch, Michael Mark, Cornelis Ravensbergen,
and Francesca Ferlaino,
Science 345, 6203 (2014).

• Anisotropic Relaxation Dynamics in a Dipolar Fermi Gas Driven Out of Equilibrium.
Kiyotaka Aikawa, Albert Frisch, Michael Mark, Simon Baier, Rudolf Grimm, John L.
Bohn, Deborah S. Jin, George M. Bruun and Francesca Ferlaino,
Physical Review Letters 113, 263201 (2014).

(II) Resonantly interacting lanthanide quantum gases (Chapter 4)

• Ultracold Dipolar Molecules Composed of Strongly Magnetic Atoms.
Albert Frisch, Michael Mark, Kiyotaka Aikawa, Simon Baier, Rudolf Grimm, Alexan-
der Petrov, Svetlana Kotochigova, Goulven Quéméner, Maxcence Lepers, Olivier Dulieu,
and Francesca Ferlaino,
Physical Review Letters 115, 203201 (2015).

• Emergence of Chaotic Scattering in Ultracold Er and Dy.
Thomas Maier, Holger Kadau, M. Schmitt, Matthias Wenzel, Igor Ferrier-Barbut,
Tilman Pfau, Albert Frisch, Simon Baier, Kiyotaka Aikawa, Lauriane Chomaz, Man-
fred J. Mark, Francesca Ferlaino, Constantinos Makrides Eite Tiesinga, Alexander
Petrov, and Svetlana Kotochigova,
Physical Review X 5, 041029 (2015).

(III) Dipolar interactions in optical lattices (Chapter 5)

• Extended Bose-Hubbard models with ultracold magnetic atoms.
Simon Baier, Manfred J. Mark, Daniel Petter, Kiyotaka Aikawa, Lauriane Chomaz, Zi
Cai, Mikhail Baranov, Peter Zoller, and Francesca Ferlaino,
Science 352, 6282 (2016).
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• Realization of a Strongly Interacting Fermi Gas of Dipolar Atoms.
Simon Baier, Daniel Petter, Jan Hendrik Becher, Alexander Patscheider, Gabriele Na-
tale, Lauriane Chomaz, Manfred J. Mark, and Francesca Ferlaino,
submitted for publication in Physical Review Letters,
online on arXiv [cond-mat.quant-gas] 1803.11445 (2018).

Additional publications

• Quantum-Fluctuation-Driven Crossover from a Dilute Bose-Einstein Condensate to a
Macrodroplet in a Dipolar Quantum Fluid.
Lauriane Chomaz, Simon Baier, Daniel Petter, Manfred J. Mark, Falk Wächtler, Luis
Santos, and Francesca Ferlaino,
Physical Review X 6, 041039 (2016).

• Anisotropic polarizability of erbium atoms.
Jan Hendrik Becher⋆, Simon Baier⋆, Kiyotaka Aikawa, Maxence Lepers, Jean-François
Wyart, Olivier Dulieu, and Francesca Ferlaino
Phys. Rev. A 97, 012509 (2018).
⋆ equal contribution

• Observation of roton mode population in a dipolar quantum gas.
Lauriane Chomaz, Rick M. W. van Bijnen, Daniel Petter, Giulia Faraoni, Simon Baier,
Jan Hendrik Becher, Manfred J. Mark, Falk Wächtler, Luis Santos, and Francesca
Ferlaino,
Nature Physics 14, 442 (2018).
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2
Ultracold erbium atoms

The realization of ultracold quantum gases demands a number of advanced experimental
techniques. For instance, ultracold experiments require ultra-high vacuum chambers to min-
imize scattering with the background gas, dedicated laser sources for laser cooling and trap-
ping of the specific atomic species, high control on magnetic fields, specially designed laser
traps for the manipulation of the geometry of the confinement, and high-resolution cameras
to visualize the atomic sample. To address a particular atomic species, it is from prime
importance to know the atomic properties, such as the energy level spectrum or the detailed
physical properties of the atomic ground state.

When in 2009 our group started to plan an ultracold experiment with erbium, very little was
known about the properties of this atomic species. While proof-of-principle experiments in
NIST showed that erbium atoms can be cooled via laser light [McC06], it still was not clear if
the quantum degenerate regime can be reached. The successful realization of the first erbium
Bose-Einstein condensate (BEC) in 2012 within our group [Aik12] gave a striking answer to
this open question. This thesis connects to this worlds first and reports on the following
scientific journey undertaken at the Erbium experiment. As to set the stage, within this
chapter we will summarize the up-to-date knowledge of the main properties of atomic erbium,
see Sec. 2.2, describe our experimental setup, see Sec. 2.3, and follow the route of erbium to
the ultracold regime, see Sec. 2.4.

2.1. Erbium - a successful element

Erbium, a rare-earth element, is part of the lanthanide series in the periodic table and has
the atomic number 68. In its pure solid form it is a soft, silvery metal and has nowadays
several applications. In an alloy it can enhance the workability of metals by lowering their
hardness, and as an oxide it allows to give a pink color to glass products [Gup05].

For the major technological application, erbium is used in the form of ions (Er3+). They
offer an optical transition around 1.55µm, a wavelength that is most commonly used for
telecommunication as it exhibits minimum loss in optical fibers. When used as a dopant in
fused silica fibers, erbium ions enable amplification of this important wavelength regime via

7
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(b)(a) 162Er
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Figure 2.1.: Magnetic moments µ for atoms of the lanthanide series and isotope abundance of erbium.
(a) The strength of the magnetic character is indicated by the bar length. The magnitude of erbium’s
magnetic moment µ = 6.98µB is highlighted in red. Laser cooling and trapping of lanthanide atoms
has been demonstrated for ytterbium [Hon99], erbium [McC06], dysprosium [Lu10], thulium [Suk10],
holmium [Mia14], and most recently for metastable europium [Ino18]. (b) Erbium offers six stable
isotopes - five bosonic (blue) and one fermionic (orange) isotope(s). Their natural abundances are
indicated. Isotopes for which quantum degeneracy has been reached are highlighted.

optical pumping and have led to the development of erbium-doped fiber amplifiers (EDFA).
The large success of EDFA is nicely accounted for by their wide use within optical communi-
cation, where the low required maintenance even allows for in-line amplification in submarine
(undersea) telecom cables [Auz99]. Beside the good photoluminescence properties, a very
recent experiment shows that also electroluminescence of erbium ions can be accessed via
quantum dot arrays [Zha18]. This technological advance would ease optical interconnection
application via chip-based near-infrared light generation and amplification.

Further, the key abilities of EDFA have reached research on quantum information and com-
munication applications. Here, single photon protocols at telecom wavelengths are highly
recommended due to the low absorption loss, which makes Er3+-based devices a natural
choice. Technical limitations have hindered such a fiber-based quantum device, but a re-
cent experiment succeeded in demonstrating single-photon based light-matter interaction in
cryogenically cooled erbium-doped fibers [Sag15]. The demonstration of quantum storage
and recall of entangled quantum states of light gives exciting prospects for the realization
of a fully fiber-based future quantum network. The strength of erbium based devices for
telecom quantum applications is further highlighted by the achievement of an over a second
coherence time in 167Er3+ doped Yttrium Orthosilicate crystals [Ran17].

Finally, erbium features remarkable properties in its pure atomic form, as used within this
thesis. Atoms of the lanthanide series host among the strongest magnetic moments found
in the periodic table. Figure 2.1(a) reports their strength and visualizes that the magnetic
moment1 of erbium ranges at a front position. To reveal this strongly magnetic character
it is necessary to enter into the ultracold regime. Here, the dipolar interaction between
the atoms becomes strong enough to unveil exotic and unobserved quantum phases. An
additional argument that marks erbium as an ideal choice for ultracold experiments is related
to its five bosonic and one fermionic isotope(s) with high natural abundance, as shown in
Fig. 2.1(b). This feature strongly increases the flexibility of accessible physics in experiments.

1 The magnetic moment of an element is usually given in units of the Bohr magneton µB, which was
introduced as a physical constant to express the magnitude of the intrinsic magnetic moment of an electron.
The magnetic moment of alkali-metal atoms, which are widely used for ultracold experiments, is 1µB.
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The strong dipole-dipole interaction (DDI) of erbium and the ability to address different
quantum statistics by the choice of the isotope are at the heart of the results presented in
this thesis.

2.2. Atomic and magnetic properties of erbium

2.2.1. Electron configuration

Erbium atoms host in total 68 electrons that fill the electronic orbitals following the Madelung
rule. As the 6s shell becomes filled before the 4f orbital, this inner shell is left partially
unfilled, resulting in a so called submerged-shell structure. The electron configuration of the
ground state is written as

[Xe]4f126s2,

where [Xe] denotes the electron configuration of xenon. The two vacant electrons of the 4f
orbital give rise to large orbital momentum and spin quantum numbers of L = 5 and S = 1.
The ground state of erbium can be written in Russel-Saunders coupling scheme2:

ground state: 3H6,

with the standard notation of 2S+1LJ . The unusually large spin-orbit coupling in erbium
gives rise to a large magnetic moment, see below. Further, the strongly anisotropic orbitals
of the 4f shell result in a highly anisotropic van der Waals interaction potential, leading to
intriguing scattering properties as discussed in Chapter 4.

2.2.2. Atomic energy spectrum

As a result of the submerged-shell electron configuration, erbium exhibits a complex energy
level structure. Reference [Kra18], which is based on the dataset of [Mar78], reports 672
atomic lines with angular momentum quantum numbers J ∈ [1, 12]. The ionization limit of
erbium is 49262 cm−1, which corresponds to the energy of a photon with wavelength 203 nm.
More recent theoretical work predicts yet unobserved lines for the dipole allowed transitions
of the ground state, see Ref. [Lep14] and Appendix A.2, which underlines the developing
but still not complete knowledge on erbium spectroscopic data. In Fig. 2.2(a) we plot the
atomic energy spectrum up to the strongest transition in erbium, which features an energy
of 24943 cm−1 (≈ 401 nm).

For the purpose of laser cooling and trapping it is crucial to precisely know the tran-
sition probabilities of the excited levels. Extensive experimental data can be found in
Refs. [Law10, Har10]. In general, a large amount of excited states is unfavorable for laser
cooling applications, as the probability of pumping atoms to long-lived metastable states

2 This coupling scheme is also known as LS-coupling and in the case of erbium is only applicable for the
ground state. For excited states the electronic spin-orbit interaction becomes more prominent then the
individual spin-spin and orbit-orbit interactions. Hence jj-coupling has to be used.
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Figure 2.2.: Energy level spectrum of erbium and hyperfine structure of the ground state for the
fermionic isotope. (a) Energy levels in the relevant range for laser cooling and trapping. Even and
odd parity states are shown in red and black, respectively. All laser colors used in our experiment
are indicated. For transversal cooling, Zeeman slowing and imaging 401 nm light (blue) is used. The
atoms are captured within a narrow-line magneto-optical trap (MOT) operated at 583 nm (yellow).
The optical potentials are formed by 1064 nm, 1570 nm, and 532 nm trapping light (red, dark red,
and green, respectively). (b) While bosonic erbium shows no hyperfine structure, fermionic erbium
features eight hyperfine manifolds with total angular momentum quantum number F ∈ [19/2, 5/2].
The frequency splitting of the individual levels at zero magnetic field is given with respect to the
ground state manifold. Figure adapted from Ref. [Fri14a].

during cycling can be strongly enhanced. However, for the case of erbium, suitable electric-
dipole allowed laser transitions have been identified [Ban05], which led to the demonstration
of efficient laser cooling and trapping without repumping light via the (in principle) not
closed 401 nm line [McC06].

Encouraged by this result, within our experiment we have proposed and realized a simple
scheme for the preparation of cold atomic clouds of erbium with temperatures in the order
of 10’s of µK [Fri12]. Our approach for cooling and trapping is summarized in Fig. 2.2(a)
and relies on two electric-dipole transitions with J → J + 1 where one of the 6s electrons
is excited to a 6p state. Initial cooling is performed on the 401 nm singlet 1P1 line. The
broad natural linewidth of 29.7 MHz [Bai12a] allows for strong atom-light interaction, ideal
for transversal cooling, Zeeman slowing, and imaging applications. For achieving a cold
temperature of the atoms when captured in a magneto optical trap, it is from importance
to employ an excited state with a narrow linewidth, as the lowest reachable temperature,
the Doppler temperature, is directly proportional to this linewidth. Here, we decided for
the triplet 3P1 state, an intercombination line that features a linewidth of 190 kHz, which
corresponds to a Doppler temperature as low as 4.6µK.
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For the production of ultracold atomic gases with temperatures well below the Doppler
temperature an additional approach is needed. The most common method in ultracold ex-
periments relies on optical trapping with off-resonant laser light and subsequent evaporative
cooling [Gri00]. The depth of the optical potential for a given trapping wavelength is given by
the AC-stark shift on the ground state. This shift depends on the dynamical polarizability,
which accounts for the (off-resonant) contributions of all excited states via a sum-over-state
formula [Lep14]. In Fig. 2.2(a) all laser wavelengths used for optical trapping at our exper-
iment are indicated. We have experimentally investigated the dynamical polarizability for
1064 nm trapping light in Ref. [Bai12a] and over the years improved our understanding along
532 nm, 1064 nm, and 1570 nm light, as reported in Appendix A.2.

An additional important aspect of the energy spectrum is the energy distribution of the
atomic ground state. In the case that the nucleus features a nuclear spin, I ̸= 0, the
ground state will be split by the interaction between the nuclear spin and the electron total
angular momentum, resulting in a hyperfine structure. While the bosonic erbium isotopes
lack hyperfine splitting, the fermionic isotope 167Er features a nucler spin quantum number
of I = 7/2, giving rise to a total of eight hyperfine states F ∈ [J + I, J − I]. The states
and their corresponding energies are shown in Fig. 2.2(b). A detailed investigation of the
hyperfine structure, including also the structures of the 6s6p 1P1 and 6s6p 3P1 excited states,
is given in Ref. [Fri13]. All experiments within this thesis are performed in the F = 19/2
hyperfine ground state manifold.

2.2.3. Magnetic properties

One of the landmark properties of several lanthanide elements is their exceptional large mag-
netic moment, see Fig. 2.1(a). These high values are a direct consequence of the submerged
shell structure, as the electron spin-orbit coupling leads to large total angular momentum
quantum numbers J . In particular, this results also in large magnetic quantum numbers
mJ , which are defined by the projection ot the total angular momentum quantum number
J on the quantization axis, given by an external magnetic field. The mJ values range from
−J to +J , see Sec. 2.2.4, and are strongly related to the magnetic moment of an atom3, as
it is defined by

µ = mJgJµB. 2.1

To determine the magnetic moment, in addition the Landé g-factor gJ has to be known. In
the case of pure spin-orbit coupling it can be calculated via

gJ = 1 + (gS − 1)
J(J + 1) − L(L+ 1) + S(S + 1)

2J(J + 1)
with gS ≈ 2.00232. 2.2

For the case of erbium additional correction have to be included, resulting in a slightly
reduced value. The experimentally reported value is gJ = 1.163801(1) [Con63] leading for

3 We note that the scenario of magnetic dipoles is qualitatively different compared to the scenario of polar
molecules. The strength of the electric dipole moment of polar molecules scales with the applied electric
field magnitude, while the dipole moment of magnetic atoms is truly permant and persists also at zero
magnetic field.
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the bosonic isotopes to a magnetic moment of the lowest magnetic state mJ = −6 of

µ = −6.982806(6)µB. 2.3

For the fermionic isotope, the additional hyperfine structure requires to calculate the Landé
g-factor gF via

gF = gJ
F (F + 1) − I(I + 1) + J(J + 1)

2F (F + 1)
, 2.4

resulting in gF = 0.735032. The magnetic moment of the energetically lowest state with
F = 19/2 and mF = −19/2 is found to be

µ = mF gFµB = −6.982804µB, 2.5

equaling the bosonic one. When different spin states are prepared the magnetic moment
changes accordingly.

2.2.4. Zeeman splitting

When a magnetic field B is applied, the Zeeman manifolds split into 2J+1 (2F +1) Zeeman
substates with magnetic quantum numbers mJ (mF ) for bosonic (the fermionic) isotope(s).
For the bosonic isotopes the energy of the substates scales linearly with the magnetic field
strength, while for the fermionic isotope, as a result of the hyperfine coupling, an additional
quadratic field dependence is encountered.

For bosonic erbium the energy of the ground state substates reads as

EBo
Z (B) = mJgJµBB = mJq(B), 2.6

with q(B) denoting the linear magnetic field dependence. This linear dependence holds for
all experimental accessible magnetic field values, as a result of the large spin-orbit coupling
constant of erbium [Jud61]. In Fig. 2.3(a) the magnetic field dependence of the 13 mJ states
is plotted.

The energy splitting between two adjacent spin states is degenerate across the spin ensemble
and reads as

∆EBo
Z (B) = (mJ −mJ+1)︸ ︷︷ ︸

1

q(B) = hzB, with z = 1.628879 MHz/G 2.7

being the linear bosonic Zeeman coefficient and h the Plank constant. The knowledge on
the energy splitting is from particular relevance as it allows to prepare different spin states
via e. g. radiofrequency coupling. In experiments, it is also used to calibrate the magnetic
field by driving the mJ = −6 to mJ = −5 transition and monitoring subsequent atomic loss
caused by dipolar relaxation.

For fermionic erbium, due to the Paschen-Back effect, which results in a decoupling of J
and I, the energy splitting starts to deviate from a pure linear magnetic field dependence
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Figure 2.3.: Zeeman energy for bosonic and fermionic erbium in the ground state manifold for
magnetic field values up to 50 G. (a) Bosonic erbium shows a linear dependence of the different mJ

states on the magnetic field. (b) For the fermionic isotope (F = 19/2 manifold) in addition to the
linear dependence a quadratic energy shift emerges due to the hyperfine coupling. (c) Extracted
quadratic term, see text, from a fit to the data of (b). With a parabolic fit (solid black line) zqu is
determined. (d) Difference in the energy splittings between neighboring spin states, see inset of (b).

already at moderate B field values. An additional quadratic field dependence (EFe
Z ∝ B2)

becomes apparent when calculating the hyperfine magnetic levels via exact diagonalization
of the atomic Hamiltonian [Smi65]. Figure 2.3(b) shows the 20 Zeeman substates for the
ground state manifold of the fermionic isotope. The resulting energy dependence of the mF

substates can be written in good approximation as

EFe
Z (B) = mF qli(B) + (F 2 −m2

F )qqu(B2) = h mF zli︸ ︷︷ ︸
linear term

B + h (F 2 −m2
F )zqu︸ ︷︷ ︸

quadratic term

B2. 2.8

Here, qli(B) and qqu(B2) account for the linear and quadratic magnetic field dependence, and
zli and zqu are the fermionic linear and quadratic Zeeman coefficients. The mF dependent
linear and quadratic terms can be extracted from a polynomial fit of second order to the
calculated Zeeman energies4. In Fig. 2.3(c), the quadratic fit term is plotted as a function of
the mF state. It depends on the magnetic sublevels mF in a quadratic way and results in a
down shift in energy for all levels beside the edge states. From a parabolic fit, the quadratic

4 The fit is restricted up to 50G and gives residua below 1 kHz. For larger magnetic field ranges a more
specialized fitting function should be used.
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Zeeman coefficient is determined to be

zqu = −12.76(1) Hz/G2.

A similar treatment gives for the linear Zeeman coefficient zli = 1.02874 MHz/G5.

The major advance of the quadratic term arises for protocols of state selective addressing.
Here, it is necessary that the splitting between adjacent spin states in not degenerate, as to
allow the coupling of two spin states without a coupling to all other spin states. Following
Eq. 2.8, the energy splitting between adjacent spin states reads as

∆EFe
Z (B) = (mF −mF+1)qli(B) + (−m2

F +m2
F+1)qqu(B2) 2.9

= hzliB + (2mF + 1)hzquB
2

The lift of the degenerate splitting between adjacent spin states becomes evident when the
differential splitting between three neighboring spin states (e. g. ∆EFe

Z between mF = −19/2
and m′

F = 17/2 minus ∆EFe
Z between mF = 17/2 and m′

F = 15/2, see inset Fig. 2.3(b))
is calculated, as plotted in Fig. 2.3(d). While the linear Zeeman contributions cancel, the
quadratic coefficient zqu determines the differential splitting. Within our approximation the
differential splitting between three adjacent spin states is found to be

∆(∆EFe
Z )(B) = −2qqu(B2) = −2hzquB

2. 2.10

At a magnetic field value of 40 G this gives a differential splitting of 40.83 kHz, which matches
the actual value of 41.56 kHz within 2 %. The knowledge on the lift of the degenerate coupling
between adjacent spin states allows for a deterministic state preparation of the two lowest
spin states in fermionic erbium and enabled us to perform a clean study of the interspin
interaction properties, see Sec. 5.6.

2.3. Experimental setup

The building of the erbium apparatus has started in 2010, and led to the successful prepa-
ration of the first BEC of erbium already in early 2012. At the heart of the setup are a
high-temperature oven, a transversal cooling (TC) section, a Zeeman slower (ZS) setup, and
the main chamber for trapping the atoms in a narrow-line magneto-optical trap (MOT),
evaporative cooling of the atoms in optical dipole traps, and absorption imaging of the
atomic samples.

Within this section, we will summarize the most important experimental parts and report on
the performance of the apparatus. For a more detailed description of the experimental setup,
including technical details on the vacuum chamber, the blue and yellow laser light setups,
and the coil setup of the main chamber, the reader is referred to Ref. [Fri14a]. Updates on
the experimental setup, which are from particular importance for this thesis are reported in
the Appendices B and C.

5 This value matches nicely the expectation for a pure linear dependence with ∆EFe
Z,li(B) = BgFµB =

B × h× 1.0288MHz/G.
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Figure 2.4.: Drawing of the experimental chamber for the erbium experiment. Erbium pieces are
heated in the effusion cell section (red) producing an atomic flux traveling from right to left. After
a transversal cooling section (light blue), where the transversal velocity spread is reduced by near-
resonant 401 nm laser light, the atoms enter the Zeeman slower section (green). The atoms are
slowed down by resonant 401 nm light, which enters via the Zeeman slower mirror section (blue). The
Zeeman slower also serves as a differential pumping section, which allows pressure differences between
the HV and the UHV sections of up to three orders of magnitude. Finally, the atoms are trapped
at the main chamber (yellow) with 583 nm yellow laser light within a MOT. Ion getter pumps and
Titanium sublimation pumps (gray) maintain the low pressure in the HV and UHV sections. Figure
adapted from Ref. [Fri14a].

2.3.1. Vacuum chamber

The erbium apparatus can be divided into two main sections. The high-vacuum (HV) section
includes the high-temperature oven and the TC chamber and enables a pressure of about
4×10−9 mbar. The ultra-high vacuum (UHV) section is connected via a differential pumping
section and includes the ZS and the main experimental chamber. In this section pressures
down to 1 × 10−11 mbar are reached, which renders collisions of the trapped atoms with
background gas negligible. Figure 2.4 shows a drawing of the whole erbium apparatus,
including also to pumping stages for the HV and UHV sections.

The high-temperature oven6 consists out of two parts, the effusion cell and the hot lip,
which are made out of tantalum and are separated by an aperture. Their temperatures are
controlled independently to 1100 ◦C and 1200 ◦C, respectively. With this temperatures we
reach an atomic flux right after the oven of 1014s−1sr−1, which is sufficient for experimental
operations [Sch11]. For a filling of about 10 mG of solid erbium, the oven can be operated
for several years without refilling.

6 model DFC-40-10-WK-2B, from from CreaTec Fischer & Co. GmbH

http://www.createc.de/
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2.3.2. Laser cooling and trapping of erbium

Right after the effusion cell the atomic beam enters the TC section. While apertures at the
oven are implemented to collimate the beam, the remaining transversal velocity spread does
not allow all atoms to reach the main chamber through the differential pumping section.
As to reduce this spread, a slightly blue-detuned two-dimensional optical molasses in two
directions is implemented. This leads to a further collimation of the atomic beam and
enhances the amount of atoms captured in the MOT by almost an order of magnitude, see
Appendix B.

Subsequentially, the atoms travel through the ZS section. A counter-propagating laser beam
reduces the longitudinal velocity via momentum transfer by scattering, which effectively
slows down the atoms. The ZS is designed such that the constantly slowing atoms are kept
at the atomic resonance, by compensating the varying Doppler shift via the Zeeman shift
induced by an external magnetic field. The initial longitudinal velocity of around 450 m/s is
reduced to about 5 m/s, which enables to directly capture the atoms in the MOT.

Finally, the atoms enter the main chamber, where they are trapped within a MOT operated
at the narrow 583 nm transition. As discussed in Sec. 2.2.2, the narrow linewidth of 190 kHz
features a low Doppler temperature and allows for MOT temperatures around 10µK. To
avoid residual light scattering of the ZS beam on the MOT, we use large light detunings of
up to 50 linewidths, which leads to an accumulation of the atoms below the ZS beam. With
our setup, we can realize MOTs of the five most abundant isotopes of erbium [Fri12]. For an
optimized experimental setup, we can achieve MOTs of up to 2×108 atoms at a temperature
of around 10µK for the most abundant 166Er isotope. This numbers are fairly sufficient for
our experiment and do not limit us. Rather, the maximum atom numbers for further cooling
are restricted by the amount of atoms that can be loaded to the optical dipole trap, see
Sec. 2.4.1. Hence, we typically work with MOT numbers of 3×107 atoms, which are reached
for 3 s of MOT loading.

A major advantage of our narrow line MOT is that the atoms are naturally spin-polarized to
the lowest Zeeman substate. This is a result of the large detuning of the MOT, which leads to
a so called ”gravitational sag”. As a consequence, atoms preferentially scatter light from the
lower σ−-polarized MOT beam, which optically pumps the atoms to the lowest spin state.
Indeed, the influence of the top σ+-polarized MOT beam is negligible, which allowed us to
remove it completely without influencing the MOT performance. A more detailed study
on such a five-beam MOT configuration has been performed recently [Ilz18]. The increased
optical access is particular valuable for our experiment, as it allows for the implementation
of additional optical setups.
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2.4. Degenerate gases of Erbium

The demonstration of a cold MOT of erbium is the ideal starting point for loading the
atoms into an optical dipole trap, and to further cool them by means of forced evaporation.
Utilizing this technique, we managed to achieve a BEC of 168Er - a worlds first - in early
2012 [Aik12]. This achievement was the turning point of our experiment and marked the
start for many exciting studies within the ultracold regime.

Together with the first BEC of dysprosium atoms in 2011 by the group of Benjamin Lev
at Stanford [Lu11], it also led to the beginning of a new era in ultracold experiments - the
era of strongly magnetic dipoles. While pioneering work already has been performed with
dipolar chromium atoms [Gri05, Lah08, Pas11a], strongly magnetic lanthanides allow to ac-
cess physical phenomena that are even more governed by the long-range and anisotropic
interaction, leading to unexpected quantum phases. The large impact on the community
of ultracold gases, is nicely accounted for by the recent building of several more strongly
magnetic lanthanide experiments. The groups of Tilman Pfau in Stuttgart as well the group
of Giovanni Modugno in Florence with dysprosium [Kad16, Luc18], and the group of Martin
Weitz in Bonn with erbium [Uli17] already succeeded in reaching the quantum degenerate
regime. Other groups are chasing behind these groups, as the group of Mark Saffman in
Wisconsin with holmium [Mia14], the group of Sylvain Nascimbene in Paris with dyspro-
sium [Dre17], our group in Innsbruck with a mixture of erbium and dysprosium [Ilz18], the
group of Rudolf Grimm in Innsbruck with a mixture of potassium and dysprosium [Rav18],
the group of Mikio Kozuma in Tokyo with europium [Ino18], the group of Patrick Wind-
passinger in Mainz with dysprosium7, the group of Markus Greiner at Harvard in Boston
with erbium8, as well as the groups of Zoran Hadzibabic in Cambridge with erbium and
Wolfgang Ketterle at MIT in Boston with dysprosium9.

2.4.1. Optical trapping

Optical dipole traps are based on off-resonant laser light that induces an energy shift on the
atomic state. This shift is known as the AC stark shift [Gri00] and is related to the dynam-
ical polarizability. Appendix A.2 summarizes our up-to-date knowledge on the dynamical
polarizability of erbium for the three relevant wavelengths used in our experiment.

Directly after the MOT stage, we transfer the atoms to an optical dipole trap, operated
at 1064 nm. Good transfer efficiencies of up to 30% are achieved by means of a scanning
system that allows to increase the trapping volume of the beam via a technique based on
time-averaged potentials [Bai12a]. The maximum transferable atom number is limited by
the total power of the dipole trap beam and reaches values of up to 1 × 107 atoms with a
temperature of about 20µK.

7 Windpassinger dysprosium lab
8 Greiner erbium lab
9 private communication

https://www.qoqi.physik.uni-mainz.de/research-projects/dipolar-quantum-gases-in-optical-lattices/
http://greiner.physics.harvard.edu/er/
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We have further demonstrated optical trapping with 1570 nm and 532 nm light. The use of
1570 nm trapping light turned out to be necessary for the production of degenerate Fermi
gases of the 167Er isotope, see Sec. 3.3, as with 1064 nm light significant heating of thermal
gases was encountered. Laser light at 532 nm has proven to be particular valuable for the
production of optical lattices, as the short wavelength results in a small distance between
neighboring atoms in the lattice and enhances the effects from dipolar interactions, see
Chapter 5. The optical setups for all optical trapping beams are reported in Ref. [Fri14a]
and Appendix B.

2.4.2. Evaporative cooling

To reach the quantum degenerate regime, the technique of forced evaporation is applied.
By adiabatically lowering the optical potential depth, the thermal Maxwell-Boltzmann dis-
tribution becomes truncated. As only the hottest atoms are removed from the trap, after
rethermalization due to elastic collisions, a lower temperature and most importantly a higher
phase-space density (PSD) is reached. The PSD of an atomic gas can be expressed as

PSD = Nω̄3

(
~
kBT

)3

, 2.11

with N being the atom number, ω̄ the mean trap frequency, and kBT the thermal energy.
The transition to a Bose-Einstein condensate, a state where a macroscopically large number
of bosons occupies the ground state, is related to a PSD of 2.6.

Efficient evaporative cooling relies on a favorable ratio between elastic and inelastic collisions,
as the speed of rethermalization needs to exceed inelastic-loss timescales. For the case of
168Er, ideal conditions are found at a magnetic field value of 0.4 G. At this field we find a
s-wave scattering length as of 137(1)a0, see Sec. 4.1.1 for a definition of as, with a0 being
the Bohr radius. At this parameters we achieve an almost pure BEC of up to 2× 105 atoms
within 7 s of forced evaporation [Bai12a]. In Fig. 2.5 the emergence of a BEC is visualized.

In 2015 we also succeeded in Bose-Einstein condensing 166Er, the most abundant erbium iso-
tope. The experimental procedure is very similar to the one for the 168Er isotope. Here, we
find best evaporation efficiencies at a magnetic field value of 2.1 G, relating to a s-wave scat-
tering length as of 83(2)a0, see Appendix A.1. We typically create BECs of 1.1 × 105 atoms
with a BEC fraction of ≈ 70 %. This isotope features a conveniently broad Feshbach reso-
nance centered at low magnetic field values of about 50 mG, allowing us to tune the scattering
length with a high accuracy and precision for arbitrary magnetic field orientations. The high
level of control enabled us to investigate in detail the formation of a macro-droplet state, see
Appendix A.1, and the birth of Roton quasiparticles, see Appendix A.3.

The formation of a degenerate Fermi gas of 167Er is investigated in detail in Sec. 3.3. Usu-
ally, identical fermions do not collide at ultralow temperatures. Hence, spin- or species-
mixtures have to be employed to enable an elastic cross section large enough for efficient
cooling [DeM99, Tru01, Sch01, Had02, Roa02]. In contrast, our experimental procedure for
evaporation is solely based on universal dipolar scattering between single-spin fermions. The
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Figure 2.5.: Final evaporation steps to form an almost pure BEC of erbium - a worlds first -
realized with 168Er. When the atoms are cooled down below a critical temperature, a sharp peak
in the momentum distribution of the atomic cloud (in false color) arises. This resembles the major
fingerprint of a quantum degenerate bosonic gas. Temperatures of the thermal distributions are
indicated.

large and anisotropic elastic cross section has given new prospects for the study of scattering
physics of identical fermions, see Chap. 3.
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3
Few- and many-body scattering
of dipolar atoms

The dipole-dipole interaction (DDI) among particles gives rise to a universal scattering be-
havior in the ultracold regime [Boh09a]. To access elastic dipolar scattering in a clean
manner, it is required to switch off all other types of interactions. With bosonic particles,
such a case can be realized when the isotropic contact interaction is lowered to zero by
means of Feshbach tuning, see Chap. 4. However, in such a regime the dipolar interactions
start to dominate and can lead to a collapse of the atomic sample via the attractive part
of the DDI [Lah08]. Nevertheless, for (small) contact interaction, particularly fascinating
many-body physics can occur, arising from the competition between the isotropic contact
interaction and the anisotropic DDI. Beautiful examples are given by the observation of self-
confining quantum droplets, see [Kad16, FB16] and Appendix A.1, or the emergence of roton
quasi-particles, see Appendix A.3. Importantly, these works represent scenarios in which,
to explain the experimental results by theory, all the different scattering effects, including
dipolar interactions, have to be taken into account very carefully. While this is certainly
possible, it is not a straightforward method to access dipolar scattering.

A more elegant approach to experimentally treat elastic dipolar scattering does involve spin-
polarized fermionic particles. In the fermionic case, contact interactions, due to the Wigner
treshold law governed by s-wave scattering, are absent at ultralow temperatures. In con-
trast, the scattering cross section, resulting from dipolar interactions, does not vanish, but
converges to a universal value in the ultracold regime, isolating dipolar effects. In addition,
fermionic systems deliver the advantage of being stable against a collapse, even for domi-
nating attractive dipolar interactions. This is a result of quantum statistics where, for low
enough temperatures, the fermionic atoms occupy all lowest harmonic oscillator states (up
to the Fermi energy) and a further compression (implosion) of the cloud is prohibited by
Fermi pressure. These two facts allow for a clean study of dipolar scattering properties with
fermionic systems.

Within this chapter we will focus on the description of spin-polarized dipolar fermionic atoms
as a platform to investigate the effects of dipolar scattering. Section 3.1 reviews anisotropic
dipolar few-body scattering, and Sec. 3.2 focuses on the experimental observation of dipolar
many-body effects. The two Secs. 3.3 and 3.4 contain our publication on dipolar few-body
effects with fermionic erbium. Finally, Sec. 3.5 presents our publication on the observation
of the Fermi surface deformation.

20
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3.1. Dipolar few-body scattering

3.1.1. Dipole-dipole interaction

The DDI has a long-range and anisotropic character. For the case of magnetic atoms, such
as erbium, the interaction of two dipoles µ1 and µ2 with permanent magnetic moments µ1
and µ2, see Sec. 2.2.3, can be written in the general form as

Udd(r) =
µ0

4πr3

[
(µ1µ2) −

3

r2
(µ1r)(µ2r)

]
3.1

and depends on the interparticle distance r = r1 − r2. Here, r = |r| and µ0 is the magnetic
constant. For the case of particles with an electric dipole moment the DDI is calculated
by substituting µi → di and µ0 → 1/ϵ0. For electric dipoles the dipolar strength is set
by the strength of an external polarizing electric field. In stark contrast, magnetic dipoles
intrinsically carry a magnetic moment, where the strength does not depend on the external
field B. Nevertheless, the dipole orientation is given by the external magnetic field axis B̂,
even for a weak field amplitude. Hence, for experimental conditions, the magnetic dipoles
become polarized and mutually align along the external field that sets the quantization axis.
As a result, µ1 ∥µ2 and Eq. 3.1 simplifies to

Udd(r, θ) =
µ0µ1µ2

4π

1 − 3cos2θ

r3
3.2

with θ denoting the angle between the quantization axis and the interatomic axis of the
two dipoles, see Fig. 3.1. Remarkably, the sign of the interaction can be changed when θ
is changed from 0◦ (head-to-tale configuration) to 90◦ (side-by-side configuration)1. The
particles repel each other in a side-by-side configuration and experience an attractive force
in the head-to-tail configuration, see Fig. 3.1(b). As a consequence of the 1 − 3cos2θ term,
the absolute strength for negative interaction is twice as large as for positive interaction at
the same interparticle separation r. The range of the DDI can be accessed via the so-called
dipolar length

ad =
mµ0µ1µ2

4π~2
, 3.3

which in addition to the magnetic moments depends on the mass m of the dipoles. As
erbium is a heavy element (m166Er = 166u)2, in the lowest magnetic substate, i. e. mJ =
−6 → µ1 = µ2 ≈ −7µB (Eq. 2.3), ad takes the value 196.2 a0, which outperforms alkali atoms
as rubidium (ad,87Rb = 2.1 a0) and even magnetic chromium (ad,52Cr = 46.1 a0).

1 The strength of the interaction does also depend on the magnetic moments µ1 and µ2, and the interaction
sign can be changed when the signs of the spins are changed from a parallel (sgn(µ1) = sgn(µ2)) to an
antiparallel (sgn(µ1) = − sgn(µ2)) configuration.

2 The atomic mass unit u equals 1.66× 10−27 kg, which corresponds to 1/12 of the mass of carbon-12 atoms.
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Figure 3.1.: DDI between two magnetic atoms (a) The interaction strength between two dipoles,
aligned along B̂, relates to their relative distance r and the angle θ between the interatomic axis and
the quantization axis. Negative and positive potentials are shown in blue and red, respectively. The
dashed lines indicate the angles at which the repulsive and attractive part of the DDI cancel. (b)
When a dipole (blue or red dipole) approaches another dipole, it depends crucially on the angle of
incidence if it feels a repulsive (red) or attractive (blue) potential. For visualization, the potential is
cut off for small distances, at which it starts to diverge.

3.1.2. Ultracold scattering

In quantum mechanics the collision of two particles is described by the scattering theory, see
e. g. Ref. [Lan77]. The problem of elastic scattering can be treated as a scattering event of a
single particle with reduced mass mr

3 within the field U(r). The scattered wave function at
large distance is given by the sum of the incoming plane wave with wave vector k and the
outgoing spherical wave with wave vector k′. The amplitude f(k′,k) of the outgoing wave
depends on the scattering potential U(r) and the included angle with the incoming wave. It
is used to evaluate the differential cross section

dσ

dΩk′
(k′,k) = |f(k′,k)|2. 3.4

The differential cross section is a measure of the scattering probability of incident direction
k into the outgoing direction k′ with the solid angle dΩk′ . The total scattering cross section
for a given incident direction k can thus be obtained via integration

σ(k) =

∫
dΩk′

dσ

dΩk′
(k′,k). 3.5

The collision energy of the scattering event reads as

E =
~2k
2mr

3.6

with k = |k|.
3 The reduced mass of two particles with mass m1 and m2 can be calculated via mr = m1m2

m1+m2
, which

evaluates to mr = m/2 for m1 = m2.
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For short-range potentials and in the case of low-energy scattering, i. e. k → 0, the scatter-
ing amplitude is governed by scattering in the lowest partial wave l = 0, so-called s-wave
scattering, and is approximated to

f(k′,k) ≈ −as, 3.7

where as is the s-wave scattering length. In the case of identical bosons the scattering
amplitude has to be symmetrized, i. e. fB(k′,k) = 1/

√
2[f(k′,k) + f(−k′,k)], which leads to

the total cross section
σB = 8πa2s . 3.8

This cross section is isotropic and thus does not depend on the incident scattering angle. The
case of identical fermions is in stark contrast to the bosonic scenario. As the scattering am-
plitude must be antisymmetrized, i. e. fF(k′,k) = 1/

√
2[f(k′,k) − f(−k′,k)], the scattering

cross section in the ultracold regime dissapears, i. e.

σF = 0. 3.9

As a result, identical fermions represent a perfectly non-interacting system. In the context of
ultracold experiments, this complicates the approach to cool identical fermions to quantum
degeneracy, as evaporative cooling, which is based on elastic scattering, is absent.

3.1.3. Universal dipolar scattering

The scattering behavior changes drastically in the case of DDI [Lan77, Bar08]. As a conse-
quence of the 1/r3 long-range character, not only the s-wave but instead all partial waves
contribute to the scattering event. It has been shown that, in the strong dipolar limit where
DDI dominates, the elastic scattering cross section has a universal behavior that only depends
on the mass, the dipole moment and the collision energy of the scattered particles [Tic08].
Importantly, in the ultracold regime, the scattering cross section takes a constant value that
does not depend on the collision energy anymore [Boh09a]. For dipolar scattering the ultra-
cold regime is reached when the collision energy of Eq. 3.6 is smaller then the natural energy
scale of the dipolar interaction

ED =
µ0µ1µ2
4πa3D

3.10

where the nature length scale aD for two colliding dipoles is defined as

aD =
mrµ0µ1µ2

4π~2
= ad/2. 3.11

For purely dipolar scattering within the first-order Born approximation4 the scattering am-
plitude reads as

f(k′,k) = aD

[
2

3
− (k̂B̂ − k̂′B̂)2

1 − k̂k̂′

]
. 3.12

4 The Born approximation can be applied when the scattering potential can be treated as a perturbation,
i. e. when the scattered wave is not significantly changed from the asymptotic incident wave. It has been
shown that this approximation can be applied for long-range dipolar interaction potentials, where the
scattering happens outside the centrifugal barrier, see e. g. Ref. [Yi01].
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In stark contrast to the scattering at an isotropic potential, as it is the case for Eq. 3.7, the
scattering amplitude within a dipolar scattering potential, see Eq. 3.2, strongly depends on
the angles between the incident, the outgoing, and the quantization axes, i. e. between k̂, k̂′,
and B̂.

Following Eq. 3.5 and Eq. 3.12 one can evaluate the total cross section, averaged over all
incident directions k̂. Depending on the quantum statistics, again the antisymmetriza-
tion/symmetrization of the scattering amplitude has to be applied for identical particles,
see Sec. 3.1.2.

In the case of fermionic particles, this leads to the total cross section

σ̄F =
32π

15
a2D. 3.13

For bosonic particles, the s-wave short-range contribution has to be empirically added to the
total cross section, which finally results in

σ̄B = 8πa2s +
32π

45
a2D. 3.14

The obtained total cross sections only depend on the dipolar length scale aD (and the scatter-
ing length as for bosons). The found independence on energy reveals the universal behavior
of ultracold dipolar elastic collisions.

As a striking consequence of this unversal scattering behavior, dipolar interactions allow
for elastic collisions even in the case of spin-polarized fermions. Section 3.3 contains our
publication, in which we use universal dipolar scattering for evaporative cooling of fermionic
erbium in the streched state. We observe, for the first time, that the deeply quantum degen-
erate regime can be reached with a single component Fermi gas. Initial work on dysprosium
indicated signatures of the very same effect [Lu12]. Our observed evaporation efficiencies
are remarkably high, underlining our simple and straightforward method to cool identical
fermions. We investigate the total elastic cross section via cross-dimensional thermalization
experiments and find a good agreement with the universal value, i. e. Eq. 3.13.

3.1.4. Anisotropic dipolar scattering

While in the case of isotropic interactions, σ(k), denoting for the scattering cross section of
incident wave vector k integrated over all outgoing directions k̂′, does not depend on the
incident scattering direction, the behavior is fundamentally different in the dipolar case. On
top of the universal behavior, dipolar scattering shows a peculiar angle dependence, as can
be seen from Eq. 3.12. The total cross section can be written as a function of the angle η,
which is spanned by the incident wave vector k̂ and the polarization axis B̂ [Boh14], see
Fig. 3.2(a).

From Eq. 3.5 and Eq. 3.12 one finds for the scattering cross section of two identical fermionic
dipoles

σF(η) =
π

3

[
3 + 18 cos2 η − 13 cos4 η

]
a2D, 3.15
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Figure 3.2.: Anisotropic dipolar scattering cross section. (a) Two dipoles collide via an angle η
that is defined by the angle between the quantization axis given by B and the incident wave vector
k. (b) Purely dipolar scattering cross section as a function of η for indistinguishable fermions (blue)

and bosons (red) summed over all scattering angles k̂′. σ(η) is cylindrically symmetric about the
quantization axis. The angular averages σ̄B and σ̄F are indicated by the red and blue dashed line,
respectively.

while for indistinguishable dipolar bosons the total cross section reads as

σB(η) =
π

9

[
72 a2s − 24 as

(
1 − 3 cos2 η

)
aD + 11 a2D − 30 cos2 η a2D + 27 cos4 η a2D

]
. 3.16

Figure 3.2(b) draws their functional form and reveals the strong anisotropy in the scattering
behavior. For the bosonic case, the scattering cross section is shown for vanishing contact
interactions, i. e. as = 0. Interestingly, fermionic and bosonic particles show a markedly
different behavior. While bosons scatter strongest when approaching each other in a side-by-
side configuration (η = 90◦), fermions preferentially scatter when they meet under an angle
of η = 35◦ with respect to the quantization axis. When calculating the angular average of
the total cross section

σ̄ =
1

2

∫ +1

−1
d(cos η)σ(η), 3.17

one finds back the values of σ̄B and σ̄F, see Eq. 3.13 and Eq. 3.14. For completeness, these
mean total cross sections are plotted in Fig. 3.2(b) as dashed lines. We emphasize that dipolar
fermions scatter in average three times more often then their bosonic counterparts.

The anisotropy of dipolar scattering can have a strong influence on the rethermalization
rate of an out-of-equilibrium atomic sample [Boh14]. Ultracold experiments are typically
performed in harmonic traps with an orthogonal coordinate system {x, y, z}. Collisions in
such a trap not only depend on the scattering angle η, but also on the angle β included
by the trap symmetry axis and the quantization axis, see Fig. 3.3(a). To access the angle
depenendence of the rethermalization rate, cross-dimensional thermalization experiments
can be applied. Here, one axis, e. g. the symmetry axis y, is brought out of equilibrium and
the time acquired for distributing the induced kinetic energy along the perpendicular axes
xz is monitored. This rethermalization time depends on the density and thermal velocity of
the atomic sample, but also on the elastic scattering cross section σ̄. Further, it is directly
proportional to the dimensionless constant α, which accounts for the number of collisions
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Figure 3.3.: Cross-dimensional thermalization experiments with identical fermionic dipoles. (a)
Illustration of a scattering event within a cylindrically symmetric atomic cloud. For experiments, the
angle β, included between the symmetry axis y and the quantization axis, is the relevant quantity.
The angle η is defined as previously discussed. (b) The number of collisions for rethermalization, α,
as a function of the angle β after the atomic cloud is brought out of thermal equilibrium along the
y-axis. For comparison, α is also shown for s- and p-wave collisions. (c) Differential cross section
dσ/dΩk′ as a function of the outgoing scattering direction k′ for the incident scattering direction k
aligned along y for various scattering angles η. Figure adapted from Ref. [Boh14].

needed for rethermalization. α can be used as a measure of the efficiency of elastic collisions
towards thermal equilibrium.

Figure 3.3(b) shows the dependence of α on the angle β for the case of identical fermions. At
an angle β = 45◦ rethermalization happens fast, while for β = 90◦ more than a factor of two
more collisions are needed to distribute the energy along the perpendicular directions. To
get an intuition for this peculiar angle dependence, one can consider the following scenario:
As the trap is excited along the y-axis, it can be assumed that collisions happen mainly
along this principle axis, i. e. k∥y. For this scenario β ≡ η. As the scattering cross section is
found to be lowest for η = 90◦, see Eq. 3.15 and Fig. 3.2, it is not a surprise that at β = 90◦

rethermalization requires the maximum amount of collisions. Further intuition is gained
via the angle dependence of the differential scattering amplitude. Thermalization will occur
fastest if the differential scattering amplitude is largest for perpendicular outgoing directions,
i. e. if f(k′,k) is maximal for k′⊥k. As can be seen in Fig. 3.3(c) this scenario is found for
an angle η of 45◦. In contrast, for the cases η = 0◦ and 90◦ forward and backward scattering
is preferred, which hinders energy distribution from y to xz.

Section 3.4 presents our publication on the detailed experimental study of the anisotropic
dipolar scattering. Based on the method of cross-dimensional thermalization with an atomic
cloud of about 100 000 167Er atoms, we beautifully reveal that the equilibration rate can vary
by as much as a factor of four when we change the dipole orientation with respect to the
dynamic axis of the trap. We find remarkable quantitative agreement with the theoretical
expectation for our parameters. In addition, we observe that the rethermalization rate in
the ultracold regime undergoes a reduction due to Pauli blocking. Our experimental and
theoretical investigations reveal that this reduction does not depend on the dipolar angle,
i. e. on β.
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A complementary approach to directly access the differential scattering cross section of col-
liding dipoles has more recently been applied with bosonic dysprosium. The method involves
the opposed acceleration of two ultracold clouds, which interfere and form a collisional halo.
The distribution of this halo depends on the differential cross section and can be observed
in time-of-flight (TOF) experiments. While successfully implemented to visualize s- and d-
wave collisions of identical bosons in 87Rb [Tho04, Bug04] and p-wave collisions of identical
fermions in 40K [Tho16], the work with 162Dy allowed to observe the angle dependence of
the differential cross section for dipolar bosons [Bur16].

3.2. Many-body effects in dipolar Fermi gases

Ultracold atoms offer a wealth of possibilities to study the effects of the physics at play.
On the one hand, for few-body investigations, where the scattering between two or three
particles is of interest, the large number of atoms available in experiments gives a boost to
the signal-to-noise ratio, as multiple scattering events are observed simultaneously. On the
other hand, ultracold atoms allow to investigate many-body effects, which emerge due to
the collective coupling among all particles within the atomic sample. Remarkably, in this
scenario one does not need to have information on single scattering events, but rather can
describe the atomic system by a single quantum state.

In the case of dipolar particles, which only have been established in the recent years, many-
body effects have mainly be explored with bosonic particles. Here, the competition between
the isotropic contact interaction and the anisotropic DDI can give rise to many intriguing
but also counterintuitive effects. With magnetic chromium atoms it has been observed that,
when the dipolar interaction is dominating, the atomic cloud starts to collapse due to the
attractive part of the DDI, forming a characteristic d-wave shape [Lah08]. Further, the DDI
can affect the collective oscillation frequency of a dipolar Bose-Einstein condensate [Bis10].
More recently, studies along the competing interactions observed the formation of multiple
quantum droplets [Kad16], and self-confining quantum liquids, see Ref. [Sch16] and Appendix
A.1. It has been shown that the leading role for the stabilization of such quantum droplets
is given by beyond mean-field effects, namely quantum fluctuations, see Ref. [FB16] and
Appendix A.1, that only can manifest themselves since the other interactions almost cancel5.
Another intriguing many-body effect, resulting from the competition of contact and dipolar
interactions, is given by the emergence of the so-called Roton spectrum that features a local
minimum in the energy dispersion relation at non-zero momentum, and is closely linked to
elementary excitations in superfluid helium [Lan41]. For dipolar systems, the roton mode
has been predicted in 2003 [San03], which triggered a large amount of theoretical work along
this line [Ron07, Boh09b, Par09, Mar12, Bla12, JL13, Wil10, Nat14]. The first observation
of this long-sought mode in dipolar quantum gases is reported in Appendix A.3.

For the case of fermionic dipolar atoms, many-body effects are hardly explored. In contrast
to bosonic systems, for spin-polarized fermions contact interactions are absent. For deeply

5 It should be noted that such self-bound droplets can also be stabilized in purely contact interacting systems,
based on the competing attractive and repulsive interactions in e. g. alkali spin mixtures [Pet15, Cab17,
Sem17].



3.2. MANY-BODY EFFECTS IN DIPOLAR FERMI GASES 28

degenerate Fermi gases, the relevant energy scale is given by the Fermi energy EF. In order
to manifest themselves, dipolar interactions have to compete with this energy scale. The
strength of the expected many-body effect is given by the ratio

nµ0µ
2

4πEF
, 3.18

where n ∝ E
3/2
F is the peak-number density, and µ is the magnetic moment of the spin-

polarized gas. As for magnetic atoms the Fermi energy typically is much larger then the
energy of the DDI, dipolar many-body effects are subtle and difficult to observe.

3.2.1. Hartree-Fock theory

To describe many-body effects in a trapped single-component dipolar Fermi gas, Hartree-
Fock mean-field theory can be used. Within the semiclassical Thomas-Fermi-Dirac approx-
imiation [Gór01] the total energy of the system can be written as

E = Ekin + Etr + Ed + Eex 3.19

with Ekin and Etr accounting for the kinetic energy and for the external potential energy of
the harmonic trap, respectively. The terms

Ed =
1

2(2π)6

∫
d3r

∫
d3r′

∫
d3k

∫
d3k′ Udd(r− r′)g(r,k)g(r′,k′) 3.20

and

Eex = − 1

2(2π)6

∫
d3r

∫
d3r′

∫
d3k

∫
d3k′ Udd(r− r′)

× ei(k−k′)(r−r′)g

(
r + r′

2
,k

)
g

(
r + r′

2
,k′
) 3.21

are the Hartree direct energy and the Fock exchange energy, respectively, which arise from
the DDI, see Eq. 3.1. Here, r and k denote for the coordinate and wave vector, respectively.
The Wigner distribution function g(r,k) can be written within the variational Ansatz

g(r,k) = Θ

(
1 −

3∑

i=1

r2i
R2

i

−
3∑

i=1

k2i
K2

i

)
3.22

where Θ is the Heaviside step function. Within this Ansatz, which has been confirmed
numerically in Ref. [Ron10], the variational paramters Ri and Ki describe the real space and
momentum space radii of the atomic cloud in the ith direction, respectively.

The Hartree-Fock theory can be used to calculate the ground state of a dipolar many-body
system. For purely contact interacting systems the Hartree and the Fock energy cancel each
other, as can be evaluated when Udd(r− r′) is replaced by ∝ δ(r− r′).
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3.2.2. Real and momentum space radii of dipolar atoms

To calculate the ground state of a dipolar gas, the energy of Eq. 3.19 has to minimized. Inter-
estingly, minimal energy is found if the cloud takes a deformed shape in real and momentum
space, see Refs. [Gór01, Miy08, Bai12b]. This deformation is a result of Ed and Eex and is
absent in purely contact interacting systems.

For dipolar bose gases, the deformation of the real space radius has been observed with
magnetic Cr [Stu05]. This effect is genuinly known as magnetostriction and results from the
Hartree direct interaction. Similar to the magnetostriction effect in real space, the surface
in momentum space can also be deformed. Here, the relevant term is given by the Fock
exchange energy. In the case of dipolar Fermi gases the energy is minimized when the Fermi
sphere elongates along the dipole orientation, i. e. along the direction of maximum dipolar
attraction [Bai12b].

Section 3.5 presents our publication on the first experimental observation of an anisotropic
Fermi surface with a dipolar degenerate Fermi gas. Our investigations, based on TOF
experiments with 167Er, reveal that the Fermi sphere indeed elongates along the dipole
orientation, and we demonstrate the control of the elongation axis via the external magnetic
field. We confirm that the observed deformation in momentum space mainly results from
the Fock exchange interaction. To reach an accurate comparison between our experimental
observation and the theoretical expectation, we also consider the Hartree direct interaction.
During the intial expansion, where the atoms are still interacting, it leads to a non-negligible
deformation of the cloud, which we take into account. Remarkably, our observations disclose
that the Fermi surface deformation linearly depends on the ratio of the squared magnetic
moment to the Fermi energy, see Eq. 3.18, thus confirming the many-body nature of the
observed effect.

As we show, the strength of the Fermi surface deformation depends strongly on the com-
petition between the dipolar interaction and the Fermi pressure. If a stronger deformation
has to be achieved, one could either increase the dipole moment via the use of polar or
dipolar fermionic molecules (e. g. 167Er168Er), or could access the hydrodynamic regime6, see
Ref. [Vac17].

6 For the measurements in Sec. 3.5 the atomic sample is in the collisionless regime. Here, the mean-free path
is larger than the size of the atomic cloud. To enter the hydrodynamic regime the collisional rate has to
be increased. The hydrodynamic regime is reached when τω̄ ≪ 1, where τ is the rethermalization time,
see Sec. 3.1.4, and ω̄ the mean trap frequency.
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6020 Innsbruck, Austria

† The author of the present thesis helped in taking the data, and contributed in writing the manuscript.
This publication is also part of the Phd thesis of Albert Frisch.

30

https://doi.org/10.1103/PhysRevLett.112.010404


Reaching Fermi Degeneracy via Universal Dipolar Scattering

K. Aikawa,1 A. Frisch,1 M. Mark,1 S. Baier,1 R. Grimm,1,2 and F. Ferlaino1
1Institut für Experimentalphysik and Zentrum für Quantenphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria

2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
(Received 21 October 2013; published 6 January 2014)

We report on the creation of a degenerate dipolar Fermi gas of erbium atoms. We force evaporative
cooling in a fully spin-polarized sample down to temperatures as low as 0.2 times the Fermi temperature.
The strong magnetic dipole-dipole interaction enables elastic collisions between identical fermions even in
the zero-energy limit. The measured elastic scattering cross section agrees well with the predictions from
the dipolar scattering theory, which follow a universal scaling law depending only on the dipole moment
and on the atomic mass. Our approach to quantum degeneracy proceeds with very high cooling efficiency
and provides large atomic densities, and it may be extended to various dipolar systems.
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Identical fermions with short-range interaction do not
collide at very low temperatures [1]. According to the rules
of quantum mechanics, the requirement of antisymmetry of
the fermionic wave function causes the scattering cross sec-
tion to vanish in the ultracold regime. This makes ultracold
fermions special in many respects. For instance, they real-
ize perfectly noninteracting quantum systems, which can
serve for sensitive interferometers [2] and ultraprecise
atomic clocks [3]. From another point of view, the absence
of collisions means that direct evaporative cooling
cannot work.
The inapplicability of direct evaporative cooling to fer-

mions challenged scientists to develop alternative strate-
gies. The common solution is to use mixtures of two
distinguishable atomic components [4]. In this scheme, fer-
mions are sympathetically cooled through elastic s-wave
collisions with fermions in other spin states [4–8], with
atoms belonging to a different isotope [9–13], or with
atoms of a different chemical element [14–17].
The scenario is completely different in the presence of

the long-range dipole-dipole interaction (DDI). While
the effect of the short-range van der Waals interaction still
freezes out at low temperatures, as it does for nondipolar
fermions, the DDI prevents the elastic cross section
between identical fermions from vanishing. The corre-
sponding Wigner threshold law, governing the threshold
behavior of two-body scattering, gives a finite and
energy-independent elastic cross section [18–20]. As a
key consequence, identical dipolar fermions can collide
even in the zero-temperature limit.
Ultracold dipolar scattering is currently attracting a

renewed interest in connection with recent experiments
on polar molecules [21,22] and strongly magnetic atoms
[13,23,24]. Early theoretical work on H atoms and atoms
in electric fields suggested that dipolar scattering could pro-
vide an elastic cross section that is large enough for direct
evaporative cooling of identical fermions [25–28]. Recent

theoretical work has elucidated the universal character of
the dipolar scattering [29–31] and found that the elastic
dipolar cross section is determined only by the mass and
the dipole moment of the particles [30]. Recent experiments
on fermionic ground-state polar KRb molecules have tested
this prediction and have obtained evidence for the aniso-
tropic character of the DDI [21]. Experiments on using
dipolar scattering for evaporative cooling have been
reported for fermionic Dy [13] and KRb molecules [32],
both reaching temperatures on the order of the Fermi tem-
perature TF.
In this Letter, we report on the creation of a quantum

degenerate dipolar Fermi gas of 167Er atoms. We demon-
strate a powerful approach in which the underlying cooling
mechanism relies solely on dipolar scattering between spin-
polarized fermions. We observe a remarkably high cooling
efficiency, leading to very dense Fermi gases with typically
6.4 × 104 atoms at a temperature of T=TF ¼ 0.2 and a peak
density of 4 × 1014 cm−3. Finally, we confirm the predic-
tion of the universal dipolar scattering theory [29,30] by
measuring the Er elastic cross section in spin-polarized fer-
mions via cross-dimensional thermalization [33]. Our work
opens up a conceptually novel pathway to quantum degen-
eracy in dipolar systems that can be generalized not only to
other strongly magnetic atoms but also to ground-state
polar molecules, for which the implementation of sympa-
thetic cooling might be difficult.
The strong dipolar character of Er originates from its

large magnetic moment μ of 7μB, where μB is the Bohr
magneton, and its large mass [20,34]. Among the six stable
isotopes, Er has one fermionic isotope, 167Er, with a large
natural abundance of 23%. While the bosonic isotopes
have no hyperfine structure, 167Er has a nuclear spin
I ¼ 7=2, giving rise to a manifold of eight hyperfine levels
and 104 magnetic sublevels in the electronic ground state
[35]. In spite of the much more complex energy structure of
the fermionic isotope, our approach to quantum degeneracy
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is very similar to the one we have successfully used to con-
dense the bosonic isotope 168Er [24,36]. It consists of a
laser cooling stage followed by direct evaporative cooling
in an optical dipole trap (ODT). The fundamental differ-
ence with respect to the bosonic case is that the thermal-
ization between spin-polarized fermions proceeds solely
through dipolar elastic collisions. In the present work,
we focus on spin-polarized fermions in the lowest hyper-
fine sublevel jF ¼ 19=2; mF ¼ −19=2i, where F is the
total spin quantum number and mF is its projection along
the quantization axis.
Our laser cooling scheme relies on a Zeeman slower

operating at 401 nm and on a magneto-optical trap
(MOT) based on a narrow line at 583 nm [36]. Both light
fields act on transitions with quantum numbers
F ¼ 19=2 → F0 ¼ 21=2, which are sufficiently closed
for laser cooling. In our scheme, fermions in the MOT
are naturally spin-polarized into the lowest magnetic sub-
level j19=2;−19=2i because of a combined effect of grav-
ity and the MOT light [36]. We typically capture 1 × 107

atoms at T ¼ 7 μK in the MOT. All measurements in the
present work are performed by absorption imaging on the
401-nm transition.
For evaporative cooling, we first transfer the atoms from

the MOT into a single-beam large-volume ODTat 1064 nm
and then into a tightly focused ODT at 1570 nm. The first
trap is used as an intermediate step to increase the transfer
efficiency from the MOT. It consists of a single horizontal
beam with a power of 20 W and elliptical focus. The beam
waists are approximately 20 and 200 μm in the vertical and
horizontal direction, respectively. The corresponding trap
depth is roughly 100 μK. From the large-volume trap,
the atoms are loaded into a tightly focused ODT at
1570 nm. This second trap is made of a single horizontal
beam, which is collinear to the large-volume trapping beam
and has a waist of 15 μm. The initial power of the 1570-nm
beam is 1.8 W, corresponding to trap frequencies of
ðνx; νy; νzÞ ¼ ð2147; 51; 2316Þ Hz and a trap depth of
about kB × 190 μK. Here, z is the direction of gravity.
At this stage, we have 1.5 × 106 atoms at T=TF ¼ 4.4 with
T ¼ 28 μK and a peak density of about 1.2 × 1014 cm−3.
The Fermi temperature is defined as TF ¼ hν̄ð6NÞ1=3=kB,
where ν̄ is the geometric mean of the trap frequencies and h
is the Planck constant. We force evaporation by reducing
the power of the horizontal beam in a near-exponential
manner. When TF is reached, we introduce a vertical beam
at 1570 nm to confine the fermions into the crossed region
created by the two beams and to preserve the atomic den-
sity. Its power is gradually increased and reaches 1.2 W at
the end of the evaporation. The vertical beam has a beam
waist of 33 μm. During evaporation, we apply a homo-
geneous guiding magnetic field to maintain the spin polari-
zation in the system. At high temperature, the magnetic
field value is about 1.7 G, which is large enough to avoid
any thermal excitation into higher spin states. For

temperature below 3.2TF, we decrease the value of the
magnetic field to 0.59 G, where we observe a slightly better
evaporation efficiency. After 10 s of forced evaporation, we
obtain a deeply degenerate Fermi gas.
Figure 1 shows a typical time-of-flight (TOF) absorption

image of a degenerate dipolar Fermi gas of N ¼ 6.4 × 104

and a peak density of n0 ¼ 4 × 1014cm−3 at T=TF ¼
0.21ð1Þ with TF ¼ 1.33ð2Þ μK. At this point, our trap
frequencies are (470,346,345) Hz. Fermi degeneracy
reveals itself in a smooth change of the momentum distri-
bution from a Maxwell-Boltzmann to a Fermi-Dirac distri-
bution [37]. Correspondingly, the atomic density profile is
expected to change its Gaussian shape into a polylogarith-
mic one. A fit to TOF images reveals that at temperatures
above ≈0.5TF the Gaussian and polylogarithmic function
are hardly distinguishable from each other and both
describe the data well. By further decreasing the tempera-
ture, we observe a gradually increasing deviation from the
Gaussian shape. This deviation is evident in Fig. 1, which
shows a density profile at T=TF ¼ 0.21ð1Þ. A Gaussian fit
to the outer wings of the cloud, i.e., outside the disk with
radius w, with w being the 1=e diameter of the Gaussian fit
to the entire cloud, clearly overestimates the population at
the center of the cloud. This is a fingerprint of Fermi degen-
eracy, meaning that the population of low-energy levels is
limited by the Pauli exclusion principle.
In all our measurements, we extract T=TF from fits to the

density profiles by using either a polylogarithmic or a
Gaussian function. In the former case, the fit gives both
the fugacity ζ and the parameter σ characterizing the
width of the distribution. The fugacity directly gives
T=TF ¼ ½−6 × Li3ð−ζÞ�−1=3, with Lin being the nth-order
polylogarithmic function [7,9]. The parameter σ is related
to the atomic temperature by T ¼ mσ2=ðkBt2TOFÞ, where
tTOF is the time of flight and m is the mass of 167Er,
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FIG. 1 (color online). Time-of-flight absorption image of a de-
generate Fermi gas of Er atoms at T=TF ¼ 0.21ð1Þ after tTOF ¼
12 ms of expansion (a) and its density distribution integrated
along the z direction (upper panel) and x direction (lower panel)
(b). The observed profiles (circles) are well described by fitting a
polylogarithmic function to the data (solid lines), while they sub-
stantially deviate from a fit using a Gaussian distribution to the
outer wings of the cloud, i.e., w (dashed lines). The absorption
image is averaged over six individual measurements.
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and together with TF, calculated from N and ν̄, gives a
more indirect value for T=TF. We determine T=TF by using
both methods, which show well consistent results.
To get deeper insights into the evaporation process and

the underlying collisional properties, we study the evapo-
ration trajectory. Figure 2 summarizes our results. We
observe that the evaporation first proceeds with high effi-
ciency down to temperatures well below TF and then pla-
teaus at about T=TF ¼ 0.2. The latter behavior suggests
that further cooling is limited by Pauli blocking [4,6,7,9]
and that more thoroughly optimized evaporation ramps
might be needed to reach even lower temperatures. The
deepest degeneracy we attained is T=TF ¼ 0.19ð1Þ with
N ¼ 4.0 × 104. From the slope of the evaporation trajec-
tory, we obtain the efficiency parameter γ. This parameter
quantifies the gain in phase-space density (PSD) at the
expense of the atom number and can be written as
γ ¼ −dðln PSDÞ=dðln NÞ ¼ −3 × dðln T=TFÞ=dðln NÞ.
From a linear fit to the data down to T=TF ¼ 0.2, we find
γ ¼ 3.5ð2Þ. This remarkably large number is in the league
of the best evaporation efficiencies observed in experiments
with ultracold atoms based on s-wave scattering, including
our experiments with the bosonic 168Er [24] and experi-
ments on strongly interacting two-component Fermi gases
[5,38,39].
Our interpretation of the cooling process in terms of

dipolar scattering relies on the full spin polarization of
the sample. Another spin state being present would lead
to s-wave collisions in the sample. Therefore it is important
to make sure that we do not have any other spin state
present. For this reason, we carry out a dedicated set of
Stern-Gerlach-type measurements at various stages of the
evaporation. During the whole evaporation sequence, we
never observe any population in spin states different from

the mF ¼ −19=2 state. Figure 3 show the relevant portion
of the TOF image, where atoms are observed. To identify
unambiguously the spatial positions of the different spin
components, we intentionally prepare a spin mixture by
radio-frequency (rf) transfer; see Fig. 3. It is worth men-
tioning that we observe fast spin relaxation when a multi-
component mixture is prepared [40].
The effectiveness of our evaporative cooling scheme

suggests a very favorable ratio of the elastic scattering
rate to the inelastic one. We explore elastic scattering by
measuring the elastic dipolar cross section σel in our
spin-polarized fermionic sample via cross-dimensional
thermalization experiments [33]. We compress the system
in one spatial direction by increasing the power of the ver-
tical beam by about a factor of 3. We then monitor the time
evolution of the temperature in the other direction, as
shown in the inset in Fig. 4. The time constant τ for
cross-dimensional thermalization is directly connected to
σel through the relation τ ¼ α=ðn̄σelvÞ, where α is the num-
ber of collisions required to thermalize, n̄ is the mean den-
sity, and v ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=ðπmÞp

is the mean relative velocity. A
delicate point of our analysis is the estimation of α, which
depends on the underlying scattering mechanism. We
employ α ¼ 4.1, which has been numerically calculated
for nondipolar p-wave collisions and has been applied to
KRb polar molecules [21]. Although p-wave collisions
are expected to be the leading term in dipolar scattering
of identical fermions, more detailed calculations of α might
be needed to fully account for the mixing of partial waves
resulting from the DDI [41].
In this way, we explore elastic scattering over a wide

range of atom numbers from 3 × 104 to 1.1 × 105 and
for various final temperatures ranging from 300 to
600 nK. Our findings at 0.59 G [42] are shown in
Fig. 4. In the nondegenerate regime (T ≳ TF), we obtain
a constant elastic cross section with a mean value of
2.0ð5Þ × 10−12 cm2, corresponding to ½2.7ð3Þ × 102a0�2,
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FIG. 2 (color online). Evaporation trajectory to Fermi degen-
eracy. (a) Temperature evolution during the evaporation ramp
and (b) corresponding T=TF versus N. The ratio T=TF is ob-
tained from the width σ of the distribution (triangles) and from
the fugacity (circles); see the text. The error bars originate from
statistical uncertainties in temperature, number of atoms, and
trap frequencies for the width measurements and the standard
deviations obtained from several independent measurements
for the fugacity. The solid line is a linear fit to the data for
0.2 < T=TF < 4.
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FIG. 3 (color online). Absorption images of the atomic cloud
with a Stern-Gerlach separation of the spin components. A mag-
netic field gradient of about 40 G=cm is applied during the ex-
pansion for about 7 ms. (a)–(e) Along the entire evaporative
cooling sequence, atoms are always spin-polarized in the lowest
hyperfine sublevel jF ¼ 19=2; mF ¼ −19=2i. T=TF of the
atomic samples are indicated in each panel. In (f), the image
is obtained right after rf mixing of the spin states for the sample
at T=TF ¼ 0.33ð1Þ. The three clouds correspond to the magnetic
sublevels mF ¼ −19=2, −17=2, and −15=2 from bottom to top.
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where a0 is the Bohr radius. The error bar is mainly due to
systematic uncertainties in trap frequencies, temperature,
and number of atoms. Below TF, the effect of quantum
degeneracy becomes visible through a suppression of scat-
tering events caused by Pauli blocking. In this regime, we
can interpret our measurements in terms of an effective
elastic cross section, which also includes the Pauli suppres-
sion factor. As expected, we observe a substantial decrease
of the effective σel for decreasing T=TF, similarly to the
case of s-wave collisions between fermions in different spin
states [44].
Dipolar scattering theories predict an energy-independent

elastic cross section for identical fermions in the low-energy
regime [18–20]. The cross section is predicted to follow a
universal scaling law that is fully determined by a single
parameter—the dipolar length D [30]—and it reads as

σel ¼ 6.702 ×D2; (1)

where D ¼ 2π2d2m=h2 with d2 ¼ μ0μ
2=ð4πÞ and μ0 being

the vacuum permeability. This equation shows a clear anal-
ogy to the ordinary s-wave scattering, where D plays the
role of the scattering length. For the Er parameters, the uni-
versal theory predicts σel ¼ 1.8 × 10−12 cm2, which is in
reasonable agreement with the measured value. The small
deviation might be due to the chosen value for α, to system-
atic errors, or to a residual effect of the short-range physics,
which is not included in the theory.

Our observations suggest that inelastic losses are very
weak. Since the atoms are fully polarized in the lowest spin
state, inelastic losses can be caused only by collisions with
the background gas and by three-body decay. To investigate
this more quantitatively, we carry out atom-decay measure-
ments by recording the number of atoms as a function of the
hold time in an ODT initially loaded with N ≃ 1 × 105

atoms at T=TF ≃ 0.47. In spite of the very high peak
density of 3 × 1014 cm−3, we find the atom number to
decay in a purely exponential manner (time constant
40 s) without showing any signature of three-body proc-
esses. From this observation we can derive an upper limit
for the three-body recombination rate constant as low
as L3 ≤ 3 × 10−30 cm6=s.
The remarkable efficiency of evaporative cooling in a

single-component Fermi gas of Er and the exceptionally
high densities together with low inelastic collision rates
can be understood in terms of a very favorable combination
of the DDI with the p-wave barrier. While DDI is strong
enough to provide us with a sufficient cross section for elas-
tic collisions, it is weak enough to preserve a substantial
repulsive barrier for any alignment of the colliding dipoles.
Even for the case of maximum dipolar attraction (head-to-
tail configuration), the effective potential, given by the
interplay between the p-wave barrier and the DDI, features
a repulsive barrier with a maximum height VðrmaxÞ ¼
2ℏ2=ð27mD2Þ at rmax ¼ 3D. For Er, the barrier height
still exceeds kB × 7 μK, which is much larger than all col-
lision energies in the final evaporation stage. This prevents
atoms from getting close to each other, and three-body
decay, which requires short-range interactions, is strongly
suppressed.
In conclusion, we produce a degenerate dipolar Fermi

gas of 167Er atoms. We demonstrate direct evaporative cool-
ing of identical fermions via universal dipolar scattering.
Our method provides two key advantages: feeble inelastic
losses and exceptionally high attainable densities. The for-
mer aspect is favorable for reaching low values of T=TF,
which are ultimately limited by the so-called hole-heating
mechanism caused by inelastic losses [45,46]. The latter
aspect has important consequences for dipolar physics.
The relevant energy scale for dipolar phenomena at the
many-body level is given by n0d2 [20,34]. Given the high
densities achieved here, our degenerate Fermi gas of Er cur-
rently is the most dipolar quantum gas available in experi-
ments, with n0d2 being 0.92% of the Fermi energy. We
speculate that even much higher densities than the ones
here attained may be achieved, since we do not see any lim-
iting process. This may open a way for observing p-wave
pairing in dipolar gases and for the creation of an aniso-
tropic Fermi superfluid [47,48].
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We report on the observation of a large anisotropy in the rethermalization dynamics of an ultracold
dipolar Fermi gas driven out of equilibrium. Our system consists of an ultracold sample of strongly
magnetic 167Er fermions, spin polarized in the lowest Zeeman sublevel. In this system, elastic collisions
arise purely from universal dipolar scattering. Based on cross-dimensional rethermalization experiments,
we observe a strong anisotropy of the scattering, which manifests itself in a large angular dependence of the
thermal relaxation dynamics. Our result is in good agreement with recent theoretical predictions.
Furthermore, we measure the rethermalization rate as a function of temperature for different angles
and find that the suppression of collisions by Pauli blocking is not influenced by the dipole orientation.
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The behavior of any many-body system follows from the
interactions of its constituent particles. In some cases of
physical interest, importantly at ultralow temperature,
where the de Broglie wavelength is the dominant length
scale, these interactions can be simplified by appealing to
the Wigner threshold laws [1,2]. These laws, which have
been extensively studied for particles interacting via van
der Waals forces, both in experiment and theory [3],
identify the interactions via simple isotropic parameters
such as a scattering length. However, for dipolar particles,
the fundamental interaction is anisotropic and the system
properties can depend on the orientation of the gas with
respect to a particular direction in space [4,5].
One of the major strengths of ultracold matter is its

susceptibility to being controlled by various means.
Striking examples include traversing the BEC-BES cross-
over [6,7], welding atoms together into molecules [8,9],
and inducing bosons to behave like fermions in one spatial
dimension [10,11]. Most often, such control exploits the
quantum mechanical nature of a many-body gas at ultralow
temperature, and arises from the manipulation of isotropic
scattering between constituent particles. However, in the
case of dipolar particles the scattering is intrinsically
anisotropic, affording novel opportunities to control the
behavior of the gas. For example, the anisotropic d-wave
collapse of a Bose-Einstein condensate of magnetic atoms
[12,13] and the deformation of the Fermi sphere in a dipolar
Fermi gas [14] have been observed. These phenomena rely
on the collective behavior of all the particles, occurring
according to their mean field energy.
Distinct from such many-body effects, dipoles can also

influence the properties of the gas via two-body scattering.
Since scattering of dipoles is highly anisotropic, properties
that require the collisional exchange of energy and

momentum between the atoms, such as sound propagation,
viscosity, and virial coefficients [15], will be influenced by
the presence of dipoles. In particular, differential cross
sections of dipolar particles are highly anisotropic, depend-
ing on both the initial, as well as scattered, relative
directions of the colliding particles, and it has recently
been predicted that dipolar anisotropy can exert a profound
influence on the nonequilibrium dynamics in such a
gas [16].
In this Letter, we demonstrate the control of the thermal

relaxation dynamics of a dipolar Fermi gas driven out of
equilibrium by adding excess momentum along one axis.
The control is achieved by changing the orientation of the
dipoles relative to this direction, enabling us to substan-
tially vary the rethermaliztion rate. As a striking conse-
quence of the interaction anisotropy, we find that the rate of
equilibration can vary by as much as a factor of 4,
depending on the angle between the dipole orientation
and the excitation axis. Furthermore, we observe that the
rethermalization rate decreases as the temperature is low-
ered. This effect is due to the lack of available final states
into which atoms can scatter and is known as Pauli
blocking. Our results provide evidence that the Pauli
suppression of collisions does not contribute additional
anisotropic effects to the rethermalization.
To realize a dipolar Fermi gas, we use an ultracold spin-

polarized sample of strongly magnetic erbium (Er) atoms,
which possess a magnetic dipole moment of 7 Bohr
magneton. This is an ideal system to study purely dipolar
scattering since short-range van der Waals forces give a
negligible contribution to the scattering of identical fer-
mions at ultralow temperatures [17]. Our experimental
procedure to create a degenerate Fermi gas of 167Er atoms
follows the one described in Refs. [18,19]. In brief, it
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comprises laser cooling in a narrow-line magneto-optical
trap (MOT) [21] and direct evaporative cooling of a spin-
polarized sample in an optical dipole trap (ODT) [18].
Evaporative cooling, which was successfully used to reach
Bose-Einstein condensation [22,23], relies on efficient
thermalization. In our case, this is achieved by elastic
dipolar collisions between spin-polarized fermions.
We optimize the evaporative cooling sequence and

produce a degenerate Fermi gas of about 3.0 × 104 atoms
at a temperature as low as T=TF ¼ 0.11ð1Þ. This gives a
peak density of about 3 × 1014 cm−3; see Fig. 1. Here,
TF ¼ 1.06ð5Þ μK. To achieve such a deeply degenerate
regime, we confine the atoms more tightly than in our
previous work [18] by decreasing the beam waist of the
vertical 1570 nm beam from 33 to 21 μm. The trap
frequencies in this configuration are ðνx; νy; νzÞ ¼
ð509; 447; 262Þ Hz. Our minimum temperature is compa-
rable to the lowest ones achieved with sympathetic cooling
schemes based on s-wave scattering [6,24,25].
While the crucial role of the long-range character of

the dipole-dipole interaction (DDI) clearly emerges in the
evaporation of spin-polarized fermions, the role of the
anisotropy of the interaction is more subtle. We investigate
this aspect by studying for various dipole orientations how
the system rethermalizes when it is excited out of its
equilibrium state. The dipole orientation is controlled by
changing the direction of the polarizing magnetic field and
is represented by the angle β between the magnetic field
and the weak axis of the ODT; see inset in Fig. 2.
The cross-dimensional rethermalization experiments

proceed as follows. We first prepare a nearly degenerate
Fermi gas of about 8 × 104 atoms at T=TF ≃ 0.6 with
TF ≃ 600 nK in a cigar-shaped ODT with frequencies of

(393,23,418) Hz. We then change the dipole orientation
from β ¼ 90°, which is used for evaporative cooling, to the
desired value and excite the system by increasing the
power of the vertical beam by about a factor of 2.8 within
14 ms. After the excitation, the trap frequencies are
(393,38,418) Hz. The excitation brings the system out of
equilibrium by transferring energy mainly in the direction
of the weak axis (y), which we refer to as the excitation
axis. This process is nearly adiabatic with respect to the trap
period for the radial motion and introduces an initial
temperature imbalance of about Ty=Tz ¼ 2. We follow
the reequilibration dynamics by recording the time evolu-
tion of the temperature along the z direction Tz and we
extract the rethermalization rate for the given dipole
orientation.
Figure 2 shows typical temperature evolutions, measured

for three different values of β. We observe that the
reequilibration dynamics strongly depends on β with
Tz approaching the new equilibrium value in a near-
exponential way. From an exponential fit to the data, we
extract the relaxation time constant τ. The slower retherm-
alization (i.e., largest τ) is found to occur for dipoles
oriented perpendicular to the excitation axis, whereas by
changing β by about 45° we observe that the system
reequilibrates about 4 times faster. This strong angle
dependence clearly shows the anisotropic nature of the
relaxation dynamics.
Since rethermalization relies on elastic collisions, its rate

1=τ should be directly proportional to the total elastic cross
section σel [16]. The standard way to evaluate the latter is
by integrating the differential cross sections dσel=dΩðk0;kÞ
over all final directions of the atoms’ relative momentum
k0, and averaging over incident directions k. For dipolar
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FIG. 1 (color online). Time-of-flight absorption image of a
degenerate Fermi gas of 3.0 × 104 Er atoms at T=TF ¼ 0.11ð1Þ
after 12 ms of expansion (a) and its density distribution integrated
along the x direction (upper panel) and z direction (lower panel)
(b). The observed profiles (circles) are well described by fitting
the Fermi-Dirac distribution to the data (solid lines), while they
substantially deviate from a fit using a Gaussian distribution to
the outer wings of the cloud (dashed lines), i.e., outside the disk
with radius w, where w is the 1=e radius of the Gaussian fit to the
entire cloud. The absorption image is averaged over 20 individual
measurements.
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FIG. 2 (color online). Typical cross-dimensional thermalization
measurements for three dipole orientations: β ¼ 90° (squares),
β ¼ 109° (circles), and β ¼ 138° (triangles). The time evolution
of the temperature in the z direction Tz is plotted as a function of
holding time after the cloud is excited in the y direction. The
geometry of the cigar-shaped trap and the coordinates are
indicated in the inset. The yellow arrow represents the dipole
orientation. After the equilibration, the Fermi gas is at T=TF ≃
0.75 with TF ≃ 710 nK.
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fermions, the integration yields an energy-independent σel,
which is universally related to the fermions’ dipole moment
d by σel ¼ ð32π=15ÞD2, where D ¼ 2π2d2m=h2, with m
the mass and h the Planck constant, is the characteristic
length scale of the dipolar interaction [26]. A collision rate
can then be defined as n̄σelv, where n̄ is the mean number
density and v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16kBT 0=ðπmÞp
is the mean relative

velocity with T 0 the effective temperature including a
momentum spread by the Fermi energy [27].
The actual reequilibration occurs at a rate different from

this collision rate since rethermalization emphasizes those
collisions that significantly change the relative direction of
the atoms’ momenta. The characteristic time for the
relaxation is inversely proportional to the collision rate

τ ¼ α

n̄ησelv
: ð1Þ

The dimensionless proportionality constant α is commonly
referred to as the number of collisions for thermalization
and can be computed from the known differential cross
sections. For short-range interactions, Monte Carlo
calculations yield α ¼ 2.7 and α ¼ 4.1 for s- and p-wave
collisions, respectively [28,29]. As predicted in Ref. [16],
in the case of the DDI, which is long range and anisotropic,
α is a function of the angle β. In Eq. (1), we also include a
Pauli suppression factor η, which accounts for the reduction
of the rethermalization rate in a degenerate Fermi gas
caused by Pauli blocking, where η ¼ 1 for nondegenerate
gases; see later discussion.
To explore the angle dependence of α, we perform cross-

dimensional rethermalization experiments under the same
conditions as in Fig. 2 for various values of β in a range
between 30° and 160°. We extract α by using Eq. (1), the
experimentally measured τ, and the elastic dipolar cross
section σel ¼ 1.8 × 10−12 cm2 calculated for Er [26]. At
T=TF ≃ 0.75, which is our experimental condition after
excitation, η ¼ 0.93; see later discussion. Figure 3 shows
our experimental result together with the theoretical value
of α, which we calculate using Enskog’s equation similarly
to Ref. [16]. We observe a remarkably good quantitative
agreement between the experiment and the theory, which
does not have any free parameter. The theoretical curve is
calculated assuming a velocity distribution that is Maxwell-
Boltzmann in form that allows the width of the distribution
to be characterized by different “temperatures” Tx, Ty, and
Tz in the three directions of the trap. We then use the
collision integral in Enskog’s formulation to calculate the
relaxation rate for Tz for the following initial conditions:
Tz ¼ Tx, and Ty ¼ 2Tz. From this we determine the
theoretical value of α along the z direction; see Fig. 3.
Owing to the anisotropy of the dipolar collision cross
section, we find that α is, in general, different in the three
directions i ¼ x; y; z.
Both the experimental and theoretical results show a

strong angular dependence of α, which largely varies in a

sinelike manner from about 1 to 4. This behavior is unique
to dipolar scattering and occurs because dipolar particles
have a spatial orientation dictated by the magnetic field and
the collision processes depend on this orientation [16].
Given this angular dependence, dipoles can reequilibrate on
a time scale that can be even faster than the one achievable
with short-range s-wave collisions (α ¼ 2.7). In particular,
the rethermalization is the most efficient (smallest α) when
β ¼ 45°. This can be seen qualitatively from the form of the
cross sections in Ref. [16]. Consider a simplified scattering
event, where the magnetic field B, the relative incident
wave vector k, and the relative scattered wave vector k0
all lie in the same plane. Moreover, suppose that k makes
an angle θ with respect to B, while k0 makes an angle θ0,
defining a scattering angle θs ¼ θ0 − θ. In this reduced
case, the differential cross section for scattering of dipolar
fermions has the simple angular dependence dσel=dΩ ∝
cos2ð2θ − θsÞ; thus, the most likely scattering occurs when
θs ¼ 2θ. For the most efficient rethermalization one
requires scattering at right angles, θs ¼ 90°, and, therefore,
collisions in which the atoms approach one another at
θ ¼ 45°. At the same time, from the experimental geometry
one requires a high collision rate between the radial and
axial trap directions. From these considerations, the most
efficient rethermalization should occur for a field tilted at
an angle β ¼ 45° from the trap’s axis.
Another central aspect in the scattering of ultracold

fermions in the degenerate regime is related to Pauli
blocking of collisions. This effect is caused by the lack
of unoccupied final states in a scattering event and leads to
a reduction of the elastic collision rate, which has been
observed in fermionic systems with short-range interaction
[29,30]. In the case of dipolar scattering, it is an interesting
question whether or not the Pauli blocking effect exhibits
anisotropy.
To address this question experimentally, we explore

the temperature dependences of τ for two different angles,
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FIG. 3 (color online). Angle dependence of the number of
collisions α required to rethermalize ultracold dipolar fermions.
The experimental data (circles) are compared with the parameter-
free theoretical prediction calculated under our trapping and
excitation conditions (solid line).

PRL 113, 263201 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2014

263201-3



β ¼ 90° and 110°, for which α differs by a factor of 2; see
Fig. 3. For each temperature, we measure τ, n, v, and we
derive η=α using Eq. (1). To extract the Pauli suppression
factor η, we normalize η=α to its value in the nondegenerate
regime where η ¼ 1. As shown in Fig. 4, for both angles we
observe the same pronounced reduction of η with decreas-
ing temperature. Specifically, η decreases by about 70%
from 1 to 0.2T=TF. Our results indicate that the reduction
of the rethermalization rate is independent from the dipole
orientation.
In order to quantitatively confirm that the observed

reduction of η is caused by Pauli blocking of collisions,
we use a theoretical model following the one developed for
nondipolar fermions in Refs. [31,32]. Our model is based
on a variational approach for solving the Boltzmann
equation to calculate the thermal relaxation rate including
the Pauli blocking effect. This gives [33]

1

τ
¼ hΓ½ΦT �ΦTi

2hΦ2
Ti

; ð2Þ

where the trap and momentum average is defined as h…i ¼R
d3r

R
d3k

̬
fð1 − fÞ…with d3k

̬
¼d3k=ð2πÞ3, and fðk;rÞ¼

fexp½βðk2=2mþVðrÞ−μÞ�þ1g−1 is the equilibrium Fermi
function with VðrÞ the trapping potential. We have defined
Γ½ΦT � ¼ I½ΦT �=fð1 − fÞ with

I½Φ� ¼
Z

d3k
̬

2dΩ
dσel
dΩ

jk − k2j
m

ΔΦff2ð1 − f3Þð1 − f4Þ
ð3Þ

the collision integral describing the rethermalization due to
the collision of two particles with incoming momenta k and

k2 and outgoing momenta k3 and k4. Here, ΔΦ ¼ Φ1 þ
Φ2 − Φ3 − Φ4 and Ω is the solid angle of the outgoing
relative momentum ðk4 − k3Þ=2. We use ΦT ¼ k2y − k2=3
as a variational expression for the deviation function
corresponding to a thermal anisotropy in the y direction.
This is also the approach used to calculate α as a function of
β for a Maxwell-Boltzmann distribution in Ref. [16] and
used to calculated the shear viscosity in a gas interacting
with s-wave interactions [31,32].
By calculating the thermal relaxation rate using Eq. (2)

with either a pure s-wave or a pure p-wave interaction, we
find that the relative suppression of the rate compared to the
classical value is essentially the same in the two partial
wave channels for a given temperature. This indicates that
the Pauli blocking effect is largely insensitive to the angular
dependence of the cross section of the atoms. Hence, we
can safely use the p-wave cross section as a stand-in for the
true dipolar scattering in this calculation. In the high-
temperature limit T ≫ TF, the integrals in Eqs. (2)–(3)
can be solved analytically and we get Eq. (1) with α ¼
25=6 for p-wave scattering and α ¼ 5=2 for s-wave
scattering. These variational values agree well with the
Monte Carlo results stated above.
In Fig. 4, we plot the theoretically predicted temperature

dependence of η using Eqs. (2) and (3) and assuming a
p-wave cross section, together with the experimental
values. As explained above, the calculation yields essen-
tially the same result when we assume s-wave scattering.
By fitting the theoretical curve to the observed rethermal-
ization rates with a single free scaling parameter for each
angle, we determine the values of σel=α to be 0.51ð1Þð12Þ ×
10−12 cm2 at β ¼ 90° and 1.00ð2Þð24Þ × 10−12 cm2 at
β ¼ 110°, where the errors are statistical errors of fitting
and systematic uncertainties on temperature, trap frequen-
cies, and atom number, respectively. The theory and
experimental results are in good agreement. Our findings
show that the reduction of the rethermalization rate is
indeed due to Pauli blocking and that it is not significantly
influenced by the polarization angle.
In conclusion, we have studied the rethermalization

dynamics of indistinguishable dipolar fermions after the
system is excited out of thermal equilibrium. We have
observed that the rate of equilibration can strongly vary
depending on the polarization direction of the atoms’
magnetic dipole moments, which demonstrates a remark-
able influence of anisotropic scattering. Further, we note
that the anisotropy has no significant influence on the Pauli
blocking effect. Our results are fundamentally important for
understanding the collisional behavior of dipolar particles,
such as strongly magnetic atoms and polar molecules.
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1

SUPPLEMENTARY MATERIAL: ANISOTROPIC
RELAXATION DYNAMICS IN A DIPOLAR FERMI GAS

DRIVEN OUT OF EQUILIBRIUM

Creation of a spin-polarized sample of 167Er

After the MOT stage, in which the sample is simultane-
ously cooled and spin-polarized into the lowest hyperfine sub-
level, we typically transfer 1.5 × 106 atoms at a temperature
of T = 28 µK into a crossed ODT. The latter consists of a
horizontal beam, which propagates along the y direction, and
a vertical beam, propagating along the z direction (direction
of gravity). The horizontal beam has a beam waist of 15 µm
and a wavelength of 1570nm. For the vertical beam, we use
light that operates either at 1570nm or at 1064nm and various
values of the beam waist, depending on the final temperatures
and densities required for the specific experiments.

Magnetic field control

We apply a magnetic bias field of 0.58G, oriented along
the z direction. We select this value of the magnetic field to

avoid loss features associated to the recently observed Fano-
Feshbach resonances [1]. At 0.58G, the Zeeman energy split-
ting between magnetic sublevels is 0.6MHz×h. This value is
much larger than the typical Fermi energy (about 20kHz× h)
and the typical energy of the DDI (about 100Hz× h).

The angle β and the amplitude of the magnetic field are
controlled by three independent sets of coils along the x, y, and
z directions. Each coil set is independently calibrated by using
radio-frequency spectroscopy to within 5mG, from which we
estimate the error on angle to be within 1 degree.

[1] A. Frisch, M. Mark, K. Aikawa, F. Ferlaino, J. L. Bohn,
C. Makrides, A. Petrov, and S. Kotochigova, Nature 507, 475
(2014).
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Observation of Fermi surface deformation in a dipolar quantum gas
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The deformation of a Fermi surface is a fundamental phenomenon leading to a plethora of exotic quantum
phases. Understanding these phases, which play crucial roles in a wealth of systems, is a major challenge in
atomic and condensed-matter physics. Here, we report on the observation of a Fermi surface deformation in
a degenerate dipolar Fermi gas of erbium atoms. The deformation is caused by the interplay between strong
magnetic dipole-dipole interaction and the Pauli exclusion principle. We demonstrate the many-body nature
of the effect and its tunability with the Fermi energy. Our observation provides basis for future studies on
anisotropic many-body phenomena in normal and superfluid phases.

PACS numbers: 03.75.Ss, 37.10.De, 51.60.+a, 67.85.Lm

The Fermi-liquid theory, formulated by Landau in the late
50’s, is one of the most powerful tools in modern condensed-
matter physics [1]. It captures the behavior of interacting
Fermi systems in the normal phase, such as electrons in met-
als and liquid 3He [2]. Within this theory the interaction is
accounted by dressing the fermions as quasi-particles with
an effective mass and an effective interaction. The ground
state is the so-called Fermi sea, in which the quasi-particles
fill one-by-one all the states up to the Fermi momentum, kF.
The Fermi surface (FS), which separates occupied from empty
states in k-space, is a sphere of radius kF for isotropically in-
teracting fermions in uniform space. The FS is crucial for
understanding system excitations and Cooper pairing in su-
perconductors. When complex interactions act, the FS can
get modified. For instance, strongly-correlated electron sys-
tems violates the Fermi-liquid picture, giving rise to a de-
formed FS, which spontaneously breaks the rotational invari-
ance of the system [3]. Symmetry-breaking FSs have been
studied in connection with electronic liquid crystal phases [4]
and Pomeranchuk instability [5] in solid state systems. Partic-
ularly relevant is the nematic phase, in which anisotropic be-
haviors spontaneously emerge and the system acquires an ori-
entational order, while preserving its translational invariance.
This exotic phase has recently been observed by transport and
thermodynamics studies in ruthenates [6], in high-transition-
temperature superconductors such as cuprates [7], and in other
systems [3].

A completely distinct approach to study FSs is provided
by ultracold quantum gases. These systems are naturally free
from impurities and crystal structures, realizing a situation
close to the ideal uniform case. Here, the shape of the FS can
directly reveal the fundamental interactions among particles.
Studies of FSs in strongly interacting Fermi gases have been
crucial in understanding the BEC-to-BCS crossover, where
the isotropic s-wave (contact) interaction causes a broaden-
ing of the always-spherical FS [8]. Recently, Fermi gases
with anisotropic interactions have attracted remarkable atten-
tion in the context of p-wave superfluidity [9, 10] and dipo-
lar physics [11]. Many theoretical studies have focused on

dipolar Fermi gases, predicting the existence of a deformed
FS [12–17]. These studies also include an extension of the
Landau Fermi-liquid theory to the case of anisotropic inter-
actions [18]. Despite recent experimental advances in polar
molecules and magnetic atoms [19–22], the observation of
anisotropic FSs has so far been elusive.

In this letter, we present the direct observation of the de-
formed FS in dipolar Fermi gases of strongly magnetic er-
bium (Er) atoms. By virtue of the anisotropic dipole-dipole
interaction (DDI) among the particles, the FS is predicted
to be deformed into an ellipsoid, reflecting the underlying
symmetry of the interaction for polarized gases. To mini-
mize the system’s energy, the FS elongates along the direc-
tion of the maximum attraction of the DDI, where the atomic
dipoles have a ’head-to-tail’ orientation. To understand the
origin of the Fermi surface deformation (FSD), one has to ac-
count for both the mechanical action of the DDI in k-space
and the Pauli exclusion principle, which imposes the many-
body wave-function to be anti-symmetric. In the Hartree-
Fock formalism, the FSD comes from the exchange interac-
tion among fermions, known as the Fock term ( [12, 16] and
Supplementary Materials). Our observations agree very well
with parameter-free calculations based on the Hartree-Fock
theory [12, 15, 17]. We demonstrate that the degree of de-
formation, related to the nematic susceptibility in the liquid-
crystal vocabulary, can be controlled by varying the Fermi en-
ergy of the system and vanishes at high temperatures.

Our system is a single-component quantum degenerate
dipolar Fermi gas of Er atoms. Like other lanthanoids, a dis-
tinct feature of Er is its large permanent magnetic dipole mo-
ment µ (7 Bohr magneton), entailing the strong DDI among
the fermions. Similarly to our previous work [22], we take
advantage of elastic dipole-dipole collisions to drive efficient
evaporative cooling in spin-polarized fermions. The sample
is confined into a three-dimensional optical harmonic trap and
typically contains 7×104 atoms at a temperature of 0.18(1) TF
with TF = 1.12(4) µK (Supplementary Materials). We control
the alignment of the magnetic dipole moments by setting the
orientation of an external polarizing magnetic field. The quan-
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FIG. 1: (color online) AR of an expanding dipolar Fermi gas as a
function of the angle β . In this measurement, the trap frequencies are
( fx, fy, fz) = (579,91,611)Hz. The data are taken at tTOF = 12ms.
Each individual point is obtained from about 39 independent mea-
surements. The error bars indicate the standard errors of the mean.
For comparison, the calculated values are also shown for 0◦ and 90◦

(crosses). The inset schematically illustrates the geometry of the sys-
tem. Gravity is along the z direction. The atomic cloud is imaged
with an angle of 28◦ with respect to the y axis (Supplementary Ma-
terials). The magnetic field orientation is rotated on the plane with
an angle of 14◦ with respect to the xz plane. Schematic illustrations
of the deformed FS are also shown above the panel. Here, the Fermi
momentum for an ideal Fermi gas is shown as kF .

tity β symbolizes the angle between the magnetic field and the
z axis (inset Fig. 1).

To explore the impact of the DDI on the momentum distri-
bution, we perform time-of-flight (TOF) experiments. Since
its first use as ”smoking-gun” evidence for Bose-Einstein
condensation [23, 24], this technique has proved its power
in revealing many-body quantum phenomena in momentum
space [8, 25]. TOF experiments are based on the study of the
expansion dynamics of the gas when released from a trap. For
sufficiently long expansion time, the size of the atomic cloud
is dominated by the velocity dispersion and, in the case of
ballistic (free) expansions, the TOF images purely reflect the
momentum distribution in the trap.

In our experiment, we first prepare the ultracold Fermi gas
with a given dipole orientation and then we let the sample ex-
pand by suddenly switching off the optical dipole trap (ODT).
From the TOF images, we derive the cloud aspect ratio (AR),
which is defined as the ratio of the vertical to horizontal radius
of the cloud in the imaging plane (Supplementary Materials).
Figure 1 shows the AR for various values of β . For vertical
orientation (β = 0◦), we observe a clear deviation of the AR
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FIG. 2: (color online) Time evolution of the AR of the atomic cloud
during the expansion. Measurements are performed for two dipole
angles, β = 0◦ (squares) and β = 90◦ (circles) under the same con-
ditions as in Fig. 1. The error bars are standard errors of the mean
of about 17 independent measurements. The possible origin of the
fluctuations in the AR is carefully discussed in the Supplementary
Materials. The theoretical curves show the full numerical calcula-
tions (solid lines), which include both the FSD and the NBE effects,
and the calculation in the case of ballistic expansions (dashed lines),
i. e. in the absence of the NBE effect. For comparison, the calculation
for a non-interacting Fermi gas is also shown (dot-dashed line).

from unity with a cloud anisotropy of about 3 %. TOF images
show that the cloud has an ellipsoidal shape with elongation in
the direction of the dipole orientation. When changing β , we
observe that the cloud follows the rotation of the dipole orien-
tation, keeping the major axis always parallel to the direction
of the maximum attraction of the DDI. In a second set of ex-
periments, we record the time evolution of the AR during the
expansion for β = 0◦ and β = 90◦ (Fig. 2). For both orienta-
tions, the AR differs from unity at long expansion times. Our
results are strikingly different from the ones of conventional
Fermi gases with isotropic contact interactions, in which the
FS is spherical (AR = 1) and the magnetic field orientation
has no influence on the cloud shape.

The one-to-one mapping of the original momentum distri-
bution in the trap and the density distribution of the cloud
after long expansion time strictly holds only in the case of
pure ballistic expansions. In our experiments, the DDI is act-
ing even during the expansion and could potentially mask the
observation of the FSD. We evaluate the effect of the non-
ballistic expansion (NBE) by performing numerical calcula-
tions based on the Hartree-Fock mean-field theory at zero
temperature and the Boltzmann-Vlasov equation for expan-
sion dynamics [15, 17] (Supplementary Materials). In Fig. 2,
the theoretical curves do not have any free parameter and are
calculated both in presence (solid lines) and absence (dotted
lines) of the NBE effect. We observe an excellent agreement
between experiment and theory, showing that our model ac-
curately describes the behavior of the system. In addition,
the comparison between ballistic and non-ballistic expansion
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FIG. 3: (color online) ∆ for various trap geometries. We consider
a cigar-shaped trap with fx = fz in the calculations and show the
behaviors of the FSD (dashed lines) and the NBE (dotted lines) sep-
arately as a function of the trap anisotropy

√
fx fy/ fz at f̄ = 400Hz

(A) and as a function of f̄ at
√

fx fy/ fz = 5 (B). (C) Experimen-
tally observed ∆ at tTOF = 12ms are plotted as a function of η , to-
gether with the full calculation (solid line) and the calculation con-
sidering only FSD (dashed line). The shaded area shows the uncer-
tainty originating from the uncertainty in determining η in our exper-
iments. The sample contains 6×104 atoms at a typical temperature
of T/TF = 0.15(1). The error bars represent standard errors of the
mean of about 15 independent measurements. The variation of the
trap anisotropy in the experiment is indicated in the top axis. Visu-
alization of the FSD at η = 0.009 from the experimental TOF image
(D) and from the fitted image (E).

reveals that the latter plays a minor role in the final AR, show-
ing that the observed anisotropy dominantly originates from
the FSD.

Theoretical works have predicted that the degree of de-
formation depends on the Fermi energy and the dipole mo-
ment [12, 14–18]. In the limit of weak DDI, the magnitude
of the FSD in a trapped sample is expected to be linearly
proportional to the ratio of the DDI to the Fermi energy,
η = nd2/EF [16]. Here, n = 4π(2mEF/h2)3/2/3 is the peak
number density at zero temperature with h the Planck con-
stant, m the mass, d2 = µ0µ2/(4π) the coupling constant for
the DDI, and µ0 the magnetic constant. For a harmonically
trapped ideal Fermi gas, the Fermi energy EF depends on the
atom number N and the mean trap frequency f̄ = ( fx fy fz)

1/3,
EF = h f̄ (6N)1/3. Given that η ∝

√
EF , the FSD can be tuned

by varying EF .
To test the theoretical predictions, we first numerically

study the degree of cloud deformation ∆, defined as ∆ =
AR−1, as a function of the trap anisotropy,

√
fx fz/ fy, and/or

f̄ . To distinguish the effect of the FSD and of the NBE,
we keep the two contributions separated in the calculations

0 . 2 0 . 4 0 . 6 0 . 8
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FIG. 4: (color online) ∆ as a function of the temperature of the cloud.
Measurements are performed for two dipole angles, β = 0◦ (squares)
and β = 90◦ (circles) under the same conditions as in Fig. 1. The er-
ror bars are standard errors of the mean of about 26 independent mea-
surements. The solid lines show the numerically calculated values at
zero temperature for β = 0◦ and β = 90◦.

(Fig. 3A and 3B). Our results clearly convey the following in-
formation: (i) the FSD gives the major contribution to ∆, (ii)
the FSD is independent from the trap anisotropy, while it in-
creases with f̄ , (iii) the NBE effect is reminiscent of the trap
anisotropy and vanishes for a spherical trap [15].

In the experiment, we explore the dependence of ∆ on the
trap geometry for β = 0◦ by keeping the axial frequency ( fy)
constant and varying the radial frequencies ( fx = fz within
5%) (Fig. 3C). This leads to a simultaneous variation of both
the trap anisotropy and f̄ . We observe an increase of ∆ with
η , which is consistent with the theoretically predicted linear
dependence [16].

In analogy with studies in superconducting materials [26],
we graphically emphasize the FSD in the measurements at
η = 0.009 by subtracting the TOF absorption image taken at
β = 90◦ from the one at β = 0◦ (Fig. 3D). The resulting image
exhibits a clover-leaf-like pattern, showing that the momen-
tum spread along the orientation of the dipoles is larger than
in the other direction. For comparison, the same procedure
is applied for images obtained by a fit to the observed cloud
(Fig. 3E). At η = 0.009, the trap anisotropy is so small that the
NBE effect is negligibly small and the deformation is caused
almost only by the FSD.

Finally, we investigate the temperature dependence of ∆
(Fig. 4). We prepare samples at various temperatures by stop-
ping the evaporative cooling procedure at various points. The
final trap geometry is kept constant. When reducing the tem-
perature, we observe the emergence of the FSD, which be-
comes more and more pronounced at low temperatures and
eventually approaches the zero-temperature limit. The qual-
itative behavior of the observed temperature dependence is
consistent with a theoretical result at finite temperatures [16],
although further theoretical developments are needed for a
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more quantitative comparison.
Our observation clearly shows the quantum many-body na-

ture of the FSD and sets the basis for future investigations
on more complex dipolar phenomena, including collective
excitations [15, 17, 27, 28] and anisotropic superfluid pair-
ing [29, 30]. Taking advantage of the wide tunability of cold
atom experiments, dipolar Fermi gases are ideally clean sys-
tems for exploring exotic and topological phases in a highly
controlled manner [11].

We are grateful to A. Pelster, M. Ueda, M. Baranov,
R. Grimm, T. Pfau, B. L. Lev, and E. Fradkin for fruitful dis-
cussions. This work is supported by the Austrian Ministry
of Science and Research (BMWF) and the Austrian Science
Fund (FWF) through a START grant under Project No. Y479-
N20 and by the European Research Council under Project No.
259435. K. A. is supported within the Lise-Meitner program
of the FWF.

Supplementary Materials

Experimental setup

We obtain a quantum gas of fermionic 167Er atoms via laser
cooling in a narrow-line magneto-optical trap [31] followed
by evaporative cooling in an ODT [22]. The sample is trapped
in a crossed ODT consisting of a horizontally (y axis) and a
vertically (z axis) propagating beam at 1570nm. The beam
waist of the horizontal beam is 15 µm, while the one of the
vertical beam is tuned in a range from 20 µm to 90 µm to vary
the trap geometry from a nearly spherical shape to a nearly
cigar shape. During the entire experimental procedure, the
fermions are fully polarized into the lowest hyperfine sublevel
|F = 19/2,mF = −19/2〉, where F is the total angular mo-
mentum quantum number and mF is its projection along the
quantization axis. For maintaining the spin polarization of the
trapped sample, we apply an external magnetic field of 0.58G.
At this field value, we do not observe any influence of Fesh-
bach resonances [32]. The magnetic field orientation is con-
trolled with two sets of coils. During evaporative cooling, the
magnetic field is vertically oriented (β = 0◦). For imaging,
we rotate the magnetic field orientation to the direction of the
imaging axis to attain a maximum optical depth.

Measurement of the AR

We measure the deformation of the cloud shape in TOF ab-
sorption images by using a standard poly-logarithmic fit for
the integrated density distribution of an ideal Fermi gas [33–
35]

n(X ,Z) = BLi2

(
−ζ exp

(
− (h−h0)2

2σ2
h
− (z− z0)2

2σ2
z

))
(1)

where Lin is the n-th order poly-logarithmic function, ζ is the
fugacity, h and z indicate horizontal and vertical coordinates

0 0.27

A

OD

B C

FIG. 5: (color online) Time-of-flight absorption image (A) and its
integrated profiles in the horizontal (B) and vertical (C) directions.
The image corresponds to the measurement at β = 0◦ in Fig. 1 and is
averaged over 39 independent measurements. The integrated profiles
of the fit with a poly-logarithmic function are shown by solid lines.
The AR of the cloud is about 1.03.

on the imaging plane, respectively, h0 and z0 are the positions,
and σh and σz are the radii. We define the AR of the observed
cloud as σz/σh. The imaging axis has an angle of 28◦ with re-
spect to the y axis (inset Fig. 1) and thus the horizontal radius
in the imaging plane σh is related to the radii in the x and y
directions, σx, σy, by

σh =
√

σ2
x cos2(28◦)+ σ2

y sin2(28◦) (2)

The fugacity ζ is directly connected to T/TF through the re-
lation T/TF = [−6×Li3(−ζ )]−1/3. The optical depth is pro-
portional to N. Although the optical depth is also related to ζ
through N and TF by TF = h f̄ (6N)1/3/kB, we leave both free
in the fitting procedure and confirm that they are consistent
with each other. Here, we assume that the cloud has a constant
fugacity over the entire cloud because the momentum defor-
mation is small. Rigorously speaking, TF is anisotropic and T
is constant over the cloud, and thus ζ should be anisotropic.
Dealing with such a distribution is beyond the scope of the
present work. Figure 5 shows a typical TOF absorption image
and its integrated profiles as well as the integrated profiles of
the poly-logarithmic fit. The fit is in excellent agreement with
the observed distribution.

By taking the average of about 20 independent measure-
ments, we are able to determine the AR with a typical pre-
cision of 0.1%, corresponding to the standard error of the
mean for multiple measurements. In addition, we find six
possible sources of systematic errors in the measured AR. (a)
Variation in pixel sizes. The variation in pixel sizes over the
area of the cloud can introduce a systematic error in the AR.
There is no measured data available for our CCD camera (An-
dor, iXon3). (b) Residual interference fringes. Interference
fringes, arising from dusts on the imaging optics, can produce
a fixed background pattern on the image. (c) Finite pixel num-
ber. The finite number of pixels can limit the resolution of the
measurement of the AR, in particular at short TOF. From the
TOF measurements shown in Fig. 2, where the position of the
atomic cloud varies with TOF by a free fall, we estimate the
combined effect of (a), (b), and (c) to be within ±0.5%. (d)
Error in the fitting procedure. Although our fitting procedure
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assuming a constant fugacity may give rise to a systematic er-
ror in deriving the AR, it is difficult to quantitatively estimate
it owing to the lack of an appropriate model. Investigating this
effect will be an important future work. (e) Fluctuations in the
magnetic field. The influence of the fluctuation in magnetic
field, which results in a fluctuation in the dipole orientation,
is negligibly small at β = 0◦ and β = 90◦ (< 0.05% in defor-
mation). (f) Tilt of the camera. Assuming that the camera is
aligned perpendicular to the imaging beam path within 1◦, we
infer that the influence of the tilt of the camera on the AR is
negligible (< 0.02%).

Physical origin of the deformation of the FS

Within the Hartree-Fock theory for a many-body system,
the DDI contributes to the total energy of the system in two
distinct ways: the Hartree direct interaction and the Fock ex-
change interaction [12, 16]. As compared to the case with a
non-interacting gas, the Hartree term gives rise to a distortion
in position space, whereas the exchange term gives rise to a
distortion in momentum space. Previously, magnetostriction
in position space was observed in a dipolar BEC of chromium
atoms [36]. In a BEC, the Fock term is zero because of the
symmetric character of the many-body wave function. In an
isotropically interacting Fermi gas, the Hartree and the Fock
terms cancel out [12]. The existence of the exchange term in
dipolar Fermi gases arises from the combined effect of the
DDI and the Pauli exclusion principle. In our expansion mea-
surements, both the Hartree and the Fock terms need to be
considered. The first is responsible for the NBE, while the
second gives the FSD.

Calculation of the deformation

In the present work, the collision rate associated with uni-
versal dipolar scattering [22, 37] is lower than the lowest
trap frequency. Therefore, our sample is in the collisionless
regime, where the mean free path is longer than the size of
the cloud [38]. We describe the trapped dipolar Fermi gas in
the collisionless regime in the zero temperature limit with an
ansatz that the Wigner distribution function is given as an el-
lipsoid

g(r,k, t) = Θ

(
1−

3

∑
j=1

r2
j

R2
j
−

3

∑
j=1

k2
j

K2
j

)
(3)

where Θ denotes the Heaviside’s step function, and r, k, and
t denote coordinate, wave vector, and time, respectively. The
parameters R j and K j represent the Thomas-Fermi radius and
the Fermi momentum in the jth direction, respectively. These
parameters are numerically determined by minimizing the to-
tal energy in the presence of the DDI. The validity of this ap-
proach was numerically confirmed [39]. At equilibrium, the
parameters K j contain the information of the anisotropic FS.

The expansion dynamics is calculated using the Botzmann-
Vlasov equation for the Wigner distribution function under the
scaling ansatz [40–42]. The scaling parameters, representing
variations from the equilibrium condition, are described by
a set of coupled time-dependent differential equations. The
NBE effect is naturally included in this framework and occurs
predominantly within 1ms after the release from the trap. We
numerically solve the equations for the general triaxial geom-
etry, where the trap frequencies in three directions are differ-
ent and the dipoles are oriented in the direction of one of the
trap axes. This reflects our experimental situation at β = 0◦.
Although at β = 90◦ the dipole orientation has an angle of 14◦

with respect to the x axis, we assume that the dipole orienta-
tion is parallel to the x axis in our calculation.

We calculate the radii of the cloud on the image plane, tak-
ing into account the angle of 28◦ between the imaging axis
and the y axis by using eq. (2). In all our measurements, we
observe an asymmetry between β = 0◦ and β = 90◦, i. e. |∆|
is larger at β = 0◦ than at β = 90◦. We observe this asymme-
try also in the subtracted images in Fig. 3D and Fig. 3E as a
higher contrast in the vertical direction than in the horizontal
direction. This asymmetry is well reproduced by our calcula-
tion and is understood as follows. At β = 0◦, the major axis of
the ellipsoid is oriented to the z direction and is fully imaged.
By contrast, at β = 90◦, the major axis is not perpendicular to
the imaging plane and we observe a combined radius between
the major and the minor axis of the ellipsoid. Therefore, the
observed deformation at β = 90◦ is always smaller than the
one at β = 0◦.

Image subtraction for Fig. 3D,E

The image shown in Fig. 3D is obtained as follows. The
TOF absorption images from 18 independent measurements
are averaged and binned by 2×2 pixels to reduce background
noise. This procedure is applied for the measurements at
β = 0◦ and β = 90◦. We subtract the image at β = 90◦ from
the one at β = 0◦. This image subtraction is very sensitive to
the relative position of the clouds on the two images down to
a sub-pixel level. We obtain accurate positions of the center
of the cloud from the fit and shift the coordinate of the image
at β = 90◦ such that the center positions of two images ex-
actly agree. We then apply spline interpolation for the image
at β = 90◦ to estimate the optical depth of the cloud at each
pixel position in the image at β = 0◦. Unlike the procedure
used in Ref. [26], where the anisotropy is extracted by rotat-
ing a single image by 90◦ and subtracting it from the original
image, our procedure with two images at two dipole orienta-
tions allows us to extract only the anisotropy originating from
the DDI.
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[40] D. Guéry-Odelin, Phys. Rev. A 66, 033613 (2002).
[41] C. Menotti, P. Pedri, and S. Stringari, Phys. Rev. Lett. 89,

250402 (2002).
[42] H. Hu, X.-J. Liu, and M. Modugno, Phys. Rev. A 67, 063614

(2003).



C
h
a
p
t
e
r

4
Resonantly interacting lanthanide
quantum gases

Ultracold gases owe their success to the high degree of parameter control available in ex-
periments. In particular, a major step forward has been the access of controllable con-
tact interactions. Interaction tuning is nowadays a well established tool, which allows
to enter various physical regimes. Importantly, contact interaction can be changed from
positive to negative values. Repulsive interactions can be crucial to attain stable Bose-
Einstein condensates (BEC), and the access of tunable interactions has been necessary to
condense e. g. 85Rb [Cor00], 133Cs [Web03], or 39K [Roa07]. Attractive interactions can re-
sult in an implosion of the BEC, a so-called Bosenova, as beautifully demonstrated with
85Rb [Don01], or allow for the spectacular observation of bright solitons in one-dimensional
geometries [Str02, Kha02, Mar13]. The tuning can further be used for periodic modulation of
the interaction strength, which enables to access highly correlated states such as matter-wave
jets [Cla17], or to mimic occupation-dependent tunneling processes via Floquet engineering
in an atomic Bose-Hubbard model [Mei16]. In the case of degenerate Fermi gases, interaction
tuning opens the way for studies along the BEC-to-BCS crossover [Ing07].

When dipolar interactions are added to the scenario, tuning of the contact interaction can
give rise to even more intriguing scenarios. It is the competition of the isotropic contact
interaction with the anisotropic dipolar interaction that can disclose new quantum phases.
For dominating attractive dipolar interactions, a d-wave collapse of a BEC of chromium has
been observed [Lah08], and with the advent of strongly magnetic lanthanides the formation
of quantum droplets, see [Kad16, FB16] and Appendix A.1, or the observation of roton
excitations, see Appendix A.3, has been made possible.

The list of observations, which is far from being complete, relies on the experimental control
of the s-wave scattering length as, which is directly proportional to the isotropic contact
interaction. Its tunability is based on the existence of Feshbach resonances (FRs), which
arise when a molecular state is brought into resonance with the two-body scattering state.
The resonantly enhanced coupling can strongly change the scattering behavior [Chi10]. The
availability of FRs crucially depends on the employed atomic species and isotope. To ac-
cess physical phenomena as discussed above, it is thus from prime importance to acquire
knowledge on the Feshbach spectrum of the specific atomic species. In the case of alkali
atoms, Feshbach spectra are rather dilute, i. e. the density of FRs is low. Further, theoretical
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calculation, based on coupled-channel models and predicted interaction potentials, provide
good expectations of resonance positions and enable to assign specific resonances to single
molecular states. The story changes drastically for the case of lanthanide atoms with aniso-
tropic interactions where a very high density of resonances is encountered [Fri14b, Bau14].
This high density is explained by a large number of molecular states that contribute to the
atomic scattering process. A strong coupling between many different molecular states greatly
challenges theoretical models and so far a direct assignment of the entire observed Feshbach
spectra is absent.

Beside the application of interaction tuning, FRs allow to access molecular bound states and
to form molecules out of two free atoms. With the platform of cold and ultracold molecules
exciting physics becomes available, ranging from chemical reactions and collisional studies,
over precision measurements of fundamental constants, up to the creation of new quantum
phases or quantum information and simulation applications; for a review see e. g. Ref. [Car09].
A routinely used method for molecule creation uses an adiabatic sweep of the molecular
channel across the two-atom scattering channel. The resonant channel-channel interaction
results in an avoided crossing, enabling association of so-called Feshbach molecules. Initially,
molecules have been formed out of single atomic species [Reg03, Cub03, Joc03a, Str03,
Her03]. Molecule-creation methods have been further utilized for the successful creation of
heteronuclear molecules [Osp06], and can also be applied to magnetic atoms.

This chapter is dedicated to resonantly interacting dipolar quantum gases. In Sec. 4.1 we will
give the framework for Feshbach resonances and discuss the emergence of FRs in magnetic
lanthanides. Our publication on the emergence of quantum chaos in lanthanides is covered
in Sec. 4.3. Section 4.2 reviews the creation of ultracold molecules, and finally, Sec. 4.4
contains our publication on the creation of Feshbach molecules of bosonic erbium atoms at
low magnetic field values. Our measurements of the molecules’ magnetic moment prove to
be key for the assignment of specific FRs in lanthanides with anisotropic interactions.

4.1. Quantum chaos in lanthanides

4.1.1. Feshbach resonances

In Sec. 3.1 we have seen that in ultracold experiments the two-body scattering behavior can
be captured within a simple description. For isotropically interacting bosons, the interaction
is described by s-wave scattering and quantified via the s-wave scattering length as. This
simple description does not come without surprises, as in principal the interaction of two
particles is determined by their interaction potential, i. e. the Born-Oppenheimer potential,
which can have a complicated form [Chi10]. However, at ultralow temperatures T the thermal
de Broglie wavelength λdB ∝ T−1/2 has a large extension, and hence the real shape of
the short-range interaction potential becomes irrelevant. Indeed, it is only necessary to
know the impact of the underlying potential on the scattering wave at large interatomic
separation R. The real interatomic potential can then be replaced by a spherically symmetric
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Figure 4.1.: FR in a two-channel model (a) The energy E(B) of a molecular bound state can be
tuned by a magnetic field B such that a resonant coupling to the entrance channel of two scattered
atoms arises. At the atomic threshold a FR appears. (b) In the vicinity of such a FR the interparticle
scattering length as diverges. The width ∆ of the resonance is defined by the magnetic field separation
between the pole at B0 and the zero crossing of as at Bzero. Away from resonance the scattering
length approaches the background value abg. (c) At the pole position the molecular state (blue)
resonantly couples to the two-body entrance channel (black). In the universal regime, see text, due
to the coupling between the states, the bound states’ energy evolves quadratically, while it evolves
linearly further away from the resonance.

pseudopotential with the same effective interaction

Uc(R) =
4π~2

m
asδ(R) 4.1

where m is the particle mass, δ(R) the Dirac delta function, and as the remaining relevant
parameter. A positive as results in a repulsive interaction while a negative as leads to an
attractive interaction.

To understand the concept of FRs, we have to add the internal structure of the collision
partners to the description. Due to the e. g. atomic Zeeman structure, different internal
Zeeman states become available, resulting in additional molecular potentials as exemplified
in Fig. 4.1(a). For large separation R, these potential connect to two free atoms of the corre-
sponding spin states. The scattering behavior of two atoms that approach each other in the
lowest energy channel, the so-called entrance channel, dramatically depends on the coupling
to a molecular level within the other scattering potential, the so-called closed channel. In
particular, when the molecular bound state of the closed channel energetically approaches the
two-body atomic threshold, the coupling becomes resonantly enhanced and the two channels
strongly mix. As a result of this strong mixing, a FR emerges and the interparticle inter-
action diverges. In order to tune the energy of the bound state, E(B), with respect to the
atomic threshold, the states need to feature a differential magnetic moment δµ1, as to allow
tuning via the bias magnetic field B.

1 The differential magnetic moment is defined via δµ = 2µa − µm. Here, µa and µm denote the magnetic
moment of the free atom and the bound molecule, respectively.
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Surprisingly, despite the complex underlying process for the emergence of FRs, the depen-
dence of the scattering length as on the magnetic field takes the simple expression [Chi10]

as(B) = abg

(
1 − ∆

B −B0

)
, 4.2

see Fig. 4.1(b), with abg denoting the background scattering length away from resonance,
B0 determining the resonance position, and ∆ defining the resonance width. The coupling
strength between the entrance and the closed channel affects the resonance width as well
as the resonance position B0 = Bc + δB, see Fig. 4.1(c). Close to the atomic threshold the
coupling results in an avoided crossing, leading to a bending of the energy of the molecular
state. In this universal regime the s-wave scattering length particularly proves its importance
as it solely determines the binding energy of the crossing molecular state

Eb =
~2

2mra2s
, 4.3

with mr being the reduced mass, see Sec. 3.1.2. The binding energy is defined to be a positive
value [Chi10]. Away from resonance, the binding energy shows a linear dependence on B
and is given by

Ec = δµ(B0 −B). 4.4

As we have seen, FRs arise if a coupling between the entrance and the closed channel is
present. This coupling is a result of the underlying interactions [Chi10]. For broad FRs,
typically electronic interactions, consisting of exchange interaction at short range and the
van der Waals interaction potential VvdW = −C6/R

6 at long range, are responsible for
the coupling. Here, C6 is the isotropic van der Waals coefficient. Due to the isotropy of
this interaction, the angular momentum quantum number l is preserved and for an s-wave
entrance channel only s-wave closed channels can be coupled, i. e. molecular states without
rotation. To access molecular levels with ∆l ̸= 0, additional interactions such as spin-spin
dipole or second-order spin-orbit interactions are required. Those interactions can couple
partial waves with ∆l = 2 and give rise to e. g. d-wave and g-wave resonances, which are
typically narrow. In lanthanides that feature an anisotropic van der Waals potential more
exotic couplings arise as will be discussed below.

To distinguish between broad and narrow resonances, it is convenient to define the dimen-
sionless resonance strength parameter2 [Chi10]

sres =
abgδµ∆

āĒ
. 4.5

Here,

ā = 0.955978RvdW with RvdW =
1

2

(
2mrC6

~2

)1/4

4.6

and

Ē = 1.09422EvdW with EvdW =
~2

2mr

1

R2
vdW

4.7

2 We note that an alternative method to determine the strength of a FR is given by the length parameter
R∗ = ~2/(2mrabgδµ∆), see Ref. [Pet04a].
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define the relevant length and energy scales of the underlying van der Waals potential. For
sres ≫ 1 the resonance is called entrance-channel dominated while for sres ≪ 1 it is called a
closed-channel dominated resonance. Typically, this is related to broad and narrow widths ∆,
respectively. For closed-channel dominated resonances a universal bound state only extends
over a small fraction of ∆, imposing challenges on the experimental access of the universal
regime.

4.1.2. Feshbach spectrum of lanthanides

In stark contrast to alkali atoms, in lanthanide atoms orbital anisotropy can be found. This is
a consequence of a submerged shell structure, see Sec. 2.2.1, and results in an anisotropic van
der Waals potential, see Refs. [Kot11, Kot14]. This additional anisotropy gives qualitatively
new possibilities for the coupling to molecular bound states, and hence strongly influences
the Feshbach spectrum. Before we turn to the theoretical description of Feshbach spectra
in lanthanides with anisotropic interactions, we will briefly review the experimental study of
FRs with magnetic atoms.

The first element used for investigations of the magnetic dipole-dipole interaction (DDI)
in the ultracold regime has been chromium, which features a magnetic moment of 6µB.
Measurements of the Feshbach spectrum of 52Cr in the stretched state mj = −3 [Wer05]
have revealed a density of ≈ 0.02 resonances per gauss, see Fig. 4.2(a). Chromium has a
zero nuclear spin and hence hyperfine interaction is absent. As a result, isotropic electronic
interactions can only couple molecular states that have the same magnetic moment as the
free atom entrance channel. In such a scenario, a tuning of the bias magnetic field B does
not change the relative energy E(B), see Fig. 4.1, and no FRs would appear. The observed
resonances in 52Cr are thus a result of first- and second-order spin-spin dipole interactions,
which are 36 times stronger than in alkali-metal atoms.

An additional class of magnetic atoms has become available in experiments with the creation
of ultracold atomic clouds of dysprosium and erbium. The first investigation of their Feshbach
spectra has been performed by our group with bosonic 168Er in a magnetic field range of
0–3 G [Aik12]. Feshbach resonances have been observed via increased three-body loss in the
vicinity of the resonance. Remarkably, already in this small field region six FRs have been
identified, which pointed towards a high density of resonances in magnetic lanthanides. A
more detailed study for two bosonic and one fermionic isotopes of erbium in a large magnetic
field range [Fri14b], see also Fig. 4.2(b), and three bosonic and one fermionic isotopes of
dysprosium in a smaller magnetic field range [Bau14] followed shortly after by our group
and the group of Benjamin Lev, respectively. Both experiments confirmed the initial work
and revealed for the bosonic isotopes a density of resonances in the order of 3 per gauss, a
value previously unseen for elements in the ultracold regime. The fermionic isotopes exhibit
an even higher density with ≈ 27 and ≈ 11 resonances per gauss for 167Er and 161Dy,
respectively.

Remarkably, for erbium a two orders of magnitude higher density of FRs is observed when
compared to the spectrum of chromium, see Fig. 4.2. Both elements feature DDI that couples
partial waves with ∆l = 2. In addition, for erbium the anisotropic dispersion relation allows
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Figure 4.2.: Feshbach spectrum of chromium (a) and erbium (b). (a) Calculated scattering length
based on experimental Feshbach spectroscopy for 52Cr in the lowest Zeeman state mj = −3 as a
function of the magnetic field. Figure adapted from Ref. [Wer05] (b) Feshbach spectrum for 168Er in
the lowest Zeeman state mj = −6 within a magnetic field region as indicated by the red shading in
(a). Every loss feature corresponds to a FR. Figure adapted from Ref. [Fri14b].

to couple rotational states with ∆l = 4. Moreover, as a consequence of the large angular
momentum quantum number j of bosonic erbium atoms, a large number of (j + 1)2 = 49
gerade molecular Born-Oppenheimer potential exist in the lowest Zeeman state. Those
potentials provide a significant amount of molecular bound states that can be coupled, giving
an intuition for the observed high density of FRs.

To understand the experimental observations in more detail, theoretical models based on
coupled-channel calculation can be applied. Reference [Pet12] has studied the Feshbach
spectrum of dysprosium by taking into account the Zeeman, the magnetic dipole-dipole
Vµµ ∝ 1/R3, the electrostatic isotropic and anisotropic dispersion Vdisp ∝ 1/R6, and the
weak quadrupole-quadrupole Vqq ∝ 1/R5 interaction. The different anisotropies contribute
differently to the coupling of rotational states, as can be seen in Fig. 4.3(a). When all
interactions are included, the highest amount of resonances appears (upper panel), where a
lower number of resonances is present when either the anisotropic Vdisp (middle panel) or
Vµµ (lower panel) are excluded. A similar behavior is found for erbium, see Ref. [Fri14a].
Still, the experimentally observed density of FRs has not been captured by the theoretical
study of Ref. [Pet12].

Interestingly, the amount of resonances depends strongly on how many molecular states,
i. e. states with rotational quantum numbers l, are included into the theory, a scenario that
cannot be observed for collisions of alkali-metal atoms or chromium. The more higher partial
wave states are added, the more resonances appear, which suggests that the different partial
waves are strongly mixed. Indeed, it has been shown that the experimentally observed
density of resonances can only be reproduced if partial waves up to l = 40 are included,
see Fig. 4.3(b). The even higher density observed for fermionic erbium and dysprosium is
a result of the additional hyperfine structure that leads to an increased number of possible
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Figure 4.3.: Interaction and partial wave contributions to the Feshbach spectrum of lanthanides
(a) Calculated scattering length for 164Dy in the lowest Zeeman state mj = −8 as a function of
magnetic field with all interactions included (top panel), when the anisotropic dispersion interaction
is set to zero (middle panel), and when the dipole-dipole contribution is excluded (lower panel). For
the simulation even partial waves up to Lmax = 10 are taken into account. Figure adapted from
Ref. [Pet12] (b) Calculation of the mean resonance density ρ for bosonic erbium when the number
of included partial waves Lmax is varied. Coupled-channel calculation (green circles) and analytical
estimate (black line) are compared to the experimentally measured ρ for 168Er (dashed line) and
166Er (dashed-dotted line). Figure adapted from Ref. [Fri14b].

collisional channels.

Beside that many partial waves contribute to the Feshbach spectrum, the resonance positions
also show a significant dependence on the number of included partial waves [Pet12]. As a
consequence, the assignment of specific resonances by a single quantum number, as it is
typically done for alkalis, is difficult. Hence, a different approach has to be applied to
analyze the Feshbach spectrum of lanthanides with anisotropic interactions.

4.1.3. Chaotic scattering

For the analysis of the Feshbach spectra of magnetic lanthanides a statistical method can
be utilized. This approach is based on the Random Matrix Theory (RMT), which has
been developed by Wigner and Dyson [Wig51, Meh63] and finds applications across var-
ious problems, ranging from nuclear physics [Lio72a, Lio72b], to atomic physics [Guh98],
towards neural networks [Raj06] or to the context of financial markets [Bou11]. In the case
of the scattering of lanthanide atoms with anisotropic interactions, the theory captures the
correlation of the individual molecular levels among each other. In brief, the combination
of magnetic field and level coupling results in a certain distribution of FRs at the atomic
threshold. Hence, the statistical analysis of the nearest-neighbor-spacing (NNS) distribution
of the Feshbach spectrum can give insights into the correlations of different channels.
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An analysis of bosonic erbium [Fri14b] based on RMT has revealed that a strong level
repulsion has to be present3. This is e. g. captured by the observed NNS distribution, which
shows that the magnetic field distance between neighboring resonances tends to maximize.
The distribution is well described by the Brody distribution

PB(s) = b(1 + η)sη exp (−bsη+1), 4.8

which interpolates between the standard Poisson distribution PP(s) = exp (−s) and the
Wigner-Dyson distribution PWD(s) = π

2 s exp (−πs2/4). The dimensionless quantity s de-
notes the level spacing in units of the mean level spacing, η is the single fitting parameter,
and b = [Γ(η + 2)/(η + 1)]η+1 is a normalization constant where Γ depicts the Gamma
function. The observed distribution, matching better to a Wigner-Dyson distribution, is a
strong signature of chaotic scattering [Fri14b]4. The approach utilizing RMT has proven its
strength, as it allows to genuinely compare the experimental observation with theoretical
calculations without the need of an individual assignment of the resonances. While the work
of Ref. [Fri14b] has given beautiful insights into the physical origin of resonant scattering
behavior of erbium atoms, it did not tackle the questions if lanthanides with anisotropic
interactions show a universal behavior and what is the dominating interaction for the level
correlation.

To address such questions we have formed a collaboration between the group of Tilman
Pfau in Stuttgart, the group of Svetlana Kotochigova in Philadelphia, and our group in
Innsbruck. In our joined effort we have investigated experimentally and theoretically in detail
the Feshbach spectrum of erbium and dysprosium atoms in a magnetic field range up to 70 G.
Our publication, reported in Sec. 4.3, shows that both, erbium and dysprosium, exhibit a
large amount of FRs. The observed densities can be nicely reproduced in theory when
including higher partial waves l up to a total Jmax = 39 and Jmax = 36, respectively. Further,
we theoretically show that a convergence of the resonance position requires Jmax > 22,
disclosing the strong mixing of such partial waves. We reveal that the emergence of chaotic
scattering is mainly determined by the anisotropic dispersion interaction and does not depend
on the contribution of the anisotropic DDI. Finally, we report on a strong temperature
dependence of a significant number of resonances in 168Er, in analogy to previous studies
with Dy [Bau14]. We find that this dependency, which cannot be explained by higher-
partial wave two-body scattering, can be traced back to the temperature dependence of the
recombination rate of three free particles into a resonant trimer state via a d-wave three-atom
entrance channel.

4.1.4. Interaction tuning

Beside the high complexity of the Feshbach spectra of lanthanides with anisotropic dispersion
interactions, interaction tuning via the s-wave scattering length does become possible if
isolated FRs are observed, see Eq. 4.2. In the context of atoms with DDI this gives the
possibility to change the relative strength between isotropic and anisotropic interactions.

3 Reference [Fri14a] gives further details on RMT and its application to the resonant scattering of erbium
atoms.

4 For an introduction to quantum chaos the reader is referred to e. g. Ref. [Jen92].
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In recent years, several works have investigated the s-wave scattering length of dipolar lan-
thanides, both, away and in the vicinity of different FRs. The values of as for erbium and
dysprosium have been studied via cross-dimensional thermalization experiments in thermal
gases [Fri14a, Tan15], via the measurement of the anisotropic thermal expansion of a dipo-
lar Bose gas [Tan16, Luc18], by comparing experimental measurements of the molecular
binding energy of dysprosium to a universal model [Mai15], or by comparing theoretical
simulations with experimental measurements of the critical atom number of the liquid-to-
gas phase transition [Sch16] or the frequency of collective excitations in a dipolar quantum
droplet [FB18].

A very precise method to derive s-wave interactions within a broad magnetic field range is
based on modulation-spectroscopy in a three-dimensional optical lattice, see Sec. 5.4.1. This
method is very successful as demonstrated within this thesis for 168Er, 167Er, and 166Er,
see Sec. 5.5, Sec. 5.6, and Appendix A.1, respectively. Our obtained knowledge allows us
to precisely tune the atomic interactions in the vicinity of isolated FRs, as needed for the
study of dipolar phenomena that emerge from the competition between s-wave and contact
interactions, see Appendix A.1 and Appendix A.3, or for reaching the strongly interacting
regime of a two-component Fermi gas, see Sec. 5.6.

A further prospect emerging from the observation of isolated FRs is given by the possibility to
access ultracold molecules. Details along this line will be discussed in the following section.

4.2. Dipolar Feshbach molecules

4.2.1. Molecule formation

In the vicinity of a FR the coupling between the two-body atomic threshold and the molecular
state is strongly enhanced, see Fig. 4.1. As a result, it becomes possible to associate Feshbach
molecules out of two free atoms [Köh06]. Further, the strength of the bond, see Eq. 4.4, can
be tuned by the magnetic field. For the creation of such molecules, different techniques can
be applied. Figure 4.4 gives two examples. The method of magnetic-field modulation allows
to directly couple to the bound state, even when the atomic sample is prepared away from
the resonance [Tho05], see Fig. 4.4(a). Here, molecule formation is typically observed via a
resonant atomic loss feature. By preparing the atoms at various magnetic field values, this
method allows to directly map the molecular binding energy as a function of the magnetic
field. Hence, it is a convenient method to access the magnetic moment µm of a molecular
state, see Eq. 4.4.

Another method used for Feshbach molecule creation is based on adiabatic magnetic field
sweeps, see Fig. 4.4(b). Two free atoms are prepared above the resonance and when adi-
abatically ramped across the resonance can follow into the molecular bound state along
an avoided crossing. Atom-to-molecule conversion efficiencies are strongly related to the
phase-space density n of the atomic sample, the resonance strength, and the magnetic field
sweep rate Ḃ via nabg∆/Ḃ [Hod05]. Initially, such molecule creation has been achieved for
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Figure 4.4.: Creation of Feshbach molecules exemplified for 168Er atoms via magnetic-field modu-
lation (a) and magnetoassosciation (b) techniques. (a) The atoms are prepared below the FR. If the
energy of an oscillatory magnetic field matches the binding energy, Feshbach molecules are associ-
ated. The excess energy is taken away by the modulated field (green arrow). The resonant condition
typically is observed via increased loss, triggered by atom-dimer collisions, once the molecules are
formed. (b) Adiabatic creation of Feshbach molecules via a magnetic field sweep across the avoided
crossing of the free-atom (black line) to the bound state (red line).

40K [Reg03], 6Li [Cub03, Joc03a, Str03], 133Cs [Her03] 23Na [Xu03], and also 87Rb [Dür04],
all within one year. Collisional studies revealed a large loss rate of bosonic molecules caused
by atom-dimer or dimer-dimer collisions, see e. g. Refs. [Muk04, Chi05, Sya06, Fer10], while
molecules formed from two fermionic spin states can remain remarkably stable. This is a re-
sult of the Pauli exclusion principle, which suppresses few-body processes of three and more
particles [Pet04b]. This collisional stability has paved the way for the creation of molecular
BECs out of weakly-bound Feshbach molecules [Joc03b, Gre03].

4.2.2. Polar and dipolar molecules

Molecule creation can also be used to access strongly dipolar systems. Such systems are
ideal candidates for e. g. quantum simulation of condensed matter [Bar12]. To realize this
systems, different experimental approaches are followed. One approach is based on the
production of ground state heteronuclear molecules that exhibit a strong electric dipole
moment. After Feshbach association the molecules can be transferred to the rovibrational
ground state via an optical stimulated Raman adiabatic passage (STIRAP) technique with
high conversion efficiencies [Ber98, Vit17]. The access of lower-lying vibrational levels has
first been demonstrated with Rb2 [Win07]. Today, STIRAP is a well established method and
has led to the production of rovibrational ground state polar molecules such as KRb [Ni08],
RbCs [Tak14, Mol14], NaK [Par15], and NaRb [Guo16], which all posses a tunable electric
dipole moment.

A distinct approach towards the goal of ultracold polar molecules, involves the direct cooling
of hot molecular samples. For certain molecular species remarkable progress has been made in
recent years and laser cooling and magneto-optical trapping have now been demonstrated for
polar SrF and CaF molecules [Bar14, Nor16, Tru17, And17, And18]. While temperatures
down to milikelvin and submilikelvin already have been reached, further cooling to the
ultracold regime remains an outstanding challenge.
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A different method to access strongly dipolar interactions is given by elements that intrin-
sically carry a magnetic dipole moment such as chromium, dysprosium and erbium. When
atoms of such elements are bond together to Feshbach molecules, a strong dipolar interac-
tions can be accessed. Remarkably, the dipolar interaction comes for free without the need
of bringing the weakly-bound molecules to the rovibrational ground state.

Our publication in Sec. 4.4, a joint effort between the group of Svetlana Kotochigova in
Philadelphia, the group of Olivier Dulieu in Orsay, and our group in Innsbruck, reports on
the first realization of magnetic dipolar molecules. We create them with strongly magnetic
168Er atoms via the magnetoassociation technique, see Fig. 4.4(b), and explore the magnetic
moment of four molecular states by magnetic-field modulation spectroscopy5, see Fig. 4.4(a).
For the strongest dipolar molecule we find ad = 1140a0, see Eq. 3.3 for the definition of the
dipolar length, which exceeds our typical s-wave scattering length by one order of magnitude.
Applying a new theoretical approach based on approximate adiabatic potentials allows us,
together with the experimental input, to assign the dominant quantum numbers of the
investigated molecular states. We prove the dipolarity of the produced molecules via the
observation of a reduction of inelastic losses for a perpendicular dipole orientation with
respect to the weak confinement axes. Finally, we unveil that the observed ratios of the
loss-rate between dominant repulsive and dominant attractive dipolar interactions follow a
universal behavior.

Our work sets the start for future investigations with magnetic dipolar molecules. A partic-
ularly interesting scenario is given by the creation of fermionic dipolar molecules. In such
a system inelastic losses are suppressed by Pauli pressure and the attainment of molecular
BECs is accessible, as demonstrated with alkalis [Joc03b, Gre03]. For the fermionic erbium
isotope 167Er we already have achieved precise knowledge of the interaction between two
spin states along a comparatively broad FR, see Sec. 5.6, which brings the scenario of stud-
ies along the BEC-to-BCS crossover with dipolar interactions and the creation of a dipolar
molecular BEC at reach.

5 Magnetic-field modulation spectroscopy more recently has also been applied to detect the molecular binding
energy for broad resonances in 164Dy [Mai15] and 162Dy [Luc18].
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We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination
of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering
is studied in a collaborative experimental and theoretical effort for both dysprosium and erbium. We present
extensive atom-loss measurements of their dense magnetic Feshbach-resonance spectra, analyze their
statistical properties, and compare to predictions from a random-matrix-theory-inspired model. Further-
more, theoretical coupled-channels simulations of the anisotropic molecular Hamiltonian at zero magnetic
field show that weakly bound, near threshold diatomic levels form overlapping, uncoupled chaotic series
that when combined are randomly distributed. The Zeeman interaction shifts and couples these levels,
leading to a Feshbach spectrum of zero-energy bound states with nearest-neighbor spacings that changes
from randomly to chaotically distributed for increasing magnetic field. Finally, we show that the extreme
temperature sensitivity of a small, but sizable fraction of the resonances in the Dy and Er atom-loss spectra
is due to resonant nonzero partial-wave collisions. Our threshold analysis for these resonances indicates a
large collision-energy dependence of the three-body recombination rate.

DOI: 10.1103/PhysRevX.5.041029 Subject Areas: Atomic and Molecular Physics,
Quantum Physics

I. INTRODUCTION

Anisotropic interactions are a central and modern tool
for engineering quantum few- and many-body processes
[1]. A prominent example of such an interaction is the
long-range dipole-dipole interaction (DDI) acting, for
instance, between polar molecules [2], Rydberg atoms [3],
or magnetic atoms [4]. Over the years, fascinating quantum
effects of the anisotropy have been observed, such as the
d-wave collapse of a dipolar Bose-Einstein condensate [5],

the deformation of the Fermi surface [6], and the control
of stereodynamics in dipolar collisions [7]. Moreover, the
DDI is expected to give rise to a plethora of few- and many-
body phenomena, which still await observation, such as
universal few-body physics [8,9], rotonic features [10,11],
two-dimensional stable solitons [12], and the supersolid
phase [13].
Recently, atomic species in the lanthanide family became

available to the field of ultracold quantum gases. The
interaction between magnetic lanthanide atoms, such as Er
[14,15] and Dy [16,17], is highly anisotropic. This is not
only due to the long-range DDI, originating from their large
magnetic moment, but also to the shorter-ranged van der
Waals interaction [18], which exhibits anisotropic contri-
butions arising from the large orbital angular momentum of
their valence electrons.
For magnetic lanthanides, which also include the suc-

cessfully laser-cooled elements Ho [19] and Tm [20], the
orbital anisotropy is a consequence of a partially filled
submerged 4f electron shell that underlies a closed outer 6s
shell. This leads to an electronic ground state with a total
atomic angular momentum ~| with j ≫ 1. Consequently, in
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collisions between such atoms there exist ðjþ 1Þ2 non-
degenerate (gerade) molecular Born-Oppenheimer (BO)
potentials and a correspondingly large manifold of collision
channels with associated molecular bound states. This is
in sharp contrast to the one or two BO potentials encoun-
tered in alkaline-earth and alkali-metal atom collisions.
In addition, the anisotropy or orientation dependence of
the BO potentials strongly mixes collision channels with

large relative orbital angular momentum ~l between the
atoms even for our ultracold collisions with a l ¼ 0,
s-wave initial channel. The complexity of the molecular
forces are reflected in a dense spectrum of Fano-Feshbach
resonances as a function of magnetic field B, as recently
observed in Er [14,21] and Dy [22]. In Er a statistical
analysis of the spacings between resonances has shown
correlations that revealed chaotic scattering. The data set
of the initial Dy experiments was too small to extract
statistically significant correlations.
Chaotic behavior is manifest in a variety of complex

systems ranging from atomic to nuclear and solid-state
physics. In atomic physics, chaos was originally studied
with Rydberg states of H and He in a magnetic field [23].
Later on, a variety of more complex atoms and ions in
highly excited states showed signatures of chaotic spectral
distributions [24]. The origin of chaos in these systems was
traced back to a strong mixing of many-electron excited
states by the Coulomb interaction [25]. A chaotic level
distribution is also common in a variety of solid-state
systems ranging from those with strong many-body inter-
actions to the motion of particles in irregular potentials
[26,27]. Experiments in nuclear physics [28,29] have also
produced substantial evidence for chaotic neutron reso-
nance spectrum fluctuations, which agree with predictions
of random matrix theory (RMT). Similar agreement was
found from numerical simulations based on nuclear shell
models [30,31]. Moreover, Refs. [32,33] suggested that
chaos is a generic property of nuclei with multiple degrees
of freedom (i.e., multiple active shells), which become
completely mixed.
This article describes a joint effort to understand ultra-

cold scattering and Fano-Feshbach spectra of strongly
magnetic Er and Dy atoms. In particular, we report on
the measurement and statistical analysis of Fano-Feshbach
spectra for Dy and Er between B ¼ 0 and 70 G at gas tem-
peratures T below and around 1 μK. Here, 1 G ¼ 0.1 mT.
We observe that both elements have similar chaotic
scattering. We present a RMT-inspired model to gain
insight into their statistical properties as well as theoretical
evidence based on coupled-channels calculations with a
microscopic Hamiltonian that chaotic scattering requires
both strong molecular anisotropy and Zeeman mixing to
fully develop. Limitations of the RMT are also discussed.
Finally, we present experimental data and a comparison
to a resonant trimer model to show that our increase in
resonance density with temperature is a consequence of

the strong collision-energy dependence of transitions from
entrance d-wave channels of three free atoms to resonant
trimer states.

II. EXPERIMENT

A. Measurement

The experimental study of Fano-Feshbach resonances in
Er and Dy is based on high-resolution trap-loss spectros-
copy on spin-polarized thermal samples. Ultracold bosonic
164Dy samples are created by direct loading from a narrow-
line magneto-optical trap, operating on the 626 nm cycling
transition, into a single-beam optical dipole trap (ODT)
[34]. By moving the last focusing lens of the ODT, the
atoms are transported from the magneto-optical trap cham-
ber to the science cell. The ODT is created with a 100 W
fiber laser at a wavelength of 1070 nm. We achieve a
transport efficiency close to unity. This fiber laser, however,
causes atom loss due to its longitudinal multimode structure
[35]. Therefore, we transfer the atoms into a second
single-beam ODT, created by a 55 W solid-state laser
at a wavelength of 1064 nm. Finally, forced evaporative
cooling in a crossed ODT leads to a sample of 105 atoms
in the energetically lowest Zeeman sublevel, mj ¼ −8
at T ¼ 600 nK.
High-resolution trap-loss spectroscopy is performed on a

spin-polarized bosonic 168Er sample at T ¼ 1400 nK and
compares this spectrum with that obtained at a 4 times
lower temperature measured in previous work for 168Er as
well as for fermionic 167Er [21]. The experimental proce-
dures for creating bosonic and fermionic samples are
described in Refs. [14,15], respectively. Bosons (fermions)
are prepared in the lowest Zeeman sublevel, mj ¼ −6
(mf ¼ −19=2). Erbium samples are trapped in a crossed
ODT and contain about 105 atoms.

B. Feshbach spectroscopy

Feshbach spectroscopy is performed in a similar manner
for the two species. The magnetic field is ramped up over a
few milliseconds to a magnetic-field value B, where the
atoms are held in the ODT for 500 ms for Dy, 400 ms for
168Er, and 100 ms for 167Er. During this time, inelastic
three-body recombination causes atom loss from the ODT.
At resonance, the recombination process is enhanced
because of the coupling between the atomic-threshold
state and a molecular state leading to a resonant increase
of the atom loss. We identify the field locations of
maximum loss as the positions of Fano-Feshbach reso-
nances [36]. The atom number is probed by standard time-
of-flight absorption imaging at low magnetic field. We
record atom-loss features for magnetic-field values between
0 and 70 G in steps of a few mG. Figure 1(a) shows the
normalized loss spectrum for the 164Dy isotope, where we
identify 309 resonances. For 168Er at T ¼ 1.4 μK, there are
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238 resonances. The Fano-Feshbach scan of fermionic
167Er is carried out from 0 to 4.4 G and yields 115
resonances.
The understanding of the richness of the scattering in

Er and Dy requires the development of sophisticated
microscopic coupled-channels scattering models. We defer
such analysis until later in this paper and first analyze
our data following the statistical approach based on the
RMT advocated by Ref. [21]. In particular, we study the
correlations between resonance locations via the nearest-
neighbor spacing (NNS) distribution and set up a RMT-like
model, which accounts for the structure of our B-dependent
microscopic Hamiltonian, to get intuition about these NNSs.
In our description of the coupled-channels calculations,
limitations of such a RMT-like model are discussed.

C. Statistical analyses

Our statistical analysis starts with the construction of the
staircase function, which is a steplike function that counts
the number of resonances below magnetic-field value B
[37]. Figure 1(b) shows the staircase function for Dy and
Er. For both species the function is well fit by a linear curve
forced to pass through the origin. Its slope ρ̄ corresponds

to the density of resonances. Deviations below and above
the fit occur for small and large B, respectively. The fitted
resonance densities are given in the caption. Remarkably,
the density of resonances of 168Er at T ¼ 1.4 μK is 25%
higher than the one observed at 350 nK. The discussion of
the origin of this sensitivity is postponed until Sec. V. The
density ρ̄ for bosonic Dy is 50% larger than for bosonic Er.
This is caused by the larger ~| of Dy and, thus, its larger
number of allowed collision channels. The much larger
density ρ̄ of 25.6 G−1 for the fermionic 167Er is due to its
additional hyperfine structure.
Fluctuations in the number of resonances within a

magnetic-field interval ΔB is a second measure of the
statistical properties of the spacings between resonances.
Formally, it is defined as the dimensionless number

variance Σ2¼N2− N̄2, where N̄¼P
M−1
i¼0 Ni=M, N2 ¼P

M−1
i¼0 N2

i =M, and Ni is the number of resonances in the
field interval [iΔB, ðiþ 1ÞΔB], with i ¼ 0;…;M − 1,
such that MΔB¼Bmax and Bmax¼ 70G for both species.
Consequently, N̄ ≡ ΔBρ̄. For shot noise or a Poissonian
distribution, we expect Σ2 ¼ N̄. Figure 1(c) compares Σ2

for our Dy and Er data as a function of N̄. The fluctuations
for both species monotonically increase with ΔB but are
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FIG. 1. (a) Trap-loss spectroscopy mapping of the Fano-Feshbach spectrum of 164Dy as a function of magnetic field between B ¼ 0
and 70 G with a data point every 14.5 mG and temperature T ¼ 600 nK. Each data point is an average of three measurements.
(b) Staircase function for the number of resonances as a function of B for 164Dy, 168Er at two temperatures, and fermionic 167Er.
Dashed lines are linear fits forced to pass through the origin. Their slopes give a mean density of resonances of ρ̄ ¼ 4.3 G−1 for 164Dy,
2.7 G−1 for 168Er at T ¼ 350 nK, 3.4 G−1 for Er at T ¼ 1.4 μK, and 25.6 G−1 for 167Er. (c) Number variance of the experimental data
as a function of scaled B-field interval N̄ ¼ ΔBρ̄. The experimental data for 164Dy (blue line) and 168Er at T ¼ 350 nK (orange line)
lie between the variances for an uncorrelated Poisson distribution (dashed line) and the correlated Wigner-Dyson distribution
(dot-dashed line).
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substantially less than the shot-noise limit. While this
behavior was previously demonstrated for Er [21], the
present results provide the first evidence of correlation in
Dy and indicate similarity between the species.
These correlations between resonance locations are

further studied using the nearest-neighbor spacings distri-
bution PðsÞ, where s ¼ δBρ̄ and δB is the field spacing bet-
ween two adjacent resonances in the spectrum. Figures 2(a)
and 2(b) show the computed NNS distribution of our
experimental data, derived from the number of NNS,
Si, with spacings s between iδs and ðiþ 1Þδs, where
i ¼ 0; 1;… and δs ≈ 0.3. The NNS distributions have clear
deviations from both the Poisson PPðsÞ ¼ expð−sÞ and
Wigner-Dyson PWDðsÞ ¼ ðπ=2Þs exp½−ðπ=4Þs2� distribu-
tion, two well-known distributions within RMT [21].
A Poisson distribution corresponds to a random distribution
of resonance locations, while a Wigner-Dyson distribution
corresponds to a situation where neighboring resonances
“avoid” each other and PWDðsÞ ∝ s for s → 0. Deviations
are also seen in Fig. 1(c), where for both atomic species the
variance Σ2 does not agree with the corresponding pre-
dictions for these distributions. The experimental NNS
distributions in Figs. 2(a) and 2(b) have also been fit to the
Brody distribution PBðs; ηÞ ¼ bð1þ ηÞsη exp½−bsηþ1�, an

empirical function that interpolates between PPðsÞ and
PWDðsÞ for η ¼ 0 and 1, respectively, and b is a normali-
zation constant [38]. The values for η reported in the
caption indicate intermediate or mixed behavior of the data.
We present the magnetic-field resolved Brody parameter

ηðBÞ in Figs. 2(c) and 2(d) obtained from a fit to the NNS
distribution of resonances located in moving intervals
½B − ΔB=2; Bþ ΔB=2�, with ΔB ¼ 20 G. It has a non-
negligible 1σ uncertainty equally limited by the quality of
the fit and the number of Feshbach resonances in an interval
or bin. The latter uncertainty is reflected in the bin-to-bin
variation of ηðBÞ. For Dy we observe that η increase
linearly with field for small B, which saturates at a value of
≈0.5 for B > 30 G. For Er the Brody parameter fluctuates
around 0.5. Interestingly, the Er data at our two temper-
atures have a similar behavior, indicating that the larger
density of resonances at higher T does not impact the
degree of correlation between their spacings.

III. RMT ENSEMBLE MODEL

Random matrix theory is based on the powerful
notion that the statistics of eigenvalues and eigenfunctions
of a complex system can be studied by replacing the
microscopic Hamiltonian by an ensemble of random
Hamiltonians. In this spirit, we construct a RMT-inspired
model for weakly bound molecular dimer states to test the
distribution of Fano-Feshbach resonances.
Our RMT model is based on the statistics of eigenvalues

of the N × N real, symmetric matrix HRMT ¼ H0 þHZ,
where matrices H0 and HZ represent the B ¼ 0
Hamiltonian and the Zeeman interaction of the two atoms,
respectively. Without loss of generality we can assume that
HZ is a diagonal matrix with matrix elements given by
mgμBB, where m is an integer between −2j and 2j,
corresponding to the sum of the projection quantum
numbers of the atomic angular momenta, g is the atomic
Landé factor, and μB is the Bohr magneton. The Zeeman
interaction does not depend on the rotational state of the
molecule and, thus, entries in HZ correspond to states
with a definite value for l and its projection. H0 is then
the B ¼ 0 Hamiltonian expressed in this basis. It is also
convenient to define H0 ¼ Hd þHcpl, where diagonal
matrix Hd contains the diagonal matrix elements of H0

and Hcpl is the matrix of all its off-diagonal elements. The
eigenvalues of Hd can then be interpreted as the energies
of rovibrational levels of the isotropic contribution of
the molecular BO potentials, while Hcpl describes mixing
due to the anisotropic contributions of these potentials.
We generate members of our ensemble of HRMT by

choosing random matrix elements for HZ, Hd, and Hcpl

based on specific distributions. The values of m in HZ are
uniformly distributed integers between −2j and 2j. The
matrix elements of Hd are chosen according to a Brody
distribution with variable Brody parameter ηd ∈ ½0; 1� and
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(blue markers). Dashed and dot-dashed curves are the Poisson
and Wigner-Dyson distribution, respectively. The solid line is a
Brody distribution with η ¼ 0.45ð7Þ fit to the experimental data.
(b) Distributions PðsÞ for 168Er at T ¼ 350 nK and T ¼ 1.4 μK
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field-resolved Brody parameter ηðBÞ as a function of magnetic
field for 164Dy and 168Er, respectively. The Brody parameters for
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(b) correspond to Poisson counting errors, while shaded bands in
(c) and (d) are 1σ statistical uncertainties of the fits to the data.

T. MAIER et al. PHYS. REV. X 5, 041029 (2015)

041029-4



with a mean energy spacing between bound states ϵd.
Finally, matrix elements of Hcpl are chosen as Gaussian-
distributed real numbers with zero mean and standard
deviation νcpl, thereby on average coupling all diagonal
elements equally. Notice that this construction deviates
from that for a true Gaussian orthogonal ensemble, where
all matrix elements of a symmetric Hamiltonian are
Gaussian distributed [39].
We apply the RMT model to the case of 168Er. The

relevant species-specific quantities are j ¼ 6, g ¼ 1.16,
and ϵd is chosen to roughly reproduce the observed density
of Fano-Feshbach resonances of 168Er and is set to
ϵd=h ¼ 6.4 MHz, where h is Planck’s constant. Figure 3(a)

shows an example of a molecular spectrum, the eigenvalues
of HRMT obtained with our RMT model as a function of B
with ηd ¼ 0 and νcpl=h ¼ 2 MHz. We observe that as B
increases, weakly bound molecular states avoid each other
multiple times before reaching the two-atom threshold
creating a Feshbach resonance. When we turn off Hcpl,
the levels cross. Similar B-field dependencies of the
eigenvalues occur for ηd > 0.
We investigate the effect of the parameters νcpl and ηd on

the NNS distribution of the Fano-Feshbach resonances as
well as that of the B ¼ 0 molecular levels. Figure 3(b)
shows the NNS distribution of Feshbach resonances,
obtained by averaging over 15 realizations of HRMT, for
four values of νcpl and ηd ¼ 0. For negligible νcpl, the
distribution follows PPðsÞ and approaches PWDðsÞ when
the anisotropic coupling strength νcpl is large compared
to ϵd. In fact, we find that a larger ϵd requires a larger νcpl
to develop correlations.
Figures 3(c) and 3(d) show Brody parameters fit to NNS

distributions as functions of νcpl and ηd. Figure 3(c) shows η
for the B ¼ 0 molecular binding energies. For νcpl ¼ 0,
the Brody parameter is simply ηd, as expected from the
distribution of the diagonal Hd, while for larger interaction
anisotropy νcpl, the parameter η ≈ 0.9, close to a Wigner-
Dyson distribution, independent of ηd. Figure 3(d) shows η
extracted from the RMT Feshbach resonance locations as a
function of νcpl. It suggests that the correlation in the NNS
of the resonances is caused by νcpl, whereas it appears fairly
independent of ηd. More precisely, the Brody parameter
fitted to these distributions rapidly increases from η ≈ 0
to η ≈ 0.8 for νcpl ≲ ϵd and tends to one for larger νcpl.
We conclude from the RMT model that the correlations
between the locations of the Fano-Feshbach resonance are
essentially due to the avoided crossings between weakly
bound molecular states at finite B and are only weakly
dependent on the energy distribution at B ¼ 0. In fact, these
correlations increase for increasing νcpl.

IV. MICROSCOPIC COUPLED-CHANNELS
MODEL

A. Realistic setup

A quantitative understanding of the origin of the
chaotic resonance distribution requires coupled-channels
and bound-state calculations with physically realistic
angular-momentum couplings and interaction potentials.
We do so here based on the time-reversal symmetric
Hamiltonian for the relative motion of Dy and Er described
in Refs. [21,40]. It contains the Zeeman Hamiltonian, the
molecular vibration and rotation, and the molecular inter-
actions with isotropic (orientation-independent) and aniso-
tropic (orientation-dependent) contributions, V̂iðRÞ and
V̂að~RÞ, respectively, where ~R describes the separation R
and orientation of the atom pair R̂. The potential has eight
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FIG. 3. Molecular spectrum and NNS distributions of Fano-
Feshbach resonances of 168Er calculated from our RMT model.
(a) Example of a spectrum of molecular binding energies as a
function of B for νcpl=h ¼ 2 MHz, ηd ¼ 0. Here, h is Planck’s
constant. Squares atE=h ¼ 0 MHz indicate crossings ofmolecular
levels with the threshold of twomj ¼ −6 atoms and correspond to
the position of Feshbach resonances. For the sake of visibility,
we show only the spectrum between B ¼ 0 and 10 G. (b) NNS
distributions of simulated Feshbach resonances for ηd ¼ 0
and νcpl=h ¼ 0 MHz (circles), 2 MHz (squares), and 10 MHz
(triangles). The dashed and dash-dotted lines are Poisson and
Wigner-Dyson distributions, respectively. Solid lines are
best-fit Brody distributions with η ¼ 0.03ð1Þ, η ¼ 0.41ð5Þ, and
η ¼ 0.82ð1Þ for νcpl=h ¼ 0, 2, and 10MHz, respectively. (c) Fitted
Brody parameters of the nearest-neighbor energy-spacing
distribution of the eigenvalues of HRMT at B ¼ 0 G as a function
of νcpl. Circles, squares, down triangles, and up triangles corre-
spond to ηd ¼ 0, 0.25, 0.5, and 1, respectively. (d) Fitted Brody
parameters of the NNS distribution of the Feshbach resonances
as a function of νcpl and for four ηd using the same marker code
as in (c). In panels (b)–(d) distributions are obtained by averaging
over 15 realizations of HRMT, each of dimension 500 × 500 and
using Feshbach resonances computed up to B ¼ 85 G.
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tensor operators coupling the two atomic and relative
orbital angular momenta, ~|1, ~|2, and ~l. For B ¼ 0, the

total angular momentum ~J ¼ ~|1 þ ~|2 þ ~l is conserved. For
B > 0 G, only the projection M of ~J along ~B is conserved.
The zero of energy of the Hamiltonian is the energy of an
atom pair in the absolute lowest Zeeman sublevel,
mjα ¼ −jα.
The potentials V̂iðRÞ and V̂að~RÞ contain short-ranged

exchange, medium-ranged van der Waals, as well as
long-range magnetic dipole-dipole interactions. We use the
isotropic van der Waals coefficient C6 ¼ 1723Eha60 and
anisotropic coefficients spread over ΔC6 ¼ 174Eha60 for Er
[21]. For Dy we have improved the value of van der Waals
coefficients of Ref. [40] by including additional experimen-
tal and theoretical transition frequencies and oscillator
strengths [41–44] and now use C6 ¼ 2003Eha60 and spread
ΔC6 ¼ 188Eha60. In particular, the anisotropic spread for Dy
has significantly increased. Here, Eh ¼ 4.360 × 10−18 J is
the Hartree energy and a0 ¼ 0.052 97 nm is the Bohr radius.

B. Bound-state calculations

In Ref. [21] we performed initial coupled-channels cal-
culations of the scattering between ultracold Er atoms and
predicted that tens of partial waves l should have been
included as the strength of the anisotropic contribution is
large. We, however, were unable to reach numerical con-
vergence with respect to the number of coupled equations.
Here, we circumvent this limitation by performing

multichannel bound-state calculations, in which we use
B ¼ 0 eigenstates as a basis for those at B > 0 G. For
B ¼ 0, where J is a good quantum number, at most 49 and
81 Bose-symmetrized and parity-conserving channels are
coupled for Er and Dy, respectively. The B ¼ 0 coupled
Schrödinger equations are discretized on the interval
R ∈ ½0; Rmax� assuming zero boundary conditions and
solved as a matrix eigenvalue problem [45–48]. For each
J, only eigenstates with energies between ½E0; E1� sur-
rounding the zero of energy are computed and stored. The
bound states for B > 0 G are solutions of the matrix
eigenvalue problem that includes all computed B ¼ 0
solutions with jMj ≤ J ≤ Jmax and their coupling due to
the Zeeman interaction. Selection rules of the Zeeman
interaction ensure that there only exists direct coupling
between J and J0 zero-field eigenstates with J − J0 ¼ 0,
�1. For both species, Rmax ¼ 1000a0, E0=h ¼ −3 GHz,
and E1=h ¼ 0.9 GHz, ensuring that Feshbach resonance
locations below 70 G are converged.
In this section on the microscopic calculations we focus

on analyzing the spectra at our coldest temperatures, where
the initial collision channel has s-wave (l ¼ 0) character.
Hence, we need to consider only even-l channels with total
projection quantum number M ¼ −12 and −16 for 168Er
and 164Dy, respectively, and inclusion of zero-field sol-
utions up to Jmax ¼ 36 for Dy and 39 for Er is sufficient to

reproduce the experimental resonance densities. In Sec. V,
we discuss higher-temperature collisions between Er atoms,
whered-wave (l ¼ 2) entrance channelsmust be considered
and, hence, spectra at other M values (i.e., M between −14
and −10 for 168Er) contribute.

C. Interaction anisotropies

We first look into the role of interaction anisotropies
on the level distribution of the most weakly bound
molecular energy levels at zero magnetic field. There are
two dominant components to the anisotropy, the dispersion
VΔC6

ð~RÞ and magnetic dipole-dipole VMDDð~RÞ contribu-
tion. To distinguish the contributions of these two terms,
we define

V̂að~RÞ ¼ λΔC6
VΔC6

ð~RÞ þ λMDDVMDDð~RÞ; ð1Þ

with variable strength λΔC6
and λMDD. We systematically

increase the strengths λΔC6
and λMDD from zero, where we

recover the full physical strength for λMDD ¼ λΔC6
¼ 1.

For completeness, we note that the dominant tensor
operator for the anisotropic dispersion contribution is

VΔC6
ð~RÞ ¼ ca

R6

X
i¼1;2

1ffiffiffi
6

p f3ðR̂ · ~|iÞðR̂ · ~|iÞ − ~|i · ~|ig þ � � � ;

with strength ca < 0 found with the methodology dis-
cussed in Sec, IVA. Weaker contributions indicated by dots
are included in our calculations. Moreover,

VMDDð~RÞ ¼ − μ0
4π

ðgμBÞ2
R3

f3ðR̂ · ~|1ÞðR̂ · ~|2Þ − ~|1 · ~|2g;

where μ0 is the magnetic constant.
Figures 4(b) and 4(d) show the most weakly bound

B ¼ 0, J ¼ 16 levels of 164Dy2 as a function of anisotropy
strength for purely dipolar (λΔC6

¼ 0, varying λMDD) and
dispersive (λMDD ¼ 0, varying λΔC6

) anisotropic interac-
tion, respectively. For λMDD ¼ λΔC6

¼ 0, the binding ener-
gies are regularly structured with many near degeneracies.
In fact, the corresponding states are rovibrational levels of
the isotropic centrifugal potentials V̂iðRÞ and labeled by l.
In our 3-GHz energy window an s-wave channel has at
most three bound states, while even l > 0 channels with
their centrifugal barriers have fewer [21,49]. For small λΔC6

and λMDD, the degeneracy is lifted and levels shift linearly.
The linear dependence for increasing strength of the dipole-
dipole is approximately valid up to the physical value of
λMDD ¼ 1. Hence, the dipole-dipole interaction does not
lead to our chaotic level distributions. In fact, Fig. 4(a)
shows that at λMDD ¼ 1 and λΔC6

¼ 0 the NND distribution
is Poissonian.
On the other hand, for a relatively small anisotropic

dispersion strength λΔC6
≈ 0.1, levels start to avoid each
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other. Starting from λΔC6
≈ 0.5, most avoided crossings

are noticeable on the 3-GHz scale of the figure. At the
nominal λΔC6

¼ 1, where there are 56 levels with
−3 < E=h < 0 GHz, a significant fraction of the levels
have undergone multiple avoided crossings and cannot be
described by a single dominant partial wave. The level
spacing is chaotic as confirmed by the NND distribution
for λΔC6

¼ 1 and λMDD ¼ 0 in Fig. 4(c). We compute
the weakly bound J ¼ 16 levels for λMDD ¼ λΔC6

¼ 1.
Visually the level distribution is much the same as the
one shown in Fig. 4(d). Similar results have been obtained
for 168Er2.
Figure 4(e) quantifies the intuition gained from

Figs. 4(a)–4(d) by showing the Brody parameter η of the
B ¼ 0 J ¼ 16 164Dy2 levels as a function of λΔC6

or λMDD.
The Brody parameter is obtained by fitting a Brody
distribution to the NNS distribution of the bound state
data in Figs. 4(b) and 4(d). For increasing dipole-dipole
strength λMDD and no anisotropic dispersion (λΔC6

¼ 0), the
parameter is always zero, indicating the prevalence of small
level spacings. On the other hand, in the absence of the
DDI, increasing λΔC6

leads to an increasing η. It evolves
from η ¼ 0.2 for λΔC6

≲ 0.5 to η ¼ 0.7 for λΔC6
¼ 1,

indicating a depopulation of small energy spacings. Note

that our systems does not reach a Wigner-Dyson distribu-
tion, which corresponds to η ¼ 1.
In Fig. 4(f), we compare two NNS distributions of

B ¼ 0 weakly bound states of 164Dy2 obtained for the
full anisotropic interaction (λMDD ¼ λΔC6

¼ 1). Both
distributions are based on jE=hj < 3 GHz bound states
computed for J ¼ 16 up to 25. The first so-called
individual-J distribution is constructed by averaging
the NNS distribution of levels for individual J’s assum-
ing that individual distributions are the same. The
second, combined-J NNS distribution, is calculated
from a sorted list of all J ¼ 16;…; 25 levels. Data for
J > 25 are not included as the number of bound states
is too small for a reliable determination of the NNS
distribution.
The individual-J NNS distribution is non-Poissonian as

levels with the same J repel each other. The combined-J
distribution, however, follows a Poisson distribution indi-
cating that energies of bound states with different J are
uncorrelated. In other words, even though the Hamiltonian,

i.e., the set of coupling operators between ~|1, ~|2 and ~l, is
the same, differences in the matrix elements and thus
coupling strengths between channels lead to uncorrelated
eigenenergies.
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FIG. 4. Interaction-anisotropy-induced chaos of B ¼ 0 near-threshold bound states. (b) Weakly bound J ¼ 16 bound-state energies of
164Dy2 as a function of the anisotropy scale λMDD with λΔC6

¼ 0. (a) NNS distribution (red circles) for the J ¼ 16 bound-state data in
(b) at λMDD ¼ 1 and λΔC6

¼ 0. The solid red line is a Brody distribution fit to the data and agrees well with a Poisson distribution.
(d) Weakly bound J ¼ 16 bound-state energies of 164Dy2 as a function of the anisotropy scale λΔC6

with λMDD ¼ 0. (c) NNS distribution
(purple squares) for the J ¼ 16 bound-state data in (d) at λMDD ¼ 0 and λΔC6

¼ 1. The solid purple line is a Brody distribution fit to the
data and is close to a Wigner-Dyson distribution. (e) Moving average of the Brody parameter η as a function of λΔC6

(purple squares) or
λMDD (red circles) with bins Δλ ¼ 0.2 obtained by fitting the NNS distribution for the J ¼ 16 bound-state data in (b) and (d) to Brody
distributions, respectively. The horizontal lines at η ¼ 0 and 1 correspond to the Brody parameter for a Poisson and Wigner-Dyson
distribution, respectively. The 1σ error bars combine statistical and fitting uncertainties. (f) The individual-J (blue squares) and
combined-J (red circles) NNS distributions PðsÞ at λMDD ¼ λΔC6

¼ 1 as a function of the normalized energy spacing s. The distributions
are derived from B ¼ 0 bound-state data for J ¼ 16;…; 25. The gray shaded areas in (a), (b), and (f) indicate the Wigner-Dyson
distribution.
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D. Atom scattering in a magnetic field

The study of the B ¼ 0 G multichannel bound states has
shown that interaction anisotropies mix channels with the
same J, while states with different J are uncorrelated.
The Zeeman interaction mixes these molecular levels and
leads to the Fano-Feshbach spectrum. Figures 5(a) and 5(b)
show example 164Dy2 M ¼ −16 bound-state spectra as a
function of B on two binding-energy and field regions.
Similarly, Figs. 5(c) and 5(d) showM ¼ −12 168Er2 bound
states. In all cases, the full nominal anisotropy (λΔC6

¼ 1

and λMDD ¼ 1) is used. For Dy and Er, channels with J up
to 36 and 39 are included, respectively. The figure shows
that the Dy level density is higher than that for Er. This
simply follows from the larger atomic angular momentum
of Dy, leading to a larger number of channels with the same
J − jMj. We also observe that for both species the level
structure in the 0–10 G, small field region is qualitatively
different from that in the larger field region. For small B,
the avoided crossings are substantially narrower than for
larger B. Moreover, at small field the levels cluster, while
at larger field they are more uniformly distributed. These
changes are a consequence of the linearly increasing
Zeeman coupling between vibrational levels with different
J’s as a function of B.
Figure 6(a) shows effective length asðBÞ as a function

of B. It diverges at every resonance location and is closely
related to the scattering length of a zero-energy collision.
Our calculations cannot be directly used to define the
scattering length as we use a hard-wall potential for
R ≥ Rmax. This wall leads to a discrete set of states with
positive energy, and using the lowest of these EsðBÞ, we
can define the effective length asðBÞ shown in the figure
by solving for EsðBÞ ¼ ℏ2π2=f2μr½Rmax − asðBÞ�2g, with
μr ¼ m=2 and atomic mass m [50].

It is of interest to briefly discuss the convergence
properties of our calculations. The data in Figs. 6(a), 5(c),
and 5(d) are based on computations with channels with J
up to Jmax ¼ 39. Figure 6(b) shows the 168Er2 Feshbach-
resonance density ρ̄ as a function of Jmax. The resonance
density increases linearly from ≈0.5 1=G at Jmax ¼ 12 but
then is seen to “saturate” for larger Jmax. At Jmax ¼ 39 the
experimental density is reproduced. In addition, Fig. 6(c)
shows the field location of resonances between 50 and 55 G
as a function of Jmax. The resonance locations change
significantly for Jmax < 22, but then rapidly converge. This
implies strong mixing among bound states with those J.
On the other hand, the location of resonances that appear
for J ≥ 22 is almost immediately converged indicating
weak mixing to smaller J states.

E. Comparison of experiment and
coupled-channels model

In Figs. 2(a) and 2(b), we show the NNS distribution
of converged Feshbach-resonance locations based on our
multichannel data between B ¼ 0 and 70 G for 164Dy2
with Jmax ¼ 36 and 168Er2 with Jmax ¼ 39, respectively.
For both species the distribution clearly deviates from a
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Poisson distribution, consistent with the experimental
distributions that are also shown. The fitted experimental
and coupled-channel Brody parameters agree within their
error bars.
The anisotropy parameters λΔC6

and λMDD in the
coupled-channels calculations and the parameter νcpl in
the RMT play analogous roles in the Hamiltonian and in the
emergence of chaotic level distributions, even though no
explicit quantitative connection exists. This role is most
manifest in the Brody parameters of the B ¼ 0 G bound
states and that of the Feshbach-resonance spectra for the
two models. For 168Er the corresponding Brody parameters
from the coupled-channels calculations are ≈0.01 and 0.68
at the physical λMDD ¼ λΔC6

¼ 1, respectively. Within the
RMT model, the small η value for the B ¼ 0 G level
distribution requires weak coupling νcpl ≪ ϵd and ηd ≈ 0.
In contrast, the Brody parameter for the Feshbach-
resonance spectrum requires νcpl ≈ ϵd and points at limi-
tations of the current RMTmodel. Similar conclusions hold
for bosonic Dy. Future advanced RMT models might
circumvent these limitations by incorporating overlapping,
uncoupled chaotic series as is found from our B ¼ 0 G
coupled-channels calculations.
We plot the B-field-resolved Brody parameter ηðBÞ of

the theoretical coupled-channels data in Figs. 2(c) and 2(d).
A comparison with the experimental ηðBÞ shows excellent
agreement for 164Dy, while the agreement for 168Er is less
satisfactory. A possible explanation for the discrepancies in
168Er is the larger bin-to-bin fluctuations as bins contain
fewer resonances than for 164Dy.
For 164Dy the theoretical field-resolved Brody parameter

in Fig. 2(c) linearly increases from zero for small B fields

and saturates at ηðBÞ ≈ 0.5 for fields larger than 35 G,
where the size or width of the avoided crossings between
weakly bound states is larger. For 168Er in Fig. 2(d) we find
a much more rapid increase of ηðBÞ at small fields. This is
followed by a plateau at ηðBÞ ≈ 0.5 between B ¼ 20 and
50 G, after which ηðBÞ → 0.9 with an uncertainty of 0.2
close to a Wigner distribution. The initial rise of ηðBÞ
for both atomic species is a consequence of weakly
bound vibrational levels, uncoupled and randomly distrib-
uted when B ¼ 0 G, that start to repel each other as the
Zeeman interaction increases in strength for increasing B.
The plateau at ηðBÞ ≈ 0.5 and the sudden increase of ηðBÞ
to one for 168Er have no simple explanation and are
determined by the not-fully-explored complex interplay
between the Zeeman and anisotropic interatomic inter-
actions. It does, however, indicate that Wigner’s assump-
tions on ensembles of Hamiltonians do not hold for fields
below 50 G.

V. TEMPERATURE DEPENDENCE
OF THE RESONANCE DENSITY

We now describe the origin of the strong temperature
dependence of some of the resonances in our atom-loss
spectra and thus explain the accompanying increase of the
resonance density. Here, atom loss is solely due to three-
body recombination, where three ultracold atoms collide to
form a diatomic molecule and an atom that are both lost
from the atom trap. Figure 7(a) shows atom-loss spectra for
one such resonance for 168Er at four temperatures below
2 μK. Atom loss, indeed, is larger for larger temperatures,
but we also observe a broadening of the B-field width and
a shift of the maximum loss position to larger B fields.
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FIG. 7. Line shapes for a strongly temperature-dependent 168Er Feshbach resonance near B ¼ 1.48 G. Panel (a) shows experimental
data (markers with error bars) as a function of B of the remaining atom number divided by the atom number away from resonance
measured 400 ms after initial preparation. Black, red, green, and blue markers correspond to data for temperatures T ¼ 230, 740, 1400,
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recombination rates for the same four temperatures assuming three-body entrance s- (N ¼ 0) and d-wave (N ¼ 2) scattering,
respectively. Curves are based on a thermally averaged line shape discussed in the text. Recombination rates are scaled such that the
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Resonances with a weak temperature dependence show
none of these behaviors.
We show with an intuitive resonant “trimer” model that a

strongly temperature-dependent resonance is due to scatter-
ing processes with entrance d-wave channels even though
the two-body d-wave centrifugal barrier, Vb=kB ¼ 250 μK,
is 100 times larger than our highest temperature, where kB is
the Boltzmann constant. The difference in the power-law
Wigner-threshold behavior of the recombination rate with
collision energy for s- and d-wave entrance-channel colli-
sions can explain our observations.
Three-body recombination has been extensively studied

in the context of Efimov physics [51–54]. We follow
Refs. [55–57] and start from a coupled-channels descrip-
tion in the (mass-scaled) hyperradius ρ, which describes the
size of the three-atomic system, and basis functions in the
five other hyperspherical coordinates that are ρ-dependent
eigenstates of the squared “grand-angular-momentum oper-
ator.” Similar to the coupled-channels description for two
atoms, there are entrance, open, and closed channels. The
collision starts in one of the entrance channels with atoms
in the energetically lowest Zeeman state and relative three-
body kinetic energy E3, the dimer plus atom are the open
channels, and bound states in closed channels can lead to
resonances. These closed channels dissociate to three free-
atom states with at least one atom in a Zeeman level with
higher internal energy. The bound states are resonant trimer
states giving us our name for the model. It should, however,
be realized that their origin lies in bound states of pairs of
atoms and that the resonant state is better thought of as a
pair bound state that hops from pair to pair. We define
E3 ≡ ℏ3k23=ð2μ3Þ≡ μ3v23=2 with the three-body reduced
mass μ3 ¼ m=

ffiffiffi
3

p
, where k3 and v3 are the relative wave

vector and velocity, respectively.
The potentials in the entrance channels have long-range

repulsive centrifugal potentials, governed by the asymp-
totic behavior of the grand-angular-momentum operator,

and depend on the relative orbital angular momentum ~N
of the three atoms. In fact, the centrifugal potentials are
ℏ2ðλþ 3=2Þðλþ 5=2Þ=ð2μ3ρ2Þ with non-negative integer
quantum number λ [55]. For N ¼ 0, the least repulsive
potential has λ ¼ 0, while that for N ¼ 2 has λ ¼ 2.
For an isolated trimer resonance in a closed channel

coupled to both entrance and other open channels, we can
apply the resonance theories by Fano and Feshbach and
derive that the recombination rate coefficient at collision
energy E3 and entrance channel with quantum number λ is
given by L3ðE3; BÞ ¼ v3σðE3; BÞ, where the cross section
σðE3;BÞ¼ð2Nþ1Þ192π2jSðE3;BÞj2=k53 and

jSðE3; BÞj2 ¼
ΓðE3ÞΓbr

½E3 − μðB − B0Þ�2 þ ½ΓtotðE3Þ=2�2

is a resonant expression for the square of a dimensionless
S-matrix element, where B0 is the trimer resonance

location and μ is the magnetic moment of the resonant
trimer relative to that of the entrance channel. The defi-
nition for jSðE3; BÞj2 also contains the entrance-channel
energy width ΓðE3Þ ¼ AλE

λþ2
3 to the trimer resonance with

a characteristic power-law energy dependence that reflects
the threshold behavior of the scattering solutions in the
centrifugal potentials. The energy width Γbr determines
the decay or breakup rate of the resonance into the fast
atom and dimer pair and is independent of E3. Finally,
ΓtotðE3Þ ¼ ΓðE3Þ þ Γbr. For simplicity, we assume that
nonresonant, direct recombination from the entrance to
open channels is weak. We also note that for N ¼ 0 and
λ ¼ 0, L3ðE3; BÞ approaches a finite constant for E3 → 0
as expected.
In our experiments we have thermal samples of Er and

we require the thermally averaged rate coefficient

L3ðT; BÞ ¼
1

Z

Z
∞

0

E2dEL3ðE;BÞe−E=kT

and normalization Z ¼ R
∞
0 E2dEe−E=kT ¼ 2ðkTÞ3. In order

to increase the signal-to-noise ratio, we allow a significant
fraction of atoms to be lost [see Fig. 7(c)], which, assuming
a homogeneous sample, can be modeled by the rate
equation dnðtÞ=dt ¼ −3L3ðT; BÞn3ðtÞ for atom density
nðtÞ [53] with solution

Nðth; BÞ ¼
N0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6L3ðT; BÞn20th
p ;

where Nðth; BÞ is the remaining atom number after hold
time th, N0 is the initial atom number, and n0 is the initial
density. This nonlinear time evolution adds additional
broadening to the lines.
Figures 7(b) and 7(c) show our model event rates

L3ðT; BÞ as a function of B for N ¼ 0, λ ¼ 0 and
N ¼ 2, λ ¼ 2, respectively. Curves are for the same four
temperatures as in Fig. 7(a). A comparison of Figs. 7(b) and
7(c) shows a striking difference. The strongest features in
Fig. 7(b) are for the smallest temperatures, while those in
Fig. 7(c) are for the largest temperatures. This behavior
naturally follows from an approximation of the integrant in
L3ðT; BÞ under the conditions kT ≫ Γbr ≫ ΓðEÞ [58].
In this limit the Lorentzian is sharply peaked around E3 ¼
μðB − B0Þ for B > B0, and after some algebra it follows
that L3ðT; BÞ as a function of B has a maximum value
proportional to ðkTÞλ−1 located at B ¼ B0 þ ðλþ 2ÞkT=μ.
Consequently, for λ ¼ 0 and 2 the maximum loss rate
decreases and increases with T, respectively. Even for less
restrictive parameter values as used in Fig. 7 this trend
remains.
Our experimental data have a temperature trend as in

Fig. 7(c). In fact, Fig. 7(a) compares our experimental loss
data with model Nðth; BÞ for N ¼ 2, λ ¼ 2 using the
same parameters as in Fig. 7(c) and requiring a ≈ 50%
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maximum atom loss as in the experiment. It is worth noting
that, from our theoretical calculations, the magnetic-field
width of L3ðT; BÞ is noticeably smaller than that for
Nðth; BÞ, indicating that the finite hold time does indeed
lead to broadening. The agreement of the experimental data
and the prediction of our model for the losses is satisfactory
for all four temperatures given the limitations and approx-
imations within our modeling. We conclude that our
strongly T-dependent resonances correspond to d-wave
or more preciselyN ¼ 2 entrance-channel collisions. Note
that we have not observed any resonances with temperature
dependence similar to Fig. 7(b) in our spectra. In the case
of resonances with a three-body s-wave entrance channel,
which would correspond to such a dependence, we infer
that the loss spectra are saturated. This will be subject for
future investigations.
As a corollary, this implies that for two colliding atoms,

as described in Sec. IV, temperature-dependent resonances
are due to collisions with entrance d waves for which there
are multiple allowed values of the total angular projection
quantum numberM. Here,M ¼ −14 to −10 for bosonic Er
and M ¼ −18 to −14 for bosonic Dy. Numerical compu-
tations, not presented here, show that their zero-field bound
states and thus resonance locations are again uncorrelated
and random.

VI. CONCLUSION

In summary, we experimentally and theoretically study
the resonant scattering of ultracold Er and Dy atoms
in a magnetic field. We show that chaotic scattering as
witnessed by chaotic nearest-neighbor spacings between
Feshbach-resonance locations emerges due to the aniso-
tropy in the molecular dispersion.
Our study also reveals several unique features of collid-

ing magnetic lanthanides that have not been observed in
any other ultracold atomic system. These lanthanides are
characterized by their exceptionally large electron orbital
angular momentum, which leads to large anisotropic
dispersion interactions between these atoms. Our theoreti-
cal estimate shows that in both Er and Dy collisions the
ratio of anisotropic to isotropic dispersion interaction
ΔC6=C6 is about 10%. This anisotropy leads to significant
splittings among the 48 and 81 gerade short-range poten-
tials that dissociate to the ground-state atomic limits of
Er and Dy, respectively. We show that each potential has
its own rovibrational structure, which by Coriolis forces
and the Zeeman interaction interacts with that of other
potentials, creating a dense distribution of levels near the
threshold and initiating chaos. In fact, we find a very large
number of partial waves contributing to the creation of
Fano-Feshbach resonances.
On the other hand, if we just consider the anisotropy

from the magnetic dipole-dipole interaction alone, our
coupled-channel calculations indicate that chaos in the
level distribution does not appear. The strength of the

dipole-dipole interaction is too small. In addition, we
show that the NNS distributions for Dy and Er are very
similar, as can be expected from their similarΔC6=C6 ratio.
The difference in their magnetic moment plays only a
small role. This further confirms that chaos is due to the
anisotropic dispersion interaction.
The distribution of Feshbach resonances of ultracold

ground-state alkali-metal, alkaline-earth, Yb, and Cr atoms,
as experimental studies have shown, is not chaotic. This is
because these atoms have a zero electron orbital angular
momentum and, hence, only an isotropic dispersion inter-
action. Even though alkali-metal and Cr atoms have a
nonzero magnetic moment of 1μB and 6μB, respectively,
these moments do not lead to chaos. We would expect that
other magnetic lanthanides and actinides with nonzero
orbital angular momentum will exhibit chaotic properties
in their collisions. In addition, collisions between mixed
species, such as magnetic lanthanides and alkali metals,
like Kþ Dy or Naþ Er, might be susceptible to chaos.
A first theoretical analysis for Liþ Er [59], however,
estimates a small 2% dispersion anisotropy and no chaos
is predicted.
Another interesting property of magnetic lanthanide

gases is the extreme sensitivity of the atom-loss spectra
and, in essence, three-body recombination to the temper-
ature. This phenomenon was first observed in Ref. [22] for
loss spectra of Dy. The number of Dy resonances increases
by 50% when the temperature is increased from 420 to
800 nK. Here, we observe a 25% increase in the Er
resonance density when the temperature rises from 250
to 1400 nK. We show by a comparison of resonance
profiles taken at several temperatures and predictions of a
theoretical model of three-body recombination via the
formation of a trimer, or, more precisely, of a shared pair
bound state, that the origin of the temperature-dependent
resonances lies in the “partial wave” of the three-atom
entrance channel. Entrance channels with zero and nonzero
total orbital angular momentum N lead to line shapes
with a different temperature behavior. Those with N ¼ 0
or “s-wave” entrance channels have sharply decreasing
recombination rates with temperature, whereas those with
N ¼ 2 or “d-wave” entrance channels have an increa-
sing recombination rate. Temperature-sensitive resonances
can be explained only by “d-wave” collisions. It is worth
noting that for alkali-metal-atom collisions a number of
entrance-channel p-wave resonances have been observed
(see, for example, Ref. [60] for cesium). Analysis of the
temperature-dependent rate coefficient, however, was not
performed.
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In a combined experimental and theoretical effort, we demonstrate a novel type of dipolar system made
of ultracold bosonic dipolar molecules with large magnetic dipole moments. Our dipolar molecules are
formed in weakly bound Feshbach molecular states from a sample of strongly magnetic bosonic erbium
atoms. We show that the ultracold magnetic molecules can carry very large dipole moments and we
demonstrate how to create and characterize them, and how to change their orientation. Finally, we confirm
that the relaxation rates of molecules in a quasi-two-dimensional geometry can be reduced by using the
anisotropy of the dipole-dipole interaction and that this reduction follows a universal dipolar behavior.
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Ultracold dipolar particles are at the heart of very intense
research activities that aim to study the effect of interactions
that are anisotropic and long range [1,2]. Dipolar quantum
phenomena require ultracold gases and a strong dipole-
dipole interaction (DDI). So far, strongly dipolar gases have
been obtained using either atoms with a large magnetic
dipole moment or ground-state polar molecules with an
electric dipole moment [2]. With both systems, many
fascinating many-body quantum effects have been observed
and studied, such as the d-wave collapse of a dipolar Bose-
Einstein condensate [3,4], the deformation of the Fermi
sphere [5], and the spin-exchange phenomena [6,7].
Here, we introduce a novel kind of strongly dipolar

particles. These are weakly bound dipolar molecules
produced from a pair of atoms with large magnetic dipole
moments, such as erbium (Er). The central idea is that these
molecules can possess a very large magnetic moment μ up
to twice that of atoms (e.g., 14 Bohr magneton, μB, for Er2)
and have twice the mass of the atoms. As a consequence,
the degree of “dipolarity” of the magnetic molecules is
much larger than the one of atoms. This can be quantified in
terms of the dipolar length ad ¼ mμ0μ

2=ð4πℏ2Þ [1], which
solely depends on the molecular mass m and on μ; ℏ is the
Planck constant divided by 2π. To give an example, Er2
with μ ¼ 14μB has an ad of about 1600 a0, which largely
exceeds the typical values of the s-wave scattering length.
Here, a0 is the Bohr radius. Moreover, in contrast to
ground-state heteronuclear molecules, the dipole moment
of the magnetic molecules does not vanish at zero external
(magnetic) field, opening the intriguing possibility of
investigating the physics of unpolarized dipoles.
In a joined experimental and theoretical effort, we study

the key aspects of ultracold dipolar Er2 molecules,
including the association process, the molecular energy

spectrum, the magnetic dipole moments, and the scatter-
ing properties in both three- (3D) and quasi-two-
dimensional (Q2D) geometries.
Erbium belongs to the class of strongly magnetic

lanthanides, which are currently attracting great attention
in the field of ultracold quantum gases [4,8–10]. Indeed,
these species exhibit unique interactions. Beside the long-
range magnetic DDI, these species have both an isotropic
and an anisotropic contribution in the short range van der
Waals (vdW) potential. The latter results from the large
nonzero orbital momentum quantum number of the atoms
[11,12]. This manifold leads to an extraordinary rich
molecular spectrum, reflecting itself in a likewise dense
spectra of Feshbach resonances as demonstrated in recent
scattering experiments [4,13,14]. Each resonance position
marks an avoided crossing between the atomic scattering
threshold and a molecular bound state, which can be used
to associate molecules from atom pairs [15].
We create and probe Er2 dipolar molecules by using

standard magnetoassociation and imaging techniques [15].
Details of the production schemes are described in the
Supplemental Material [16]. In brief, we begin with an
ultracold sample of 168Er atoms in an optical dipole trap
(ODT) in a crossed-beam configuration. The atoms are spin
polarized into the lowest Zeeman sublevel (j ¼ 6,
mj ¼ −6). Here, j is the atomic electronic angular momen-
tum quantum number and mj is its projection on the
quantization axis along the magnetic field. To associate
Er2 molecules, we ramp the magnetic field across one of the
low-field Feshbach resonances observed in Er [4,13]. We
experimentally optimize the ramping parameters, such as
the ramp speed and the magnetic-field sweep interval, by
maximizing the conversion efficiency. In our experiment
we typically achieve a conversion efficiency of 15%, which
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is a common value for boson-composed Feshbach mole-
cules [15]. To obtain a pure molecular sample, we remove
all the remaining atoms from the ODT by applying a
resonant laser pulse. Our final molecular sample contains
about 2 × 104 Er2 Feshbach molecules at a temperature of
300 nK and at a density of about 8 × 1011 cm−3 [16].
A central question regards the magnitude of the dipole

moment owned by the magnetic molecules. We experi-
mentally determine μ by using magnetic-field modulation
spectroscopy, a technique which was successfully applied
to alkali atoms [20–22]. With this method, we measure the
molecular binding energy Eb near the atomic threshold as a
function of the magnetic field B. The binding energy is
related to the differential magnetic moment of the mole-
cules with respect to the atom-pair magnetic moment 2μa.
Here, μa ¼ −gmjμB ¼ 6.98μB in the case of Er, where g ¼
1.16 is the Er atomic Landé factor. We thus extract μ by
using the relation μ ¼ 2μa − jdEbðBÞ=dBj. Our spectro-
scopic measurement begins with an ultracold atomic sample
near a Feshbach resonance. We then add a small sinusoidal
modulation to the bias magnetic field for 400 ms. The
modulation frequency is varied at each experimental run.
When it matches Eb=h, prominent atom losses appear
because of molecule formation. We trace the near-threshold
molecular spectrum by repeating the measurement for
various magnetic-field values. Figure 1 shows the Er2
molecular spectrum in a magnetic-field range up to 3 G.
In our range of investigation, we identify four molecular
energy levels, which, near threshold, exhibit a linear depend-
ence on B. For each state, we obtain a different μ value,
ranging from 8 to 12μB [23], as listed in Table I.
For alkali-metal atoms, which possess much simpler

interaction properties than lanthanides, theoretical
approaches based on coupled-channel calculations have
been extremely successful in assigning the quantum num-
bers of the molecular energy levels and reproducing
molecular spectra [15]. However, a straightforward exten-
sion of these methods to the lanthanide case is out of reach
because of their complex scattering physics involving

highly anisotropic interactions and many partial waves
[13]. Inspired by work on alkali-metal collisions [24–27],
we develop a new theoretical approach to identify the
molecular quantum numbers, based on approximate adia-
batic potentials and on the experimentally measured μ as
input parameters. Our scattering model is detailed in the
Supplemental Material [16], whereas we here summarize
the central ideas of our approach.
We first solve the eigenvalue problem of the full atom-

atom interaction potential operator [16], whose eigenvalues
are the adiabatic potentials UnðR;BÞ. The corresponding
eigenfunctions read as jn;Ri ¼ P

icn;iðRÞjii, where
n ¼ 1; 2;…, and cn;iðRÞ are R-dependent coefficients.
The molecular state jii is uniquely determined by the set
of angular momentum quantum numbers (l, J, M), where

l is the molecular orbital quantum number, ~J ¼ ~j1 þ ~j2 the
total atomic angular momentum, and M its projection on
the internuclear axis.
To derive the corresponding “adiabatic” molecular mag-

netic moments, we calculate μcalc ≈ −dUnðR;BÞ=dB at the
position of the outer classical turning point R ¼ R�. This
choice is justified by the fact that most of the vibrational
wave function is localized around R�.
From the Hellmann-Feynman theorem it then follows

that μcalc ¼ −gμB
P

iMijciðR�Þj2. Finally, we assume that
for each Feshbach resonance a vibrational state is on
resonance and we find the adiabatic potential that has a
magnetic moment closest to the measured one within 1%.
Once the best match is identified, the corresponding jn;Ri
sets the molecular state jii, characterized by l, J, and M,
with the largest, dominant contribution. In our range of
investigation we observe d-, g-, and i-wave molecular
states; see Table I. These states show several dominant M
contributions. This fact is unusual and reflects the dominant
role of the DDI, which couples several adiabatic potentials
and M components. As shown in Fig. 2, this mixing effect
is particularly dominant below 10 G, where the DDI at R� is
larger than the Zeeman interaction. Above 10 G, we predict
μ to be equal to integer multiples of gμB [16].
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FIG. 1 (color online). Er2 weakly bound molecules. (a) Atom-
loss spectrum [4] from 0 to 3 G and (b) near-threshold binding
energy of the corresponding molecular states. The solid lines are
fits to the experimental data and extrapolated to larger Eb up to
h × 500 kHz. The error bars are smaller than the symbols.

TABLE I. Experimental (Expt.) and theoretical (Theo.) mag-
netic moments of four molecular states near the atomic threshold,
Feshbach-resonance positions BFR, dipolar lengths, outer turning
points R�, and dominant quantum numbers l, J, and M. For
convenience, the molecular states are labeled as μi with
i ¼ 1;…; 4. The specified uncertainties correspond to the 1σ
statistical errors.

BFR μ=μB ad R�
jl; J;Mi(G) Expt. Theo. (a0) (a0)

μ1 0.91 11.30(7) 11.20 1041(13) 72.0 j4;12;−12=−10=−9i
μ2 2.16 11.51(4) 11.46 1080(8) 71.0 j4; 10;−10i
μ3 2.44 11.84(2) 11.75 1143(4) 86.0 j2; 12;−10i
μ4 2.47 7.96(3) 7.92 517(4) 57.0 j6; 10;−7= − 6i
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As summarized in Table I, we find very good overall
agreement between the measured and the calculated
molecular magnetic moments. For the largest observed μ,
we calculate a corresponding dipolar length, ad ≈ 1150a0.
This value exceeds the typical range of the vdW potentials,
setting the DDI as the dominant interaction in the system.
Remarkably, ad for Er2 is comparable to the one realized
with ground-state KRb molecules [28], which are an
extensively investigated case serving as a benchmark dipolar
system.
Following the methods introduced for KRb [29–31], we

test the dipolar character of Er2 by performing scattering
experiments in a 3D and in a Q2D optical dipole trap. We
control the DDI between molecules by tuning the dipole
orientation, which is controlled by changing the direction
of the magnetic field and is represented by the angle θ
between the magnetic-field axis and the gravity axis. Our
experiment begins with the atomic sample trapped either in
a 3D or in a Q2D ODT. The Q2D trap is created by
superimposing a vertically oriented, one-dimensional opti-
cal lattice [16]. After the magnetoassociation and the
removal of the remaining atoms, we probe the number
of molecules as a function of the holding time in the ODT.
We perform measurements for the molecular states μ1, μ2,
and μ4 [32]. For each of these states, we measure the
collisional stability of the sample for both in-plane
(θ ¼ 90°) and out-of-plane (θ ¼ 0°) dipole orientation,
and extract the corresponding relaxation rate coefficients,
β⊥ and β∥, using a standard two-body rate equation [33].
Figure 3 shows typical molecular decay curves in

(a) 3D and in (b) Q2D. In 3D, we confirm that the

inelastic decay does not depend on θ. We obtain
β3D ¼ 1.3ð2Þ × 10−10 cm3=s. This is a typical value for
boson-composedFeshbachmolecules,which undergo a rapid
vibrational quenching into lower-lying molecular states, as
demonstrated with alkali atoms [33]. Contrary, in Q2D the
decay rates clearly depend on the dipole orientation. For each
investigated molecular state, β⊥ is larger than β∥. We find a
reduction of losses of up to 30% for out-of-plane orientation,
for which the DDI is predominantly repulsive. The ratio
ðβ⊥ðTÞ=β∥ðTÞÞ increases with increasing μ; see Table II. We
note that stronger suppression of losses can be obtained using
a tighter two-dimensional confinement [29], which is pres-
ently not reachable with our experimental parameters.
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FIG. 3 (color online). Typical time evolution of the number of
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and in a Q2D trap (b). The data refer to molecules in the state μ1
for the 3D case (a) and molecules in the state μ2 in Q2D (b). The
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TABLE II. Experimental and theoretical loss rate coefficients β
for T ¼ 400 nK and for various μ and θ at B ¼ 200 mG.
Uncertainties of β are statistical from fitting and systematic
due to number density uncertainty. For the slightly different
values of μ compared to Table I and the error discussion see the
Supplemental Material [16].

μ=μB

β⊥ð10−6 cm2=sÞ β∥ ð10−6 cm2=sÞ
Expt. Theo. Expt. Theo.

μ4 8.7(6) 12.5� 0.3� 3.3 6.00 10.6� 0.3� 2.8 4.79
μ1 10.9(5) 9.5� 0.2� 2.5 6.81 7.3� 0.1� 2.1 5.07
μ2 11.7(3) 11.3� 0.2� 2.9 7.12 8.6� 0.2� 2.3 5.13
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The reduction of losses in Q2D draws a natural analogy
with the observations obtained with KRb molecules [31].
From a comparative analysis between Er2 and KRb, one
can unveil universal behavior attributed to the DDI, for
systems being different in nature, but sharing a similar
degree of dipolarity. We thus theoretically study the
scattering behavior of Er2 using a theoretical approach
similar to the one successfully applied to KRb. Our
formalism, which accounts for the DDI and the isotropic
vdW interaction, is described in Refs. [16,34].
We compute the Er2 þ Er2 loss rate coefficients βðTÞ in

3D and in Q2D for given values of μ, θ, and T. By
averaging over a 3D and a 2D Maxwell-Boltzmann dis-
tribution, we obtain the thermalized loss rate coefficients
βðTÞ in 3D and in Q2D, respectively. In 3D, we find a rate
coefficient of 1.0 × 10−10 cm3=s at T ¼ 300 nK, which is
close to the experimental value [35]. In Q2D, our calcu-
lations show that the collision dynamics at long range, and
thus the value of β, depends on the dipole orientation and
monotonically increases with μ. As in the experiments, our
calculations show that collisions for in-plane orientation
(β⊥) lead to larger molecular losses than for out-of-plane
orientation (β∥). In Table II, we compare theory and
experiment. The absolute values of β agree within a
factor of 2. This difference is well explained by the fact
that our model does not include details of the short-range
physics, with the Er4 potential energy surfaces currently
unknown [16].
Remarkably, the experimental and calculated ratios

β⊥ðTÞ=β∥ðTÞ agree very well with each other; see
Fig. 4. This suggests that β⊥ðTÞ=β∥ðTÞ for Er2 Feshbach
molecules is determined by the DDI and not by the short-
range physics, and that it can be correctly described using a
point-like-dipole formalism [16]. Figure 4 shows the
comparative analysis between bosonic 41K87Rb and
168Er2, and fermionic 40K87Rb and 167Er168Er based on

our numerical calculations. Independent of the nature of the
magnetic or electric dipolar system, we find universal
curves as a function of ad= ~a: one for bosons with ~a ¼
aho and one for fermions when ~a ¼ avdW. Here, aho is the
harmonic oscillator length and avdW ¼ ð2mC6=ℏ2Þ1=4 is the
vdW length with C6 the vdW coefficient. The faster
increase of β⊥=β∥ for fermions with respect to bosons is
due to the statistical fermionic suppression of β∥ in Q2D
that does not occur for bosons as explained in Ref. [36].
The universal behavior of ultracold dipolar scattering has

been previously pointed out in Ref. [37]. In the Wigner
regime, we derive simple universal scaling laws for dipolar
bosonic and fermionicmolecules [16,37]. For bosonswithad,
aho > avdW, which is the case of our Er2 molecules, we find
½β⊥ðTÞ=β∥ðTÞ�∼ðadB=ahoÞ4ðad=ahoÞexp½2ðad=ahoÞ2=5�. For
fermionswith ad, avdW < aho, ðβ⊥=β∥Þ ∼ ðad=avdWÞ3. Here,
adB ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkBT

p
is the thermal de Broglie wavelength.

To conclude, our work reports on the study of strongly
dipolar molecules created by pairing ultracold atoms with
large magnetic dipole moments. We anticipate that our
scheme can be generalized to other magnetic lanthanide
species and has the potential to open regimes of inves-
tigations, which have been unaccessible so far. First, the
extraordinarily dense and rich molecular energy spectrum
of Er opens the exciting prospect of cruising through
molecular states of different magnetic moments or even
creating molecular-state mixtures with dipole imbalance
[22,38,39]. Second, in contrast to electric polar molecules
where the electric dipole moment is zero in the absence of a
polarizing electric field, magnetic dipolar molecules have a
permanent dipole moment allowing us to study the physics
of unpolarized dipoles. In addition, strongly magnetic
Feshbach molecules offer a novel case of study for
scattering physics. These molecules are in fact diffuse in
space with a typical size on the order of the vdW length.
This novel situation can also have interesting consequences
and trigger the development of extended scattering models,
which account for multipolar effects and truly four-body
contributions when the molecule size becomes comparable
to ad [40]. Finally, a very promising development will be to
create fermionic Er2 dipolar molecules where vibrational
quenching processes are intrinsically suppressed because of
the Pauli exclusion principle [41,42].
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S. Kotochigova,3 G. Quéméner,4 M. Lepers,4 O. Dulieu,4 and F. Ferlaino1, 2

1Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
2Institut für Quantenoptik und Quanteninformation,
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4Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, 91405 Orsay, France

Creation of Er2 in 3D and Q2D

We create Feshbach molecules using standard tech-
niques of magneto-association across a Feshbach reso-
nance. As demonstrated in Refs. [1, 2], Er features an
enormous number of Feshbach resonances. Here, we fo-
cus on the resonances observed below 3 G. In particu-
lar, we first create an ultracold atomic sample of about
3× 105 168Er atoms at a temperature of T ≈ 150 nK,
which is just above the onset of Bose condensation, see
Ref. [1]. The atoms are confined into a three-dimensional
(3D) crossed optical dipole trap with frequencies νx =
51.5(2) Hz, νy = 13.2(3) Hz, and νz = 207(1) Hz. We
choose magnetic fields of 1.4 G, 2.3 G, and 2.8 G for the
molecular states µ1, µ2, and µ4, respectively. We then
magneto-associate molecules by ramping the magnetic
field 150 mG below the Feshbach resonance. The typical
ramp speed is 90 mG/ms. After the molecule association,
we remove all the residual atoms from the optical dipole
trap by applying a short laser pulse. The pulse is on reso-
nance with the strong atomic transition at 401 nm [3] and
has a duration of 1µs with an intensity of ∼ 40 mW/cm2.

To realize a Q2D geometry, we superimpose a one di-
mensional optical lattice beam to the system after finish-
ing evaporation in the 3D trap. The lattice is realized
from a retro-reflected laser beam at 1064 nm, propagat-
ing along the vertical direction. The beam has a waist of
250µm and a typical power of 8 W. As a result, the par-
ticles are confined into an array of Q2D pancakes with
frequencies νr = 33.0(3) Hz in the radial direction and
νz = 31.2(1) kHz in the tightly confining axial direc-
tion. We first load the lattice from the atomic sample
and we then magneto-associate Er2 in the lattice. The
molecule conversion efficiency in the Q2D geometry is
. 5 %, which is below the one observed in the 3D trap.
With this scheme, we produce about 1.1× 104 molecules
at a temperature of 400 nK, corresponding to a density of
3.8×107 cm−2. The molecules fill about 35 lattice layers.

We control the molecular dipole orientation by chang-
ing the orientation of the magnetic field. The orienta-
tion is quantified in term of the angle θ, which defines
the angle between the quantization axis, set by the mag-
netic field orientation, and the z-axis of the lattice trap.
We prepare the molecular samples at either θ = 0◦ or

90◦, correspondingly side-by-side (repulsive) or head-to-
tail (attractive) dipolar collisions. The magnetic field is
rotated by using three pairs of independently-controlled
magnetic-field coils. We pay particular attention that
when changing the orientation of the magnetic field we
keep its magnitude constant. We check this by perform-
ing radio-frequency spectroscopy between Zeeman sub-
levels for different angles of rotation. We typically rotate
the field within ∼ 6 ms.

For all our loss-rate measurements, we jump to a mag-
netic field of about 200 mG after molecule association. At
this field, Eb is of the order of few h×1 MHz. We choose
to perform our measurement at this magnetic-field value
because around 200 mG there are no Feshbach resonances
and the molecular spectrum might be less dense. Using
a Stern-Gerlach technique [4], we measure µ at 200 mG
for all the three target molecular states. We find a slight
shift of µ in comparison with the values from Table II of
a few percent to 10.9(5)µB for µ1, 11.7(3)µB for µ2, and
8.7(6)µB for µ4.

The given uncertainties for the measured loss rates in
Table II are composed of a statistical error with one stan-
dard deviation derived from fitting a two-body rate equa-
tion to the measured data, and a systematic uncertainty
coming from number density calibration. Due to the dis-
tribution of molecules across many lattice layers this is by
far the greatest uncertainty in the Q2D geometry. The
average 2D density and its uncertainty was calculated
using a number-weighted average over occupied lattice
layers similar to Ref. [5]. When calculating the loss rate
ratio β⊥/β‖, the systematic uncertainty in the density
can be neglected as it is highly correlated for the mea-
surement of β⊥ and β‖.

Collision Formalism

We briefly describe the theoretical formalism used in
this article to determine the collisional properties of Er2
molecules in free space (3D collisions) and in an one-
dimensional optical lattice (Q2D collisions), in an arbi-

trary magnetic field ~B. More details can be found in
Ref. [6, 7].

We use a time-independent quantum formalism based
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on spherical coordinates ~r = (r, θr, φr) describing the rel-
ative motion of two Er2 molecules. The quantization axis
ẑ is chosen to be the confinement axis of the optical lat-
tice. A spherical harmonic basis set, summed over dif-
ferent partial waves ` with projections m` on the quan-
tization axis, is used to expand the total colliding wave
function. The one dimensional optical lattice is supposed
to be deep enough to consider the collision taking place
in an individual pancake. One pancake is represented as
an harmonic trap for the relative motion of reduced mass
mred

Vho =
1

2
mred ω

2z2 (1)

with ω = 2πν and ν = 31.2 kHz. The 3D collisions are
recovered by setting ν = 0. We consider molecules in the
ground state of the harmonic oscillator. A given state of
an Er2 Feshbach molecule is described by a rather com-
plicated linear combination of atomic states which cannot
be precisely calculated as mentioned in the next section
of this Supplemental Material. Therefore we consider
that the molecule has a magnetic moment of magnitude
µ aligned along the magnetic field which makes an angle
θ with the confinement axis. The interaction between
two molecules is provided by the magnetic dipole-dipole
interaction

Vdd =
µ2 (1− 3 cos2(θr − θ))

(4π/µ0) r3
. (2)

We also used an isotropic Er2 + Er2 van der Waals in-
teraction given by

VvdW = −C6

r6
(3)

with C6 = 4 × 1760 = 7040 a.u. which amounts to four
times the value of an isotropic atom-atom coefficient of
1760 a.u. from the theoretical work of Ref. [8]. Note that
an alternative value of 1723 a.u. based on observed transi-
tions was obtained in Ref. [2]. The Schrödinger equation
is solved for each radial intermolecular separations r us-
ing a log-derivative propagation method. Matching the
colliding wavefunction and its derivative with appropri-
ate two-dimensional asymptotic boundary conditions at
long-range [6] provides the cross section and the rate co-
efficient as a function of the collision energy for any arbi-
trary configurations of magnetic fields and confinements.
Averaging the cross sections over a 3D and 2D dimen-
sional Maxwell-Boltzmann distribution provides the cor-
responding thermalized rate coefficients β(T ) for a given
temperature.

At short range, we assume that the molecules undergo
a full loss mechanism process with a unit probability (it
can be either an inelastic or a possible reactive process).
This assumption, which corresponds to the so-called uni-
versal regime in ultracold collisions, considers that the
physics is independent of the initial short-range scatter-
ing phase-shift [9] of the full potential energy surfaces of

Er4. This is what it is usually assumed for theory as
nothing is known about this potential energy surface at
short range. Then, if the magnitude of the rates differs
between experiment and theory, one can learn that an
experimental system deviates from this universal regime
and short-range effects play a role.

To circumvent this, it is more convenient to compute
the ratio of the theoretical rates of two different mag-
netic field orientations since we will start with the same
short-range physics condition for both orientations, and
compare it with the corresponding experimental ratio.
An analysis based on the universal behavior of dipolar
collisions in confinement of Ref. [10] using a Quantum
Threshold model leads to the following formula for the
ratio β⊥(T )/β‖(T ). For bosons, using Eq. 30 of Ref. [10]
to describe β⊥ (dipole dominated) and Eq. 32 of the same
reference for β‖ (confinement dominated) we find

β⊥(T )

β‖(T )

∣∣∣∣
bos

∼
(
adB
aho

)4
ad
aho

e2(ad/aho)
2/5

(4)

when ad, aho > avdW for a fixed value of adB/aho where
adB is the thermal de Broglie wavelength. For fermions,
using Eq. 16 of Ref. [10] to describe β⊥ (dipole domi-
nated) and Eq. 14 of the same reference for β‖ (van der
Waals dominated), along with Eq. 27, we find

β⊥
β‖

∣∣∣∣
fer

∼
(

ad
avdW

)3

(5)

when ad, avdW < aho. These formulas suggest to plot the
ratio as a function of ad/aho for bosons for a fixed ratio
adB/aho = 2π

√
ν/kBT and as a function of ad/avdW for

fermions, as it has been done in Fig. 4 for the magnetic
dipolar molecules of Er2 and the electric polar molecules
of KRb.

Adiabatic Model

In Ref. [2] we presented the theoretical bosonic-erbium
Feshbach spectra derived from coupled-channels calcula-
tions. We concluded there that such first-principle eval-
uations can not quantitatively capture the complex scat-
tering behavior of Er. In fact with the current computing
capabilities, the calculations can not be converged with
respect to the number of basis states required to explain
the experimental Feshbach-resonance density. For this
reason, we developed a novel approach based on adia-
batic potentials (adiabats) Un(R;B).

Our adiabatic model starts from the Hamiltonian H =
−(~2/2mr)d2/dR2 + V (~R). The first term is the radial

kinetic-energy operator with ~R describing the orienta-
tion and the separation between the two atomic dipoles,
and mr is the reduced mass. The second term of the
Hamiltonian is the potential operator V (~R), which de-
scribes the Zeeman and interatomic interactions. It reads
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V (~R) = ~2~̀2/(2mrR
2)+HZ +W elec(~R) and incorporates

the rotational energy operator with molecular orbital an-
gular momentum ~̀, the Zeeman interaction of two atoms
HZ , and the electronic potential operator W elec(~R) be-
tween the particles. Our model assumes that the relative
vibrational motion of two Er atoms is slow compared to
the timescales of the rotational, Zeeman, and “electronic”
atom-atom interactions.

The Zeeman interaction is HZ = gµB(j1z + j2z)B.
Here, g = 1.16 is the Er g-factor, a magnetic field B
is aligned along the ẑ direction, and jiz is the z com-
ponent of the angular momentum operator ~i of atom
i = 1, 2. The electronic potential operator W elec(~R), de-
scribed in Refs. [2, 11, 12], is anisotropic, as it depends

on the orientation of ~R. At large separation R, W elec(~R)
is given by the magnetic dipole-dipole interaction plus
both the isotropic and anisotropic contribution of the
van der Waals interaction. For R → ∞ the interaction
W elec(~R)→ 0.

The Hamiltonian is evaluated in the basis |i〉 =

|(j1j2)JM〉Y`m`
(R̂), where ~J = ~1 + ~2 and Y`m`

(R̂) is
a spherical harmonic. It conserves m` + M and parity
p = (−1)`. In addition, for bosonic isotopes (−1)`+J = 1.
We focus on ultracold collisions between atomic states
|j1m1〉 = |j2m2〉 = |6,−6〉 and, therefore, only include
basis functions satisfying m` + M = −12. We limit the
included partial waves to even ` ≤ 6 and thus to states
with even J , as the “adiabatic” magnetic moments of the
resonances quickly converge with the included number of
partial waves (In our calculation there is one s-wave chan-
nel, four d-wave channels, nine g-wave channels, and 16
i-wave channels.).

The adiabats Un(R;B) with n = 1, 2, . . . are eigen-

values of the operator V (~R) at a given field strength
B. Their eigenfunctions are |n;R〉 =

∑
i cn,i(R)|i〉 with

R-dependent coefficients cn,i(R). Note that we neglect
the coupling between Un(R;B) due to the radial part of
kinetic-energy operator.

Figure S1 shows the adiabats at B = 2.44 G. The scat-
tering starts from the s-wave entrance channel correlating
to the energetically lowest adiabat. All other potentials
either have a centrifugal barrier and dissociate to two
atoms with M = −12, or dissociate to closed-channel
Zeeman sublevels with M > −12. We distinguish four
groups of potentials, each associated with a dominant
partial wave `. Within a group, the potentials are split
by the Zeeman energy and the magnetic DDI and disso-
ciate at different atomic thresholds. For each potential
Un(R;B) we can further assign the dominant J and M ,

where ~J = ~1 + ~2 is the sum of electronic angular mo-
menta of two atoms and M is the projection of J on
the internuclear axis. The figure also shows an exam-
ple of predominantly d-wave Feshbach molecules with an
outer classical turning point R∗. Its “adiabatic” molec-
ular magnetic moment is to good approximation given
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Figure S1. Adiabatic interaction potentials of two Er atoms
at medium- (a) and long- (b) interatomic separation R. The
calculation is performed at B = 2.44 G with m` + M = −12
and includes only states with even ` ≤ 6. The zero of en-
ergy is at the dissociation limit of two |j,m〉 = |6,−6〉 atoms.
Black, green, red, and blue curves indicate the dominant `-
wave character. The horizontal black line indicates a d-wave
Feshbach molecule with an outer turning point R = R∗ reso-
nant with the s-wave entrance channel. Panel (b) also shows
the M projection for each of the Zeeman dissociation limit.

by µcalc ≈ −dUn(R∗;B)/dB, where we further use that
most of the vibrational wavefunction is localized around
R∗. Interestingly, we observe that the µcalc value quickly
converges with the number of included ` (even ` ≤ 6 is
sufficient) and that it strongly depends on the DDI but
only weakly on the vdW dispersion potential. In fact, at
R∗ the DDI dominates over the anisotropic part of the
dispersion potential.

The adiabatic magnetic moment of a resonance is
given by µadiab

nv ≡ −dEnv(B)/dB ≈ −dUn(R∗;B)/dB,
where we realize that to good approximation most
of the adiabatic vibrational wavefunction is localized
around the outer classical turning point. We further
note that dUn(R∗;B)/dB = 〈n;R∗|dHZ/dB|n;R∗〉 from
the Hellmann-Feyman theorem and, hence, µadiab

nv =
−gµB

∑
iMi|ci(R∗)|2, where Mi is the total atomic pro-

jection quantum number of state |i〉. We assign a res-
onance by the quantum numbers of the basis state |i〉
for which |ci(R∗)|2 is largest and note that the absolute
value of the magnetic moment of a resonance is always
smaller that 12gµB ≈ 14µB .

We further assume that the non-adiabatic coupling
between the adiabatic potentials is significantly smaller
than their spacings for R < 100a0. Then a weakly bound
level of adiabatic potential n can lead to a Feshbach res-
onance when its energy Env(B) coincides with the en-
trance channel energy. The outer turning point R∗ of
this level satisfies Un(R;B) = 0. The resonance acquires
a width due to non-adiabatic coupling to the entrance
channel.

Finally, we determine the approximate quantum num-
bers of experimentally-observed resonances with Bres < 3
G, listed in Table I, based on a comparison of the exper-
imental magnetic moment with those predicted by the
adiabatic model at the same resonant field. We find that
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for these resonances there exist adiabats with a magnetic
moment that agrees within 1% uncertainty with the ex-
perimental values. A study of the largest coefficients
cn,i(R) at R = R∗ then enables us to assign the dom-
inant quantum states shown in Table I.

Figure 2 (main text) shows the magnetic-field de-
pendence of the adiabatic magnetic moment at the en-
trance channel energy for each of the adiabatic poten-
tials Un(R;B). We see that for B > 10 G the mag-
netic moment values equal integer multiples of gµB cor-
responding to those of the atomic limits. For smaller field
strengths the adiabatic magnetic moments show mixing
of the Zeeman sublevels. Here, the magnetic moment
value depends on the magnetic dipole-dipole interaction
but only weakly on the strength and anisotropy of the
dispersion potential. The figure also shows our experi-
mentally studied Feshbach resonance locations as well as
their magnetic moments µexp; see Table I.
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5
A quantum simulator of extended
Hubbard models

A major advantage with ultracold atomic systems is the outstanding experimental flexibility
to tailor the confinement for the atoms via optical potentials. This unique control allows
to conveniently realize different trapping geometries, where the potentials are formed by
off-resonant laser light, exploiting the AC-stark effect [Gri00]. The first realization of optical
traps for cold atom experiments featured harmonic potentials [Chu86], which are still widely
used in experiments today. In recent years also different potentials have become available
as e. g. box-like potentials [Gau13]. However, one of the cornerstones in experiments with
ultracold atoms is the ability to restrict the motion of the atoms along different directions
via strong confinements, allowing to access quantum effects in reduced dimensions.

A famous realization of reduced dimensions is given by the implementation of a three-
dimensional (3D) optical lattice. For very deep lattice potentials, this leads to a pinning
of the atoms to individual lattice sites, effectively reducing the dimension to zero. Addi-
tionally, the precise and individual control of the depth of the periodic potentials along
the different geometrical axis also allows to relax the confinement along specific axis. This
enables the study of physical phenomena in tube- or pancake-traps, mimicking a one- or
two-dimensional world, respectively.

Three-dimensional optical lattices are nowadays one of the most important tools in ultracold
quantum-gas experiments, as they can access physical phenomena found in solid state sys-
tems via quantum simulations of the underlying Hamiltonians, see Ref. [Fey82] for the basic
idea. Several experimental milestones have been achieved in the past years, including the
observation of quantum many-body phase transitions [Gre02, Köh05, Jör08], the access of
orbital physics [Mül07, Wir10], the observation of superexchange coupling [Tro08], the imple-
mentation of sophisticated band structures via specialized lattice geometries [Tar12], the re-
alization of lattice spin models with short-range [Kra12] and long-range interactions [dP13b,
Yan13], and the creation of peculiar ground states, such as the antiferromagnet [Maz17b].
This list is far from being complete but strikingly shows how the remarkable experimental
progress in the engineering of ultracold atomic systems enables the access of fascinating
quantum phenomena in a controlled manner and allows to prepare peculiar quantum phases.
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Within this thesis, we have upgraded our experimental apparatus by implementing a 3D
optical lattice, see Appendix B, transforming our system into an analog quantum simulator
of Hamiltonians with long-range correlations. The strongly magnetic character of erbium
atoms can allow to prepare exotic quantum phases resulting from the long-range and aniso-
tropic dipole-dipole interaction (DDI) between the particles. In order to set the stage for
the results presented in this chapter, in Sec. 5.1 we will discuss the framework of an optical
lattice in the single particle picture. Section 5.2 introduces the underlying extended Hub-
bard Hamiltonians of the engineered systems for bosonic and fermionic dipolar particles.
We will stress the influence of the DDI on the physical observables and its effect on the
quantum many-body phase transitions, see Sec. 5.3. Finally, Sec. 5.4 sets the foundation for
the scientific results that are presented in Sec. 5.5 and Sec. 5.6. These sections contain our
publications on the implementation of extended Bose-Hubbard models and the realization
of strongly interacting dipolar Fermi gases, respectively.

5.1. Periodic potentials

5.1.1. Bloch waves

For a freely propagating particle in one dimension, the Schrödinger equation takes the form,
see e. g. Ref. [Hum85],

HΦ(x) =
p̂2

2m
Φ(x) = EΦ(x) 5.1

where the solution is found to consist of plane waves Φ(x) = eikx, and the particle is well
described by the energy-momentum relation E = ~2k2/2m, where k is the wavevector of the
particle and m its mass. Here, the energy consists of a continuum of states. The situation
changes drastically when the particle is confined in a periodic potential, which leads to a
discretization of energy states, as will be shown below.

In nature, periodic potentials are typically found in solid state systems where nuclei are
arranged in a crystalline structure. The coulomb attraction of the nuclei forms a periodical
potential V (x) that restricts the motion of the electrons along x, see e. g. Ref. [Ash76]. In

this paradigmatic case, the solutions of the Schrödinger equation with H = p̂2

2m + V (x) are
given by the Bloch wave functions

Φ(n)
q (x) = eiqxu(n)q (x) where u(n)q (x) = u(n)q (x+ d) 5.2

is a completely delocalized periodic function reflecting the periodicity d of the lattice, with
q denoting the quasimomentum and n being the Bloch-band index.

In ultracold-atom experiments the role of the nuclei in solid state systems is taken by an
optical lattice, which in this case forms a periodic potential for the individual atoms. The
optical lattice can be formed by a retro-reflected gaussian laser beam, propagating along the
x axis and being radially symmetric in r. The potential is described as

V (r, x) = −V0 e−2r2/w2
0 cos2(kx) ≈ −V0

(
1 − 2

r2

w2
0

)
cos2(kx), 5.3
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with V0 representing the lattice depth and k = 2π/λ denoting the lattice wave vector. The
finite focal waist of the lattice beam w0 results in an radial harmonic confinement of the
atoms, which for the purpose of this introduction will be neglected, i. e. r is set to be zero.
In order to avoid inelastic atom-light scattering, the wavelength λ should be chosen such that
it is far detuned from atomic transitions. The depth of the optical lattice is conveniently
given in recoil energy ER as V0 = sER with ER = ~2k2/2m linked to the absorption or
emission of a lattice photon for an atom with mass m.

Following from equation 5.2, the periodicity of the lattice allows to expand u
(n)
q (x) and V (x)

as discrete Fourier sums, leading to the expressions

u(n)q (x) =
∑

l

c
(n,q)
l ei2lkx and V (x) = −V0 cos2(kx) = −(V0/4)

(
e2ikx + e−2ikx + 2

)
. 5.4

The kinetic energy term reads as

p̂2

2m
=
∑

l

(l × 2~k + q)2

2m
=
∑

l

(
2l +

q

~k

)2
ER. 5.5

By inserting 5.4 and 5.5 into the stationary Schrödinger equation one can obtain its matrix
form expression:

∑

l

Hl,l′c
(n,q)
l = E(n)

q c
(n,q)
l with Hl,l′ =





(2l + q/~k)2ER − V0/2 if l = l′

−V0/4 if |l − l′| = 1
0 else.

5.6

Periodicity allows to confine q to the first Brillouin zone [−~k, ~k] without the loss of general-
ity. We can now solve the eigenvalue problem by numerically diagonalizing the Hamiltonian.

The extracted eigenvalues E
(n)
q give the energy at the quasimoment q for the n-th Bloch

band. The energy spread within q for a given lattice band is associated to the width of the
band.

5.1.2. Band structure

In Fig. 5.1(a) we plot the energies of the five lowest bands as a function of the lattice depth.
The evolution of the different bands captures three different regimes. For zero lattice depth
the particle is well described by the free-particle dispersion relation, where no gaps between
the different bands are found, correspoding to a continuum of states. With increasing lattice
depth, band gaps open up, leading to a quantization of energy states. Finally, for an infinitely
deep lattice the width of the bands would reduce to zero and their energies would correspond
to the energies of an harmonic oscillator E(n) = ~ωlat(1/2 + n) with ωlat = 2

√
sER.

In contrast to solid state systems, ultracold atoms allow to conveniently explore the different
regimes, as the depth of the lattice potential can be tuned via V0 ∝ I α. This magic knob
is provided by the direct access to the intensity I = 2P/(πw2

0) of the lattice beam, where
P denotes the power of the laser light. In order to precisely know the resulting lattice
depth, it is crucial to determine the dynamical polarizability α of the specific element at
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Figure 5.1.: Energy of bands in a 1D optical lattice. (a) The energy of the five lowest Bloch bands
(depicted by green, dark blue, orange, red, light blue from lowest to higher bands) evolve and the
energy spreads become narrower as the lattice depth is increased. In addition bandgaps emerge. The
energy of the gaps between the ground band and the higher bands is shown in (b), respectively. Same
color notation as in (a). The energies and the lattice depths are given in recoil energy ER.

the required laser wavelength. In the case of erbium, the dynamical polarizability prior
to our work was unknown. With our experiment, we have measured α for experimentally
relevant wavelengths as reported in Appendix A.2. For a calculation of the polarizability,
the contributions of all dipole-allowed transitions in erbium have to be taken into account
via a sum-over-state formula [Lep14].

A majority of ultracold atom experiments focus on physics of the ground band in deep optical
lattices, where effects arising from coupling to higher lattice bands are negligible [Lew12].
Still, the knowledge on the energy gap to higher bands is important as it can be used e. g. to
calibrate the lattice depth by measuring the excitation energy from the ground to higher
bands. Figure 5.1(b) depicts the band gap ∆E(n) between the ground and the excited bands
for a one-dimensional (1D) optical lattice.

Beside the physics in the ground band, an interesting direction is the investigation of or-
bital physics, accessed by transferring atoms to higher bands. Pioneering work have shown
that coherent states in higher lattice orbits indeed can be prepared, in the orbit of one
axis in an anisotropic 3D lattice [Mül07] and in the coupled two-dimensional orbit of a 2D
lattice [Wir10]. The access of higher orbits enables the studies of complex quantum many-
body phases as e. g. p-wave superfluidity [Li16]. It should be noted that in the case of a
more-dimensional lattice the wavevector q consists of components along all the orthogonal
lattice axes, leading both, to degeneracies of higher bands for certain quasimomenta q, and
to different band gaps as compared to the 1D situation. As the investigation of higher orbits
is not the scope of the present thesis, the reader is referred to e. g. Ref. [Mül06] for more
details.
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5.1.3. Wannier functions

For experiments in deep optical lattices, it is convenient to switch from the description with
delocalized Bloch functions to a set of states that are localized at single lattice sites xi. This
set of wavefunctions is given by the so-called Wannier functions that form a single-particle
basis for each band n and that are orthogonal to each other with respect to different lattice
sites and different bands. They are formed by a linear combination of all Bloch waves1 of a
given band as

wn(x− xi) =
1√
M

∑

q

e−iqxiΦ(n)
q (x) 5.7

where q is again confined to the first Brillouin zone and M is a normalization factor [Wan37].
Within this thesis, we work with Wannier states in the lowest lattice band and hence the
band index n is omitted from now on. Working with well localized Wannier functions gives
the advantage of easily placing an atomic wavefunction on an arbitrary lattice site. Indeed,
the Wannier function at lattice site j is constructed by a simple translation of the Wannier
function at lattice site i, as wj(x) = w(x − xj) = w(x − (xi + (j − i)d). For deep enough
optical lattices, i. e. in the tight binding regime, the ground state of a lattice site can also be
described by the harmonic oscillator ground state

who(x) =
1

π1/4l
1/2
ho

e
− x2

2l2
ho with lho =

d

πs1/4
5.8

being the single-site harmonic oscillator length. To visualize the validities of these two pos-
sible descriptions, we compare their functional form in Fig. 5.2 for various lattice depths
(Fig. 5.2(a)). For an atom occupying the lattice site i = 0, the Wannier function wi(x)
(Fig. 5.2(b)) and the harmonic oscillator ground state who(x) (Fig. 5.2(c)) as well as their
difference w0(x) − who(x) (Fig. 5.2(d)) are depicted. For small lattice depths the Wannier
function extends over more lattice sites featuring side lobes, whereas it becomes more and
more localized for deeper lattices. While the harmonic oscillator state gives very similar
results for deep lattices, it particularly underestimates the occupation at neighboring lat-
tice sites for shallow lattices, as nicely captured by the residual of the two descriptions
(Fig. 5.2(d)). This can have a strong influence on the kinetic and potential energy terms
of the system’s underlying Hamiltonian, i. e. the tunneling of a particle to a neighboring
lattice site and the interaction energy of neighboring particles, as this terms are directly
related to the wavefunction overlap between neighboring sites as will be discussed below.
The description with harmonic oscillator states has therefore to be used with care.

1 The complex phases of Φ
(n)
q (x) have to be chosen such that the Wannier function of each band are real,

symmetric or antisymmetric around x = 0 or x = d/2 and fall of exponentially in x [Koh59].
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5.2. Extended Hubbard models

5.2.1. The Hubbard model

The single-particle description in a periodic potential by itself leads to interesting phenomena
such as coherent Bloch oscillation in momentum space within the first Brillouin zone when the
particle is accelerated by an external force [Blo29, Dah96, Gus08, Fat08], or the tunneling
to higher bands at the edge of the Brillouin zone for small enough band gaps, known as
Landau-Zener tunneling [Lan32, Zen34, Tay10].

To capture real physical systems, in addition to the single particle description it is crucial
to take into account the correlations between the particles on the microscopic level, e. g. the
electron-electron interaction in solid state systems. In particular, the many-body dynamics
at low temperature depend critically on the interparticle interactions on single lattice sites
and are well described by the famous Hubbard model. The Hubbard Hamiltonian captures
the physical observables of a correlated many-body system in a lattice, i. e. the tunneling
of particles between neighboring sites, known as the term J , as well the onsite energy for
multiple particles occupying the same lattice site, denoted by the term U . Indeed this model,
being simple in its representation but still comprehensive with its description, is one of the
prime examples of a many-body model in physics, and has since its developement [Hub63]
received significant attention. Originally, it was intended to explain the correlated behav-
ior of fermionic particles, i. e. electrons, in a solid state system interacting via Coulomb
repulsion, resulting in more stringent conditions for the emergence of ferromagnetism. The
proposal to experimentally access the Hubbard model via ultracold atomic systems [Jak98]
led to a major popularization, resulting in the observation of the quantum phase transi-
tion from a superfluid state to a Mott insulator (SF-MI) within a bosonic system [Gre02],
as well as to the realization of the Hubbard model in the original context with fermionic
particles [Jör08]. These milestones have been followed by a vast amount of theoretical and
experimental studies, see Ref. [Lew12] for an overview.

More recently the Hubbard model has become accessible across different experimental plat-
forms. Here, Fermi-Hubbard physics has been demonstrated with a 2D electron gas in an
artificial honeycomb lattice formed by a gallium arsenide heterostructure [Sin11], is modeled
by digital quantum simulation via the use of a X-mon transmon qubit array in supercon-
ducting circuits [Bar15], and is realized for two sites by single-site resolution of subsurface
boron dopants in silicon [Sal16]. Increasing experimental control nowadays allows to emulate
Fermi-Hubbard models in solid state systems without suffering from electrostatic disorder, as
beautifully demonstrated by single-electron control with gate-defined quantum dots [Hen17].
Despite that for superconducting circuits photonic excitations are used as ”quantum par-
ticles” [Hou12], theoretical works show that simulation of Bose-Hubbard physics including
the SF-MI phase transition is at reach, e. g. by coupling a charge qubit to a superconducting
transmission line resonator to form a lattice site [Den15]. An attractive 1D Bose-Hubbard
model already has been realized with a three-qubit transmon array [HG15]. This ongoing ex-
perimental and theoretical explorations of the Hubbard model throughout different quantum
system platforms underline its unbroken currentness.
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Quantum statistics

As discussed, the Hubbard model can be accessed with both classes of quantum particles,
namely bosons and fermions. The differences for this two classes arises from quantum statis-
tics. While for identical bosons multiple particles can occupy the same lattice site, in the
case of identical fermions a multi-occupancy is forbidden by the Pauli exclusion principle.
As a result, the Fermi-Hubbard model of identical fermions includes only the tunneling term
J , while for a Bose-Hubbard system additionally the onsite interaction term U has to be
considered. To realize the onsite term U also with a fermionic system, an additional spin
state has to be considered.

In the following, we will discuss Bose-Hubbard and Fermi-Hubbard models for the case of
dipolar particles, which open the opportunity to access new Hamiltonian terms that arise
from the long-range character of the DDI.

5.2.2. Extended Bose-Hubbard model

While the Bose-Hubbard model already gives a solid framework for the exploration of lattice
models, an enriched system can be achieved when correlations are extended beyond single
lattice sites as accessible with long-range interactions. Here, a possible route involves dipolar
particles, where the DDI gives significant nearest-neighbor interaction leading to exotic quan-
tum phases [Gór02, Dut15]. The many-body dynamics of this system can be captured by the
so-called extended Hubbard model, which is at the heart of the presented results within this
chapter. Here, we will review the theoretical description of this model for the case of bosonic
dipolar atoms resulting in the extended Bose-Hubbard (eBH) model. A similar treatement
leads to the extended Fermi-Hubbard model, see Sec. 5.2.3.

Let us consider a dipolar Bose-Einstein condensate within a 3D periodic potential V (r). The
many-body Hamiltonian in second quantization reads as

Ĥ =

∫
drΨ†(r)

[
−~2∇2

2m
+ V (r)

]
Ψ̂(r) +

1

2

∫
dr

∫
dr′Ψ̂†(r)Ψ̂†(r′)U(r− r′)Ψ̂(r′)Ψ̂(r), 5.9

where Ψ̂†(r) and Ψ̂(r) are the bosonic creation and annihilation field operators, respectively.
The first integral of Eq. 5.9 describes the energy of a single particle in the periodic potential
V (r) and the second part considers the interaction U(r − r′) between two particles. They
interact with each other via the short-range contact interaction (∝ as), see Eq. 4.1, and the
long-range DDI (∝ µ2), see Eq. 3.2,

U(r− r′) =
4π~2as
m

δ(r− r′) +
µ0µ

2

4π

1 − 3 cos2 θr−r′

|r− r′|3 . 5.10

The field operators can be expanded in the basis of Wannier functions as Ψ̂(r) =
∑

i b̂iwi(r)
where bi is the bosonic annihilation operator for a particle on lattice site i. Here, the Wannier
function is a three dimensional object and is given by the product of the individual orthogonal



5.2. EXTENDED HUBBARD MODELS 93

5 10 15 20 25 30
lattice depth sxyz

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104
|e

ne
rg

y|
 (

H
z)

(b1)

(b4)(b3)

(b2)(a) Us

Udd

Vdd

J
∆Js

∆Jdd

Vs

Jpair

J U

V ∆J

Figure 5.3.: Non-standard extended Bose-Hubbard terms. (a) Absolut energies of the individual
matrix elements for the case of erbium in a 3D lattice for our experimental lattice setup, see Appendix
B, as a function of the 3D lattice depth sxyz = sx = sy = sz. The terms are calculated along the
horizontal plane (xy) with a lattice spacing of d = 266 nm and a dipole orientation along the vertical
z axis. The s-wave scattering length is set to as = 100 a0. Beside the tunneling amplitude J , all
terms have contribution from the contact interaction (solid lines) and the dipolar interactions (dashed
lines), see text. (b1-b4) Illustrations of the relevant terms of the non-standard eBH model.

Wannier states w(r) = w(x)w(y)w(z). The two-body interaction of Eq. 5.9 then takes the
form

Ĥint =
1

2

∑

ijkl

Uijklb
†
ib

†
jbkbl 5.11

where the interaction strength

Uijkl =

∫
dr

∫
dr′w∗

i (r)w∗
j (r′)U(r− r′)wk(r)wl(r

′) 5.12

results from the wavefunction overlap of lattice sites i, j, k and l. Equation 5.12 contains the
matrix elements of all possible processes involving two particles in a lattice. Taking only
onsite and nearest-neighbor scattering events into account, finally leads to the non-standard
extended Bose-Hubbard Hamiltonian in single-band approximation [Dut15]

H = Hsingle +Honsite +Hoffsite, with

Hsingle = − J
∑

⟨ij⟩

(b†ibj + h.c.) +
∑

i

Vh,i ni,

Honsite =
U

2

∑

i

ni(ni − 1), and

Hoffsite = V
∑

⟨ij⟩

ninj − ∆J
∑

⟨ij⟩

[
b†ibj(ni + nj − 1) + h.c.

]
+ Jpair

∑

⟨ij⟩

b†2i b
2
j .

5.13

Here, ⟨ij⟩ denotes a pair of nearest-neighboring sites and ni = b†ibi is the onsite occupation
number. The Hamiltonian consists of three contributions: the single particle part Hsingle, the
onsite part Honsite, and the offsite part Hoffsite that results from correlations between particles
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in neighboring lattice sites. The last part of the Hamiltonian represents new terms compared
to the standard Bose-Hubbard model. The two Hamiltonian parts Honsite and Hoffsite arise
from the interaction U(r− r′), where contact and dipolar interactions are at play. To access
the terms of the Hamiltonian in experiments it is crucial to know their respective strength
for experimental relevant parameters. In Fig. 5.3 we plot the individual contribution of the
eBH terms as a function of equal lattice depths sxyz in the three orthogonal directions for
our experimental conditions, see Appendix B. It should be stressed that, in contrast to solid
state systems, the individual terms and especially the relative strengths of the eBH terms can
be tuned conveniently via the control of the lattice depth, which allows to access different
regimes and quantum phases. The individual terms of the Hamiltonian will be discussed
below.

Single particle terms

Single particles can hop between neighboring lattice sites with a tunneling rate J/h
(Fig. 5.3(b1)), which reads as

J = −
∫
drw∗

i (r)[−~2∇2

2m
+ V (r)]wj(r). 5.14

Its strength depends on the overlap between the involved wavefunctions of neighboring lattice
sites i and j. As has been shown in Fig. 5.2, for deeper lattices the Wannier functions become
more and more localized, resulting in a diminishing overlap. Hence, while for shallow lattices
the tunneling J dominates the system dynamics it decreases for increasing lattice depths
(dark blue line, Fig. 5.3(a)) and eventually vanishes for infinitely deep lattices.

Additional single particle contributions can arise from potential gradients that lead to an
energy offsets between different lattice sites [Sac02]. In particular, an important role can be
played by the radial harmonic confinement of the lattice beam, see Eq. 5.3, which leads to a
position dependent potential energy Vh,i. Particles away from the center of the red-detuned
lattice beams experience a higher potential energy as compared to the central particles. This
can influence the hopping dynamics and can lead to different spatial regions of quantum
phases across the lattice for sufficient lattice dephts [Cam06, Föl06].

Onsite contributions

When a number of interacting atoms occupy the same lattice site, the particle correlations
lead to an energy change of the occupied state, i. e. the energy is increased (decreased)
for repulsive (attractive) interactions. In standard Bose-Hubbard models this onsite energy
U is solely given by the contact interaction between the particles, which is related to the
scattering length as. In the case of dipolar particles the onsite energy reads as U = Us+Udd =
Uiiii and captures both the contact and the dipolar interactions (Fig. 5.3(b2)). As depicted
in Fig. 5.3(a), the contact interaction (solid red line) dominates the onsite energy for the
experimental relevant scenario and in particular for deep lattices exceeds the energy of all
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other eBH terms. This is a direct consequence of the localization of the 3D Wannier functions,
effectively resulting in a compression of the particles. The dipolar contribution (dashed red
line) scales similarly as the contact contribution but additionally depends on the shape of the
3D Wannier function and the orientation of the atomic dipoles with respect to the symmetry
axis of the confinement potential [Wal13], i. e. Udd(w, θ).

As a result of the onsite energy, a gap opens up between e. g. the energies of a singly-
occupied and a doubly-occupied lattice site [Gre02]. The energy of this gap is also known
as the particle-hole excitation energy and in experiments can be conveniently accessed via
modulation spectroscopy, see Sec. 5.4.1.

Offsite contributions

The particle correlations can also give rise to offsite terms in the Hamiltonian. The probably
most exotic term is the nearest-neighbor interaction (NNI) term V = Vs + Vdd = Uijij

(Fig. 5.3(b3)). We emphasize that the contribution of the DDI (Vdd) to the NNI in a deep
lattice exceeds the contribution of the contact interaction (Vs) by several orders of magnitude
(dashed and solid green line in Fig. 5.3(a)), underlining the prominent role of the long-range
nature of the DDI. Especially for deep lattices Vs, can safely be neglected. Offsite interactions
are from particular interest as they can lead to special ordering of the particles within the
optical lattice, associated to exotic quantum phases. A promising theoretical study of such
quantum phases is performed in Ref. [CS10]. A system of hardcore dipolar bosons in a 2D
lattice studied via the path integral Monte Carlo method reveals the existence of various
Mott lobes depending on the filling fraction. In particular for half filling, the out-of-plane
oriented dipoles arrange in a checkerboard order. Remarkably, the investigations, where no
cut-off on the dipolar interaction potential is used, identify parameter regions where the
ordered crystalline phase remains superfluid, resembling a supersolid phase. This phase is
shown to remain stabilized even at finite temperature [CS10]. The experimental realization
of a supersolid phase, proposed for Helium already in the 1960s, is still of prime interest
within the quantum physics’ community2.

It has been observed that offsite interactions can also arise from the so-called superexchange
interaction, assosciated to two virtual tunneling processes of neighboring particles [Aue94].
The coupling strength J2/U of this second-order process can be large enough to study lat-
tice spin models with two-component mixtures. While first observed locally for a pair of
bosonic atoms in a double well [Tro08], super-exchange coupling allowed to realize short-
range magnetic correlations in the fermionic Hubbard model in lower and later also in three
dimensions [Gre13, Har15], and led to the observation of the propagations of single spin-
excitations [Fuk13a] and magnon bound states [Fuk13b] in a 1D-Bose-Hubbard spin chain.
Remarkably, when temperatures well below the superexchange scale are prepared, the cor-
relations even can give rise to a long-range antiferromagnetic ordering, as recently observed
in a 2D Fermi-Hubbard system [Maz17b]. However, superexchange interactions vanish for

2 It should be noted that very recently experimentalists from ETH and MIT have managed to realize a
supersolid phase by coupling a BEC to the modes of two optical cavities [Léo17] and by introducing a
spin-orbit coupling of BECs in an array of double-well potentials [Li17], respectively.
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very deep lattices. In stark contrast, nearest-neighbor correlations arising from the DDI are
only weakly affected by the lattice depth, see Fig. 5.3(a), and also enable direct coupling of
particles beyond nearest-neighbors.

An additional term in the Hamiltonian of Eq. 5.13 resulting from offsite correlations is given
by the occupation dependent hopping ∆J , known as density-induced tunneling (DIT) [Lüh12,
Bis12] (Fig. 5.3(b4)). For the case of dipolar atoms, it has contributions both from the con-
tact and the DDI and reads as ∆J = ∆Js+∆Jdd = −Uiiij . As can be seen in Fig. 5.3(a) (light
blue lines) the values of the DITs reach values of up to 10% of J and hence can significantly
influence the SF-to-MI quantum phase transition, see Ref. [Lüh12] and Sec. 5.3.1. While di-
rect observations of DIT in a contact interacting tilted 1D Mott insulator nicely showed how
strong (isotropic) interaction can alter the tunneling dynamics [Jür14], the investigation of
DIT caused by DDI has been first performed with our system, see Sec. 5.5.

A final term involves the correlated pair tunneling Jpair = Jpair,s + Jpair,dd = Uiijj/2 of two
atoms originally occupying the same lattice site. As this term features very small energies
(grey lines in Fig. 5.3(a)) it will not be further discussed.

5.2.3. Extended spinor Fermi-Hubbard model

Fermi-Hubbard models

Fermi-Hubbard models are very relevant as they can be directly related to the description
of electrons in solid state systems. Fermionic particles show completely distinct quantum
statistics with respect to their bosonic opponents as Pauli exclusion principle prohibits two
identical fermions to occupy the same quantum state. This has striking consequences for
the case of spin-polarized particles, as double occupancies (in the single-band picture) are
suppressed and the lattice Hamiltonian includes solely the tunneling term J .

The description changes once a fermionic spin-1/2 system is considered. Due to the distin-
guishability of the particles double occupancies become allowed, adding onsite interaction U
to the Hamiltonian. Additionally, nearest-neighbor exchange interactions can arise due to
superexchange correlations. For the case of U ≫ J the Hamiltonian resembles the celebrated
t − J model3 [Aue94]. Here, for the case of half-filling, i. e. one atom per lattice site and
an in total equal spin number, the system is in a Mott insulator state and an antiferromag-
netic ground state is expected [Man91]. A particular relevant scenario emerges when the
system undergoes doping, i. e. when the filling fraction is lowered. Here, strong relations to
high-temperature (high-Tc) superconductors such as cuprates [And87] can be drawn. The
microscopic description of high-Tc superconductors still puzzles the community and it is
believed that with the use of ultracold spin-1/2 fermions as a model system for electronic
spins in solids important insights can be be gained, see Ref. [Lee06] for a review. Indeed, the
high control on parameters such as temperature, interaction, and doping, nowadays reached

3 This model is well discussed in literature. Here, the notation typically differs from ours. t denotes for
the tunneling rate and J = 4t2/U for a spin conserving nearest-neighbor correlation due to superexchange
coupling.
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the single-atom level via quantum gas microscopes techniques, see e. g. Ref. [Maz17b]. This
gives exciting prospects for future explorations with this already comprehensive quantum
simulators of regimes where theoretical simulations fail.

While the rather simple Hamiltonian of the t − J model already provides surprisingly rich
physics along the phase diagram, ultracold atoms give possibilities to further enrich the sys-
tems description. Adding long-range interactions yields Hubbard systems where the inter-
particle interaction ranges beyond nearest neighbors. Further, by upgrading the spin degree
of freedom, high spin Hubbard models can be accessed. Both upgrades can be implemented
via the use of fermionic erbium. First, erbium provides long-range dipolar interactions and
second, the fermionic isotope features a large number of 20 spin states in the atomic ground
state, see Sec. 2.2.4. This gives promising prospects for the implementation of exotic lattice
models.

Fermi-Hubbard model with dipolar interaction

For single-spin dipolar particles, the extended Fermi Hubbard model includes in addition to
the tunneling term J the long-range NNI term V while the onsite term U remains absent.
To enrich the scenario, additional spin states can be added, resulting in the extended spinor
Fermi Hubbard (eFH) Hamiltonian. This Hamiltonian is derived via a very similar treatment
as for the bosonic case, see Sec. 5.2.2, and reads as [Aue94, Dut15]

H = − J
∑

⟨ij⟩,σ

(
b†σi
bσj

+ h.c.
)

+
∑

i,σ

Vh,i nσi + U
∑

i,σ ̸=σ′
nσinσ′

i

+
∑

i<j,σ

Vσi,σj

[
F z
σi
F z
σj

− 1

4
(F+

σi
F−
σj

+ F−
σi
F+
σj

)

]
.

5.15

Similarly to the bosonic case, ⟨ij⟩ denote pairs of adjacent sites, b†σi (bσi) are the fermionic

creation (annihilation) operators of an atom at site i, and nσi = b†σibσi is the associated
number operator. The spin degree of freedom is encoded in σ, which for the case of fermionic
erbium can be replaced by the state |F,mF ⟩. For the sake of simplicity the terms accounting
for density induced tunneling and pair hopping, see Sec. 5.2.2, are not included, while the
potential energy gradient term Vh,i is given for completeness. Figure 5.4 gives all relevant
terms of the eFH model.

The single-particle tunneling J (Fig. 5.4(b1)) and the onsite energy Us that arises from
interspin contact interactions between two distinguishable fermions, show the same strengths
as for the bosonic case (compare blue and red solid lines in Fig. 5.4(a) and Fig. 5.3(a))4. The
dipolar contribution to the onsite energy (red dashed line in Fig. 5.4(a)) gives similar results
as for the bosonic case. However, it should be noted that this energy crucially depends on
the composition of spin states.

In the case of a spinor dipolar Fermi gases in a 3D lattice the most prominent offsite terms
are given by the NNI F z

σi
F z
σj

(Fig. 5.4(b3)) and the flip-flop term F+
σi
F−
σj

(Fig. 5.4(b4)). The

4 We note that the tunneling term J is equal for all spin states.
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Figure 5.4.: Extended Fermi-Hubbard terms. (a) Absolut energies of the individual matrix elements
for the case of the two lowest spin states of fermionic erbium in a 3D lattice for our experimental lattice
setup, see Appendix B, as a function of the 3D lattice depth sxyz = sx = sy = sz. The terms are
calculated along the horizontal plane (xy) with a lattice spacing of d = 266 nm and a dipole orientation
along the vertical z axis. The interspin s-wave scattering length is set to as = 100 a0. Beside the
tunneling amplitude J all terms have contributions from the interspin contact interaction (solid lines)
and the dipolar interactions (dashed lines), see text. (b1-b4) Illustrations of the relevant terms of
the eFH model for the case of two spin states | ↓⟩ and | ↑⟩ (blue and orange dipole, respectively).
Nearst-neighbor terms arising from the F zF z and the F+F− coupling are included.

spin operators obey the rules

F z|F,mF ⟩ = mF |F,mF ⟩ 5.16

and
F±|F,mF ⟩ =

√
F (F + 1) −mF (mF ± 1)|F,mF ± 1⟩. 5.17

Vσi,σj , see Eq. 5.15, denotes the dipolar coupling strength and can be derived via

Vσi,σj =

∫
dr

∫
dr′w∗

i (r)w∗
j (r′)

(
µ0(gFµB)2

4π

1 − 3 cos2 θr−r′

|r− r′|3
)
wi(r)wj(r

′). 5.18

While the NNI term features larger energies as the flip-flop term (dark and light green dashed
lines in Fig. 5.4(a)), the flip-flop term can lead to resonant spin dynamics, see Sec. 6.2.

Additional (single particle) terms that have to be considered in experiments result from
spin-dependent potential energies. This energies arise from the Zeeman energy

HZeeman =
∑

i,σ

[
qli(B)σ + qqu(B2)(σ2 − F 2)

]
nσi , 5.19

see Sec. 2.2.4, and from spin-dependent light shifts

Hlight =
∑

i,σ

qL(I)σ2i nσi . 5.20

The light shift, being a consequence of the tensorial dynamical polarizability, see Appendix
A.2, is proportional to the intensity I of the confining laser traps. It should be noted that the
presented Hamiltonian can also feature terms that do not conserve the total magnetization
F z
tot =

∑
i S

z
i as discussed in Sec. 6.2.
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5.3. Quantum phase transitions

The extended Hubbard models discussed in Sec. 5.2.2 and Sec. 5.2.3 do not only determine the
relevant energy scales of the underlying system, but also give access to the dynamics of the
strongly correlated many-body wavefunction. In particular, quantum phase transitions can
be driven by changing the strength and the ratio of the different Hamiltonian parameters.
Within this section, we will briefly review the different phases expected for bosonic and
fermionic systems in 3D lattices, and will set them in context with our experiment. In
the case of bosons, a superfluid-to-Mott insulator quantum phase transition can be driven,
where for a two-component Fermi gas the initial metal phase can undergo phase transitions
to either a band or a Mott insulating state.

5.3.1. Superfluid-to-Mott insulator transition

A seminal example where the many-body dynamics of a system are changed in a dramatic way
is the superfluid-to-Mott insulator (SF-MI) quantum phase transition. The superfluid phase
is characterized by a large (integer) number fluctuation on a single lattice site, resulting from
a delocalized phase-coherent matter wave across the lattice. In contrast, in the insulating
regime, the ground state consists of exponentially localized bosonic wavefunctions leading
to a loss of global phase coherence. In the MI phase the excitations spectrum, associated
to the onsite energy U , is gapped and an incompressible state is formed. The quantum
phase transition can be driven by tuning the strength of the interaction term U with respect
to the tunneling term J . From a mean-field treatment for an average site occupation of
⟨n⟩ = 1, the phase transition is predicted to occur at the critical value (U/J)c = z × 5.8
with z associated to the system’s dimensionality via the number of nearest neighbors. While
this value is found to be in reasonable agreement with Quantum Monte carlo simulations
for the 3D case, (U/J)c ≈ 29.3 [CS07], it differs significantly from Quantum Monte carlo
simulations for the 2D case, (U/J)c ≈ 16.7 [CS08], and from DMRG simulations in the 1D
case, (U/J)c ≈ 3.4 [Küh00].

In ultracold experiments, the respective Hamiltonian parameters can be conveniently tuned
via the lattice depth s. This technique led to the first experimental demonstration of the
SF-MI quantum phase transition in 2002 [Gre02]. Nowadays, the phase transition can even
be studied on the single-atom level via quantum gas microscope techniques [She10, Bak10].
This methods allow to directly visualize the typical Mott structure, consisting of concentric
shells with commensurate fillings of density ⟨n⟩ = 1, 2, 3 . . . (from outside to the lattice
center), resulting from a weak transversal confinement of the optical lattice beams.

As the SF-MI transition is driven by the competition of U and J , for the case of dipolar
particles the contributions of the DDI to these terms has to be taken into account. Precisely,
one has to consider the ratio between the total onsite energy Utotal = Us +Udd and the total
tunneling rate Jtotal = J + ∆Js + ∆Jdd along the three directions. In Sec. 5.5 we study the
phase transition in such a dipolar system, proving a unique tunability of the critical value via
the dipole orientation. Further, for dipolar interactions, the phase diagram becomes enriched
by new and exotic quantum phases such as the checkerboard or the stripe phase [CS10]. The
preparation of such phases is at reach with our system.
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5.3.2. Metal to band and Mott insulator transition

A two-state fermionic mixture in an optical lattice shows a rich phase diagram. The relevant
energy scales that have to be compared are the onsite energy U , the width of the lowest Bloch
band W that is related to the tunneling rate5, and the chemical potential µ6. For the case
of weak interactions and a shallow trap (U ≪ µ≪W ), the system is in a metallic state and
the atomic wave functions are delocalized. The system is compressible and the central filling
per spin state ⟨nσ⟩ remains below 1, resulting in the occurrence of holes but also doubly
occupied sites (doublons). When the interaction energy U is dominating (U ≫ µ ≫ W )
doublons become suppressed and the system enters into the Mott insulating phase with
⟨nσ⟩ = 1/2. This phase shows a gapped excitation spectrum and can be described by two
Hubbard bands, where the upper band relates to the case of double occupancies. When the
chemical potential exceeds the onsite energy (µ≫ U,W ) filling of this upper band becomes
favorable and a band insulator forms with ⟨nσ⟩ = 1 at zero temperature. Here, every site is
occupied by each spin state and a further compression of the sample is not possible due to
the Pauli exclusion principle. It should be noted that in the case of a single spin system a
Mott insulating phase is absent, and the system enters into a band insulator, i. e. ⟨nσ⟩ = 1,
when µ exceeds W .

Pioneering experiments succeeded in observing band- [Köh05] and Mott-insulating
phases [Jör08, Sch08] by studying global observables. With the advent of fermionic quan-
tum gas microscopes, the investigation of the phase transitions with single-site resolution
has become available. As a result of the variation of the (local) density across the lat-
tice due to the harmonic confinement, the coexistance of all quantum phases within a
single sample is possible, which was nicely visualized with quantum gas microscope tech-
niques [Omr15, Gre16, Che16].

All this experiments set the stage to further explore the fermionic phase diagram. Indeed,
for low enough temperature, the Mott insulator state can undergo a phase transition to an
antiferromagnetically ordered state owing to spin-spin interactions via superexchange cou-
pling. While already in 2013 a promising experiment demonstrated short-range magnetic
ordering [Gre13], it remained an outstanding challenge to reach temperatures well below the
superexchange energy scale. It was not before 2017 that the group of Markus Greiner in
Harvard managed to engineer the entropy in such a way that a long-range ordered antifer-
romagnet was formed [Maz17b].

For the case of dipolar particles, additional quantum phases are expected due to the aniso-
tropic and long-range nature of the DDI. While superexchange coupling remains isotropic,
dipolar interaction can show different strengths and even a different sign along perpendicular
lattice directions. A recent theoretical work explores the possibility to adiabatically prepare
a striped ground state with dipolar atoms aligned within the plane of a 2D optical lattice.
The formation of the stripe state is driven by the competition of the long-range dipolar
correlations of neighboring spins that reside in adjacent Zeeman states [Maz17a].

5 For the case of an isotropic 3D lattice W = 12J .
6 The chemical potential scales with the strength of the radial harmonic confinement, see Vh,i in Eq. 5.15,

and with the total atom number.
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While the study of quantum phase transitions is one of the prime research directions with
ultracold experiments, the ability to prepare insulating phases is also a powerful tool to
protect the atomic sample from inelastic collisions. Pinning particles within a deep 3D
optical lattice strongly restricts their movement and their ability to interact with each other.
As a consequence, a large collisional protection can be realized [Tha06]. This can also nicely
facilitate the study of dipolar spin mixtures, as dipolar relaxations [Bur15] can be strongly
suppressed. In Sec. 5.6 we apply the method of lattice protection to prepare spin mixtures
of the two lowest magnetic substates of fermionic erbium in a Mott-type state.

5.4. Extended Hubbard models in experiments with dipolar
particles

In order to experimentally access the extended Hubbard models that we have discussed in
Sec. 5.2.2 and Sec. 5.2.3 we have upgraded our experiment by implementing a 3D optical
lattice. The lattice is formed by three retro-reflected orthogonal red-detuned laser beams7

operated at 532 nm along two horizontal axes and at 1064 nm along the vertical axis. The
resulting standing waves along the three orthogonal axes impose a 3D lattice structure on
the atomic cloud. The experimental setup of our optical lattice is described in detail in
Appendix B.

Importantly, the high natural abundance of bosonic and fermionic isotopes in erbium, see
Sec. 2.1, allows us to prepare both eBH and eFH systems and gives us a large flexibility for
the study of different quantum models and quantum phases. Prior to the study of new and
exotic quantum phases, it is necessary to properly understand and characterize our system.
This has been one of the major goals of this thesis. In particular, we have quantitatively
analyzed the eBH terms prepared with our dipolar bosonic system. Similar investigations
for our dipolar fermionic system are currently carried out, see Sec. 6.2. To characterize the
individual terms of the Hamiltonian, lattice spectroscopy can be applied. As a result of the
interaction terms, an energy gap can open up between neighboring lattice sites. This gap
can be measured via lattice modulation spectroscopy and carries information on the onsite
term U and the offsite term V of the Hamiltonian. As this method is one of the major tools
of our experiment, we will discuss it in the following section.

5.4.1. Lattice modulation spectroscopy

Depending on the number of particles occupying a given lattice site and on their interactions
the ground state energy of this lattice site can be modified. This is a direct consequence of
the onsite energy U and results in an up- or downshift of the state for repulsive and attractive
interactions, respectively. This energy shift can be accessed by resonantly driving particle-
hole excitations, e. g. by forming a double occupancy (doublon) out of two single occupancies
on neighboring lattice sites. To allow for such a process, energy has to be deposited into the

7 See Appendix A.2 for a definition of the red- and blue-detuned regions of the dynamical polarizability of
erbium.
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system. This can be conveniently utilized via amplitude modulation of the lattice potential
with a certain modulation frequency νmod, see Refs. [Stö04, Kol06, Cla06]. If the energy of
the lattice modulation Emod = hνmod matches the onsite energy U a particle-hole excitation
is resonantly driven.

As a probe of this resonant feature different methods are available. For the case of bosonic
particles, one can monitor the remaining fraction of atoms in the Bose-Einstein condensate
(BEC) after adiabatically melting the lattice, see also Ref. [Mar11]. If particle-hole excita-
tions have been driven, the system has gained energy and hence the final BEC fraction will
be reduced. In the case of fermionic particles, particle-hole excitations are only allowed if
additional spin states are available, as for spin-polarized fermions the Pauli exclusion prin-
ciple prohibits doublons in a single lattice band. The resonant condition of the modulation
spectroscopy can be extracted via the increase in temperature after going back to a degen-
erate Fermi gas. For dipolar particles, the formation of two-spin state doublons can also be
monitored via particle loss if dipolar relaxations take place.

In the case of dipolar systems, the onsite energy U consists of contributions from the isotropic
contact interaction and the anisotropic DDI, as discussed in Sec. 5.2.2. Comparing the mea-
sured energy to numerical simulations of the system at hand enables to extract the individual
contributions. In particular, one can determine the s-wave scattering length as, which is di-
rectly proportional to Us. This is a powerful method to precisely measure the scattering
properties of the system. This information can in turn be used to investigate fascinating
physical phenomena, see also Sec. 4.1.4.

Further details on the modulation spectroscopy method and on how to extract as are given
in the publications presented in Sec. 5.5 and Sec. 5.6. Remarkably, the lattice modulation
spectroscopy also allows to extract the offsite interaction V , a method invented by our group
and reported in Sec. 5.5.

5.4.2. A dipolar bosonic quantum simulator

To prepare an analog quantum simulator of the eBH model, we adiabatically load a BEC
of erbium atoms into a deep 3D optical lattice. In our publication contained in Sec. 5.5 we
investigate the effects of the individual terms of the eBH model and quantify their strength.
We show the first observation of the offsite dipolar interaction Vdd in eBH dynamics and set
the stage for future investigations with lattice models influenced or even governed by dipolar
long-range interactions [CS10]. In addition, we study the SF-to-MI phase transition, see
Sec. 5.3.1, and reveal that the dipole orientation can significantly alter the phase transition
point. Here, the main influence can be traced back to the angle dependence of the onsite
dipolar interaction Udd, but in order to find a better agreement between our experimental
observations and theory, the dipolar DIT ∆Jdd has to be taken into account.
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5.4.3. A dipolar fermionic quantum simulator

To realize the Hamiltonian of Eq. 5.15 within our experiment, we first load a degenerate
Fermi gas of spin-polarized 167Er atoms into the 3D optical lattice and subsequentially de-
terministically prepare a spin mixture8. For our first investigation, we switch off the dipolar
spin exchange term F+

σi
F−
σj

by utilizing spin-dependent quadratic shifts via HZeeman +Hlight.
This allows us to investigate in detail the interaction properties of an effective spin-1/2 sys-
tem consisting of the two lowest spin state mF = |–19/2⟩ and mF = |–17/2⟩. The interspin
scattering length is extracted by modulation spectroscopy, see Sec. 5.4.1, in combination with
our theoretical knowledge of the Hamiltonian terms in Eq. 5.15. Our publication that is con-
tained in Sec. 5.6 reports on the finding of a relatively broad interspin Feshbach resonance,
on which we demonstrate interaction tuning. Our investigation realizes for the first time a
strongly interacting dipolar Fermi gas. Importantly, our preparation method via the lattice-
protection technique, see Sec. 5.3.2, allows to access deeply degenerate fermionic mixtures
at any magnetic field, since the pinning of atoms to individual lattices sites in deep lattices
strongly suppresses dipolar relaxation losses.

Importantly, the performed study only sets the starting point for our experiment, as with
our dipolar fermionic quantum simulator at hand, a large amount of investigations become
accessible. A promising direction emerges from studies of spin dynamics along the Heisenberg
model, see Sec. 6.2. Further, the realization of a magnetically ordered ground state is at
reach [Maz17a].

8 For the deterministic preparation of the spin states, we utilize the spin-dependent quadratic Zeeman shift,
which leads to a lifting of the degenerate coupling between three adjacent spin states, see Eq. 2.10. The
differential splitting allows for selective spin-addressing already at moderate magnetic field values via
radio-frequency techniques.
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The Hubbard model underlies our understanding of strongly correlated materials. Whereas its standard form
only comprises interactions between particles at the same lattice site, extending it to encompass long-range
interactions is predicted to profoundly alter the quantum behavior of the system. We realize the extended Bose-
Hubbard model for an ultracold gas of strongly magnetic erbium atoms in a three-dimensional optical lattice.
Controlling the orientation of the atomic dipoles, we reveal the anisotropic character of the onsite interaction and
hopping dynamics, and their influence on the superfluid-to-Mott insulator quantum phase transition. Moreover,
we observe nearest-neighbor interactions, a genuine consequence of the long-range nature of dipolar interac-
tions. Our results lay the groundwork for future studies of exotic many-body quantum phases.

PACS numbers: 67.85.Hj, 37.10.De, 51.60.+a, 05.30.Rt

Dipolar interactions, reflecting the forces between a pair
of magnetic or electric dipoles, account for many physically
and biologically important phenomena. These range from
quantum many-body phases [1, 2], to liquid crystals and fer-
rofluids [3, 4], to the mechanisms underlying protein fold-
ing [5]. The distinguishing feature of the dipole-dipole inter-
action (DDI) is its long-range and anisotropic character [6]:
two dipoles oriented in parallel repel each other, whereas the
interaction between two head-to-tail dipoles is attractive. No-
table progress towards the ability to study DDI has been made
recently in systems containing electric dipoles, such as gases
of polar molecules [7] and Rydberg ensembles [8]; similarly,
the recent experimental advances in creating quantum degen-
erate gases of bosonic and fermionic magnetic atoms, includ-
ing Cr [9–11] and the Lanthanides Er [12, 13] and Dy [14, 15],
have now opened the door to a study of magnetic dipolar in-
teractions.

Ultracold Lanthanide atoms have an open electronic f -
shell, and anisotropic interactions; they are characterized by
unconventional low-energy scattering properties, including
the proliferation of Feshbach resonances [16]. This com-
plexity manifests itself in quantum many-body dynamics: by
preparing quantum degenerate Lanthanide gases in optical lat-
tices we can realize extended Hubbard models for bosonic and
fermionic atoms [2, 17]. In addition to the familiar single-
particle tunneling and isotropic onsite interactions (as for
contact interactions in Alkali), dipolar interactions give rise
to anisotropic onsite interactions and density-induced tunnel-
ing (DIT), and activate nearest-neighbor (offsite) interactions
(NNI). Such extended Hubbard models have been extensively
studied in theoretical condensed matter physics and quan-
tum material science [18, 19], and it is the competition be-
tween these unconventional Hubbard interactions that under-
lies the prediction of exotic quantum phases such as super-
solids, stripe and checkerboard phases [17, 20–26].

Here we report a first observation of the unique manifes-
tations of magnetic dipolar interactions in extended Hubbard
dynamics. These observations are enabled by preparing an ul-

tracold sample of bosonic Er atoms in an three-dimensional
(3D) optical lattice. It is the control of the optical lattice via
laser parameters in combination with a flexible alignment of
the magnetic dipoles in an external magnetic field, which al-
lows us to reveal and explore the anisotropic onsite and offsite
interactions. Measurements of the excitation spectrum in the
Mott insulator state, and of the superfluid-to-Mott-insulator
(SF-to-MI) quantum phase transition are employed as a tool
to detect these interactions and their competitions.

In our experiment an ultracold dipolar gas of 168Er atoms
is prepared in a 3D optical lattice. The atoms are fully spin-
polarized in their lowest Zeeman sublevel [12] and feature a
magnetic moment µ of 7 Bohr magneton. The experiment
starts by adiabatically loading a Bose-Einstein condensate
(BEC) of about 1.5× 105 atoms from an optical dipole trap
(ODT) into a 3D optical lattice. The lattice is created by two
retroreflected 532-nm laser beams, defining the horizontal xy-
plane, and one 1064-nm beam, nearly collinear with the verti-
cal (z) direction, defined by gravity (Fig. 1A) [27]. The lattice
has a cuboid unit cell with lattice constants dx,y = 266nm and
dz = 532nm, which for 168Er correspond to the recoil ener-
gies ER,x = ER,y = h× 4.2kHz and ER,z = h× 1.05kHz, h
being Planck’s constant. The lattice can be controlled by in-
dependently changing the depths associated with the lattice
beams in each direction, (sx,sy,sz), measured here in units
of the corresponding recoil energies. The dipole orientation,
quantified by the polar angles θ and φ (Fig. 1A, inset), is var-
ied by changing the direction of the polarizing magnetic field
[27]. When increasing the lattice depths we can prepare the
Er atoms in the Mott Insulator (MI) state, by driving the su-
perfluid (SF)-to-MI phase transition, as described below.

The dynamics of Er atoms in the optical lattice are de-
scribed by an extended Bose-Hubbard (eBH) model with
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FIG. 1. Magnetic dipoles in a 3D optical lattice. (A) Schematic of our lattice geometry, where the lattice spacings are indicated. The dipole
orientation, given by the polarizing magnetic field B, is quantified by the polar angles θ and φ with respect to our coordinate system. (B)
Illustration of the contributing terms in the eBH model: Tunneling matrix element Ji j, DIT matrix elements ∆Ji j, onsite interaction U , and
NNI Vi j . (C) Illustration of the single-site density distribution, where the harmonic oscillator lengths are indicated. (D to F) Calculated values
of the DDI-dependent terms as a function of θ for φ = 0◦ in the MI phase, (sx,sy,sz) = (15,15,sz) with sz set by the AR for the cases AR = 1
(red) and AR = 2 (green). (D) shows Udd. (E) and (F) show Vi j and ∆Ji j,dd respectively, for bond and hopping directions i j both along x
(solid lines) and y (dotted lines). The dashed lines indicate the case without DDI. Us and Ji j are independent of θ and their values for the two
configurations considered are Us = 3749Hz (1775Hz) for AR = 1 (2) and Ji j = 27Hz for i j = x or y.

Hamiltonian [17, 28]

H =−∑
〈i j〉

[
(Ji j + ∆Ji j(ni + n j−1))b†

i b j + h.c.
]

+
U
2 ∑

i
ni(ni−1)+ ∑

〈i j〉
Vi jnin j.

(1)

Here b†
i (bi ) are the bosonic creation (annihilation) opera-

tors of an atom at site i, ni = b†
i bi is the associated num-

ber operator, and 〈i j〉 denotes pairs of adjacent sites. All
terms of the eBH are illustrated in Fig. 1B. The interactions
manifest themselves in both the tunneling dynamics, the on-
site (U) and the offsite (Vi j, approximated to NNI) interac-
tion. In addition to the single-particle hopping, which here has
amplitudes Ji j reflecting the anisotropy of the optical lattice,
Eq. 1 includes DIT terms (∆Ji j). The onsite interaction (U)
and DIT terms (∆Ji j) have contributions (Us and ∆Ji j,s) from
the short-range contact interaction, which is proportional to
the s-wave scattering length as; they also have contributions
(Udd and ∆Ji j,dd) from the long-range DDI, which is propor-
tional to µ2 [17, 27]. The DIT have recently been observed
in purely contact interacting systems [29, 30]. The NNI (Vi j)
is a term that genuinely originates from the long-range DDI.
The NNI in spin-polarized dipolar systems is qualitatively dif-
ferent from Heisenberg spin-spin interaction between atoms
at neighboring sites 〈i j〉 [31, 32], which arises from superex-
change processes in Hubbard dynamics in second-order vir-

tual hopping processes (∼ J2
i j/U) in the limit of large onsite

interaction, and different from dipolar spin-exchange inter-
actions [7] and full Heisenberg type interactions [10], driving
flip-flop dynamics.

The angle dependence of the DDI reveals itself more promi-
nently in combination with anisotropic geometries [33]. By
changing the lattice depths (sx,sy,sz) in the three directions
independently, we can control the aspect ratio (AR) of the
three-dimensional density distribution at a given lattice site
(Fig. 1C), i.e. we can shape the anisotropy of the three-
dimensional Wannier function. For simplicity, we define the
AR using the harmonic approximation, AR = lz/lx,y, where lz
(lx = ly) is the harmonic oscillator length along the z (xy) di-
rection of the local atomic well. In our experiment sx = sy,
such that z is the anisotropy axis. The symmetric condi-
tion, defined as Udd = 0, is slightly shifted with respect to
AR = 1, when using Wannier functions (e.g. AR = 1.05 for
sx = sy = 15 and AR = 1.07 for sx = sy = 10) [34]. For Udd,
the relative weight between the attractive and repulsive con-
tributions can be tuned by changing the dipole orientation rel-
ative to the anisotropy axis of the onsite density distribution,
and the AR (Fig. 1D). In contrast, the NNI Vi j is controlled
mainly through the orientation of the dipoles with respect to
the bond direction i j (Fig. 1E). Finally, ∆Ji j,dd depends both
on the orientation of the dipoles relative to the bond direction
and the anisotropy axis, and on the AR (Fig. 1F).

We first investigate the impact of the DDI on the onsite in-
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FIG. 2. Measurement of the onsite interactions. (A and B) Excitation spectrum of the MI state for dipole orientations θ = 0◦ (A) and θ = 90◦

(B) with φ = 0◦. The modulation spectroscopy is performed along the x-axis at (sx,sy,sz) = (15,15,52.5), corresponding to AR≈ 1.46 and
the remaining BEC fraction is measured after adiabatically ramping down the lattice depths to zero. From a double Gaussian fit to the data
(solid line) we extract the resonant excitation frequency νex for the U and 2U feature. (C) νex for the loss feature at U and 2U (inset) as a
function of AR for θ = 0◦ (squares) and θ = 90◦ (circles). (D) Difference in excitation frequencies νex relative to the two dipole orientations,
∆νex, as a function of AR. The error bars for all figures are the sum of the SEM and systematic errors [27]. The theoretical model (solid lines
in C and D) also includes the effect of the NNI, which shifts the excitation frequency by up to 3% (see Fig. 3). Dashed lines: calculations
accounting only for the isotropic (contact) interaction.

teraction (Udd) by performing spectroscopic measurements.
We prepare our system deep in the MI phase and probe the
energy gap in the excitation spectrum for different dipole ori-
entations. This energy gap, associated with particle-hole ex-
citations, is U for atoms in singly- or doubly-occupied Mott
shells and 2U at the border between the two shells and at dou-
blon defects within the first Mott-shell [35–38]. We excite the
MI state by applying a sinusoidal modulation of frequency
νex on the intensity of the x-lattice beam. When hνex matches
U or 2U , we observe a resonant depletion of the remaining
condensate fraction after ramping down the lattice [27]. We
perform the measurement for θ = 0◦ and θ = 90◦ (Fig. 2, A
and B) with φ = 0◦ and observe that the resonance positions
clearly depend on the dipole orientation, consistent with our
expectation.

To further explore this effect, we repeat the measurement
for different values of the AR (Fig. 2C). At the symmetric con-
dition (AR = 1.05), we observe that the excitation gap looses
its angle dependence showing that Udd averages to zero [39].
As the spatial distribution is deformed towards larger AR,
we find a clear deviation from the purely contact-interaction
case (dashed lines), with a smaller energy gap for dipoles
at θ = 0◦, and a larger one for dipoles at θ = 90◦. For
large ARs, the dipole orientation substantially affects the in-
compressibility of the corresponding Mott state with the en-
ergy difference between the two dipole configurations of up
to h×∆νex = h× 600Hz (Fig. 2D). The observed angle de-
pendence is well described within our eBH model (Fig. 2, C

and D, solid lines). The theory for Fig. 2D is parameter free,
whereas for Fig. 2C as is the only fit parameter. From the fit
we find as = 137(1)a0, with a0 being the Bohr radius, which
is consistent with previous measurements based on thermal-
ization experiments [12]. Our measurement shows that Udd
plays a fundamental role in the stability of the MI phase: it
can either protect the MI phase for the dominantly repulsive
DDI (θ = 90◦) or make it more susceptible to excitations for
the dominantly attractive case (θ = 0◦).

The energy gap in the MI phase also depends on the NNI
between atoms occupying adjacent lattice sites. To isolate the
contribution of the NNI in the eBH, we design a dedicated
measurement scheme based on modulation spectroscopy in
the 2D short-spacing lattice plane (xy-plane), where the NNI
is stronger (Fig. 3A). For a system with only onsite interac-
tions the energy gap associated with the particle-hole excita-
tion does not depend on the direction of excitation, i.e. on
the direction of the modulated beam. In contrast, a system
including anisotropic NNI will exhibit a modification of the
energy gap according to the excitation direction as the energy
gap equals U −Vi j for excitations along the bond direction
i j. Hence the difference between the two resonance frequen-
cies measured by modulating sx and sy, denoted as ∆VNNI/h,
directly reveals the existence of the NNI as the onsite con-
tribution cancels. Our scheme is illustrated in Fig. 3, A to
C, for the case θ = 90◦,φ = 90◦. Here, one bond of attrac-
tive (repulsive) NNI with energy V att (V rep) is destroyed dur-
ing the excitation along (perpendicular to) the dipole orien-
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FIG. 3. Nearest neighbor interactions. (A) Initial system in the MI regime with dipole orientation θ = 90◦, φ = 90◦. Driving excitations
along y (B) or x (C) leads to two different particle-hole energy gaps U−V att and U−V rep, respectively. Here, V att = Vi j with in-plane head-to-
tail dipole orientations and V rep = Vi j for the in-plane side-by-side orientation. The difference between the two resonant energies ∆VNNI, equal
to −V att +V rep, reveals the NNI. (D) Histogram of our measurements of ∆VNNI for two dipole orientations φ = 0◦ and φ = 90◦. The black
solid curves are the normal distributions of the corresponding data. The two dashed lines show the theoretical expectation values, whereas the
orange and green lines show the corresponding measured values with the shaded areas indicating the SEM.

tation such that ∆VNNI = −V att +V rep. Our measurement for
two dipole orientations in the plane with φ = 90◦ (0◦) give
∆VNNI/h = +74(10)Hz (−87(14)Hz). Remarkably, |∆VNNI|
is similar for both values of φ as expected from the symmetry
between these two configurations and is close to the theoreti-
cal expectation h×91Hz [27], as shown in Fig. 3D.

Finally, we use our understanding of the angle dependence
of the Hamiltonian, to modify the many-body phase transi-
tion from a SF to a MI state by changing θ and AR. Fig-
ure 4A shows the textbook signature of the phase transition
in the momentum distribution of a lattice-confined gas [40]:
the interference pattern of the SF phase progressively disap-
pears as the system is driven into the MI phase by increasing
the lattice depths. However, in stark contrast with the purely
contact-interaction case as in previous alkali experiments, we
observe that the dynamics of the phase transition has a clear
angle dependence. The full width at half maximum (FWHM)
of the central interference peak reveals a different evolution
with lattice depths for θ = 90◦ as compared to θ = 0◦, par-
ticularly for the largest AR (Fig. 4, B to D). This behavior is
qualitatively consistent with our previous observations on Udd
because the phase transition is governed by the competition
between the total onsite interaction, i. e. the sum of the dipolar
and contact part, and the tunneling, U/J. For large ARs and
θ = 90◦, the DDI is mainly repulsive and thus strengthens
the pinning of particles in the MI phase with respect to the SF
phase, whereas the contrary happens for θ = 0◦ where the SF
phase is favored (Fig. 4B).

We systematically study the critical value of the lattice
depth, sc(θ), corresponding to the onset of the phase transi-
tion, for two dipole orientations, θ = 0◦ and 90◦, and vari-
ous AR values. The determine sc(θ) we use two indepen-
dent methods. The first one, based on a double-line fit, iden-
tifies sc(θ) as the point where the FWHM starts to grow,

whereas the second method probes the visibility of the inter-
ference pattern [27, 41]. The visibility is more reliable for
large ARs, where the system undergoes a three-dimensional
phase transition and the side interference peaks have a larger
contrast [27, 42]. Figure 4E shows ∆sc = sc(0◦)− sc(90◦) as
a function of the AR. We find a substantial increase of ∆sc
from negative to positive values, providing the opportunity to
modify the phase diagram by tuning the strength and the sign
of the DDI. In addition, we observe that ∆sc crosses zero at
AR ≈ 1.2 (Fig. 4E). This value is surprising because, if the
DDI affected only the onsite interaction, one should record
the same symmetric condition as measured in the frozen gas
regime, i. e. AR = 1.07 (dotted line in Fig. 4E). However, at
AR = 1.07, we still observe an angle dependence of the phase
transition with the MI phase favored for θ = 0◦ (Fig. 4D).
This behavior could be explained if the DDI also affected the
tunneling dynamics. In the eBH model, such a term appears
in the form of a dipolar-interaction-driven-tunneling mecha-
nisms, i. e. DIT, on top of the standard single-particle tunnel-
ing; see Eq. 1 and [29]. For our typical experimental parame-
ters, the DIT is predicted to be on the order of a few percent of
the single-particle tunneling and exhibits an angle dependence
(Fig. 1F and inset in Fig. 4E), which leads for instance to a re-
duction of the overall tunneling for out-of-plane orientation
(θ = 0◦) and thus to a shift of sc(0◦) to a smaller value. The
presence of the DIT is consistent with our observations, as
shown by the better agreement of our data with the mean-field
calculations including the DIT (solid line in Fig. 4E) with re-
spect to the calculations without DIT (dotted line in Fig. 4E).
For completeness, we checked with Monte Carlo calculations
that the observed behavior can not be explained by the NNI,
as discussed in [27].

Quantum degenerate gases of magnetic Lanthanide atoms
in optical lattices offer a new avenue to access the physics of
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FIG. 4. Superfluid-to-Mott-insulator transition. (A) Time-of-flight absorption images of the atomic cloud at θ = φ = 0◦ taken 27ms after a
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with respect to the imaging light [27]. (B to D) The FWHM of the central interference peak as a function of the lattice depth in the xy-plane
for AR = 2;1.28;1.07, with dipoles oriented along θ = 0◦ (blue squares) and θ = 90◦ (orange circles) with φ = 0◦. (E) ∆sc as a function
of the AR. We extract sc(θ) using both a double-line fit (triangles) and the visibility method (diamonds) [27]. The error bars for ∆sc represent
the SEM from the fits and the dot-dashed line is the weighted mean of the two methods. We compare our data with mean-field calculations
in presence (solid line) and absence of the DIT (dotted line). The grey shaded regions show the SEM, resulting from the resolution of the
calculation[27]. The dashed line represents the purely contact interacting case. The inset shows the calculated values of the DIT along the
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frequency (left axis) and in units of the single-particle tunneling Ji j = 80.5Hz in the xy-plane (right axis).

strongly correlated systems for both bosonic and fermionic
Hubbard dynamics in the presence of dipolar interactions,
while building on the well-developed toolbox to prepare ul-
tracold dense samples, and to manipulate and measure these
atomic gases. We have realized the extended Bose-Hubbard
Hamiltonian with anisotropic onsite and offsite interactions,
which reveal themselves in the excitation spectrum and in the
many-body dynamics of the system. Our results show how to
control the Hamiltonian terms with the dipole orientation and
accomplish the long-awaited observation of NNI in Hubbard
dynamics. An outstanding challenge for future experiments is
the realization of many-body states in the lattice with spon-
taneously broken spatial symmetry due to NNI, such as the
checkerboard and stripe phase[17]. For our experimental pa-
rameters, the latter phase is expected to appear at temperatures
in the few nK regime [27]. Dipolar interactions can be further
increased by working with Feshbach molecules of magnetic
Lanthanides, essentially doubling the magnetic dipole mo-
ment [43], and sub-wavelength lattices [44, 45]. Lanthanides

offer unique opportunities to access the multitude of many-
body phases predicted for dipolar quantum matter and are
complemented by the remarkable experimental developments
with heteronuclear molecules and Rydberg atoms [2].

We thank F. Meinert and H.-C.-Nägerl for fruitful discus-
sions. The Innsbruck experimental group is supported by the
Austrian Ministry of Science and Research (BMWF) and the
Austrian Science Fund (FWF) through a START grant un-
der project Y479-N20 and by the European Research Council
(ERC) under project 259435. K.A. has been supported within
the Lise-Meitner program of the FWF. The Innsbruck theory
group is supported by the SFB FoQuS, by the ERC Synergy
Grant UQUAM, and by the EU FET Proactive Initiative SIQS.
The data leading to the histograms of Fig. 3D are presented in
[27].
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SUPPLEMENTARY MATERIALS

BEC production

We create a Bose-Einstein condensate (BEC) of about 1.5×
105 168Er atoms by means of evaporative cooling in a crossed
optical dipole trap (ODT) [12]. The cloud has typically a BEC
fraction above 80%, which is extracted by a two-dimensional
bimodal fit to an absorption image of the atomic cloud after a
time-of-flight (TOF) of 27ms [12]. The cloud temperature is
estimated to be about 70nK. The ODT is operated at 1064nm
and is created by two beams, one propagating horizontally
and one vertically. The beams cross at their respective focal
points. The elliptic horizontal beam has a vertical (horizontal)
waist of about 18 µm (117 µm) and the elliptic vertical beam
has a waist of about 55 µm (110 µm) along (perpendicular to)
the axis of the horizontal beam. The measured trap frequen-
cies are (ωx,ωy,ωz) = 2π × (29.0(6),22.2(4),165.2(5))Hz.
We observe a lifetime of the trapped cloud of about 10s.

The atomic cloud is spin-polarized in the lowest Zeeman
sublevel (J = 6,mJ = −6), where J denotes the total angu-
lar momentum quantum number and mJ is its projection along
the quantization axis. The spin polarization already occurs in
the magneto-optical trap [46] and is maintained in the ODT by
applying a bias magnetic field with a fixed value of 0.40(1)G.
As discussed below, the magnitude of this field is kept con-
stant for all the experiments, whereas its orientation is varied
to set the desired dipole orientation.

3D lattice setup

We describe the 3D lattice setup in the coordinate sys-
tem given by the two horizontal lattice beams denoting the
x and y-axis and the direction of gravity giving the z-axis
(Fig. 1A, inset). The horizontal lattice beams are created
by two retroreflected beams with a waist of about 160 µm
and a wavelength λx = λy = 532nm. The vertical lat-
tice beam has a waist of about 300 µm and a wavelength
λz = 1064nm. The resulting 3D optical lattice is given by
V (x,y,z) = Vx cos2(kxx) + Vy cos2(kyy) + Vz cos2(kzz), where
Vi is the lattice depth in the i-direction and ki = 2π/λi the
corresponding lattice wavevector with i = (x,y,z). Because
of the different wavelengths, the atoms experience different
recoil energies ER,i in the xy-plane with respect to the vertical
direction. The recoil energies given by ER,i = h2/(2mλ 2

i ) are
ER,x = ER,y = h×4.2kHz and ER,z = h×1.05kHz. Here, h
is the Planck constant and m the mass of the Er atom. For
convenience, we give the lattice depth in units of the cor-
responding recoil energy si = Vi/ER,i. The maximum lat-
tice depth we can achieve is (sx,sy,sz) = (30,30,220). Be-
cause of the Gaussian profile of the lattice beams the atoms
experience an additional harmonic confinement. At a typi-
cal 3D lattice depth of (sx,sy,sz) = (20,20,20) we measure
(ωx,ωy,ωz) = 2π× (34(1),31(1),43(1))Hz.

We note that the vertical lattice beam is tilted from the

vertical axis by θ = 10(2)◦ and has an azimuthal angle
of φ = 5(5)◦. This has two consequences: (a) The lat-
tice spacings dx and dz are modified to dx = 270(2)nm and
dz = 540(4)nm with respect to the λ/2 case and (b) the
tilt of the wavefront of the vertical lattice beam gives rise
to an additional potential difference between neighboring lat-
tice sites along x of 200(40)Hz due to gravity. While (b)
only leads to a broadening of the excitation resonances in the
modulation spectroscopy measurements, (a) could in princi-
ple change the values of the extended Bose-Hubbard (eBH)
terms. Therefore, we recalculate them considering our effec-
tive lattice spacings for a typical experimental condition of
(sx,sy,sz) = (15,15,15). We find that the isotropic terms are
reduced by 3% while the anisotropic terms can differ between
2-6%, depending on the dipole orientation and the direction
of the observed process (see Table S1). This gives rise to
a downshift of the phase transition point sc of about 1% for
both θ = 0◦ and θ = 90◦. However, all these shifts are not
resolvable within our statistical errors and can therefore safely
be neglected.

TABLE S1. Difference of the eBH terms between the λ/2-spacing
and the actual spacing given in percentage of the λ/2-case for three
dipole orientations (θ = 90◦, φ = 0◦), (θ = 90◦, φ = 0◦), and θ =
0◦.

θ = 90◦, φ = 0◦ θ = 90◦, φ = 0◦ θ = 0◦

Us 3%
Ji j=x,Ji j=z 3%

Ji j=y 0%
Udd 6% −2% 2%
U 3% −2% 3%

∆VNNI 3% 2% -
∆Ji j=x 3% 2% 3%
∆Ji j=y 4% 2% 3%
∆Ji j=z 3% 2% 3%

Lattice depth calibration and onsite aspect ratio

To calibrate the depths of the horizontal lattice beams we
use the standard Kapitza-Dirac diffraction method [47]. For
the vertical lattice we use the technique of parametric heating,
in which the atoms are excited from the first to the third lat-
tice band [48, 49]. With these methods, we extract the lattice
depths with an uncertainty of up to 4%.

The onsite aspect ratio (AR) is defined in terms of a Gaus-
sian approximation to the corresponding Wannier function:
AR = lz/lx,y, where lx,y = dx,y/(πs1/4

x,y ) and lz = dz/(πs1/4
z )

are the harmonic oscillator lengths associated with the lattice
beams along x,y and z, respectively (Note that we use sx = sy
in our measurements). The uncertainty of the AR results from
the uncertainty of the lattice depths and is about 1%.

Because of the non S-state character of Er atoms in their
electronic ground state, the atomic polarizability of Er has a
tensorial contribution, which is about 3% of the scalar one for
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an off-resonant trapping light [50]. In our system this effect
gives rise to a different lattice depth depending on the dipole
orientation. For each lattice beam, we carefully studied this
effect by comparing the measured lattice depth for the dipoles
aligned parallel and orthogonal to the corresponding lattice
beam. Our measurements reveal that the parallel orientation
gives a deeper confinement of up to 4% as compared to the
orthogonal orientation. We account for this effect as a sys-
tematical error, which gives rise to asymmetric error bars in
the AR in Fig. 2 (C and D) and Fig. 4E and in the xy-plane
lattice depth in Fig. 4 (B to D) and Fig. S4 (A to F).

Loading of the 3D lattice

For our experiments the atoms are adiabatically loaded to
the 3D lattice by an exponential ramp to the final value within
150ms, during which the vertical ODT is linearly lowered
to zero. To perform modulation spectroscopy, the horizon-
tal ODT is switched off within 1ms after the loading. For
the measurement of the BEC depletion, we exactly reverse
the described process. In the Mott-insulator (MI) phase we
estimate a central density of two atoms per lattice site. The
external harmonic confinement leads to a density distribution
with a central doubly occupied Mott shell, consisting of up
to 40 % of the total atoms, surrounded by a singly occupied
shell. The external harmonic confinement is given by the sum
of the ODT potentials and the Gaussian profiles of the lattice
beams during the lattice loading. For our typical lattice depth
condition (sx,sy,sz) = (20,20,20), the lifetime of the atomic
sample in the lattice is 5(1)s. In addition, we observe a heat-
ing, which leads to a full depletion of the recovered BEC for
a holding time in the lattice of about 1s. The origin of this
heating is not fully understood and might be due to frequency
fluctuations of the 532nm laser source. It should be noted that
beside the case of AR = 2 the asymmetric lattice configura-
tion (i.e. larger lattice spacing along the vertical direction) for
our experimental condition leads to a quasi-two-dimensional
system, since the tunneling rates along the vertical lattice are
much smaller compared to those along the horizontal plane.

Control of the dipole orientation

The dipole orientation follows the direction of the magnetic
field, which we control using three pairs of independent coils
oriented perpendicular to each other. Each pair of coils is in-
dependently calibrated by performing radio-frequency spec-
troscopy, where resonant excitations to higher Zeeman sub-
levels can be used as a measure of the actual magnetic field
at the position of the atoms. The dipole orientation can be
changed from θ = 0◦ to θ = 90◦ and for any value of φ .
Noise of the ambient magnetic field leads to fluctuations of
the absolute angles θ and φ by about 1◦ around their set val-
ues. During the evaporative cooling sequence the dipoles are
aligned at θ = 0◦. Before loading the atoms into the 3D lat-

tice, the dipole orientation is changed to the desired value in
38ms, while the magnetic-field magnitude is kept constant.

Modulation spectroscopy in the MI

To probe the excitation gap in the MI we use a modulation
spectroscopy technique [35, 36]. We sinusoidally modulate
the power of one horizontal lattice beam with a typical total
amplitude between 30% and 40%, and a modulation time be-
tween 50ms and 100ms. With this method, we resonantly cre-
ate particle-hole excitations in the system [37]. These excita-
tions manifest themselves as a resonant depletion of the recov-
ered BEC because of the extra energy stored in the system. We
record the remaining BEC fraction after ramping down the lat-
tice as a function of the modulation frequency. The resulting
loss spectrum is then fitted with a double-Gaussian function,
whose centers give the excitation frequencies. The typical full
width at half maximum (FWHM) of the resonant loss features
is 1kHz for excitations using the x-lattice beam and 0.8kHz
for the y-lattice beam. The width is mainly determined by the
external harmonic confinement. We note that the difference in
width between the two excitation directions is due to the tilt
of the vertical lattice beam as discussed above.

We also measure the onsite interaction by using an al-
ternative method, known as the collapse-and-revival tech-
nique [51]. Here, we first prepare the system at the onset of
the SF-to-MI transition with a lattice depth of (sx,sy,sz) =
(10,10,10) and we then suddenly quench the system to
(sx,sy,sz) = (20,20,40) within 5 µs. As a result of the quench
the system oscillates between the MI and the superfluid (SF)
phase. Figure S1 shows the evolution of the FWHM of the
central interference peak as a function of the holding time af-
ter the quench for two different dipole orientations θ = 0◦

and θ = 90◦. We observe up to four collapses and revivals
and extract the onsite interaction from the oscillation fre-
quency. For θ = 0◦ (θ = 90◦) we measure a frequency
of 2.07(16)kHz (2.98(5)kHz), which are consistent with the
value of 2.15(3)kHz (2.77(3)kHz) obtained with the modu-
lation spectroscopy technique.

Analysis of the nearest-neighbor interaction (NNI)

To derive the NNI we perform a differential measurement
based on modulation spectroscopy, in which the orientation
of dipoles is fixed but the direction of excitation is changed
between the horizontal lattice axes x and y. To explain the
amount of energy needed to drive a particle-hole excitation
we consider the situation where the dipoles are aligned with
angles θ = 90◦ and φ = 90◦, as also illustrated in Fig. 3
(see main manuscript). Here we denote V att (V rep) the attrac-
tive (repulsive) value of Vi j for the bond direction y (x). At
the starting configuration (Fig. 3A) the total energy is EA =
12V att +12V rep. For an excitation along the y-axis the final en-
ergy of this configuration reads as EB = U +11V att +12V rep,
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FIG. S1. Measurement of U by the collapse-and-revival tech-
nique. The FWHM of the central peak of the interference pattern
is monitored as a function of the holding time after a sudden quench
from the SF to the MI phase for an initial dipole orientation of θ = 0◦

(squares) and θ = 90◦ (circles). The latter measurement is vertically
offset by 300 µm for a better visualization of the two data sets. Each
point is obtained by two to four independent measurements and the
shaded region indicates the SEM. The solid lines are the fits of a
damped sine to the data, used to extract the oscillation frequency and
hence U .

while for an x-excitation it is EC = U +12V att +11V rep. From
this consideration it becomes clear that the difference in en-
ergy EB−EC = −V att +V rep = ∆VNNI purely reveals the NNI.

Analogously the same consideration can be applied for an
initial dipole orientation of θ = 90◦ and φ = 0◦ leading to
∆VNNI = −V rep +V att. From the theory we expect V rep/h =
31.5Hz, V att/h = −59.5Hz and thus |∆VNNI|/h = 91Hz. In-
cluding the corrections arising from the modification of the
lattice spacings due to the tilt of the vertical lattice beam (see
above) |∆VNNI|/h changes to 89Hz, even closer to our mea-
sured values.

In Fig. S2A we show two excitation spectra obtained using
the method described above. The difference between the cen-
ters of the Gaussian fits to the data is found to be 72(30)Hz
and corresponds to one data point of Fig. S2B, where all taken
measurements are summarized. We believe that the fluctua-
tion of ∆VNNI along the data sets is mainly caused by rela-
tive drifts of the lattice depths during a differential measure-
ment. We carefully check for systematic errors on ∆VNNI us-
ing different initial lattice depths or atom numbers, but do not
find an effect within our measurement resolution. The used
lattice depths are (sx,sy,sz) = (15,15,30),(14,18,30), and
(20,20,40). The different depths can slightly modify ∆VNNI
by a maximum of 2% which is not resolvable within our error
bar.

Analysis of the SF-to-MI transition point

To study the SF-to-MI transition we probe the momen-
tum distribution of the atoms as a function of the lattice

depths [40]. In particular, we ramp simultaneously in 150ms
the power of the three lattice beams up to the final desired
value while lowering the vertical ODT to zero. We then sud-
denly switch off all beams and let the atomic cloud expand for
27ms. Here, we perform standard absorption imaging using
a resonant 401nm laser beam [12]. The imaging light prop-
agates horizontally with an angle of 20◦ with respect to the
x-lattice beam, (θ = 90◦, φ = −20◦). By increasing the lat-
tice depth we observe a dramatic change in the momentum
distribution, which is the textbook signature for the SF-to-MI
transition [40]. In the SF phase the distribution of the inter-
ference peaks (Fig.4A2) reflects the anisotropy of the lattice
in combination with the orientation of the reciprocal lattice
with respect to the imaging light (see Fig. S3). In particular
we find in total six first-order interference peaks: two in the
vertical direction and four in the horizontal one. Along the
vertical direction, the two peaks have half the spacing from
the zero-momentum central peak with respect to the peaks re-
sulting from the y-axis lattice. In the horizontal direction, we
observe both the interference peaks from the y- and x-axis,
since the imaging axis is not completely collinear to the x di-
rection. When the lattice depth is further increased the system
enters into the MI as can be seen in the momentum distribution
by an increasing incoherent background (Fig. 4A3). An anal-
ysis of the observed momentum distribution for various final
lattice depths sx,y can thus reveal the SF-to-MI phase transi-
tion point. For a quantitative study of the dependence of the
phase transition point we repeat the experiment for the two
angles θ = 0◦ and θ = 90◦ with φ = 0◦ and for various val-
ues of the AR. Beside the case of AR = 2 the physics of the
SF-to-MI transition is effectively two-dimensional due to the
negligible tunneling rate along the vertical lattice.

The critical value for the SF-to-MI transition, sc, depends
on the ratio of the total onsite interaction to the total tunneling
rate. In presence of the dipole-dipole interaction (DDI), both
terms depend on the dipole orientation, imprinting an angle
dependence on the phase transition point sc(θ), defined by
the value of the horizontal lattice depth sx,y = sx = sy. We
study the phase transition for θ = 0◦ and θ = 90◦ and extract
the difference in the critical point ∆sc = sc(0◦)− sc(90◦).

In general we observe a smooth transition from the SF
phase to the MI phase as expected for a trapped system with a
spatially depending density. For this reason, the extraction of
sc is a delicate matter and we use two different methods [41].
The first method (a) is a double-line fit, which analyses the in-
crease of the FWHM of the central interference peak along the
horizontal direction as a function of sx,y (Figure S4, A to C).
A weighted fitting function consisting of two smoothly con-
nected lines is used to extract sc, which thus corresponds to
the knee of the experimental data. We apply the fit in a region
from sx,y = 5 to the values of sx,y for which the FWHM is
250 µm. In this region the experimental data are well approx-
imated by the double-line fit.

The second method (b) is based on the visibility. Fig-
ure S4, D to E, shows the extracted visibility data for the
same data as in (a). The visibility is calculated from a two-
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FIG. S2. Measurements for the NNI. (A) Excitation spectrum with modulation along x (diamonds) and y (triangles) with θ = 90◦ and
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indicates the SEM. The solid lines are weighted Gaussian fits to the data. The dashed lines indicate the obtained resonance frequencies. (B)
Set of differential measurements as presented in (A) for dipoles aligned with θ = 90◦ and φ = 90◦ (squares), θ = 90◦ and φ = 0◦ (circles).
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FIG. S3. Observation of the interference peaks. Visualization of
the observed momentum distribution of the atoms in the SF phase
released from the 3D lattice in TOF absorption imaging due to the
orientation of the reciprocal lattice with respect to the imaging axis
(see also inset)

dimensional (2D) fit consisting of eight gaussians: one for
the central, six for the first-order interference peaks, and one
for the broad incoherent background (see Fig. S2G). The vis-
ibility is defined as V = A/(A + B), where A stands for the
mean amplitude of the first-order interference peaks and B for
the mean value of the incoherent background at the positions
of the interference peaks. We extract V as a function of sx,y
and fit the whole dataset by the phenomenological function
V (sx,y) = C/(1+exp(α(sx,y−sc)))−V0 (adapted from [41]).
Here C, α , sc, and V0 are fitting parameters, where sc corre-
sponds to the phase transition point.

For both methods, at large ARs, we observe a clear shift
of sc toward higher values for θ = 0◦ compared to θ = 90◦

(Fig. S4, A and D). This shift vanishes around AR ≈ 1.2
(Fig. S4, B and E), and changes sign for lower ARs (Fig. S4,
C and F). We note that method (b), is more reliable at large
ARs than at smaller ones, since in the latter case the phase
transition has a 2D nature (negligible tunneling rate along z).
Therefore, the interference peaks are broadened compared to
the 3D case resulting in a lower contrast, which might leads to
a systematic shift of V . Method (a) can be applied to all ARs
but it can be more sensitive to experimental drifts and inter-
action broadening since it is based on the measurement of the
FWHM of the central peak.

Extended Bose-Hubbard model from microscopic Hamiltonian

Here we present the details of derivation of the eBH model
Eq. 1 together with the expressions for all its coefficients in
terms of microscopic parameters of the system (see, e. g. [52]).

The microscopic Hamiltonian of the considered system of
polarized (magnetic) dipolar atoms has the form:

Ĥtot = Ĥ0 + Ĥint, (S1)

where the first term

Ĥ0 =
∫

drΨ†(r)[− h̄2∇2

2m
+V (r)]Ψ(r) (S2)

is the single-particle Hamiltonian with Ψ(r) being a boson
field operator, which describes the motion of an atom with
mass m in the optical-lattice potential V (r) = Vx cos2(kxx) +
Vy cos2(kyy)+Vz cos2(kzz), and the second term

Ĥint =
1
2

∫
dr
∫

dr′Ψ†(r)Ψ†(r′)U(r− r′)Ψ(r′)Ψ(r)
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corresponds to the interatomic interaction. In the considered
case, the interaction contains a short-range part, which can
be modeled by a contact potential with the s-wave scattering
length as, and the dipole-dipole interaction (see, e.g. [53])

U(r− r′) =
4π h̄as

m
δ ( r− r′)+

µ0µ2

4π
1−3cos2 θr−r′

|r− r′|3

with θr−r′ being the angle between the relative position of two
dipoles r− r′ and their polarization.

The Hamiltonian of Eq. S2 determines the single-particle
band structure,

[− h̄2∇2

2m
+V (r)]uαp(r) = εα(p)uαp(r),

where uαp(r) is the Bloch wavefunction corresponding to the
band α and quasimomentum p from the Brillouin zone (BZ),
defined by−π/di < pi/h̄≤ π/di with di = π/ki being the lat-
tice spacing along the i-direction, pi the corresponding com-
ponent of p, and εα(p) is the corresponding energy. For our
purposes it is more convenient to work with Wannier func-
tions φi,α(r) = ∑p∈BZ exp[−ip(r−Ri)]uαp(r), which are lo-
calized at different sites Ri of the lattice and orthogonal to
each other with respect to both the lattice position i and the
band index α ,

∫
drφ ∗i,α(r)φ j,β (r) = δi jδαβ . Using these func-

tions as a single-particle basis in the bosonic field operator,
Ψ(r) = ∑i,α bi,α φi,α(r), where bi,α are the bosonic annihila-
tion operators for particles on the site i in the band α , we
can rewrite the initial Hamiltonian of Eq. S1 in terms of the
operators bi,α and b†

i,α . To obtain the eBH model, we keep
terms with operators for the lowest energy band only. Note
that this approximation is legitimate because the interatomic
interaction in our case is order of magnitudes less than the
band gap such that the admixture of the higher bands can be
neglected. From the remaining terms we then neglect those

which contain square and higher power of exponentially small
spatial overlaps of the Wannier functions from different sites
(see, [52] for details). Denoting the operators and the Wannier
functions for the lowest band as bi, b†

i and φi(r) , respectively,
we obtain

H =−∑
〈i j〉

Ji j(b†
i b j + h.c)+

U
2 ∑

i
ni(ni−1)+ ∑

〈i j〉
Vi jnin j

−∑
〈i j〉

∆Ji j[b
†
i b j(ni + n j−1)+ h.c]

(S3)

where 〈i j〉 denotes a pair of nearest-neighboring sites. The
first two terms in this expression correspond to the standard
Hubbard model with the single-particle hopping amplitude

Ji j =−
∫

drφ ∗i (r)[− h̄2∇2

2m
+V (r)]φ j(r)

and the onsite interaction U = Us +Udd, where Us comes from
the contact interaction,

Us =
4π h̄as

m

∫
dr |φi( r)|4 ,

and Udd from the dipole-dipole one,

Udd =
µ0µ2

4π

∫
dr
∫

dr′ |φi(r)|2 1−3cos2 θr−r′

|r− r′|3
∣∣φi(r′)

∣∣2 .

The third term in Eq. S3 corresponds to the NNI with

Vi j =
µ0µ2

4π

∫
dr
∫

d r′ |φi(r)|2 1−3cos2 θr−r′

|r− r′|3
∣∣φ j(r′)

∣∣2

coming from the DDI (the contribution from the contact in-
teraction is proportional to the square of the exponentially
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small overlap and is therefore neglected). Note that the DDI
also generates interactions Vi j beyond the nearest-neighbors,
which decay as

∣∣Ri−R j
∣∣−3. The corresponding terms are ne-

glected in the Hamiltonian of Eq. S3 because they are smaller
and play only minor role in the spatially homogeneous phases
(SF and MI) relevant for our experiment. These terms how-
ever will be definitely relevant for inhomogeneous phases like,
for example, the stripe and the checker-board phases. Finally,
the fourth term in Eq. S3 describes the density-induced tunnel-
ing (DIT) with the amplitude ∆Ji j = ∆Ji j,s + ∆Ji j,dd resulting
from the contribution from the contact interaction

∆Ji j,s =−4π h̄as

m

∫
dr |φi(r)|2 φ ∗i (r)φ j(r)

and from the dipole-dipole one

∆Ji j,dd =−µ0µ2

4π

∫
dr
∫

dr′ |φi(r)|2 1−3cos2 θr−r′

|r− r′|3 φ ∗i (r′)φ j(r′).

It should be mentioned that in our experiments we also have a
shallow confining potential Vh(r). It can be taken into account
by adding the term ∑i Vh,i ni with Vh,i =

∫
dr|φi(r)|2Vh(r) to

the Hamiltonian of Eq. S3.
The above expressions, together with numerically com-

puted Wannier functions, provide the theoretical values for the
parameters Ji j,U,Vi j, and ∆Ji j. During the calculations, the
singularity for |r− r′| → 0 in the contributions from the DDI
was resolved by performing the integration over θr−r′ before
integrating over |r− r′|. For our experimental conditions, the
contributions from the DDI to the eBH parameters are typi-
cally smaller for U , in the same order of magnitude for ∆Ji j
and much larger for Vi j than those from the short-range con-
tact interaction. However, they strongly depend on the form
of the Wannier function φi(r) , i.e. on the intensity and ratio
of sx, sy, and sz, and on the alignment of the dipoles relative to
the lattice axes (see Fig. 1, D to F).

SF-to-MI transition in the mean-field (MF) approximation

In the MF approximation (see, e.g. [54–56]), the ground-
state wavefunction of the system is written as a product state
over sites:

|ΨG〉=
⊗

i

(
∞

∑
n=0

C(n)
i |n〉i),

where |n〉i denotes the Fock state with n bosons on site i.
The coefficients {C(n)

i } are the variational parameters sub-

jected to the constraint ∑∞
n=0

∣∣∣C(n)
i

∣∣∣
2

= 1, which can be de-
termined by minimizing the energy EG = 〈ΨG|H|ΨG〉. The
SF phase is characterized by the local order parameter 〈bi〉=

〈ΨG|bi|ΨG〉 = ∑∞
n=1
√

nC(n−1)
i C(n)

i 6= 0, which implies that
C(n)

i are non-zero for several adjacent values of n. In con-
trast, in the MI phase C(n)

i are non-zero for only one value of

n. In a spatially inhomogeneous system (e.g., in the presence
of a trapping potential Vh), this value is site-independent, and
the system has typically a layered structure in which the Mott
states with different n (n = 1 and 2 in our case) are separated
by the SF phase.

It should be mentioned that, even though the MF approxi-
mation is known to overestimate the stability of the SF phase,
here we are interested not in the phase boundary of the SF-
to-MI transitions itself, but in the relative shift of this bound-
ary when the dipolar polarization is changed from θ = 0◦ to
θ = 90◦.

In calculating this shift, the MF method turns out to be re-
liable, as it is demonstrated on Fig. S5 where we present the
results for the phase transition shift ∆sc in a spatially homoge-
neous system, obtained within quantum Monte Carlo (QMC)
and MF methods. One sees practically no effects of quan-
tum fluctuations on ∆sc, and this is why the MF method can
be used for the quantitative description of our experimental
results (Fig. 4E). To underline the role of the DIT in deter-
mining ∆sc, we analyze the effect of the NNI on the SF-to-MI
transition point by using QMC studies of the eBH model with
NNI, but without DIT. Fig. S5 shows that the inclusion of the
NNI only slightly shifts ∆sc (compare dot-dashed and dot-dot-
dashed line), and this shift turns out to be much smaller (5-6
times in our case) as the shift due to DIT (Fig. S5, solid line),
despite the fact that the values of the NNI are much larger
than those of the DIT. An insight into this counterintuitive re-
sult can be gained by considering the SF-to-MI transition in
the MF approximation. One can easily see that within this ap-
proximation the contribution of the NNI to the energy of the
system is the same for both phases. As a result, on the MF
level the NNI does not affect the transition at all, and it is only
the fluctuation effects beyond the MF which introduces the
dependence of the transition point on the NNI. On the other
hand, the DIT affects the transition already on the MF level
and therefore, although being much smaller than the NNI, has
nevertheless a much more pronounced effect on the shift of
the transition.

Observability of the stripe phase

The stripe phase is an example of exotic quantum phases
induced by the NNI, which is characterized by spontaneous
translational symmetry breaking along one direction. It can
be accessed in a deep optical lattice half-filled with atoms,
when the NNI overwhelms the effects of single-particle tun-
neling and temperature. In this case, the onsite interaction
is much larger than all the other parameters in the Hamilto-
nian, and prevents two atoms to be on the same lattice site.
We therefore can consider atoms as hardcore bosons, such
that the number of atoms on a lattice site can be only zero
or one. We assume that the dipoles are polarized along the
x-direction resulting in attractive V att (repulsive V rep) NNI for
the bonds i j in the x(y)-direction, with−V att = 2V rep = 2V . To
calculate the critical temperature for the stripe phase, we con-
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The results for ∆sc in the spatially homogeneous case without DIT
and NNI obtained within the MF (dotted line) and QMC (dot-dashed
line) are similar. The effect of the NNI on ∆sc [compare QMC with-
out (dot-dashed line) and with NNI (dot-dot-dashed line)] is much
smaller than the effect of the DIT [compare MF without (dotted line)
and with DIT (solid line).

sider typical experimental conditions with sx = sy = 20 and
AR = 1. In such a lattice, we can ignore the DIT and the
tunneling in the z-direction, and the single-particle tunneling
amplitudes Ji j do not depend on the direction of the hopping,
Ji j = J = h×20.5Hz. We obtain V = h×34Hz and the NNI
value for the bonds in the z-direction is V/8 = h× 4.25Hz.
After neglecting this small coupling in the z-direction, the
Hamiltonian for each xy-plane can now be written as

Hxy =−J ∑
〈i j〉

(b†
i b j +h.c)+∑

i
(−2V nini+êx +V nini+êy−µni),

(S4)
where b†

i and bi are hard-core boson operators and i + êx
(i + êy) denotes the neighboring site of site i in the x (y) di-
rection. We also add the chemical potential µ which is chosen
as µ = −V to satisfy the condition of half-filling 〈ni〉 = 1/2.
To determine the critical temperature of the transition into the
stripe phases, we perform Quantum Monte Carlo calculations
based on the worm algorithm for the Hamiltonian of Eq. S4,
which is free from the negative sign problem. For the above
parameters, the calculated value for the critical temperature is
Tc = 1.4J ' 1.5nK.
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[31] S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger,
A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and
I. Bloch, Science 319, 295 (2008).



13

[32] A. Auerbach, Interacting electrons and quantum magnetism
(Springer Science & Business Media, 2012).

[33] S. Müller, J. Billy, E. A. L. Henn, H. Kadau, A. Griesmaier,
M. Jona-Lasinio, L. Santos, and T. Pfau, Phys. Rev. A 84,
053601 (2011).

[34] For our lattice configuration the spherical point with Udd = 0
is shifted to AR = 1.05 when including corrections to the har-
monic approximation.
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We report on the realization of a strongly interacting Fermi gas with a dipolar spin mixture of
fermionic erbium. Employing a lattice-protection technique, we prepare deeply degenerate Fermi
mixtures of the two lowest spin states and perform high-resolution Feshbach spectroscopy. We
identify a comparatively broad Feshbach resonance and precisely map the inter-spin scattering length
across the resonance. We show a remarkable collisional stability of the quantum mixture in the
strongly interacting regime, providing a first step towards BEC-to-BCS studies in presence of dipole-
dipole interaction.

The ability to prepare dipolar quantum gases of mag-
netic atoms [1–6] has led to the demonstration of fascinat-
ing, yet unexpected, phenomena, emerging from the pe-
culiar traits of the dipole-dipole interaction (DDI) among
particles. In bosonic systems, the DDI can dominate the
system’s behavior, leading to counter-intuitive effects,
such as a d-wave-patterned collapse [7], droplet stabi-
lization [8–10], or the emergence of roton excitations [11].
With fermions, many-body dipolar phenomena have been
investigated only in spin-polarized systems. Here, the
DDI competes with the Pauli pressure, rendering dipolar
effects much more subtle, as e. g. their influence on the
shape of the Fermi surface [12].

Magnetic atoms further realize high-spin systems,
e. g. fermionic erbium (Er) has twenty available spin
states in the lowest hyperfine manifold. Bosonic dipo-
lar spinor gases have been investigated in remarkable ex-
periments with magnetic Cr atoms [13–16] (see also Rb
experiments [17, 18]), whereas the fermionic counterpart
remains rather unexplored in the quantum regime. Scat-
tering experiments with fermionic Dy mixtures slightly
above quantum degeneracy, showed a large collisional
stability against inelastic dipolar relaxation [19], enabling
e. g. the production of long-lived spin-orbit-coupled gases
via Raman excitations [20]. Near-degenerate gases of
fermionic ground-state molecules have been used to study
spin dynamics in lattices [21].

As yet, the realization of a two-component dipolar
Fermi mixture with tunable interactions has remained
elusive. Such a system is expected to give access to a
variety of fascinating phenomena, from anisotropic quan-
tum phases of matter, e. g. anisotropic Fermi liquids and
BEC-to-BCS pairing [22, 23], to dipolar magnetism [24],
but also extended Fermi-Hubbard models with direct
off-site interactions [25]. A prime candidate for its re-
alization is given by fermionic lanthanides that have
a large magnetic moment. However, the astonishingly
large density of Feshbach resonances (FRs) even in spin-

polarized gases [26–28] raises the question of whether sta-
ble fermionic quantum mixtures with tunable contact and
dipolar interactions can be realized with lanthanides.

We here report on a powerful platform to produce
a two-component dipolar Fermi gas of pseudo-spin 1/2

and demonstrate tunability of the inter-spin interac-
tions. By using highly magnetic 167Er atoms and a
three-dimensional (3D) optical lattice as a tool for spin
preparation, we perform high-resolution Feshbach spec-
troscopy and unambiguously identify the spin nature of
the different FRs. Among the resonances, we find a well
isolated and comparatively broad inter-spin FR and pre-
cisely measure the scattering length between the two spin
states. By conducting scattering experiments, we reveal
a remarkable collisional stability of the Fermi mixture in
the strongly interacting regime.

Achieving a deterministic preparation of a spin-1/2

mixture and a precise control over the inter-spin inter-
actions in highly-magnetic lanthanide atoms challenges
experimental schemes. Indeed, the enormous density of
FRs can cause collisional losses and severe heating, lim-
iting the production and preparation of deeply degen-
erate mixtures at arbitrary magnetic fields (B), where
hundreds of FRs might need to be crossed; see e. g. [20].
Moreover, state-selective preparation of a spin-1/2 system
typically requires large B values for which the quadratic
Zeeman effect lifts the degeneracy on the Zeeman split-
ting among consecutive sublevels [19, 29].

For these reasons, we establish a technique for colli-
sional protection during the spin preparation; see Fig. 1.
In a nutshell, the key production steps are: We first pro-
duce a spin-polarized degenerate Fermi gas (dFg) in an
optical dipole trap (ODT) at low B (a1), we then load the
atoms into the lowest band of a deep 3D optical lattice,
which acts as a collisional shield (a2) [30, 31]. We then
sweep to high B for spin preparation and perform radio-
frequency (rf) transfer (a3), and sweep to the desired B
and eventually melt the lattice (a4).
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Experimentally, we prepare a spin-polarized dFg of
167Er atoms in a crossed-beam ODT [5] (stage (a1);
Fig. 1). All fermions occupy the lowest Zeeman state
|↓ 〉 ≡ |F = 19/2,mF = –19/2〉 of the ground-state man-
ifold. Here, F is the total spin quantum number and mF

its projection along the quantization axis. A homoge-
neous magnetic field of B = 0.6 G is applied along the
vertical z direction to define the quantization axis and
to maintain the spin polarization in the system. The
sample typically contains N = 2.4× 104 atoms at about
T = 0.25TF. Note that the ODT is shaped to opti-
mize single-band loading of the optical lattice and yields
EF = kB × TF = kB × 170 nK = h × 3.6 kHz [32]. Here,
TF is the Fermi temperature, h the Planck constant, and
kB the Boltzmann constant.

In the next step, we transfer the spin-polarized dFg
into a 3D optical lattice (stage (a2); Fig. 1). We use a
lattice geometry and a loading scheme similar to the one
of our previous work [33]; for details see also Ref. [32]. In
order to pin the atoms in a one-fermion-per-lattice-site
configuration (unit filling), we use large lattice depths
of about (sx, sy, sz) = (20, 20, 80), where si with i ∈
{x, y, z} is given in units of the respective recoil energies,
ER;x,y = h × 4.2 kHz and ER;z = h × 1.05 kHz. After
lattice loading, we obtain a single-component fermionic
band-insulator (BI) of about 2.2 × 104 |↓ 〉 atoms. By
melting the lattice and re-loading the fermions into the
ODT, we measure a temperature of T ≈ 0.3TF and ex-
tract a heating rate in the lattice as low as Ṫ = 0.03TF/s.

Our system is well described by a single-band extended
Fermi-Hubbard model [25] with residual tunneling rates
of Jx,y = h×10.5 Hz and Jz = h×0.001 Hz, and nearest-
neighbor interactions in the order of h × 50 Hz [33]. We
confirm the single-band population by performing stan-
dard band-mapping measurements [34] [35]. In the hor-
izontal (xy) plane, we observe that the fermions occupy
the lowest band and we do not record higher band occu-
pation within our resolution; see Fig. 1(b) [36]. Along the
z-axis, we detect a residual < 5 % population in the first
excited band, resulting from the fact that EF > ER,z [37].
Because of the Pauli exclusion principle, doubly-occupied
sites (doublons) in a single band are strictly forbidden for
identical particles (|↓ 〉).

In the BI regime, the lattice is expected to provide
a strong collisional protection to the particles, as previ-
ously observed with deeply-bound molecules [30, 31, 38].
As a first application, we use the lattice-protection tech-
nique to realize a spinor Fermi gas with pseudo-spin 1/2

(stage (a3); Fig. 1). For such |↓ 〉–|↑ 〉 mixtures, |↑ 〉 ≡
|F = 19/2,mF = –17/2〉. Experimentally, we start with
a |↓ 〉 BI at B = 0.6 G and then ramp B in 40 ms to
a value of about 40 G, for which the quadratic Zeeman
effect in 167Er is large enough to lift the degenerate cou-
pling of the individual spin levels [32]. After letting the
field stabilize for 120 ms, we use a standard rf-sweep tech-
nique to transfer part of the atoms into the |↑ 〉 state. By

y

x

(b) (c) |mF〉

|-15/2〉

|-17/2〉

|-19/2〉

z

J

rf

(a)

1
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FIG. 1. Spin-1/2 dipolar fermions in a 3D optical lattice.
(a) Sketch of the four key stages of our preparation scheme:
spin-polarized dFg in an ODT (a1), single-component BI (a2),
rf-preparation of a spin mixture in the lattice (a3), and spin-
mixture in the ODT (a4). (b) Band population in the hor-
izontal xy-plane, obtained by averaging 50 absorption im-
ages for a 12 ms time-of-flight (TOF). The red arrows indi-
cate the first Brillouin zone of the lattice, i. e. 2h̄π/dx,y with
dx,y = 266 nm. (c) Spin-resolved band-mapping images after
9 ms of TOF in the vertical zx̃ plane, where x̃ accounts for the
angle between the imaging beam and the y-axis of the lattice,
for population imbalances δ = 1 (left panel), 0.02 (middle
panel), and −0.94 (right panel). The images are averages of
about 20 absorption pictures. The spin states are separated
along the z-direction by a Stern-Gerlach technique and are
depicted by the blue and orange dipole, respectively.

tuning the rf-power, we can precisely control the pop-
ulation imbalance, δ = (N↓ − N↑)/(N↓ + N↑), in the
mixture. Figure 1(c) shows exemplary spin-resolved ab-
sorption images of |↓ 〉–|↑ 〉 mixtures for various δ after
B is swept back to low values [39]. At δ ≈ −1, we typ-
ically record N↑ = 1.6 × 104 |↑ 〉 atoms. By reloading
the atoms into the ODT, we extract a temperature of
T ≈ 0.3TF (stage (a4); Fig. 1). For comparison, simi-
lar measurements in absence of the lattice clearly show a
much lower atom number of N↑ = 0.6× 104, proving the
strength of our lattice-protection scheme to circumvent
atomic loss [20] when cruising through the ultra-dense
Feshbach spectrum [26].

Figure 2 shows the high collisional stability of the
lattice-confined spin mixture with lifetimes of several sec-
onds. In particular, we probe the atom number of |↓ 〉
and |↑ 〉 as a function of the holding time in the lattice;
see Fig. 2(a). From an exponential fit to the data, we
extract long lifetimes of τ↓ = 31(3) s and τ↑ = 12.2(7) s.
The measurements are carried out at B = 3.99 G, where
no FRs occur [32]. We also observe that the lifetime of
each spin state does not show a dependence on the pop-
ulation in the other state, i. e. on δ; see Fig. 2(b).

We note that, although very long for our purpose, we
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FIG. 2. Spin mixture of dipolar 167Er in a 3D lattice.
(a) Lifetime measurements for spin-polarized samples of |↓ 〉
(squares) with δ = 1 and of |↑ 〉 (circles) with δ = −0.92 at
B = 3.99 G. Exponential decay functions (solid lines) are fit-
ted to the respective data. (b) Lifetimes as a function of δ.
Constant fits extract mean lifetimes across δ of τ̄↓ = 29.9(3) s
and τ̄↑ = 11.8(7) s. All error bars indicate the statistical un-
certainty.

always record shorter lifetimes for a |↑ 〉 BI with respect
to the ones measured for a |↓ 〉 BI. Differently from the
|↓ 〉 case, two-body relaxation processes for |↑ 〉 are al-
lowed. At our magnetic fields, this process converts Zee-
man energy into a large enough kinetic energy to let the
atoms escape from the lattice [13, 40], and requires the
particles to collide at short distance (onsite) [19, 41]. In
the spin-polarized cases (e. g. δ = −1; |↑ 〉), double oc-
cupancy necessarily involves population in higher bands
since the Pauli exclusion principle forbids doublons in the
lowest band. In our system, a continuous transfer of a
small fraction of atoms into higher bands might be driven
by intensity and frequency noise of the lattice beams [31].
In the case of |↑ 〉 this would lead to subsequent fast relax-
ation and explain the observed difference in the lifetimes.

With the above described spin-preparation method, we
are now able to conduct high-precision Feshbach spec-
troscopy in an ODT (stage (a4); Fig. 1) in search of in-
terspecies loss features. For this, we first prepare the
spin-1/2 mixture in a deep lattice and sweep B to the tar-
get value within 10 ms. After letting B stabilize for about
100 ms, we transfer the mixture back into the ODT, hold
the atoms for 500 ms, and finally measure the spin pop-
ulations, as previously described. We then repeat the
measurement for different B values within the desired
range. Figure 3 exemplifies the high-precision Feshbach
spectroscopy for three values of δ within a narrow mag-
netic field range from B = 550 mG to 750 mG with a
resolution of 1 mG. A lower-resolution and larger-range
scan is shown in Ref. [32].

As expected [26, 27], the atom-number trace as a func-
tion of B shows a high density of resonant loss features
on top of a constant background. By controlling δ, we are
able to distinguish the spin nature of each of the observed
FRs. In the excerpt shown in Fig. 3, we identify three
narrow homo-spin FRs in a pure |↓ 〉 sample ((a), blue

shading) and four in a quasi-pure |↑ 〉 sample ((b), orange
shading). In the spin-polarized cases, all FRs are narrow
with measured widths of the order of our magnetic field
stability of ≈ 1 mG. Thanks to our lattice-preparation
technique, the shape and the width of the FRs are not
affected by the magnetic field ramps, namely we do not
observe neither broadening nor fictitious asymmetry in
the loss peaks. For the 50%-50% spin mixture (δ = 0),
we observe five additional inter-spin FRs (Fig. 3(c), green
shading), where atoms in the two spin states are simul-
taneously lost. Because of the complicated scattering
behavior of Er, standard coupled-channel methods to as-
sign the leading partial-wave character of the FRs are
currently not available [42]. However, the width of the
FRs can give indications on the strength of the coupling
between open and closed channels [43].

Among the observed inter-spin FRs, the one at about
0.68 G stands out from the forest of narrow FRs, as it
is almost two orders of magnitude broader. This fea-
ture makes this FR a promising candidate for Fermi-gas
experiments in the strongly interacting regime. A thor-
ough understanding of the collisional properties and in-
teractions in its proximity becomes thus crucial to assert
the usefulness of this FR for such type of investigations.
To reach a precise knowledge of the inter-spin scattering
length, a↓↑, we conduct modulation spectroscopy exper-
iments in the 3D lattice to map the B-to-a↓↑ conver-
sion. This technique, which has been very powerful to
precisely determine the scattering length in dipolar Bose-
Einstein condensates [9, 33], allows to measure the onsite
interaction energy U↓↑. We prepare a spin-1/2 Fermi gas
in a one-atom-per-lattice-site configuration (stage (a3);
Fig. 1). When the frequency of the lattice-depth modu-
lation is resonant with U↓↑/h, the sample undergoes in-
creased losses; for details see Ref. [32]. In our system,
U↓↑ = Uc + Udd is the sum of the inter-spin contact in-
teraction, Uc, and the DDI, Udd. Thanks to the precise
knowledge of Udd for our lattice configuration [33] we
are able to directly extract a↓↑ ∝ Uc = U↓↑ − Udd. Im-
portantly, the angle dependence of the DDI makes our
method sensitive to the sign of a↓↑: By changing the ori-
entation of the dipoles, we can tune Udd from negative
to positive values, which increases (decreases) the total
energy |U↓↑| for positive (negative) a↓↑ [32, 33].

Figure 4(a) shows a↓↑ for various B values around
the comparatively broad inter-spin FR of Fig. 3(c). The
measured a↓↑ follows the typical behavior at an iso-
lated FR, demonstrating the tunability of a↓↑ from pos-
itive to negative values. To obtain a precise B-to-
a↓↑ conversion, we fit the standard function a↓↑(B) =

abg

(
1− ∆

B−B0
− ∆′

B−B′
0

)
to the data [43]. From the

fit, we extract the background scattering length abg =
91(8) a0, the position of the comparatively broad FR
B0 = 687(1) mG and its width ∆ = 58(6) mG. Note
that our fitting function also accounts for a nearby inter-
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FIG. 3. High-resolution Feshbach spectroscopy with a 1 mG step size for three different population imbalances in an ODT
(cartoons): atoms in |↓ 〉 (squares) and |↑ 〉 (circles) for δ = 1 (a), −0.6 (b), and 0 (c) as a function of B. From the three
datasets one can determine the spin nature of the FRs as indicated by the blue (|↓ 〉), orange (|↑ 〉), and green (|↓ 〉–|↑ 〉) shaded
regions.

spin FR at B′0 = 480 mG (out of range of Fig. 3 and
4) of width ∆′ = 29(4) mG, whereas narrower inter-
spin FRs are neglected. Based on the extracted val-
ues, we can give an estimate of the length parameter
R∗ = h̄2/(mEr∆abgδµ), which characterizes the strength
of a FR [43]. Here, mEr is the mass of 167Er. For the con-
sidered FR the differential magnetic moment between the
open and closed channel, δµ, is not known. For bosonic
Er, we have previously measured a typical δµ ≈ 3µB via
molecular spectroscopy of a few molecular states [42]. By
using this bosonic value we estimate R∗ ≈ 1000a0. Uni-
versal scattering behavior is expected for a↓↑ > R∗ [44].

In experiments with strongly interacting alkali Fermi
gases of 40K or 6Li, the large collisional stability in
two-component mixtures has been essential for observ-
ing e. g. fermionic superfluidity and molecular BECs [45].
As direct consequence of the Pauli principle, three-body
recombination occurs primarily on the repulsive (BEC)
side of a broad s-wave FR, where a weakly bound molec-
ular level exists [46], whereas, on the attractive (BCS)
side, large scattering lengths coexist with a remarkable
collisional stability [47–50]. Such an asymmetry in the
scattering behavior is identified as an essential attribute
of BEC-to-BCS physics.

To investigate this aspect, we prepare an equally pop-
ulated spin mixture (δ = 0) in an ODT, following the
scheme of Fig.1(a), and probe the time evolution of the
spin population as a function of the holding time in the
trap (stage (a4); Fig. 1) for various B across the FR.
Exemplary decay curves are shown in Fig. 4(b-c). On
the BEC side at a↓↑ = 880(140) a0, we observe a fast
atomic decay of both |↑ 〉 and |↓ 〉 atoms (Fig. 4(b)).
A simple exponential fit to the data gives lifetimes of
τ1/e ≈ 150 ms. In striking contrast, on the BCS side at
a↓↑ = −1500(500) a0 (Fig. 4(d)), the spin mixture shows
a remarkable collisional stability with lifetimes exceeding
τ1/e = 1200 ms (Fig. 4(c)).

To get deeper insights, we systematically study the
initial decay rate, Ṅ/N0, as a function of B. We de-
termine the rates by using a linear fit to the data for
the initial time evolution. Figure 4(d) summarizes our
results, plotted in terms of the dimensionless coupling
constant 1/(kFa↓↑) with kF being the Fermi wave vec-
tor [32]. We clearly observe that the maximum in the loss
rate is shifted to the repulsive side of the FR pole and
that the Fermi mixture exhibits a remarkable stability in
the unitary and strongly attractive regime. The observed
shape of the loss rate reveals a remarkable similarity with
measurements conducted with alkali fermions. It is inter-
esting that the absolute values of the loss rates in 167Er
are not only qualitatively similar but also quantitatively
very close to the ones measured in 40K [49], with e. g. on
the BCS side lifetimes of about one second in both cases.

The existence of a comparatively broad FR, our ac-
quired precise knowledge of the scattering length, and
the collisional stability in the strongly interacting regime
make fermionic Er atoms a new promising system for
accessing BEC-to-BCS crossover physics. Our mixture
adds DDI to the alkali scenario, paving the way for
studying Cooper pairs with large magnetic moments and
strongly dipolar molecular BECs [22].
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of the strongly interacting Fermi mixture (a) a↓↑ extracted
from modulation spectroscopy in the lattice; see text. Error
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Initial decay rate Ṅ/N0 of the normalized atom numbers as
a function of 1/(kF a↓↑) in the vicinity of the FR.
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O. Dulieu, and F. Ferlaino, Phys. Rev. Lett. 115, 203201
(2015).

[43] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev.
Mod. Phys. 82, 1225 (2010).

[44] M. Jag, M. Cetina, R. S. Lous, R. Grimm, J. Levinsen,
and D. S. Petrov, Phys. Rev. A 94, 062706 (2016).

[45] M. Inguscio, W. Ketterle, and C. Salomon, eds., Pro-
ceedings of the International School of Physics ”Enrico
Fermi”, Course CLXIV (IOS Press, Amsterdam, 2007).

[46] D. S. Petrov, Phys. Rev. A 67, 010703 (2003).
[47] K. Dieckmann, C. A. Stan, S. Gupta, Z. Hadzibabic,

C. H. Schunck, and W. Ketterle, Phys. Rev. Lett. 89,
203201 (2002).

[48] T. Bourdel, J. Cubizolles, L. Khaykovich, K. M. F. Ma-
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SUPPLEMENTAL MATERIAL

Spin-polarized degenerate Fermi gases

Our experimental protocol for the preparation of
deeply degenerate Fermi gases (dFgs) of 167Er follows the
one described in Ref. [5]. The experiment starts with a
narrow-line magneto-optical trap operated at 583 nm to
prepare spin-polarized 167Er atoms with N = 1.2 × 107

atoms in the lowest hyperfine sublevel |F = 19/2,mF =
–19/2〉, where F is the total spin quantum number and
mF is its projection along the quantization axis. The
atoms are then transferred to a horizontal optical dipole
trap (ODT) operated at 1064 nm (ODT1064). The aspect
ratio AR = w⊥/wz of this trap can be tuned from 1.6 to
15 via a time-averaging potential technique [9] and al-
lows to reach a good spatial mode overlap between the
atomic cloud and the optical potential. Sub-sequentially
the atomic cloud is compressed by reducing the AR and
transferred to a counter propagating tight ODT operated
at 1570 nm (ODT1570) with a beam waist of about 15µm.
At this stage we typically have 1×106 atoms. During the
evaporation procedure the atoms are further confined by
a vertical ODT at 1570 nm with at waist of about 32µm.

Following our previous work [5], we perform evapo-
rative cooling based on elastic dipolar scattering among
identical fermions. Dipolar cooling has been proven to be
very efficient to produce samples in the deeply quantum
degenerate regime [5, 20]. At the end of the evapora-
tion we typically obtain a spin-polarized dFg with up to
6× 104 atoms and temperatures of T ≤ 0.15TF, with TF

being the Fermi temperature. At this stage the Fermi
energy is EF = kBTF = kB × 630 nK = h × 13 kHz.
The final trap frequencies in ODT1570 are (ν⊥, ν‖, νz) =
(286(3), 85(1), 255(3)) Hz with ‖ (⊥) corresponding to the
axis along (perpendicular to) the horizontal beam and z
indicating the axis of gravity. The magnetic field has a
value of B = 0.6 G and is oriented along z, which sets
the quantization axis of the atomic dipoles.

Preparation for lattice loading

For deeply dFgs the atoms fill the Fermi sea up to the
Fermi energy EF = hν̄(6N)1/3, where h is the Planck
constant, ν̄ the geometric mean of the trap frequen-
cies and N the atom number. Hence, the Fermi en-
ergy gives the relevant energy scale of the system. The
number of populated bands, when the atoms are loaded
to an optical lattice, thus crucially depends on the ini-
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tial Fermi energy. Here, in first approximation, the
Fermi energy can be compared to the lattice recoil en-
ergy Erec = h2/(2mλ2), with m being the mass of 167Er
and λ the lattice wavelength. In particular, during the
initial increase of the lattice potential higher bands be-
come populated if EF > Erec [37].

To minimize the occupation of higher bands due to
the loading procedure we reduce the Fermi energy of
our sample. Here, we transfer the atoms back to a
crossed ODT1064 within 510 ms, which allows for a con-
venient control on ν̄ via the dynamically adjustable
AR. We optimize the ODT parameters by lowering ν̄
and N while keeping a low temperature of the sam-
ple. Best conditions for subsequent lattice loading are
reached for (ν⊥, ν‖, νz) = (63(1), 36(2), 137(1)) Hz and
N = 2.4 × 104 atoms corresponding to a Fermi energy
EF = kB× 170 nK = h× 3.6 kHz. We note that for lower
νz atoms get lost due to gravity.

Three-dimensional optical lattice

After preparation, we adiabatically load the spin-
polarized dFg into a three-dimensional (3D) optical lat-
tice, created by two retro-reflected 532 nm laser beams
along the x- and y-axis and one retro-reflected 1064 nm
vertical laser beam along the z axis; see Fig. S1. The
lattice spacing are dx,y = 266 nm along the horizon-
tal xy-plane and dz = 532 nm along the vertical z-
axis [33]. We increase the lattice-beam intensities expo-
nentially in 150 ms to the final value. With the available
power, we reach maximum lattice depths of (sx, sy, sz) =
(25, 25, 120), where si with i ∈ {x, y, z} is given in units
of the respective recoil energies, ER;x,y = h × 4.2 kHz
and ER;z = h × 1.05 kHz. Typical lattice depths used
in the experiment are (sx, sy, sz) = (20, 20, 80) corre-
sponding to band gaps of h× 32.8 kHz along x and y and
h × 17.7 kHz along z. Subsequentially, the ODT beams
are switched off in 10 ms and we additionally hold the
atoms for 500 ms. This time is sufficient to remove resid-
ual atoms that have been pushed to higher bands of the
optical lattice by the Fermi pressure. We note that when
the atoms are loaded directly from ODT1570 we find up
to 25 % of higher bands population, which in this case
get strongly depopulated within 500 ms. A remaining
fraction of 5 % in the higher band of the vertical lattice
remains also for our most careful loading procedure; see
main manuscript.

Zeeman energy for fermionic Er

Fermionic Er exhibits a hyperfine structure with a nu-
clear spin quantum number I = 7/2 that couples with
the total electronic angular momentum J to the total
angular momentum F = J + I. In the lowest hyper-

yx

z

d
y dx

d z

FIG. S1. Sketch of our lattice geometry. The coordinate
system {x, y, z} and the lattice constants dx, dy, and dz are
indicated.

fine manifold (F = 19/2) there are 2F + 1 = 20 mag-
netic substates mF resulting from the projection of F
on the quantization axis. The lowest magnetic state
|F = 19/2;mF = –19/2〉 exhibits a magnetic moment
of µ = mF gFµB = −6.982804µB where gF = 0.735032 is
the Landé g-factor and µB is the Bohr magneton [52].

The hyperfine energies can be calculated via exact di-
agonalization of the atomic Hamiltonian [53]. In Fig. S2
we plot the Zeeman substates of the lowest hyperfine
manifold as a function of the magnetic field. At first
glance it appears that the energies evolve linearly. How-
ever, at larger magnetic field due to the Paschen-Back ef-
fect J and I start to decouple. This leads to a quadratic
term of the Zeeman energy for states σ = mF with
Eσ = qqu(σ2 − F 2) and qqu ∝ B2. The deviation from
the linear Zeeman energy becomes evident in the differ-
ential splitting ∆EZ = (Eσ−Eσ+1)−(Eσ+1−Eσ+2) with
Eσ = qliσ + qqu(σ2 − F 2) and σ ∈ [−19/2, . . . , 19/2] as
shown in the inset of Fig. S2. The linear Zeeman effect
qliσ ∝ B cancels out when ∆EZ is evaluated.

Preparation of a spin mixture in the lattice

For deterministic spin preparation of the two low-
est spin states we use typically magnetic field values of
B = 40.51 G where ∆EZ = 42.6 kHz, which is larger than
the magnetic field noise at this field of ≈ 20 kHz. This
resembles an effective two level spin-1/2 system for spin-
spin couplings and enables a deterministic spin prepa-
ration of the lowest two spin states via radio-frequency
(rf)-techniques. To couple the two hyperfine sub-states
we apply a rf-sweep by chirping the rf-frequency contin-
uously from a value of (ν? + 30 kHz) to (ν? − 30 kHz)
within about 10 ms, where h× ν? corresponds to the dif-
ference in Zeeman energy of the two lowest spin states
(∆1; Fig. S2). We can prepare a well-reproducible mix-
ture of |↓ 〉 and |↑ 〉 without populating the next higher
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FIG. S2. Zeeman energy for the magnetic substates in the
|F = 19/2〉 hyperfine manifold. For this work the energy
splitting of the lowest three spin states |–19/2〉 ≡ |↓ 〉 (blue
line), |–17/2〉 ≡ |↑ 〉 (orange line) and |–15/2〉 (red line) is
of most relevance. Higher spin states are visualized by grey
lines. The linear Zeeman effect dominates the energy evolu-
tion while in the differential splitting ∆EZ = ∆1−∆2 (inset)
the quadratic Zeeman effect is evident.

spin state. The population imbalance δ between the two
spin states can be freely controlled by varying the power
of the rf signal. In particular, also almost all the atoms
can be transferred to |↑ 〉 reaching up to δ = −0.94 (see
Fig. 1(c) in main manuscript). We note that, while our
preparation technique in the lattice initially leads to a
coherent superposition of the two spin states, additional
measurements suggest a fast decoherence, leading to a
projection of pure states on the individual lattice sites
for experimental relevant time scales. In particular, we
observe that coherently driven Rabi oscillations between
the two spin states quickly damp within a few ms.

Lifetime of the spin mixture in a deep lattice

To conduct a clean measurement of the collisional
properties of a spin mixture in the deep optical lattice
it is important to fulfill the following requirements: (i)
The spin mixture is in an insulating regime where the
formation of doublons is suppressed via sufficiently large
ratios of the onsite energy U to the tunneling rate J .
The magnetic field is also well away from Feshbach res-
onances (FRs). (ii) The Zeeman energies do not have
an equidistant spacing. In such a regime magnetization
conserving spin exchange would lead to a change of the
spin composition [15, 16, 21, 54].

Due to the high density of FRs the first requirement
can be more conveniently achieved with low technical
magnetic field noise, which ensures a higher stability

of the magnetic field value. In our experiment this is
given below 5 G where the noise is found to be ≈ 1 mG.
The second requirement is matched for a sufficiently
large magnetic field, where the quadratic Zeeman effect
is strong enough to not be canceled by quadratic light
shifts [55]. Best conditions are found at a magnetic field
value of 3.99 G, which is used for the lifetime measure-
ments of Fig. 2. At this field the measured onsite inter-
action U = h × 2.43(2) kHz exceeds by far the relevant
tunneling rates Jx,y = h× 10.5 Hz and no spin dynamics
are observed.

State-resolved Feshbach spectroscopy

To identify the magnetic field regions where promising
inter-spin FRs occur, we first perform a rough Feshbach
scan in the 0 − 2 G region for different population im-
balances δ (Fig. S3). For this set of data we do not use
our lattice-protection technique. Instead, the spin prepa-
ration, the magnetic-field ramps, and the Feshbach spec-
troscopy are directly performed in the ODT. As expected,
without the lattice, the loss features present broaden-
ing and asymmetric shapes due to mere magnetic-field
sweeps (e. g. losses during the sweeps).

For this measurement set, we first perform a Feshbach
scan in a spin polarized gas in ODT1570 (Fig. S3, upper
panel). We jump to the final magnetic field and hold
for thold = 70 ms before time-of-flight imaging. The trap
frequencies are (ν⊥, ν‖, νz) = (324(1), 147(5), 259(4)) Hz.
The system has an initial temperature of T = 0.18(1)TF.
Similar to Ref. [26], we observe a high density of loss
features, which correspond to single-component (|↓ 〉)
FRs of high partial-wave character. We then repeat
the magnetic-field scan in an almost pure |↑ 〉 sample
(Fig. S3, middle panel). Here, we use a resonant rf-pulse
at 0.99 G to prepare a mixture with mainly |↑ 〉 atoms.
Then we jump on a purely |↓ 〉 homo-spin FR located at
1.034 G to remove remaining |↓ 〉 atoms. The measure-
ment is performed in the more shallow ODT1064 to pre-
vent too strong interspecies losses and thold = 500 ms.
For this trap the trap frequencies are (ν⊥, ν‖, νz) =
(39(1), 37(1), 145(3)) Hz and the initial temperature is
T = 0.35(1)TF. We find new FRs, which mainly cor-
respond to single-component |↑ 〉 FRs. In a last scan we
observe the loss features for a spin mixture prepared at
0.58 G in the same trap as for the pure |↓ 〉 measure-
ment with thold = 50 ms (Fig. S3, lower panel). Here, the
initial temperature is slightly increased due to the spin
mixing to T = 0.24(1)TF. The individual homo-spin FRs
are still visible while we also find new inter-spin |↓ 〉–|↑ 〉
FRs.

We analyze the three sets of data to extract the spin
nature of the individual FRs. For several FRs, the en-
trance spin channel can be easily identified. In addition,
we also observe overlapping FRs. Here, an exact assign-
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FIG. S3. Feshbach spectroscopy of a two-component spin mixture in an ODT (without the lattice-protection technique) for
different population imbalances δ: δ = 1 (upper panel), −0.54 (middle panel), 0.4 (lower panel). While the measurements for
the upper and lower panel are performed in ODT1570 with ν̄ = 231(3) Hz, the data of the middle panel is measured in ODT1064

with ν̄ = 59(1) Hz. The shading around the data points indicates statistical uncertainties, which are often smaller than the
data points. Due to the finite resolution of the scans of 10 mG it is possible that narrower FRs are not resolved. The grey
shading shows the magnetic field region studied in the main manuscript with the green shading indicating the comparatively
broad inter-spin FR.

ment requires a high-resolution magnetic-field scan and
our lattice-protection technique; see main text. Among
the forest of FRs recorded in the two-component mixture,
we observe a promising inter-spin FR at about 700 mG,
which remains rather isolated from other homo-spin FRs;
see green shading in Fig. S3.

In a second set of measurements, we focus on the
magnetic-field region around 700 mG and perform high-
resolution Feshbach spectroscopy, taking advantage of
a lattice-preparation scheme, as described in the main
text. The lattice-protection technique is very powerful
in removing technical broadening and artificial asym-
metry of the loss peaks, as clearly appears from a
comparison between the atom-number traces recorded
with ODT-preparation (Fig. S3) and lattice-preparation
schemes (Fig. 3). We note that the observed atomic losses
can be mainly attributed to resonant three-body recom-
bination collisions in the short-range potential. Inelastic
two-body losses driven by the spin-non-conserving dipo-
lar interactions are, in principle, also energetically al-
lowed since |↑ 〉 atoms are in an excited Zeeman state
[43]. However, we do not expect this process to be en-
hanced at resonance.

We perform the measurements for Fig. 3 as follows.
We prepare a spin mixture in the lattice at high B
as described above and sub-sequentially ramp the field
to the desired value within 10 ms. After letting the B
stabilize for about 100 ms, the dipole trap beams are
ramped up within 10 ms and we unload the atoms from
the lattice back into the ODT1064 within 150 ms. At
this stage, the sample contains N ≈ 1.6 × 104 atoms at
T ≈ 0.3TF and the trap frequencies are (ν⊥, ν‖, νz) =
(111.6(2), 35(1), 169.4(6)) Hz. We record the spin popu-
lation after a holding time of 500 ms.

Modulation spectroscopy with a fermionic spin
mixture in the lattice

To measure the scattering length between two spin
states of 167Er we rely on a method, which we have
already successfully implemented with 168Er [33] and
166Er [9]. It is based on the measurement of the onsite
energy of two atoms in a deep optical lattice. Here, after
preparing a spin mixture of |↓ 〉 and |↑ 〉 in the lattice
we drive particle-hole excitations of neighboring atoms
in different spin states by a resonant modulation of the
horizontal lattice depths sx,y. Note that for neighbor-
ing identical particles no single-band excitation will be
observed due to the Pauli exclusion principle. A con-
venient method to measure double occupancies uses the
coupling to a third spin state. Close to a molecular state
of the original doublon components, the third spin state
features a smaller inter-spin onsite energy and can thus
be used to detect an initial double occupancy [56]. As in
our system this method remains to be explored we detect
doublons via an increased atom loss once doublons are
created. We speculate that onsite dipolar driven relax-
ation is responsible for the observed loss [40]. Typically,
we modulate the lattice depth for 1 s with a peak-to-peak
amplitude of 30%. Maximum loss occurs when the mod-
ulation frequency νmod reaches the resonance condition
νres (see Fig. S4). νres is directly related to the onsite
energy via U↓↑ = h × νres. Following our previous work
the onsite energy U↓↑ consists out of two contributions:
the contact interaction Uc

Uc =
4πh̄a↓↑
mEr

∫
dr |φi(r)|4 ,
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with a spin mixture of |↓ 〉 and |↑ 〉 in the deep lattice at
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is related to the onsite energy U↓↑ (cartoon).

and the DDI Udd

Udd =
µ0µ↓µ↑

4π

∫
dr

∫
dr′ |φi(r)|2 1− 3 cos2 θr−r′

|r− r′|3 |φi(r′)|2 .

Here, φi(r) denotes the Wannier function on site i,
|r− r′| is the interatomic distance and θr−r′ corresponds
to the angle between the polarization axis of the two
dipoles with respect to their interparticle axis. The con-
tact part depends on the inter-spin scattering length a↓↑,
the reduced Plank constant h̄, and the mass mEr of Er,
while the DDI part is proportional to the vacuum per-
meability µ0 and the magnetic moments of the two spin
states µ↓ and µ↑. The contribution of nearest-neighbor
interactions are minor and therefore neglected.

Both, the strength but also the sign of Udd strongly
depend on the dipole orientation and the aspect ratio
(AR) of the onsite Wannier function. As specified in
our earlier work [33] the AR is defined by the ratio of
the onsite harmonic oscillator lengths AR = lz/lx,y with

li = di/(πs
1/4
i ) for i ∈ {x, y, z}. For our typical lattice

parameters we find AR > 1 and hence Udd is negative
(positive) for a dipole orientation out of (in) the xy-plane.
In the experiment we can use this fact to determine the
sign of the scattering length a↓↑. First, we perform a
modulation spectroscopy with a dipole orientation along
z. The extracted resonance frequency deduces the en-
ergy gap |U↓↑| of the particle-hole excitation but does
not give any information on the sign of the total onsite
energy. We repeat the measurement at the same mag-
netic field with the dipoles oriented inside the xy-plane.
The rotation of the dipoles leads to a more positive total
onsite energy U↓↑ and thus to a shift to larger (smaller)
values of |U↓↑| corresponds to a positive (negative) sign
of U↓↑. With this method we determine the sign of the
scattering length a↓↑ for Fig. 4(a).

As a final test of our method we study the dependence
of the onsite energy as a function of the lattice depth sz
(Fig. S5). Here, we fix the magnetic field, oriented along
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FIG. S5. Modulation resonance νres as a function of the
vertical lattice power sz for sx,y = 20 at B = 650 mG. The
solid line shows a fit with our theory to extract the scattering
length a↓↑. The shaded region accounts for the systematic
uncertainty of the scattering length of ±4 a0 at 0.65 G, which
results from our magnetic field fluctuations of ±1 mG.

z, to 650 mG and vary the depth of the z lattice. We re-
peat the modulation spectroscopy for different values of
sz and extract νres for each measurement. A comparison
to our theoretical model with a↓↑ being the only free pa-
rameter reveals a nice agreement, confirming the validity
of our modulation spectroscopy technique. Here, the fit
gives a value for a↓↑ of 225(2) a0.

The presented data in Fig. 4(a) for a given magnetic
field B shows the mean of all experimental data sets,
taken with different lattice parameters. Table 1 sum-
marizes all experimental lattice parameters and the ex-
pected contribution of Uc (for a↓↑ = 100 a0) and Udd

from our theoretical model. From a given measurement
of U↓↑ the inter-spin scattering length can be evaluated
by a↓↑/a0 = (U↓↑ − Udd)× 100/Uc.

Loss spectroscopy in the ODT at the inter-spin FR

For the measurements of the collisional properties of
the fermionic spin mixture in the vicinity of the com-
paratively broad inter-spin FR (see Fig. 4(b-d)), we ap-
ply the following experimental procedure. We prepare
a spin mixture with δ = 0 in the deep 3D lattice and
sweep to a magnetic field of B = 3.99 G. We then
jump with the magnetic field to the final value and
let it stabilize for 10 ms. We ramp up the ODT1064

beams in 10 ms and melt the lattice in 20 ms as to avoid
losses to happen already during the ramp-down pro-
cedure. The final trap frequencies are (ν⊥, ν‖, νz) =
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(sx, sy, sz) AR Uc/h (Hz) Udd/h (Hz)

(20, 20, 40) 1.68 2029 −441

(20, 20, 60) 1.52 2263 −396

(20, 20, 80) 1.41 2443 −350

(20, 20, 100) 1.34 2590 −307

(20, 20, 120) 1.28 2717 −265

(15, 15, 80) 1.32 2068 −223

(22, 22, 80) 1.45 2578 −399

TABLE I. Lattice parameters for the determination of a↓↑
(Fig. 4(a)). The lattice depths (sx, sy, sz) define the onsite
Wannier function AR. From our theoretical model we evalu-
ate the onsite energy contributions Uc and Udd for an inter-
spin scattering length of a↓↑ = 100 a0. Here, the dipoles are
oriented along z. This values are used to extract the inter-
spin scattering length from the measured total onsite energy
U↓↑.

(111.6(2), 35(1), 169.4(6)) Hz. For this trap we typically
record EF ≈ kB× 150 nK corresponding to a Fermi wave
vector kF ≈

√
2mErEF/h̄ = 1× 107 m−1. We then store

the two-component mixture in the ODT1064 for a vari-
able holding time and finally record the spin populations
with Stern-Gerlach imaging.

We record the atom decay for various magnetic fields
B across the FR. For each B, we extract an initial decay
rate Ṅ/N0 by fitting a linear-decay function to the data,
normalized to the initial atom number N0. As fitting
range, we include all data for which the atom number
stays above a threshold of 75% of N0. We checked that
the extracted values of Ṅ/N0 do not change significantly
when varying the threshold between 65−85%. An analy-
sis of the full data using exponential fits also yields similar
results.
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6
Conclusion and outlook

6.1. Conclusion

This thesis is dedicated to the study of dipolar phenomena in the cold and ultracold regime.
It reports on effects of the long range and anisotropic dipole-dipole interaction (DDI) on the
few- and many-body behavior of an atomic sample. To this aim, we have utilized erbium
atoms, which combine the possibility for efficient laser cooling and trapping with a strongly
magnetic character. Our success of bringing not only bosonic but also fermionic erbium
atoms into the quantum degenerate regime has set the foundation for the observation of
dipolar phenomena with different governing quantum statistics. Our studies have also faced
the orbital anisotropy of erbium, an important feature of magnetic lanthanides. With the
implementation of a three-dimensional optical lattice, we have transformed the experimental
apparatus into a quantum simulator of condensed matter systems with long-range interac-
tions. Being one among only a few dipolar experiments around the world has allowed us to
constantly break fresh experimental grounds. Our efforts have rewarded us with the attain-
ment of fascinating physical systems, such as dipolar Feshbach molecules, extended Hubbard
models, or strongly interacting dipolar Fermi gases, and enabled observations of intriguing
physical phenomena, such as universal and anisotropic elastic few-body scattering, chaotic
inelastic scattering, or the altering of the quantum many-body phase transition from the
superfluid to the insulating phase by the DDI.

In order to explore unknown territories, we have constantly upgraded the experimental appa-
ratus as to enrich the possible research directions. A particular interesting prospect for our
experiment is given by our recent successful preparation of extended Fermi Hubbard models
with spin-mixtures of dipolar fermions, see Sec. 5.6. In the following section we will briefly
discuss possible experiments along this lines that are on the way or that can be undertaken
with our system.
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6.2. Future investigations along the extended Fermi Hubbard
model

Within the course of this thesis, we have successfully prepared deeply degenerate Fermi
gases of 167Er and have adiabatically transferred them into the lowest band of a three-
dimensional optical lattice. A major advantage of our fermionic system arises from quantum
statistics. For a spin-polarized gas, double occupancies on a single lattice site are forbidden,
resulting in a single-component band insulator with high filling fraction and long lifetime.
This clean preparation method together with the long-range dipolar character of the particles
provides a very clean test bed for the study of quantum phenomena that are solely driven
by offsite interactions. In addition, we can deterministically prepare individual spin states
of 167Er, which features the unprecedented large number of 20 spin states in the lowest
hyperfine manifold, see Sec. 2.2.4. Our system gives exciting prospects for the studies of
transport dynamics, lattice spin models, or resonant demagnetization dynamics as we will
briefly discuss below.

Transport phenomena with spin-polarized dipolar fermions

In solid state systems, transport properties are closely linked to the underlying physical
phenomena, such as high-temperature superconductivity, topological insulators, or disorder
phenomena. Well-controlled ultracold atomic systems in optical lattices can serve as quantum
simulators to investigate such phenomena via the study of transport dynamics. For the case
of long-range interactions, the transport properties of the many-body state can be markedly
influenced by the nearest-neighbor interaction (NNI) among particles. Such a system can
be conveniently prepared with spin-polarized dipolar fermions in a deep optical lattice. The
formed band insulator with high filling fraction gives ideal starting conditions for the study
of transport properties via expansion measurements, see e. g. Ref. [Sch12b]. In order to
expand, the atomic sample needs to locally break bonds of NNI between particles. This
process is suppressed by simple energy arguments and hence the system is expected to show
reduced expansion dynamics [San17]. As a result, a so-called clustered state is formed where
neighboring particles tend to stick together. Interestingly, the reduction of expansion is
expected to depend on the strength of the NNI, which in the case of dipolar interactions can
be conveniently controlled via the angle of the dipoles with respect to the interparticle axis,
see Eq. 3.2.

Extended spinor Fermi-Hubbard models

While already spin-polarized gases give exciting prospects for studies of peculiar quantum
effects, the story can become even more intriguing when the spin degree of freedom is added
to the system. Indeed, the availability of higher spin states allows to access lattice spin
models, as represented by the extended spinor Fermi-Hubbard model.

For the Hamiltonian of Eq. 5.18 we have included all terms that conserve the total magneti-
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zation, i. e. where F z
tot =

∑
i S

z
i = const. In reality, the Hamiltonian can also feature terms

that do not conserve F z
tot, i. e. that lead to a demagnetization of the collective spin state.

The offsite part of the Hamiltonian of this system reads as [Aue94, Zhu17]

Hoffsite = Hcons +Hnon−cons 6.1

where Hcons and Hnon−cons include the spin-conserving and spin-non-conserving terms, re-
spectively. The effects of this terms will be discussed in the following. For the sake of
simplicity, we will restrict the discussion to a one-dimensional systems, i. e. to a lattice chain
of dipoles.

Spin conserving terms

The spin conserving offsite interaction terms read as

Hcons =
∑

i<j,σ

V ij
0 (1 − 3 cos2 θr−r′)

[
F z
σi
F z
σj

− 1

4
(F+

σi
F−
σj

+ F−
σi
F+
σj

)

]
6.2

with the general dipolar coupling strength

V ij
0 =

∫
dr

∫
dr′w∗

i (r)w∗
j (r′)

(
µ0(gFµB)2

4π

1

|r− r′|3
)
wi(r)wj(r

′). 6.3

As already discussed in Sec. 5.2.3, F z
σi
F z
σj

represents the NNI while the term F+
σi
F−
σj

gives
rise to spin-conserving flip-flop dynamics among neighboring particles. This Hamiltonian has
been studied in pioneering works by the groups of Jun Ye in Boulder and Bruno Laburthe-
Tolra in Paris by exploring off-site driven spin exchange with spin-1/2 KRb molecules [Yan13]
and with spin-3 bosonic chromium atoms [dP13b, Lep18]. With our experiment we have
now reached the point where we can investigate such exotic spin models in the context of an
unrivaled large spin-19/2 system.

The dynamics are expected to depend on various parameters. First of all, for a flip-flop
process to take place, energy has to be conserved. Hence, the dynamics will strongly depend
on the energy difference between adjacent spin states. In our system, this differential energy
can conveniently be controlled via spin-dependent quadratic Zeeman and quadratic light
shifts, see Sec. 5.2.3. With this tool at hand, we can switch on and off flip-flop dynamics at
will. Further, the deterministic preparation of pure spin states will allow us to investigate in
detail the spin-dynamics time scales for different initial spin states. Depending on the spin
number, slower or faster time scales are expected, as follows from Eq. 5.17. Finally, the time
scales are expected to be controllable via the dipole orientation θr−r′ . For dipoles aligned
along to the lattice chain, θr−r′ = 0◦, the dynamics should be twice as fast compared to
a perpendicular orientation, θr−r′ = 90◦, and spin-exchange should be absent at the magic
angle θr−r′ = 54.74◦.
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Spin non-conserving terms

The spin non-conserving offsite interaction terms read as

Hnon−cons = −
∑

i<j,σ

V ij
0

(
3

4
sin2 θr−r′

[
e−2iφF+

σi
F+
σj

+ h.c.
]

+
3

4
sin 2θr−r′

[
e−iφ(F z

σi
F+
σj

+ F+
σi
F z
σj

) + h.c.
])

.

6.4

Here, θr−r′ and φ denote the polar and azimuthal angles, respectively, and V ij
0 is the gen-

eral dipolar coupling strength, see Eq. 6.3. The first term of the Hamiltonian changes the
magnetization of two atoms by ±2 and the terms of the second line result in a change by
±1. Magnetization changing terms are of particular interest as they allow to couple the
spin and the orbital degree of freedom, assosciated to the famous Einstein-de-Haas effect,
see e. g. Ref. [Lah09] for a review. In the case of lattice-confined particles, spin-orbit cou-
pling can lead to excitations to higher lattice bands as beautifully demonstrated with onsite
interacting |S = 3,ms = 3⟩ bosonic chromium atoms [dP13a]. However, offsite-driven spin
demagnetization remains to be observed.

An offsite-driven demagnetization can occur when a resonant state is accessible. This sce-
nario can emerge when the change of the NNI energy (F z

σi
F z
σj

), resulting from the spin flip,
matches the respective Zeeman splitting. In our system this process requires very low mag-
netic field values well below 1 mG. The preparation of such a low magnetic field amplitude
demands a very precise magnetic field control. In our experiment we have already success-
fully implemented an active magnetic field stabilization, see Appendix C. However, to reach
the necessary magnetic field stability, further improvements have to be employed.

Interestingly, the strength of the terms in Eq. 6.4 show a peculiar angle dependence. In
particular, the sign of the terms can be changed by adjusting the dipole orientation and for
a parallel dipole orientation, i. e. θr−r′ = 0◦, the demagnetization terms would vanish.
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In a joint experimental and theoretical effort, we report on the formation of a macrodroplet state in an
ultracold bosonic gas of erbium atoms with strong dipolar interactions. By precise tuning of the s-wave
scattering length below the so-called dipolar length, we observe a smooth crossover of the ground state
from a dilute Bose-Einstein condensate to a dense macrodroplet state of more than 2 × 104 atoms. Based
on the study of collective excitations and loss features, we prove that quantum fluctuations stabilize the
ultracold gas far beyond the instability threshold imposed by mean-field interactions. Finally, we perform
expansion measurements, showing that although self-bound solutions are prevented by losses, the interplay
between quantum stabilization and losses results in a minimal time-of-flight expansion velocity at a finite
scattering length.

DOI: 10.1103/PhysRevX.6.041039 Subject Areas: Atomic and Molecular Physics,
Quantum Physics

I. INTRODUCTION

The extraordinary success of ultracold quantum gases
largely stems from the simplicity with which the physics at
the many-body level can be controlled and described,
allowing access to a wide range of theoretical models of
general interest [1]. Notably, the actual many-body inter-
actions are often very well captured via simple mean-field
(MF) potentials, proportional to the local particle density n
and accounting for the average mutual effect of all
neighboring particles [1]. Moreover, short-ranged inter-
actions, even if complex or unknown, can be simply
accounted for via a contact potential and parametrized
by the sole s-wave scattering length as, which in turn can
be widely tuned by means of Feshbach resonances (FRs)
[2]. The MF treatment of a Bose gas leads to the celebrated
Gross-Pitaevskii equation (GPE) and Bogoliubov–de
Gennes (BdG) spectrum of collective modes, which are
very powerful in describing the physics of an ultracold
bosonic gas: its ground-state properties as a Bose-Einstein
condensate (BEC), as well as its dynamics [1].
Beyond the great achievements of dilute gases as a test

bed for MF theories, the quest for beyond-MF effects has
triggered great interest in the ultracold community. The

general question of how the many-body ground state of
bosons is modified by quantum fluctuations (QFs) of
elementary excitations was first addressed by Lee,
Huang, and Yang (LHY) in the 1950s [3]. The so-called
LHY term, which accounts for the first-order correction to
the condensate energy, scales for a contact-interacting gas
as asn

ffiffiffiffiffiffiffiffi
na3s

p
. While in the weakly interacting regime the

effect of QFs is negligible and difficult to isolate from MF
contributions, it can be sufficiently amplified by increasing
as via a FR. Based on this concept, recent experiments with
alkali have observed clear shifts of the BdG spectrum and
equation of state caused by the LHY term in strongly
interacting Fermi [4–6] and Bose gases [7,8].
While in these measurements the LHY correction does

not modify the qualitative behavior of the gas, it has been
recently pointed out [9] that, in systems with competing
interactions of different origin, the MF interaction can be
made small and the LHY term dominant, so that the latter
dictates the physics of the system, even inweakly interacting
gases. In this regime, a novel phase of matter is expected to
appear, namely, a liquidlike droplet state. For purely contact-
interacting gases, this situation is hard to realize since it
would require, for instance, Bose-Bose mixtures with
coincidental overlapping FRs [9]. In contrast, dipole-dipole
interaction (DDI) genuinely offers this possibility in a
single-component atomic gas by competing with the iso-
tropic MF contact interaction [10,11]. In the pure MF
picture, a paradigm of the competition between DDI and
contact interaction is embodied by the ability of quenching a
dipolar BEC to collapse by varying εdd ¼ add=as, where
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add ¼ μ0μ
2m=12πℏ2 is a characteristic length set by the

DDI, with m the mass and μ the magnetic moment of the
atoms [12,13]. Here, ℏ stands for the reduced Planck
constant and μ0 for the vacuum permeability. In general,
because of the special geometrical tunability of DDIwith the
external trapping potential and dipole orientation, the
stability and phase diagram remarkably depend on
λ ¼ ν∥=ν⊥, where ν∥ (ν⊥) is the trapping frequency along
(perpendicular to) the dipole orientation [11,12,14].
In parallel, recent breakthrough experiments with an

oblate dysprosium (Dy) dipolar BEC (λ > 1) have shown
that when quenching up εdd, the system, instead of collaps-
ing, forms a metastable state of several small droplets
[15,16]. This observation has triggered an intense debate
on the nature of such a state and its underlying stabilization
mechanism [17–23]. Eventually, Dy experiments indicated
QFs as the origin of the stabilization [16], which were
quickly confirmed by theoretical works [20–22].
Furthermore, these theoretical studies highlight the richness
of the dipolar-gas phase diagram, in which a dilute-BEC, a
multidroplet, and a single-droplet phase are found for
distinct as, add, atom number N, and λ. Up to now, droplet
physics has only been investigated in a single setup, using
Dy BEC and exploring a specific region of the phase
diagram: In the considered pancake geometry (λ > 1),
multiple stable solutions—single droplet or multidroplet—
coexist, resulting in the formation of variable mesoscopic
assemblies of a small droplet in the experiments.
In the present work, we (i) demonstrate the generality of

droplet physics, by using a dipolar BECof erbium (Er) atoms
[24], (ii) quantitatively investigate the specific role played by
QFs in dipolar systems, and (iii) explore a pristine region of
the phase diagram, studying a cigar-shaped geometry
(λ ≪ 1), and observe the crossover from a dilute BEC to a
singlemacrodroplet statewhen increasing εdd, as predicted in
Refs. [21,22].Given the complexity of the physics at play,we
combine distinctmeasurements, based on the observations of
the density distributions, collectives excitations, expansion
dynamics, and lifetime of the dipolar quantum gas, which
together offer a comprehensive picture of droplet physics.
The exquisite control of the scattering length gained in our
experiment, together with a direct comparison to parameter-
free simulations includingQF effects, ultimately enable us to
depict in which way QFs dictate the physics at play, beyond
proving their crucial stabilizing role.

II. EXPERIMENTAL PROCEDURES

The atomic properties of Er offer a privileged platform to
explore a variety of interaction scenarios. Besides its
strongly magnetic character and its many FRs [25], Er
has several stable isotopes. This feature adds an important
flexibility in terms of the choice of the background as [26].
In our early work on Er BECs, we employed the 168Er
isotope, which has a background as about twice as large as
the dipolar length, add ¼ 65a0 [27,28].

In the work reported here, we produce and use a BEC of
166Er in the lowest internal state. This isotope provides us
with two major advantages. First, its background as is
comparable to its dipolar length, add ¼ 65.5a0, realizing
εdd ¼ add=as ≈ 1 without the need of Feshbach tuning.
Second, 166Er features a very convenient FR at ultralow
magnetic-field valuesB. To preciselymapas as a function of
B, we use a spectroscopic technique based on the measure-
ment of the energy gap of the Mott insulator state in a deep
three-dimensional optical lattice [28,29]. A detailed descrip-
tion is given in the Supplemental Material [30]. Between 0
and 3 G, we observe a smooth variation of as, which results
from two low-lying FRs whose centers are fitted to 0.05(5)
and 3.0(1) G, respectively; see Fig. 1. This feature gives easy
access into the εdd > 1 regime, allowing variation of εdd
from 0.70(2) to 1.58(18) by changing B from 2.5 to 0.15 G;
see Fig. 1 upper inset. By fitting our data [2], we extract
asðBÞ valid for B in the [0.15, 2.5]-G range, which we use
throughout this paper [30].
We achieve Bose-Einstein condensation of 166Er using

an all-optical scheme very similar to Ref. [27] with cooling
parameters optimized for 166Er [30]. In short, we drive
forced evaporative cooling at a magnetic field B ¼ 1.9 G,
corresponding to as ¼ 81ð2Þa0 [εdd ¼ 0.81ð2Þ]. In this
phase, B is oriented along the vertical z axis. At the end
of the evaporation, we obtain a BEC of N ¼ 1.2 × 105

atoms with a condensed fraction above 80%.
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FIG. 1. Scattering length in 166Er. as as a function of B. The data
points (circles) are extracted from spectroscopic measurements in a
lattice-confined gas and the solid line is a fit to the data with its
statistical uncertainty (gray shaded region [30]). Upper inset:
Zoom-in of εdd as a function of B. The gray dashed line marks
εdd ¼ 1; see also the other figures. The lower inset illustrates the
geometry of our experimental setup, the relevant axes (x, y, z), the
optical-dipole-trap beam (shaded region), the magnetic field
orientation (green arrow) along which the dipoles are aligned,
and the ∥- and ⊥-imaging view axes (blue arrows). The dashed
lines picture the small angles of these axes to y and z [30].
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To reach the λ ≪ 1 regime, we slowly modify, in the
last step of the evaporation, the confining potential to the
final cigar shape, with typical frequencies ðνx; νy; νzÞ ¼
½156ð1Þ; 17.2ð4Þ; 198ð2Þ� Hz. Simultaneously, we decrease
B to 0.8 G [as ¼ 67ð2Þa0] and then change the magnetic-
field orientation to the weak trapping axis (y) while keeping
its amplitude constant [30]. Finally, we ramp B to the
desired target value (and equivalently as) in tr [30], hold for
a time th, and perform absorption imaging of our gas after a
time-of-flight (TOF) of tTOF. Two imaging setups are used
in order to measure the density distribution integrated either
along the dipoles (∥ imaging) or perpendicular to them
(⊥ imaging) [30]. Figure 1 (lower inset) illustrates the final
geometry of our system with ν∥ ¼ νy, ν⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν2x þ ν2zÞ=2

p
,

giving λ ¼ 0.097ð3Þ, and defines the relevant axes.
Here, we explore the properties of the system when the

repulsive MF contact interaction is weakened enough to be
overcome by the DDI (λ ≪ 1, εdd > 1), after adiabatically
changing (tr ≥ 45 ms) or quenching (tr ¼ 10 ms) as to its
target value [30]. For tr ≥ 45 ms, the system evolves
following its ground state and gives access to the slow
dynamics, whereas for the tr ¼ 10 ms case, we can probe
the fast dynamics and study the relaxation towards an
equilibrium. The key question is whether QFs protect the
system from collapsing. Indeed, in this regime, the MF
treatment would imply that the attractive BEC becomes
unstable, leading to a twofold dramatic consequence [1].
First, some modes of the BdG spectrum acquire complex
frequencies. Second, in a trap, the density distribution of
the cloud undergoes a marked change on short time scales
(≤1=ν⊥), described as a “collapse”, which can develop into
a rapid loss of coherence [12,31], and pattern formations,
such as anisotropic atom bursts (“bosenova”) and special
d-wave-type structures, as observed in rubidium [32] and
dipolar gases of chromium [12,13], respectively. This fast
dynamics has been proved to be well encompassed by GPE
simulation [13,14,33].

III. DENSITY DISTRIBUTION

In a first set of experiments, we study the stability of
our dipolar Er BEC by probing the evolution of the
TOF density distribution for different as. Figures 2(a)–2(c)
show the absorption images acquired with ∥ imaging
[Figs. 2(a)–2(c)] and the corresponding central cuts
(x ¼ 0) of the 2D column density profiles [Fig. 2(d)]. In
striking contrast to the MF predictions, we observe that the
system remains stable for as well below add, with a central
coherent core surviving for times much longer than 1=ν⊥
(from several tens to hundreds of ms). The density distribu-
tion does not exhibit any special patterns,which is typical of a
collapsing cloud [12,13,32].
For as > add [Fig. 2(a)], the density distribution of the

gas shows good agreement with the MF Thomas-Fermi
(TF) profile on top of a broad Gaussian distribution,

accounting for the thermal atoms; see Fig. 2(d), dashed
lines. When lowering as below add [Fig. 2(b)], we observe a
sharpening of the central core, whose profile starts to
deviate from the MF-TF shape (see Ref. [30] for a
quantitative description). When decreasing as even further
[Fig. 2(c)], a similar bimodal structure holds on although
the dense core loses atoms. Because of the high density
reached, three-body (3B) collisions regulate the lifetime of
the central core; see discussion below and Ref. [23]. We
note that we observe a similar qualitative behavior of the
density distribution when using an adiabatic ramp of as.
However, the importance of the central peak is reduced as,
in this case, losses already set in during the ramp.
In contrast with the behavior of the central core, the

distribution of the thermal atoms, encompassed by the
broad Gaussian function of the bimodal fits [see Fig. 2(d),
dotted lines], remains mainly unaffected by the change of
as, highlighting an absence of significant heating and
population transfer, and thus an apparent decoupling of
the evolution of the coherent and thermal parts.
For further analysis, we fit the data to a bimodal

distribution made of the sum of two Gaussian functions,
as it offers a smaller residue than the fit to the MF-TF
distribution for as ≲ 70a0; see Fig. 2(d). We note that the
beyond-MF effects on the density profile are expected to be
more sophisticated than a Gaussian shaping. However,
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FIG. 2. Density profiles in the BEC-to-droplet crossover.
(a)–(c) 2D column density distributions probed with ∥ imaging
and (d) corresponding central cuts along the x ¼ 0 line (dots) for
tr ¼ 10 ms, th ¼ 6 ms (>1=ν⊥), and different as (see legend).
Each distribution is obtained by averaging four absorption images
taken after tTOF ¼ 27 ms. In (d), the lines show the central cuts of
the 2D bimodal fit results, the solid (dashed) lines showing the
two-Gaussian (MF-TF plus Gaussian) distributions and the
dotted lines the corresponding broad thermal Gaussian part.
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theoretical studies show good agreement between the
Gaussian ansatz and the full numerical solution for our
parameter range [22,23].
Being a smoking gun for long-range phase coherence,

the survival of a bimodal profile in the TOF distribution far
beyond the MF instability threshold points to a persistent
coherent behavior. This absence of a collapse advocates the
outbreak of an additional stabilization mechanism, which
we now further investigate by probing global properties of
the gas.

IV. COLLECTIVE OSCILLATION

In a second set of experiments, we unveil the origin of
the stabilization mechanism by studying the elementary
excitations of the coherent cloud. This is a very powerful
probe of the fundamental properties in quantum degenerate
gases [1,34]. In particular, collapse is intimately related
to the softening of some collective modes at the MF-
instability threshold. We focus here on the axial mode,
which is the lowest-lying excitation in the system above the
dipole mode. It corresponds to a collective oscillation of the
condensate length along y (R∥) with frequency νaxial.
The axial oscillation comes along with a smaller-amplitude
oscillation of the radial sizes in phase opposition; see
Fig. 3(a). As a result, this mode has a mixed character
between a compression and a surface mode [1]. The
compression character is particularly relevant since it
involves a change in the density and it is therefore sensitive
to the LHY corrections [35].
We excite the axial mode either by ramping B during the

final preparation stage or by transiently increasing the power
of the vertical optical dipole trap beam, after ramping B to
Bf. Here, ν∥ is abruptly changed from 17 Hz to typically
21 Hz, kept at this higher value for 8 ms, and finally set back
to 17 Hz. Following the excitation, we let the cloud evolve
for a variable th and image its TOF density distribution with
⊥ imaging. To extract νaxial, we probe the axial width R∥ of
the central coherent component of the gas [30] with th and fit
it to a damped sine; see inset of Fig. 3(b).
Figure 3 shows the observed νaxial normalized to the

trapping frequency ν∥ [36] as a function of as for adiabatic
[Fig. 3(b)] and nonadiabatic [Fig. 3(c)] ramps. Both cases
exhibit a similar qualitative behavior. For as > add, the
oscillations show a smooth dependence on εdd, with νaxial
increasing by about 5% with an average value of 1.70ν∥
[37]. When lowering as, the oscillation of the coherent part
remains visible well below the εdd ¼ 1 threshold and νaxial
exhibits a marked increase. νaxial=ν∥ grows up to 2.6(1) at
as ¼ 54a0 for tr ¼ 100 ms [Fig. 3(b)]. For tr ¼ 10 ms
[Fig. 3(c)], νaxial=ν∥ first increases similarly to the adiabatic
case [Fig. 3(b)], reaches a maximum of ∼2.13ð7Þ at 57a0
(εdd ¼ 1.15), and finally decreases for even smaller as
(open squares). The latter behavior can be explained by the
fact that the larger quenches in the interaction excites

additional high-energy modes while it drives the system
away from the linear response regime [38]. A similar
behavior is found from our theory predictions including the
LHY term (see below), thus highlighting a qualitative
agreement even in this small-as range.

V. THEORY

To account for our observation and discern between the
MF instability picture and QF mechanisms, we develop a
beyond-MF treatment of our system at T ¼ 0. The coherent
gas is described here by means of the generalized nonlocal
nonlinear-Schrödinger equation (gNLNLSE), which
includes the first-order correction from QF effects, i.e.,
the LHY term, and 3B loss processes. The gNLNLSE
reads as [20,23]

iℏ
∂ψ
∂t ¼

�
Ĥ0 þ μMFðn; ϵddÞ þ Δμðn; ϵddÞ − iℏ

L3

2
n2
�
ψ ;

ð1Þ
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FIG. 3. Axial mode. (a) Illustration of the axial mode in our
experimental setup. The black arrows sketch the oscillations of
the widths of the coherent gas along the characteristic axes of the
trap, with weights indicating their relative amplitudes. (b),
(c) Measured νaxial=ν∥ (squares) as a function of as together
with the theoretical predictions, including (solid line) or not
(dashed lines) the LHY term for tr ¼ 100 ms (b) and tr ¼ 10 ms
(c). Theoretical predictions are obtained from RTE (see text) for
as varied from 50a0 to 95a0. In the MF case, predictions fail for
as ≤ ac (orange area) due to the occurrence of the collapsing
dynamics which rules out the collective excitation picture.
ac ¼ 57a0 [ac ¼ 64a0] in (b) [(c)]. In (c), νaxial cannot be reliably
extracted for quenches to as ≤ 56a0, nor from the experiment
(open squares) or from the LHY theory (open circles, thin line).
The inset in (b) exemplifies a measurement of R∥ (triangles) and
its fit to a damped sine (solid line) for as ¼ 80a0. We typically fit
4–5 oscillations for all our as.
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where Ĥ0 ¼ ½ð−ℏ2ΔÞ=2m� þ VðrÞ is the noninteracting
Hamiltonian and VðrÞ ¼ 2π2m

P
η¼x;y;zν

2
ηη

2 the harmonic
confinement. The MF chemical potential, μMF½nðrÞ; ϵdd� ¼
gnðrÞ þ R

d3r0Vddðr − r0Þnðr0Þ, results from the competi-
tion between short-range interactions, controlled by the
coupling constant g ¼ 4πℏ2as=m, and the DDI term with
VddðrÞ ¼ ½ðμ0μ2Þ=4πr3�ð1 − 3cos2θÞ and θ the angle sus-
tained by r and the dipole moment μ. Here, nðrÞ ¼ jψðrÞj2.
The beyond-MF physics is encoded in the LHY term,
leading to an additional repulsive term in the chemical
potential, Δμðn; ϵddÞ ¼ ½32=ð3 ffiffiffi

π
p Þ�gn

ffiffiffiffiffiffiffiffi
na3

p
FðϵddÞ. The

function FðϵddÞ ¼ 1
2

R
dθk sin θk½1þ ϵddð3 cos2 θk − 1Þ�5=2

is obtained from the LHY correction in homogeneous 3D
dipolar BECs [39–41] using local-density approximation
[42]. The last non-Hermitian term in Eq. (1) accounts for
3B loss processes [43]. In our calculations, we use the
experimentally determined values of the 3B recombination
rate of the condensate L3ðasÞ [30].
As discussed in Refs. [22,23], due to the repulsive LHY

term, Eq. (1) sustains stable ground-state solutions for any
as and λ. For pancake traps (λ > 1), the solution of Eq. (1)
is not unique. The phase diagram reveals three types of
solutions: the one of a dilute BEC, a single droplet solution,
and a third one, which separates the previous two phases,
that corresponds to a metastable region of multidroplet
states. The latter has been observed in Dy experiments [15].
However, the single-droplet solution appears difficult to
access because of the overhead multidroplet state and the
stringent 3B loss mechanisms. Remarkably, in cigar-shaped
traps (λ < 1), Eq. (1) has only one possible solution. In the
εdd parameter space, the corresponding wave function
exhibits a smooth crossover from a dilute BEC to a single,
high-density, macrodroplet solution for increasing εdd. It is
worth noting that the crossover physics, e.g., the formation
and lifetime of the droplet state, is expected to crucially
depend on the 3B collisional processes. In the following,
we concentrate on the λ < 1 case, which corresponds to our
experimental setting.
The continuous and smooth change of the static proper-

ties of the system with increasing εdd is consistent with
our observations on the evolution from a dilute into an
high-density state; see Fig. 2.
Based on Eq. (1), we theoretically investigate the

dynamics of the coherent gas. In order to compare as close
as possible the theory to our experimental results, we
precisely account for the experimental sequence by perform-
ing real-time evolution (RTE) starting from the ground state
of Eq. (1) at as ¼ 67a0 with N ¼ 1.2 × 105 atoms. We
simulate a linear ramp in as from 67a0 to a variable final
value of as in tr, followed by a compression of the axial
trap from ν∥ ¼ 17.3 to 21 Hz during 8 ms. We then record
the axial width from the standard deviation of nðrÞ,
σy ¼

ffiffiffiffiffiffiffiffi
hy2i

p
, as a function of the subsequent holding time.

The evolution of σy is well fitted by a sinusoidal function,

whose frequency constitutes our theoretical prediction
of νaxial.
In Fig. 3, we present our calculations with and without

the LHY term. The MF simulations reveal a critical
scattering length ac < add below which the system collap-
ses, thus ruling out the collective mode excitation picture
for as < ac. This is in qualitative disagreement with
the experimental observations. Moreover, for decreasing
as ≥ ac, the MF predictions of νaxial are sizably shifted
compared to our measurements. In contrast, the experiment
shows an excellent match with the theory including the
LHY term, thus ruling out the MF scenario and demon-
strating the crucial role played by QFs in stabilizing the
system. Then, QFs qualitative modify the phase diagram
and drive the formation of a special coherent state, namely,
a single macrodroplet [20–23]. The lowering of ac ¼ 57a0
found in Fig. 3(b) compared to Fig. 3(c) (ac ¼ 64a0) arises
from the more stringent interplay between QFs and 3B
losses within this longer ramp, both mechanisms being able
to drive the system out of the instability region.

VI. LOSS DYNAMICS

To further investigate the respective roles of 3B losses
and QFs, we study the time evolution of the atom number
of both the central core (Ncore) and thermal (Nth) compo-
nents along the BEC-to-droplet crossover. Since in the
droplet regime the core density ncoreðrÞ dramatically
increases, 3B losses are expected to play an important
role even for moderate and low values of L3 [23].
Notwithstanding, 3B losses and QFs exhibit different power
dependencies on nðrÞ [see Eq. (1)] and, thus, the atom-loss
dynamics should disclose their competition: while QFs tend
to stabilize a high-density state, namely the droplet, 3B
losses favor lower densities.
Figures 4(a) and 4(b) show Ncore and Nth, extracted from

the double-Gaussian fit as a function of as after a non-
adiabatic [Fig. 4(a)] and adiabatic [Fig. 4(b)] change of as.
Both cases show a similar evolution. When lowering as,
Ncore is first constant for as > add, then shows a sharp drop
starting around as ∼ add, and finally curves up for lower as.
We note that in the adiabatic case, Ncore decreases faster as
compared to the nonadiabatic one and finally saturates
around 7 × 103 at lower as. We attribute these to the longer
timing involved, and we observe a similar trend as well as a
similar saturation value for longer th [see, e.g., Fig. 4(c)].
Remarkably, Nth remains mainly unaltered over the

whole range of as and the whole system does not show
any appreciable heating. This suggests that the condensed
atoms, which are ejected from in the core, leave the trap
instead of being transferred to the thermal component,
confirming a picture in which the thermal and the con-
densed component have uncoupled dynamics.
We now compare the experiment with the theory, which,

as previously, precisely accounts for the experimental
sequence and its timing by performing RTE along
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Eq. (1). Here, we compute the final atom number N ¼R
nðrÞd3r as a function of as with and without the LHY

term. Remarkably, the observed evolution of Ncore is very
well reproduced by our beyond-MF calculations (solid
lines), whereas in the absence of the LHY stabilization, the
calculations predict losses in the condensed core to occur at
values of as too large compared to the measured ones; see
Figs. 4(a) and 4(b).
The observed evolution of Ncore is well reproduced by

our beyond-MF calculations (solid lines). The agreement is
particularly remarkable for the quench [Fig. 4(a)] while it is
slightly degraded in the adiabatic ramp [Fig. 4(b)], with an
overestimation of the remaining Ncore at small as. This can
be explained by noting that, due to the longer time during
which the losses set in, a more acute importance is given to
L3, and by considering the effects of QFs on its value.
Indeed, it is of interest to note that many-body effects
modify the 3B correlation function g3 [44], leading to an
enhanced loss rate. This then justifies the larger predicted
Ncore in our simulation based on the simple noninteracting

value g3 ¼ 1 [30] compared to the experiment (we estimate
g3 ∼ 1.3 for our typical parameters), and the increased
discrepancy with decreasing as, where QFs are doomed to
prevail. In contrast, the MF calculations deviate from the
experiment with enhanced losses in the as ∼ add region. We
note that the abrupt and high saturation ofNcore at as < add,
distinct from the experimental observations, is a signature
of the collapse, reestablishing lower density in the gas via
fast “explosive” dynamics.
Finally, we investigate the in-trap time evolution of Ncore

after quenching as in the droplet regime; see Fig. 4(c). Our
measurements reveal three different time scales for the
losses. At very short th (≈0–3.5 ms), Ncore is roughly
constant, which we attribute to the time needed for the
high-density state to develop. It follows a fast decay
(≈3.5–25 ms), in which the atoms are ejected from the
high-density core via 3B losses, and witnesses the for-
mation of a high-density coherent state. The steepness of
this fast decay appears to critically depend on as, with a
marked acceleration below the MF instability threshold.
Then, the loss dynamics substantially slows down
(≈25–1000 ms) while a coherent central core is still visible
in the density profile (with Ncore ∼ 104 atoms).
From the loss curves [Fig. 4(c)] and using the general 3B

loss relation ð1=NcoreÞðdNcore=dthÞ ¼ −L3n̄2, we are able
to extract the mean in situ density n̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hncoreðrÞ2i

p
of the

high-density component in the BEC-to-droplet crossover.
Here, we estimate NcoreðthÞ and ðdNcore=dthÞ from an
empirical fit to our data and compute n̄ using an indepen-
dent measurement of the 3B loss coefficient L3 [30].
Figure 4(d) shows our results for th ¼ 4, 16 ms. We
observe a prominent increase of n̄ across the threshold
as ∼ add, and a surviving high-density state deep into the
MF instability regime.
The formation of the droplet state is particularly visible

for the th¼4ms case. Here, n̄ grows from 6.2ð9Þ ×
1020 m−3 at as¼67a0 to a maximum of 35ð7Þ×1020m−3

at as¼ 57a0, while it is slightly reduced to ∼24 × 1020 m−3

at as ∼ 46a0. This direct estimate of n̄ advocates the
activation of the LHY term when lowering as; additionally,
its magnitude as well as its evolution are in good agreement
with our simulations including the LHY correction.
Our results together with the good agreement between

theory and experiments provide an alternative confirmation
of the central role of beyond-mean-field physics. The
lifetime of the high-density core reveals, on the one hand,
the activation of the LHY term and the crossover toward a
dense droplet state, and on the other hand, the counteracting
role of 3B losses in regulating the maximum density in the
droplet regime.

VII. EXPANSION DYNAMICS

Besides their dissimilar stability diagram, collective
excitations, and density distribution, a dilute BEC in the
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FIG. 4. Lifetime and in situ density of the high-density core. (a),
(b) MeasuredNcore (squares) and Nth (circles) versus as after (a) a
nonadiabatic (tr ¼ 10 ms, th ¼ 8 ms) and (b) an adiabatic
(tr ¼ 45 ms, th ¼ 0 ms) ramp. The data show a better agreement
with the theory with the LHY term (solid line) as compared to the
MF theory (dashed line). (c) Time decay of Ncore for as ¼ 65a0
(triangles), 57a0 (circles), and 50a0 (squares) after quenching as
(tr ¼ 10 ms). We fit a double exponential function to the data
(solid lines) [30]. (d) From the fit, we deduct the mean in situ
density of the core n̄ (see text) for th ¼ 4 ms (triangles) and
16 ms (squares) and as a function of as. The error bars include the
statistical errors on the fit and on L3. The solid lines show results
of the RTE including the LHY correction for th ¼ 0 ms (red),
th ¼ 25 ms (blue).
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MF regime and a quantum droplet are also expected to
exhibit a markedly different expansion dynamics. While the
first is confined by an external trapping potential and thus
freely expands in its absence, a droplet state is self-bound
(SB) by its underlying interaction in analogy with the
He-droplet case [20–23]. As in our previous discussions,
the evolution from a trap-bound to a self-bound solution is
expected to be regulated by the interplay between QFs and
3B loss processes.
We investigate the expansion dynamics of our system for

various as. To preserve the high density of the coherent
component, our measurements focus on short time scales
with tr ¼ 10 ms and th ¼ 5 ms. After preparing the system
at the desired as, we abruptly switch off the optical dipole
trap, let the gas expand for a variable tTOF, and probe the
cloud width using the ∥ imaging. We fit the observed
density distribution to a double-Gaussian function, as
previously described. To extract the width ση of the
high-density core (ncore), we compute the second moments
σ2η ¼

R
η2ncoreðrÞdr along η ¼ x, z, where ncore is extracted

from the double-Gaussian fit. Figure 5(a) exemplifies the
TOF evolution of ση¼x at as ¼ 93a0, 64a0, and 55.5a0.
When entering the εdd > 1 regime, atoms in the high-
density core exhibit a marked slowing-down of the expan-
sion dynamics, which cannot be explained within the MF
approach.
To systematically study this effect, we repeat the above

measurements for different values of as (i.e., εdd). From
σηðtTOFÞ, we extract the value of the expansion velocity vη

by fitting the data to σηðtTOFÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2η;0þv2ηt2TOF

q
. Figure 5(b)

shows vx in an εdd range from 0.7 to 1.5. When the system
approaches the droplet regime with decreasing scattering
length (as < add), vx undergoes a strong reduction and
drops to a minimum equal to vx ¼ 0.40ð2Þ μm=ms at about
56a0 (εdd ∼ 1.17). For further lowering of as, vx starts to
increase again. A similar behavior is observed for vz. We
note that only the high-density component reveals this
intriguing dependency on as, whereas the thermal part
shows an almost constant expansion velocity [45].
Considering the fit-free character of our simulations as

well as the experimental challenge of accurately estimating
the expansion velocities [46], we conclude that our obser-
vations agree well with the theory predictions including the
LHY term; see solid line in Fig. 5(b). The TOF evolution is
calculated using a multigrid numerical scheme [30]. We
record the evolution of ση with tTOF and extract the
corresponding expansion velocities from the asymptotic
behavior of dση=dtTOF. Our simulations show a slowing-
down with a minimum of vx ¼ 0.32 μm=ms at as ∼ 56a0
(εdd ∼ 1.17), followed by an increase at lower as. In
contrast, calculations in the absence of beyond-MF cor-
rections fail to reproduce the experimental data. Here, the
velocity is first slightly more reduced above the MF
instability threshold εdd ∼ 1 than is expected with LHY

corrections, it then already increases at this threshold. The
first point relies on the trivial slowing-down of a BEC
whose mean repulsion energy is weakened (by reducing as
or decreasing its population Ncore). The second point
reveals a collapsing behavior that gives rise to an explosive
evolution of the density profile. The minimal velocity is
found here to be vx ¼ 0.56 μm=ms at as ¼ 68a0, which is
a much higher value than both our experimental results and
our theory predictions including the LHY correction.
The expansion behavior can be qualitatively well under-

stood considering the so-called released, or internal, energy
ER. This is the energy of the system when subtracting the
energy related to the confinement [1]. In the MF scenario,
ER > 0, as long as the ground state is stable. The BEC
expands ballistically and vη decreases for decreasing as and
N. In the unstable regime, the expansion velocity depends
crucially on the value of th at which the trap is switched off
due to the occurrence of an in situ collapse dynamic. On the
contrary, in the presence of QF, a stable ground state always
exists. The sharp variability in th is expected to be
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over. (a) TOF evolution of the width σx of the high-density
component for as ¼ 93a0 (squares), 64a0 (circles), 55.5a0
(triangles). The lines are fit to the data using

σxðtTOFÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x;0 þ v2xt2TOF

q
, from which we extract vx. (b) vx

as a function of as (squares). For comparison, the as-independent
expansion velocities of the thermal component are also shown
(circles). The experimental data are in very good agreement with
our parameter-free theory from RTE simulations including the
LHY term (solid line) and rule out the MF scenario (dotted line).
For clarity, we show only vx; similar results are found for vz.

QUANTUM-FLUCTUATION-DRIVEN CROSSOVER FROM A … PHYS. REV. X 6, 041039 (2016)

041039-7



suppressed. Assuming a fixedNcore (i.e., no 3B losses), one
can show that ER decreases with decreasing as and even-
tually reachesER < 0 for as < aSB, marking the onset of the
SB solution (e.g., aSB ¼ 56a0 for N ¼ 1.2 × 105) [30].
However, in stark contrast to the MF case, ER increases
with decreasingNcore in the droplet regime.We note that aSB
is then shifted to lower valueswhenNcore gets reduced by 3B
losses, thus affecting the lifetime of the self-bound solution.
The existence of a minimal expansion velocity is thus a

direct consequence of the competition between the decrease
ofER for decreasingas at a fixedNcore and the increase ofER
for decreasing Ncore in the droplet regime. In the crossover
regime, the system smoothly evolves towards a fully self-
bound state (vη ¼ 0) until 3B losses, occurring in the trap or
in the initial phase of the expansion, set in to unbind the
system and to reduce the lifetime of the droplet state.

VIII. CONCLUSION

In summary, we demonstrate the existence of the cross-
over from a dilute BEC to a quantum droplet state driven by
QFs. Our experiments not only demonstrate that LHY
stabilization is a general feature of strongly dipolar gases,
but also thoroughly investigate the driving role of QFs in
dictating the system properties, in particular, its collective
mode, its atom losses, and expansion dynamics. This clear
and quantitative demonstration of the impact of QFs in
dipolar gases intrinsically relies on our unique and precise
knowledge of as that alone enables a direct comparison to a
parameter-free theory, which is based on a generalized GPE
with LHY correction. Our combined experimental and
theoretical results ultimately offer an experimental valida-
tion of the modeling proposed in Ref. [20] and thus of the
latter results of Refs. [21–23].
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Appendix: Supplementary material

1. Bose-Einstein condensation of 166Er

We prepare an ultracold gas of the 166Er isotope fol-
lowing a similar trapping and cooling scheme as the one
employed for 168Er [1, 2]. We load a crossed-ODT from a
narrow-line MOT of 3× 107 166Er atoms at about 10µK.
At the end of the MOT sequence, the atoms are automat-
ically spin-polarized in their lowest Zeeman sub-level [2].
The dipole orientation follows the one of the external
applied magnetic field, B. In our experiment, the lat-
ter is controlled by independent tuning of the compo-
nents Bx, By, Bz along the experimental coordinate sys-
tem (x, y, z), as defined in Fig. 1 (lower inset).

The ODT results from the crossing at their foci of two
red-detuned laser beams at a wavelength of 1064 nm. One
beam propagates horizontally along the y-axis, and the
other propagates vertically and nearly collinear to the z-
axis. The z-beam has a maximum power of 10 W and an

elliptical profile defined by its waists of (w
(z)
x , w

(z)
y ) =

(110, 55)µm. The y-beam has a maximum power of

27 W, a vertical waist w
(y)
z = 18µm, and a tunable hori-

zontal waist, w
(y)
x . The latter can be conveniently tuned

from 1.57w
(y)
z to 15w

(y)
z by time averaging the frequency

of the first-order deflection of an Acousto-Optic Modu-
lator (AOM). This scanning scheme enables both an ef-
ficient loading of the MOT into the ODT (> 30% of
the atoms are loaded) and an adiabatic and controlled
tuning of the trap aspect ratio λ over a broad range.
We achieve Bose-Einstein condensation of 166Er atoms
by means of evaporative cooling in the crossed ODT
at |B| = Bz = 1.9 G (as = 80(2) a0). Typically, we
first rapidly (in 600 ms) reduce the power and aspect ra-

tio w
(y)
x /w

(y)
z of the y-beam from 24 W to 4 W and 10

to 1.6, respectively. We further decrease the power of
the y-beam from 4 W to 0.3 W in 3 s in an exponential
manner and then exponentially increase the aspect ratio

w
(y)
x /w

(y)
z from 1.6 to 8 in 2.5 s. The final trap frequen-

cies are typically of (νx; νy; νz) ∼ (40; 40; 180) Hz. We fi-
nally obtain BECs of typically N = 1.2×105 atoms with

∗ Francesca.Ferlaino@uibk.ac.at

more than 80% condensed fraction and a temperature
T ∼ 70 nK. We typically measure N and the condensed
fraction from a bimodal fit of the 2D column density dis-
tribution measured along //-imaging with tToF = 27 ms.
T is extracted from the evolution of the thermal size of
the bimodal fit with tToF varying from 14 to 28 ms.

2. Experimental setup and axes

In our setup we define the orthonormal (x, y, z)-
coordinate system in the following way: the vertical axis
z is aligned with gravity and the y axis with the hori-
zontal ODT beam; see Fig. 1. The polarizing magnetic
field is created by three orthogonal pairs of coils. These
pairs of coils define an orthonormal (X,Y, Z)-coordinate
system with Z = z and (X,Y ) rotated by a small angle
θ as compared to (x, y). The magnetic field components
BX , BY , BZ , each created by each pair of coils, can be
controlled independently. We estimate θ to be about 15o

by sensing directly the atomic cloud, as its dipolar char-
acter makes it sensitive both to the trap geometry and
to the magnetic field direction.

The small tilt θ between the dipoles and y causes a
small reduction of the mean DDI energy and correspond-
ing small shifts of the expected characteristics compared
to the one predicted for θ = 0: the MF collapse threshold
should appear at a lower as and, for a given as, νaxial/ν//
and vη are shifted respectively down and up. We have
experimentally evaluated the shift of νaxial deep in the
stable BEC regime (|B| =

√
B2
X +B2

Y = 2 G) to be of
the order of 2% and in the droplet regime to be about 10
to 15%, as confirmed also by our theoretical predictions.

Finally, we also note a tilt between the//-imaging beam
and our reference frame, corresponding to an angle of
θim
//,0 ∼ 28o compared to y and θim

// = 13o compared to Y

in the xy-plane. The ⊥-imaging axis is tilted by ∼ 15o,
mainly in the xz-plane. Such tilts shift the observed size
compared to the ideal case of imaging along and perpen-
dicular to the dipoles. Such an effect is not expected
to impact the measurement of the collective frequencies,
whereas it might bring a systematic shift of vx because
of a mixed projection of vX and vY , the two first veloc-
ity components in the (X,Y, Z)-coordinate system, which
are respectively perpendicular and along the dipoles.
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In the theoretical calculations presented in the main
text (Eq. (1), RTE and Gaussian ansatz), for simplicity,
we do not account for these angles, whose effects are es-
timated to be smaller than our systematics.

3. Precision measurements of the as-to-B
conversion in a three-dimensional optical lattice

Precise determination of the as-to-B conversion is a
delicate issue, especially in the case of complex species,
such as Er, for which comprehensive multi-channel cal-
culations are still out of reach and the knowledge of
as should thus rely on experimental investigations. We
perform lattice modulation spectroscopy in a three-
dimensional optical lattice. From the measurements of
the energy gap in the Mott insulator state we extract
as(B). Our lattice experiments focuses in the region of
low B-field [0, 2.5 G] and are based on a lattice setup
and procedure similar to the one described in Ref. [3].
In brief, after producing the BEC, we load the atoms in
a three-dimensional optical lattice by exponentially in-
creasing the lattice-beam power in 150 ms. The typical
final depths are (sx, sy, sz) = (20, 20, 100), given in units
of the respective recoil energies h × (4.2, 4.2, 1.05) kHz.
At these lattice depths, the gas is in the Mott insulator
state. We then vary B = (0, 0, Bz) to the desired value
by rapidly changing Bz in 2 ms, either just before or just
after loading the lattice. We use the latter option for the
smallest B values at which L3 is enhanced because of its
proximity to the near-zero-field resonance. In this case,
we further hold 20 ms to make sure the magnetic field is
fully established before performing the modulation.

To perform spectroscopy measurements, we sinu-
soidally modulate sy at a variable frequency νm for 90 ms
with a peak-to-peak amplitude of about 30%. Finally, we
ramp down the lattice depths to zero in 150 ms, and mea-
sure the recovered condensed fraction as a function of νm

from //-imaging ToF picture. For the smallest B values
considered, we also ramp B back to 2 G in 2 ms before
switching off the lattice-beams in order to again minimize
3B loss effects.

When varying νm, we observe a resonant depletion of
the condensate due to particle-hole excitations. The res-
onance condition in the Mott-insulator regime is given
by

hνex = Us + Udd − Vdd. (A.1)

Here Us, Udd and Vdd are respectively the on-site con-
tact interaction, the on-site dipolar interaction and the
nearest-neighbor dipolar interaction along y in the cor-
responding extended Bose-Hubbard model. Udd and Vdd

can be accurately predicted from the knowledge of the
lattice depths and dipole orientation and in our typical
experimental condition, they are equal to h×−344.8 Hz
and h×31.5 Hz respectively. By subtracting the theoret-
ical dipolar contributions to the measured frequency, we

extract Us, which is directly proportional to the scatter-
ing length as. A precise mapping of as in the ultralow
B-field region is then obtained by repeating the above
measurements at various B values; see Fig. 1.

In the low B-field region shown in Fig.1, our lattice
spectroscopy reveals the presence of two FRs, one located
at about zero B field and the other one at about 3 G.
The existence and position of these two FRs agree with
our Feshbach spectroscopy measurements performed in
an harmonically trapped thermal cloud, where the max-
ima in 3B losses approximately pinpoint the resonance
positions. In this measurement, further FRs are identi-
fied at 4.1 G and 5 G.

The scattering length of 166Er can be parametrized by
the following simple expression [4]

as(B) = abg(B)

[
1 +

4∑

i=1

∆Bi
B −Bi

]
(A.2)

in which the specific positions (Bi) and widths (∆Bi)
of the two first resonances as well as the background
scattering length are obtained from a fit to our lat-
tice spectroscopy measurement. From the fit, we ob-
tain B1 = 48(45) mG, ∆B1 = 39(20) mG, B2 = 3.0(1) G,
∆B2 = 110(35) mG. The B-dependent background scat-
tering length abg(B) accounts for the overlapping res-
onances and reads as abg(B) = 62(4) + kB with k =
5.8(1.2) a0/G. We also account for the small effect of
the two next resonances, whose positions B3, B4 and
widths ∆B3,∆B4 are fixed to their estimates from the
loss-spectroscopy measurements to 10 mG. We check that
the precise values of this parameters has little effect on
our empirical description along Eq. A.2 of as in the B-
range of interest here, namely [0, 2.5] G.

4. Ramps in scattering length

Our measurements rely on controlled variations of the
scattering length as(B). In our experiments, we either
adiabatically change as using tr = 45 ms or we quench it
using tr = 10 ms. The adiabatic condition for as reads as

1

as

das

dt
≤ min (νx, νy, νz) = ν// for λ� 1 (A.3)

As shown in Fig. S1, we use two different types of time
variations of B and thus of as: (i) a simple linear ramp
in B and (ii) we design a specific B(t) variation in order
to minimize the adiabaticity parameter 1

as
das
dt /ν//. The

resulting as shows an exponential-type variation with t.
The adiabaticity condition of Eq. (A.3) is more stringent
for lower as. For ramping down to as = 48 a0, we find
that (i) verifies Eq. (A.3) for tr & 100 ms and (ii) for
tr & 20 ms. Data from Figs. 1, 3 and 4 (a, c-d) (resp.
Figs. 2, 4 (b) and 5) use ramp (i) (resp. (ii)).

For our theoretical description, we use a linear change
of as(t), similar to case (ii).
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5. Determination of the three-body recombination
rate coefficient

Since three-body inelastic losses play a crucial role
in the many-body dynamics and lifetime of the droplet
state, we run a dedicated set of measurements to de-
termine L3. We first prepare a non-degenerate thermal
sample of Er atoms at T = 490(10) nK in an harmonic
trap. We then record the decay of the atom number,
Nth, as a function of th in a range from 0 to 1 s. Nth

is obtained from a Gaussian fit to the measured density
distribution.

To fit the time evolution of Nth, we use the integrated
3B rate equation, which reads as 1

Nth

dNth

dth
= −Lth

3 〈n2〉.
Here, 〈n2〉 is the mean square density on the cloud. To
describe the scaling of 〈n2〉 with Nth, we use its predic-
tion for an ideal gas at thermal equilibrium at T whose
state occupancies follow Boltzmann law and take into
account the anti-evaporation effect [5]. Then Lth

3 is ex-
tracted from a fit of Nth(th) along:

Nth(th) =
N0

(1 + 3γ0N2
0 th)1/3

(A.4)

where N0 is the atom number at th = 0 ms and γ0 is
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FIG. S1. Predicted evolution of the scattering length as
(upper panel) and the adiabaticity parameter 1

as

das
dt
/ν// (lower

panel) over the ramp from B = 0.8 G to the extreme Bf =
0.17 G (as = 45 a0). The parameters are shown as a function
of the normalized time t/tr and the universal variation of the
adiabaticity parameter is obtained from normalizing to ν//tr.
We show the cases of three different ramps: a linear ramp in
B (dashed red line) which is used in a first set of experiments
(i), a polynomial ramp in B (solid blue line) which is used in
a second set of experiments (ii), a linear ramp in as (dotted
green line) which is used in the simulation (RTE).

defined via the relation

Lth
3 =

√
27 γ0

(
kBT

2πmν̄

)
(A.5)

with kB the Boltzmann constant and ν̄ = (νxνyνz)
1/3.

We account for the as-dependence of Lth
3 near a FR by

repeating the measurement at different B. We check that
the measured Lth

3 does not depend on the B orientation
and measure its B-dependency using |B| = By and for B
varying in 0.1 to 1.9 G. Note that, due to the bosoniza-
tion effect, the L3 in a quantum degenerate bosonic gas
is equal to Lth

3 /3!. Figure S2 shows L3 in a quantum
degenerate bosonic gas of 166Er as a function of as using
the measured as-to-B conversion. Despite the existence
of many coupled molecular potential in Er, we measure a
low L3(as), comparable to the typical values reported in
alkali atoms. L3(as) varies between 1.7(3)×10−40m6/s at
as = 18(17) a0 and 3.2(3)× 10−42 m6/s at as = 80(2) a0.

6. Time-of-Flight measurements

For our ToF measurements, we abruptly extinguish the
ODT in about 100µs. In order to accurately image our
gas while minimally influencing its dynamics during the
expansion, we split the ToF in two parts. During a first
part, lasting tToF − tB, B remains unchanged and the
dynamics occur at the original as and dipole orientation.
At time tB before the image is taken, B is modified both
in amplitude and in direction, in order to correctly set the
quantization axis for the imaging light to be σ− polarized.
The amplitude |B| of the imaging field is chosen constant
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FIG. S2. Measured 3B recombination rate coefficient L3

of a quantum degenerate gas of 166Er as a function of as for
B varying from 0.1 to 1.9 G. We extract L3 from the mea-
surement of Lth

3 on a thermal gas at T = 490(10) nK using
Boltzmann law and taking into account anti-evaporation ef-
fect; see text.
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and equal to 0.31 G for all as considered. tB is set to
be 12 ms for //-imaging and 15 ms for ⊥-imaging where
the change in B is more drastic for the typical dipole
orientation (Y ) used in this experiment.

We note that our resolution limit for both //- and ⊥-
imaging is estimated to be & 3µm. Moreover the effec-
tive pixel sizes are set to 8.4µm and 3.1µm in our setup.
These limit the size of the structure we are able to ob-
serve as well as the minimal tToF we can use, which is
typically tToF ≥ 16 ms.

7. Averaging experimental density distribution

In order to obtain a better image quality and resolu-
tion, we typically average four experimental absorption
images taken in the same condition and with the same
experimental series (i.e. within less than a few hours in-
terval). In order to average the images we first define
a region of interest (ROI) of typically 300µm × 300µm
containing the cloud shadow and translate the ROI to su-
perimpose the cloud centers. To estimate the translation
amplitudes for each individual image, we use the center
from a simple Gaussian fit to the 2D density distribution
ROIs. In this averaging process, we use a sub-grid reso-
lution of 1/10 of a pixel to more accurately superimpose
the centers. We fit the averaged density distribution af-
ter binning back to the original resolution. We note that
fits on the sub-pixel resolved images give similar results.

8. Extracting the frequency of the collective modes

As stated in the main text, we focus on the axial mode,
which reveals itself by a collective oscillation of the axial
size R// of the BEC, along with smaller amplitude oscilla-
tions of the radial size in phase opposition. We extract its
frequency νaxial by studying the larger amplitude oscilla-
tion of R//. For this, we probe the ToF density distribu-
tion of the gas with ⊥-imaging after a ToF of 30 ms. We
focus on the sizes of the central, high-density component
of the cloud, which we study as a function of th for dif-
ferent as. We note that the precise shape of the column
density profile is expected to change as a function of as

and this in a different way for the two axis x and y under
observation in ⊥-imaging. This complicates the analy-
sis, in particular compared to the //-imaging where both
axes are nearly equivalent. Here, we extract the sizes of
the central component, using various methods and select
the most reliable method according to as. Typically, we
use a bimodal MF TF plus Gauss fit for as ≥ 57 a0. For
as ≤ 57 a0, we select a central region in the cloud and per-
form a simple Gaussian fit on it. Such a determination
should give access to the variations, if not to its abso-
lute value, of R// with th at fixed as and thus enables to
determine νaxial. In particular, we have checked that for
large as, the two fits (Gaussian on a central region and
MF-TF plus gaussian bimodal fits) give very similar and

compatible values of νaxial. For example for as = 93 a0

we find νaxial = 30.65(4) Hz and 30.55(6) Hz for the MF-
TF and Gaussian fit respectively. For as = 60 a0, we find
respectively νaxial = 36.1(3) Hz and 36.7(3) Hz.

To fit νaxial, we use a damped-sine function of th. Typ-
ically we fit the evolution of R// for th varying from 0 to
few hundreds of ms, depending on the damping rate ob-
served. The upper value of th used is never less than
150 ms such that at least 4 to 5 oscillations are observed
and fitted. We also note that for our shortest tr = 10 ms
we typically discard the first 4 ms of the evolution in or-
der to ensure that the magnetic field is safely stabilized
at its target value.

9. Bimodal fits of the density distribution in
//-imaging.

To quantitatively analyse the experimental column
density distribution imaged along//-imaging, we perform
bimodal fits on the 2D averaged profiles n//(x, z). The
bimodal fits are made of the sum of two peak distri-
butions, describing respectively a high-density, coher-
ent part and a thermal incoherent background. To ac-
count for the change of the profile of the density dis-
tribution across the BEC-to-droplet crossover, we use
two types of fitting functions ffit(x, z): (i) A sum of a
MF-TF and a Gaussian distribution, which account re-
spectively for the coherent and the thermal part. For
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FIG. S3. Residues of the two bimodal fits used in our anal-
ysis of the //-images as a function of as for tr = 10 ms and
th = 6 ms: MF-TF plus Gauss fit (blue triangle) and double
Gaussian fit (red square).
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the integrated column density, the MF TF distribution

writes fTF(x, z) =
(

1− (x−x0)2

R2
x
− (z−z0)2

R2
z

)3/2

[6].(ii) The

sum of two Gaussian distributions. Typically the central
Gaussian can be anisotropic with any orientation axis.

As expected, the thermal background is broader than
the central coherent component and for the tToF consid-
ered its width is typically at least 1.6 times larger. It is
first fitted by taking out the central part of the density
distribution at radius typically smaller than 1.3 times its
width.

The quality of the bimodal fit is evaluated by the norm

of the residue ρ = 1−
∫

dx dz (n//(x,z)−ffit(x,z))
2

∫
dx dz n//(x,z)2

. For both

distributions, it satisfies ρ > 0.98.

The evolution of ρ with as informs us further on the
physical properties our gas, as stressed in the main text in
Sec. III. Fig. S3 shows the extensive variations of ρ, thus
completing the data of Fig. 2 and the physical picture de-
scribed there. First, as stated in Sec. III, by considering
the agreement of MF-TF plus Gauss distribution, one is
able to identify a deviation from the MF-TF behavior.
Indeed ρ shows here a marked decrease when lowering
as below add from 0.997 to 0.985 and a further satura-
tion around this value. On the contrary, the residue of
the double Gaussian fit increases when lowering as be-
low add before decreasing again for as below 57 a0, and
remains above 0.99 over the whole range of as.

However, we point out that we are not able to dis-
tinguish, from the mere density profiles, between a MF
or beyond-MF character of the deviation from MF-TF
regime. Even though theoretical studies point out the
difference in density profile expected by the arising of
beyond-MF effects compared to the simple reduction of
the MF interactions [7–10], bimodal fit agreement does
not enable a reliable distinction. Indeed, the difference is
minute and surely blurred by the presence of a thermal
fraction. Hence, even though a more complex profile is
expected, the double Gaussian fit agrees particularly well
to our data and is here used to extract global properties
of the system for further studies. We note that such a
procedure has been also adopted in [11, 12] for the array
of micro droplets, and the Gaussian ansatz has also been
used in theoretical works [8, 9], in which the Gaussian
solution shows a good approximation as compared to the
much heavier numerical solution. To further prove the
role of QFs in our paper, we extensively account for em-
blematic global properties that characterize the droplet
physics (see Figs. 3, 4and 5).

10. Describing the atom number decay

In Figure 4 (c) and in the main text we have briefly
described the evolution of the atom number in the co-
herent part Ncore with th. There our aim was to extract
the mean density and we did not expand on the mere
description of the Ncore(th).

We note that Ncore(th) is well accounted for by a dou-
ble exponential decay evolution of respective amplitude
N0(1− p) and N0p. N0 is the initial atom number. Each
decay corresponds to a different time constant, respec-
tively tfast and tslow, and starts after a different delay
time, respectively td and tD. We fix tD = td + 2tslow.
For tr = 10 ms td is approximately constant and equal to
3.65 ms. The absence of evolution for th < td indicates
that the magnetic field may not have reached the target
value in the first ms. For tr = 45 ms, td can be set to
0. tfast, tslow and p (and N0) depend on as, typically de-
creasing with it. The evolution is illustrated in Fig. S4
for tr = 10 ms.

11. Gaussian Ansatz including L3

A good qualitative (and to a large extent quantitative)
insight in the physics of dipolar condensates in the pres-
ence of LHY stabilization may be gained from a simplified
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Gaussian ansatz of the form

ψ(r, t) =
√
N(t)eiφ(t)

∏

η=x,y,z

e
− η2

2w2
η

+iη2βη(t)

π1/4w
1/2
η

, (A.6)

where the variational parameters are the number of
atoms N(t), the global phase φ(t), the widths wη, and
the phase curvatures βη. The Lagrangian density reads:

L =
i~
2

(
ψ
∂ψ∗(r, t)

∂t
− ψ∗ ∂ψ(r, t)

∂t

)
+

~2

2m
|∇ψ(r, t)|2

+ V (r)|ψ(r, t)|2 +
g

2
|ψ(r, t)|4 +

2

5
gLHY|ψ(r, t)|5

+
1

2

∫
d3r′Vdd(r− r′)|ψ(r, t)|2|ψ(r′, t)|2. (A.7)

We insert ansatz (A.6) into Eq. (A.7), obtaining the La-
grangian L =

∫
d3rL:

L = N

{
~φ̇+

~
2

∑

η

β̇w2
η +

m

4

∑

η

ω2
ηw

2
η

+ 2
~2

2m

∑

η

(
β2
ηw

2
η +

1

4w2
η

)}

+ N2

{
g(1 + εddF (wy/wx, wy/wz))

2(2π)3/2
∏
η wη

}

+ N5/2

{(
2

5

)5/2
gLHY

π9/4
∏
η w

3(2
η

}
, (A.8)

with

F (κx, κz) =
1

4π

∫ π

0

dθ sin θ

∫ 2π

0

dφ

[
3 cos2 θ(

κ2
x cos2 φ+ κ2

z sin2 φ
)

sin2 θ + cos2 θ
− 1

]
. (A.9)

The variational parameters are determined from the cor-
responding Euler-Lagrange equations [13]:

d

dt

(
∂L

∂λ̇

)
− ∂L

∂λ
=

∫
d3r

[
Γ
∂ψ∗

∂λ
+ Γ∗

∂ψ

∂λ

]
, (A.10)

where λ = N,φ,wη, βη, and Γ(r) = −i~L3

2 |ψ(r)|4ψ(r).

Introducing the dimensionless units τ = ω̃t, wη = l̃vη, l̃ =√
~/mω̃, with ω̃ = (

∏
ωη)1/3, and after some algebra, we

obtain a close set of equations for the Gaussian widths
and the number of atoms:

Ṅ = − 3R∏
η v

2
η

N3, (A.11)

v̈η = −vη


7R2N4

∏
η′ v

4
η′

+
2RN2

∏
η′ v

2
η′

∑

η′′ 6=η

v̇η′′

vη′′


− ∂U

∂vη
, (A.12)

with R = L3

π335/2ω̃l̃6
, and

U =
1

2

∑

η

[
v−2
η +

(ωη
ω̃

)2

v2
η

]
+

2

3

PQN3/2

(∏
η vη

) 3
2

+
PN∏
η vη

(
1 + εddF

(
vy
vx
,
vy
vz

))
, (A.13)

with P =
√

2
π
a
l̃

and Q = 512F (εdd)

25
√

5π
5
4

(a/l̃ )3/2.

Due to their simplicity, Eqs. (A.11) and (A.12) per-
mit a much more flexible simulation of the exact exper-
imental conditions and sequences compared to the ob-
viously more exact but numerically much more cumber-
some simulation of the gNLNLSE. We have checked that
the results of the Gaussian ansatz approach are in ex-
cellent agreement both qualitative and to a large extent
also quantitative to full simulations of the gNLNLSE, in
what concerns lowest-lying excitations, atom losses, and
expansion velocities.

12. Self-bound droplets

The Gaussian ansatz approach allows for an intuitive
understanding of the degree of self-bound (SB) charac-
ter of the system. As mentioned in the main text, a SB
solution is characterized by a negative released energy,
ER < 0. In absence of losses, we may evaluate ER by
means of the Gaussian Ansatz for the ground-state of a
trapped BEC with scattering length as and fixed N . Fig-
ure S5 shows the results for ER for different N values.
Whereas ER increases with growing N for large as, for
small as in the droplet regime ER increases with decreas-
ing N . For each N there is a finite scattering length aSB

such that if as ≤ aSB the droplet will be fully self-bound
(vη = 0). Given its N -dependence, aSB shifts to lower
values with decreasing N . 3B losses add a time depen-
dence on N and thus on aSB that governs the lifetime
of the droplet state. We note that for small (tr, th) ER

may change its sign during the ToF due to atom losses,
i.e. a SB solution may unbind during the ToF. In our ex-
periments, the interplay of losses and LHY stabilization
leads to a minimal released energy, that translates into a
minimal expansion velocity as shown in the main text.

13. Simulation of the ToF expansion using the
gNLNLSE

ToF expansion is simulated using the gNLNLSE by
means of a multi-grid method, i.e. dynamically enlarg-
ing the numerical grid following the expansion. This is
necessary due to the obvious difference in length scales at
the beginning and at the end of the ToF. We note that the
precise description of the ToF dynamics is very relevant,
since in contrast to standard cases, nonlinear dynamics
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FIG. S5. Released energy ER as a function of as for N =
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and losses here may play an important role during the
expansion, especially within the LHY stabilized regime.
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[7] F. Wächtler and L. Santos, “Quantum filaments in dipo-
lar bose-einstein condensates,” Phys. Rev. A 93, 061603
(2016).
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We report on the determination of the dynamical polarizability of ultracold erbium atoms in the ground and in
one excited state at three different wavelengths, which are particularly relevant for optical trapping. Our study
combines experimental measurements of the light shift and theoretical calculations. In particular, our experimental
approach allows us to isolate the different contributions to the polarizability, namely, the isotropic scalar and
anisotropic tensor part. For the latter contribution, we observe a clear dependence of the atomic polarizability
on the angle between the laser-field-polarization axis and the quantization axis, set by the external magnetic
field. Such an angle dependence is particularly pronounced in the excited-state polarizability. We compare our
experimental findings with the theoretical values, based on semiempirical electronic structure calculations, and
we observe a very good overall agreement. Our results pave the way to exploit the anisotropy of the tensor
polarizability for spin-selective preparation and manipulation.

DOI: 10.1103/PhysRevA.97.012509

I. INTRODUCTION

Ultracold quantum gases provide many different degrees
of freedom, which can be controlled to a very high precision.
This makes them a reliable and versatile tool to study complex
many-body phenomena in the laboratory [1]. Some of those
degrees of freedom rely on the interaction between atoms
and light. The strength of such an interaction depends on the
atomic polarizability, which is a characterizing quantity of the
specific atomic species under examination. Over the course
of the last decades, tremendous progress has been made to
develop theoretical methods and experimental protocols to
determine the atomic polarizabilities, αtot, with an increasing
level of accuracy [2,3]. With the gained control over quan-
tum systems, the precise determination of αtot became even
more fundamental with implications for quantum information
processing, precision measurements, collisional physics, and
atom-trapping and optical cooling applications. Calculations
of αtot require a fine knowledge of the energy-level structure
and transition matrix elements, which is increasingly complex
to acquire with the increasing number of unpaired electrons in
the atomic species. For instance, alkali atoms with their single
valence electron allow a determination of the static atomic
polarizability with an accuracy below 1% [4,5] when the full
atomic spectrum is taken into account.
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Neuenheimer Feld 226, 69120 Heidelberg, Germany.

†Present address: Department of Physics, Graduate School of
Science and Engineering, Tokyo Institute of Technology, Meguroku,
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France.
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In the case of the multielectron lanthanide atoms (Ln),
which have been recently brought to quantum degeneracy
(ytterbium (Yb) [6,7], dysprosium (Dy) [8,9], erbium (Er)
[10,11]), the atomic spectrum can be very dense with a
rich zoology of optical transitions, from being ultranarrow to
extremely broad. Beside Yb with its filled shell, the other Ln
show an electron vacancy in an inner and highly anisotropic
electronic shell (4f for all Ln besides lanthanum and lutetium),
surrounded by a completely filled isotropic s shell. Because of
this peculiar electronic configuration, such atomic species are
often referred to as submerged-shell atoms [12,13].

Capturing the complexity of Ln challenges spectroscopic
approaches and allows for stringent tests of ab initio calcu-
lations [14–20]. Besides being benchmark systems for theo-
retical models, Ln exhibit special optical properties, opening
novel possibilities for the control, manipulation, and detection
of Ln-based quantum gases [21,22]. One peculiar aspect of
magnetic Ln is their sizable anisotropic contribution to the
total atomic polarizability, originating from the unfilled 4f

shell. Particularly relevant is the anisotropy arising from the
tensor polarizability. This term gives rise to a light shift, which
is quadratic in the angular-momentum projection quantum
number, mJ , and provides an additional tool for optical spin
manipulation, as recently studied in ultracold Dy experiments
[23]. The anisotropy in the polarizability has been observed not
only in atoms with large orbital-momentum quantum number,
but also in large-spin atomic systems, such as chromium (Cr),
[24,25] and molecular systems [26–29].

This paper reports on the measurement of the dynamical
polarizability in ultracold Er atoms in both the ground state
and one excited state for trapping-relevant wavelengths. Our
approach allows us to isolate the spherically symmetric (scalar)
and the anisotropic (tensor) contribution to the total polariz-
ability. We observe that the latter contribution, although small
in the ground state, can be very large for the excited state. Our

2469-9926/2018/97(1)/012509(7) 012509-1 ©2018 American Physical Society
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results are in very good agreement with electronic structure
calculations of the atomic polarizability, showing a gained
control of the atom-light interaction in Er and its spectral
properties.

II. THEORY OF DYNAMICAL POLARIZABILITY

To understand the concept of anisotropic polarizability,
we first review the basic concepts of atom-light interaction
[3,30]. When an isotropic medium is submitted to an external
electric field, e.g., a linearly polarized light field, it expe-
riences a polarization parallel to the applied electric field.
However, in anisotropic media, an external electric field can
also induce a perpendicular polarization, which in the atom-
light-interaction language corresponds to a polarizability with
a tensorial character. As we will discuss in the following,
Er atoms can be viewed as an anisotropic medium because
of their orbital anisotropy in the ground and excited states
(nonzero orbital-momentum quantum number L �= 0). The
atomic polarizability is then described by a 3×3 tensor, P .
The total light shift experienced by an atomic medium exposed
to an electric field �E reads as

U = 1
2

�E†P �E. (1)

Equation (1) can be decomposed into three parts. For this,
we define the scalar polarizability tensor As (diagonal el-
ements), the vectorial polarizability tensor Av (antisym-
metric part of the off-diagonal elements), and the tenso-
rial polarizability tensor At (symmetric part of the off-
diagonal elements). Hence, a medium with polarizability
tensor P placed into an electric field �E feels the total light
shift,

U = 1
2

�E†[As + Av + At ] �E. (2)

We now consider the case of an atom in its electronic ground
state with nonzero angular-momentum quantum number J ,
its projection on the quantization axis mJ , and a total polar-
izability αtot placed in a laser field of intensity I = ε0c

2 | �E|2,

polarization vector u, and frequency ω = 2π c
λ

. Here, ε0 is
the vacuum permittivity, c is the speed of light, and λ is
the wavelength of the laser field. For a given quantization
axis, which is typically set by an external magnetic field, we
furthermore define θk (θp) as the angle between the propagation
[31] (polarization) axis of the laser field and the quantization
axis (see inset in Fig. 1). As shown in Ref. [17], the tensor
product of Eq. (2) can be developed and the total light shift can
be expressed as the sum of the scalar (Us), vector (Uv), and
tensor (Ut ) light shift as follows:

U (ω) = − 1

2ε0c
I (r)αtot = Us + Uv + Ut

= − 1

2ε0c
I (r)

[
αs(ω) + |u∗ × u| cos θk

mJ

2J
αv(ω)

+ 3m2
J − J (J + 1)

J (2J − 1)

3 cos2 θp − 1

2
αt (ω)

]
. (3)

For convenience, we have explicitly separated the tensor
and vector term into two parts. The first part depends on the
angles, J and mJ , and the second part on ω and J . We refer
to the latter as the polarizability coefficients {αs,αv,αt } for the
scalar, vector, and tensor part, respectively.

Because of their J , u, and angle dependence, Uv and Ut

vanish for special configurations. In particular, Uv vanishes
for any linear polarization since u∗ ≡ u is a real vector, and
thus |u∗ × u| = 0, and for elliptical polarization at θk = ±90 ◦.
Ut vanishes for cos θp0 = √

1/3, i.e., for θp0 = 54.7 ◦, or for
J = 1/2. The latter condition is always fulfilled by alkali atomic
species, which indeed have zero tensor light shift in the ground
state. As we will discuss later, this is an important difference
between alkali and magnetic Ln, such as Dy and Er, which have
J = 8 and J = 6 in the ground state, respectively. Finally, we
note that Ut shows a quadratic dependence on mJ , which paves
the way for a selective manipulation of individual Zeeman
substates.

FIG. 1. Calculated (solid line) and measured (filled circles) atomic polarizability αtot of Er in the ground state for θp = θk = 90 ◦ as a
function of the light-field wave number and wavelength in atomic units. A divergence of the polarizability indicates an optical dipole transition.
The finite amplitude of the peaks of the narrow transitions are an artifact caused by the finite number of calculated data points. The red and
blue shadows indicate that there is a broad red-detuned region for long wavelengths without many resonances and also a mostly blue-detuned
region in the ultraviolet range. The inset illustrates the configuration of angles θk and θp for the shown data. B denotes the orientation of the
magnetic field.
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The polarizability coefficients read as

αs(ω) = − 1√
3(2J + 1)

α
(0)
J (ω),

αv(ω) =
√

2J

(J + 1)(2J + 1)
α

(1)
J (ω), (4)

αt (ω) =
√

2J (2J − 1)

3(J + 1)(2J + 1)(2J + 3)
α

(2)
J (ω),

where α
(K)
J (ω), K ∈ {0,1,2}, is known as the coupled polar-

izability. To precisely calculate the value of the polarizability,
it is necessary to know the parameters of each dipole-allowed
transition, i.e., the energy of the transition h̄ωJJ ′ and the natural
linewidth of the excited state γJ ′ . In constant-sign convention
[29], α(K)

J (ω) is indeed given by a sum-over-state formula over
all dipole-allowed transitions (	J = 0,±1),

α
(K)
J (ω) = √

2K + 1 ×
∑
J ′

(−1)J+J ′

×
{

1 K 1

J J ′ J

}
|〈J ′||d||J 〉|2

× 1

h̄
Re

[
1

	−
J ′J − iγJ ′/2

+ (−1)K

	+
J ′J − iγJ ′/2

]
. (5)

Here, |〈J ′||d||J 〉| is the reduced dipole transition element and
	±

J ′J = ωJ ′J ± ω. The curly brackets denote the Wigner 6-j
symbol. Note that the imaginary part of the term in the squared
brackets is connected to the off-resonant photon scattering rate.
As will be discussed in the next section, a precise knowledge
of the atomic spectrum is highly nontrivial for multielectron
atomic species with submerged-shell structure and requires
advanced spectroscopic calculations.

III. ATOMIC SPECTRUM OF ERBIUM

The submerged-shell electronic configurations of Er in its
ground state reads as [Xe]4f 126s2, accounting for a xenon
core, an open inner f shell with a two-electron vacancy, and
a closed s shell. The corresponding total angular momentum
is J = 6, given by the sum of the orbital (L = 5) and the spin
(S = 1) quantum number.

The calculated static polarizability of ground-state Er is
149 a.u. [32]. To calculate the dynamical one, αtot(ω), we
use Eqs. (3) and (5), based on the semiempirical electronic
structure calculation from Ref. [18]. The result is shown in
Fig. 1 for the case of light propagating along the x axis
and linearly polarized along the y axis [θk = θp = 90 ◦; see
Fig. 1 (inset)]. Note that for this configuration, the vectorial
contribution vanishes and the tensor part is maximally negative.
The ground-state polarizability of Er is mainly determined by
the strong optical transitions around 400 nm (see Supplemental
Material [33]). The broadest transition is located at 401 nm
with a natural width of 2π×29.7 MHz [34]. Apart from
the broad transitions, Er also features a number of narrow
transitions. As indicated in Fig. 1 by the red-shaded region
to the left of the strong resonances, i.e., for wavelengths above
500 nm, there is a large red-detuned region. To the right,
i.e., for wavelengths below 380 nm, the atomic polarizability

FIG. 2. Ground-state polarizability of Er in the proximity of a
narrow optical transition at 631.04 nm with a linewidth of 2π×28 kHz.
(a) Polarizability coefficients αs (solid line), αv (dotted line), and αt

(dashed line) vs the laser-field wavelength. The vertical dotted line
indicates the zero crossing of αs . (b) Total polarizability αtot as a
function of mJ , identifying the different Zeeman sublevels of the
ground-state manifold for θp = 90 ◦ (circles), θp0 = 54.7 ◦ (squares),
and θp = 0 ◦ (stars) calculated with Eq. (3) for θk = 90 ◦ at 630.7 nm,
corresponding to the wavelength of the zero crossing of αs .

is mainly negative (blue-shaded region), which enables the
realization of blue-detuned dipole traps for, e.g., boxlike
potentials [35].

As shown with Dy [23], narrow lines give prospects for
state-dependent manipulation of atomic samples. We find that
a promising candidate for spin manipulation is the transition
coupling the ground state to the J ′ = 7 excited state at
631.04 nm with a natural linewidth of 2π×28 kHz [36], which
we investigate theoretically here. It is weak enough to allow
near-resonant operation with comparatively low scattering rate
and features large vector and tensor polarizabilities. Figure 2(a)
shows the calculated values of αs , αv , and αt of the ground
state in the proximity of this optical transition, calculated with
Eqs. (4) and (5). Interestingly, αs has a sign opposite to αv

and αt and crosses zero around 630.7 nm, where still very
large vector (680 a.u.) and tensor (175 a.u.) polarizabilities
persist. Such wavelengths are very interesting since they
allow one to freely tune the total light shift by changing
the polarization of the laser light. Figure 2(b) shows the
total polarizability αtot as a function of mJ calculated with
Eq. (3) for the three angles θp ∈ {0 ◦,54.7 ◦,90 ◦} at the zero
crossing of the scalar polarizability for θk = 90 ◦. αtot depends
quadratically on mJ and can be tuned from positive to negative
by changing θp, while keeping θk constant. By changing θk ,
the vertex of the parabola in Fig. 2 can be shifted towards
higher or lower values of mJ , such that αtot vanishes for a
particular mJ state. Such a feature can, in principle, be used
for a state-dependent manipulation or trapping of the atomic
sample [37].
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IV. MEASUREMENTS

To extract the polarizability of Er, we measure the light
shift at three wavelengths: 532.26, 1064.5, and 1570.0 nm.
In addition, we study the polarizability of one excited state,
located at 17 157 cm−1 ≡ 583 nm with respect to the ground
state for 1064.5 and 1570.0 nm. This optical line is particularly
relevant for ultracold Er experiments since it is used as the
laser-cooling transition in magneto-optical traps (MOT).

For the measurements, we initially cool down a sample of
168Er in a MOT [38]. Here, the atoms are spin polarized to
the lowest level of the ground-state Zeeman manifold (J = 6,
mJ = −6). We then transfer the sample into a crossed-beam
optical dipole trap at 1064 nm. We force evaporation by
decreasing the power of the trapping laser following the
procedure reported in [10] and cool the sample down to
temperatures of several μK. All measurements of the light
shift are performed at a magnetic offset field of 0.4 G. At this
field, the Zeeman shift is large enough to have the atoms in a
well-defined magnetic sublevel mJ so that Eq. (3) is valid.

A. Measurement of the ground-state polarizability

For the measurement of the polarizability at ω = 2πc/λ,
we load the thermal sample from the crossed-beam dipole trap
into an optical dipole trap generated by a single focused beam,
operating at the desired wavelength λ. Typical beam waists
range from 18 to 46 μm. In this single-beam trap, the thermal
sample reaches typical peak densities ranging from 1013 to
1014 cm−3 and temperatures of several μK . The propagation
direction of the beam is illustrated in the inset of Fig. 1, i.e., with
a magnetic field oriented along the z axis and θk = θp = 90 ◦.

We extract the corresponding light shift of the ground
state by employing the standard technique of trap-frequency
measurements. From the trapping frequencies, we infer the
depth of the optical potential U , which in turn is related to
αtot by Eq. (3). In harmonic approximation, for a Gaussian
beam of power P , which propagates along the x axis with
elliptical intensity profile I (y,z) = I0 exp (− 2y2

wy
− 2z2

wz
), beam

waists wy and wz, and I0 = 2P
πwywz

, the depth of the induced
dipole potential U0 is related to the radial trapping frequencies
by ωi =

√
−4U0/(w2

i m), where i ∈ {y,z}. m is the atomic
mass, and U0 = − 1

2ε0c
αtot(ω)I0. By combining the above

expressions, we find the relation

ωi =
√

4αtotP

ε0cπwywzw
2
i m

. (6)

In Eq. (6), αtot is the only free parameter since we indepen-
dently measure the wi and P , as discussed later.

We measure the radial trapping frequencies along the y

and the z axis by exciting center-of-mass oscillations and
monitoring the time evolution of the position of the atomic
cloud in time-of-flight images. To excite the center-of-mass
oscillation, we instantly switch off the trapping beam for
several hundreds of μs [39]. During this time, the atoms move
due to gravity and residual magnetic field gradients. When the
trapping beam is switched on again, the cloud starts to oscillate
in the trap and we probe the oscillation frequencies νz = ωz/2π

along the z axis and νy = ωy/2π along the y axis. In order

to extract αtot from Eq. (6), we precisely measure the beam
waists wy and wz. The most reliable measurements of the beam
waists are performed by using the knife-edge method [40]. We
measure the beam waists with an uncertainty of the order of 1%.
Aberrations and imperfections of the trapping beams, however,
introduce a systematic uncertainty in the measurement of the
beam waists. We estimate a conservative upper bound for
such an effect of 2 μm, which provides the largest source
of uncertainty in the measurement of the polarizability. The
corresponding systematic errors on αtot are up to about 35%.
We measure the trap frequencies as a function of the laser
powers P and we fit Eq. (6) to the measured frequencies,
leaving αtot the only free fitting parameter.

We apply the above-described procedure to three different
wavelengths of the trapping beam. The experimental and
theoretical values for αtot are summarized in Table I. For
completeness, we also give αtheor.

s . Comparatively speaking,
at a wavelength of 1064.5 nm, we find that Er, as other Ln,
exhibits a weaker polarizability as compared, for instance, to
alkali atoms (e.g., 687.3(5) a.u. (calculated) for rubidium [41]).
This is related to the submerged-shell electronic structure of Er
and the so-called lanthanide contraction, resulting in valence
electrons being more tightly bound to the atomic core, and so
more difficult to polarize, than the single outermost electron
of alkali atoms [18,42].

The comparison between the measured and calculated
values shows an overall very good agreement, especially at
λ = 1064.5 and 1570 nm. In this wavelength region, there
are very sparse and weak optical transitions and the polar-
izability approaches its static value; see Fig. 1. At λ = 532.26
nm, we observe a larger deviation between experiment and
theory. This can be due to the larger density of optical
resonances in this wavelength region. Here, the calculated
value of αs is thus much more sensitive to the precise param-
eters of the optical line (i.e., energy position and strength).
In addition, our theoretical model predicts a very narrow
transition at 18 774 cm−1 ≡ 532.7 nm with a linewidth of
γJ ′ = 6.2×103 s−1.

We point out that as a result of our improved methodology
to calculate transition probabilities, the theory value of αs =
173 a.u. at λ = 1064.5 nm is slightly larger than the one pre-
viously reported in [18]. In particular, our present calculations
use a refined value of the scaling factor on monoelectronic
transition dipole moments (Er+) [43], which is now equal to
0.807.

As previously discussed, Ln exhibit an anisotropic light
shift, arising from the sizable tensor contribution to the total
polarizability [see Eq. (3)]. This distinctive feature has been
experimentally observed in Dy in the proximity of a narrow
optical transition [23]. Here, we address this aspect with Er
atoms by measuring the light shift in the ground state and
its angle dependence at 532.26 and 1064.5 nm. At these
wavelengths, our theory predicts that αt for the ground state
is of the order of a few percent of αs . To isolate this small
contribution and to clear the systematic uncertainties, which
could potentially mask the effect, we probe the tensor-to-scalar
polarizability ratio as follows. We first prepare the ultracold Er
sample in the lowest Zeeman sublevel (mj = −6) in the optical
trap, operated at the desired wavelength. We then extract the
angle-dependent light shift by repeating the measurements of
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FIG. 3. Anisotropic polarizability of Er atoms in the ground state.
The plot shows the relative change of the light shift at 532.26 nm
(squares) and 1064.5 nm (circles) for θk = 90 ◦ as a function of θp .
The variation of the total light shift unambiguously reveals the tensor
polarizability, which vanishes for an angle of θp ≈ 54.7 ◦. The lines
are fits to the data with Eq. (3). The error bars indicate the statistical
uncertainties from the trapping-frequency measurements. The dotted
lines represent the theory prediction.

the trap frequencies for different values of θp. This is done by
either rotating the magnetic field, while keeping an horizontal
polarization of the trapping light, or by rotating the polarization
axis of the trapping light at a constant magnetic field. In both
measurements, we choose θk = 90 ◦ such that the vector light
shift vanishes. Hence, the total light shift comes only from
αs and αt . Since the scalar light shift is independent of θp, a
dependence of the total light shift on θp is only caused byαt . We
quantify this variation by the relative change of the light shift,

κ(θp) = U − Us

Us

= Ut

Us

= ω(θp)2 − ω(θp0)2

ω(θp0)2

= 3m2
J − J (J + 1)

J (2J − 1)

3 cos2 θp − 1

2

αt

αs

. (7)

Note that the first factor in the second line of Eq. (7) is equal to
one for |J,mJ 〉 = |6,−6〉, such that the peak-to-peak variation
of κ(θp) corresponds to κ0 = 1.5 × αt

αs
. Figure 3 shows κ(θp)

for 532.26 and 1064.5 nm. At both wavelengths, the data show
the expected sinusoidal dependence of κ on θp. We fit Eq. (7)
to the data and extract κ0 and αt . Our results are summarized
in Table I. The systematic uncertainties of αt are obtained by
error propagating the systematical errors of αs . We observe that

αt for the ground state gives only a few-percent contribution
to the total atomic polarizability. However, the corresponding
tensor light shift for the typical power employed in optical
trapping can already play an important role in spin-excitation
phenomena in Er quantum gases [44].

Given the complexity of the Er atomic spectrum and the
small tensorial contribution, the good agreement between the
theoretical predictions ofαt and the experimental value for both
investigated wavelengths is remarkable. The slightly smaller
values extracted from the experiments can be due to additional
systematic effects in the measurements. For comparison, we
note that at 1064 nm, κ0 for ground-state Er is slightly larger
than the one for Dy, which was predicted to be around κ theor.

0,Dy =
1.1% [15], and larger than the one of Cr atoms, which was
calculated to be κ theor.

0,Cr = 0.5% (at 1075 nm) [25] but was then
measured to be significantly lower [24]. In Cr experiments, the
tensorial contribution to the total light shift was then enhanced
by using near-resonant light.

B. Measurement of the excited-state polarizability

Although small in the ground state, αt is expected to be
substantially larger in the excited state. Therefore, measuring
the 583 nm excited-state polarizability provides a further
test of the level calculations. To extract the excited-state
polarizability, we measure the shift of the atomic resonance
in the dipole trap. As is depicted in Fig. 4(a), the dipole trap
induces a light shift not only to the ground state, but also to
the excited state. To measure the excited-state light shift, we
prepare the atomic sample as described above and apply a short
pulse of a circularly polarized probe light at 583 nm to the
sample. This light couples the ground-state |J,mJ 〉 = |6,−6〉
level to the |J ′,m′

J 〉 = |7,−7〉 sublevel of the excited-state
manifold of energy 17 157 cm−1 ([Xe]4f 126s6p(3P1)). We
find a resonant atom loss when the frequency of the probe
light matches the energy difference between the ground and
the excited state. By scanning the frequency of the probe light,
we extract the resonance frequency. This frequency is shifted
from that of the bare optical transition by the sum of the
ground-state polarizability and the excited-state polarizability.
Subtracting the ground-state shift reveals the light shift of the
excited state. For this, we use the experimental values of the
ground-state polarizability that are reported here and neglect
the angle dependence thereof since its anisotropy is two orders
of magnitude smaller than the anisotropy of the excited state.

TABLE I. Experimental and theoretical polarizabilities for Er of the ground state (0 cm−1) and of the 583 nm excited state (17 157 cm−1)
for three laser wavelengths λ. αtot for experiment and theory is given for the case θp = θk = 90◦. The relative change of the light shift κ0 (see
text) and the tensor polarizability coefficient αt for the ground state and for the excited state are displayed. The polarizability is given in atomic
units. To convert atomic units into SI units, use a factor of α[Hz/(W mm−2)] = α[a.u.] × 1.6488×10−35/2hε0c. For αexpt.

s , we give statistical
and systematic errors, respectively (see text).

E (cm−1) λ (nm) α
expt.
tot (a.u.) αtheor.

tot (a.u.) αtheor.
s (a.u.) κ

expt.
0 (%) κ theor.

0 (%) α
expt.
t (a.u.) αtheor.

t (a.u.)

0 532.26 (430 ± 8stat. ± 80syst.) 317 308 (−5.3 ± 1) −9.2 (−15 ± 3stat. ± 6syst.) −19
0 1064.5 (166 ± 3stat. ± 61syst.) 176 173 (−1.8 ± 0.8) −4.7 (−1.9 ± 0.8stat. ± 1.2syst.) −5.4
0 1570.0 (163 ± 9stat. ± 36syst.) 162 159 −4.1 −4.3

αexpt.
s (a.u.)

17157 1064.5 (66.6 ± 0.5stat. ± 28syst.) 91 (−25.6 ± 1.6) −29.7 (−11.3 ± 0.5stat. ± 2.0syst.) −18
17157 1570.0 (−203 ± 9stat. ± 50syst.) −254 (104 ± 6) 40.4 (−141 ± 9stat. ± 19syst.) −68.5

012509-5



J. H. BECHER et al. PHYSICAL REVIEW A 97, 012509 (2018)

FIG. 4. 583 nm excited-state polarizability. (a) Illustration of
the energy of atoms in an optical dipole trap with Gaussian shape.
The upper (lower) panel indicates the case with the excited-state
polarizability negative (positive). We measure the shift of the bare
atomic resonance in the optical dipole trap (see text) for different
values of θp (dark-to-light red and light-to-dark blue). This shift
is given by the sum of the light shifts in the ground and in the
excited state (|J,mJ 〉 = |6,−6〉 → |J ′,mJ ′ 〉 = |7,−7〉). To extract
the excited-state light shift, we subtract the ground-state shift. (b)
583 nm excited-state polarizability for 1064.5 nm (red squares) and
for 1570.0 nm (gray circles). The solid lines indicate fits to the data.

We repeat this measurement for various values of θp and find
a large angle dependence, as we show in Fig. 4(b), for 1064.5
and 1570 nm. This is expected due to the highly anisotropic
wave function of the 6p electron in the 583 nm excited state.
From our data, similarly to the ground-state measurements, we
extract both the scalar and the tensor polarizability coefficients.
The results and the theoretical calculations are presented in the
lower section of Table I. The scalar polarizability coefficient
agrees within the error with the theoretical expectations, indi-
cating a good understanding of the excited-state polarizability.
The tensor polarizability coefficients qualitatively match well
with the theoretical values. The quantitative disagreement by
up to a factor of two is probably caused by uncertainties in the
parameters of strong transitions close by.

V. CONCLUSION AND OUTLOOK

In this paper, we presented measurements of the scalar and
tensor polarizability of Er atoms in the ground and the 583 nm
excited state for three wavelengths. Our results qualitatively
agree with our theoretical calculations of the polarizability
and prove a good understanding of the level structure of
Er. A similarly comprehensive picture of the correspondence
between theoretical and experimental values of polarizability
in Dy is still pending [8,15,23].

For 1064.5 and 1570.0 nm, we find excellent agreement
of the scalar polarizability. For 532.26 nm, we observe that
the measured value of αs deviates from the calculated value,
which we attribute to the proximity to optical transitions.
The measured tensor polarizabilities at 532.26 and 1064.5 nm
are of the order of a few percent with respect to the scalar
polarizabilities and qualitatively agree with the theoretical
values.

The polarizability of the 583 nm excited state was measured
to be positive (negative) for 1064.5 nm (1570 nm), in agreement
with the theory. Further it shows a large anisotropy due to the
highly anisotropic electronic configuration around the core.
Our measured values qualitatively agree with the calculations.

As was discussed, the anisotropic polarizability does not
only depend on the angle between the quantization axis and
the polarization of the light, but also gives rise to a mJ

dependence of the total light shift. This can be of great
importance for experiments with Ln since it allows for the
deterministic preparation or the manipulation of spin states or
for the realization of state- or species-dependent optical dipole
traps.
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6020 Innsbruck, Austria
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The concept of a roton, a special kind of ele-
mentary excitation, forming a minimum of en-
ergy at finite momentum, has been essential to
understand the properties of superfluid 4He. In
quantum liquids, rotons arise from strong inter-
particle interactions, whose microscopic descrip-
tion remains debated. In the realm of highly-
controllable quantum gases, a roton mode has
been predicted to emerge due to dipolar in-
terparticle interactions despite of their weakly-
interacting character. Yet it has remained elu-
sive to observations. Here we report momentum-
distribution measurements in dipolar quantum
gases of highly-magnetic erbium atoms, reveal-
ing the existence of the long-sought roton. We
observe the appearance of peculiar peaks at well-
defined momentum matching the inverse of the
tight confinement length as expected for dipolar
rotons. Our combined theoretical and experimen-
tal work demonstrates unambiguously the roton
softening of the excitation spectrum and provides
a further step in the quest towards supersolidity.

Introduction

Quantum properties of matter continuously challenge
our intuition, especially when many-body effects emerge
at a macroscopic scale. In this regard, the phenomenon
of superfluidity is a paradigmatic case, which continues
to reveal fascinating facets since its discovery in the late
1930s [1, 2]. A major breakthrough in understanding
superfluidity thrived on the concept of quasiparticles, in-
troduced by Landau in 1941 [3]. Quasiparticles are el-
ementary excitations of momentum k, whose energies ε
define the dispersion (energy-momentum) relation ε(k).

To explain the special thermodynamic properties of
superfluid 4He, Landau postulated the existence of two
types of low-energy quasiparticles: phonons, referring
to low-k acoustic waves, and rotons, gapped excitations
at finite k initially interpreted as elementary vortices.
These two types of excitations were later unified in a
unique dispersion relation [4], which continuously evolves
from linear at low k (phonons) to parabolic-like with a
minimum (roton) at a finite k = krot. Neutron scat-
tering experiments confirmed Landau‘s remarkable in-

tuition [5]. In liquid 4He, krot scales as the inverse of
the interatomic distance. This manifests a tendency of
the system to establish a local order, which is driven by
the strong correlations among the atoms. Yet, the same
strongly-correlated nature of helium handicaps a micro-
scopic understanding from first principles of the roton
properties [1, 6].

In the realm of low-temperature quantum physics,
ultra-cold quantum gases realise the other extreme limit
for which the interparticle interactions - and correlations
- are weak, meaning that classically their range of ac-
tion is much smaller than the mean interparticle dis-
tance [2, 7]. Because of this diluteness, roton excitations
are typically absent in ordinary quantum gases, i. e. in
Bose-Einstein condensates (BECs) with contact interac-
tions [2]. However, the degree of tunability in BECs is
remarkable and a roton-like softening has been induced
in hybrid systems via cavity-mediated interactions [8],
and in spin-orbit-coupled BECs [9] and quantum gases
in shaken optical lattices [10] by engineering the single-
particle dispersion relation.

About 15 years ago, the existence of a roton minimum
was theoretically predicted in BECs with dipole-dipole
interactions (DDI) [11, 12]. The DDI is long-range and
anisotropic; in particular it can change sign depending
on the dipole configuration, being attractive for head-to-
tail dipoles and repulsive for side-by-side ones (Fig. 1a).
Despite the weakly-interacting character of the gas, the
roton minimum in dipolar BECs (dBECs) is genuinely
interaction-induced as in superfluid 4He. However, in
contrast to helium, the dispersion minimum originates
from the peculiar k-dependence of the DDI rather than
from strong correlations (Fig. 1b).

The realisation of a roton minimum in dBECs would
allow for an unprecedented degree of control and micro-
scopic understanding of the roton properties unavailable
in helium physics. This prospect has triggered remark-
able theoretical works, devoted to unveil the special prop-
erties of the dipolar roton and to link them to experimen-
tal observables [13–27]. Despite the maturity achieved in
the theoretical understanding, the observation of dipolar
roton modes has remained so far an elusive goal. For a
long time, the only dBEC available in experiments con-
sisted of chromium atoms [28, 29], for which the achiev-
able dipolar character is hardly sufficient to support a
roton mode. With the advent of the more magnetic lan-
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thanide atoms [30, 31], a broader range of dipolar param-
eters became available, providing new prospects for the
observation of rotons.

A. Roton mode in dBECs and its signature

To elucidate the mechanism of rotonization in dBECs,
it is instructive to first review the case of cylindrically
symmetric pancake traps with the dipoles aligned along
the symmetry axis z (Fig. 1e1) [11, 13, 15–27]. In this
quasi-two-dimensional (q2D) geometry, we consider ele-
mentary excitations of planar momentum k, correspond-
ing to in-plane density modulations of wavelength 2π/k
(Fig. 1c-d). In a mean-field picture, the energy cost to
create such an excitation, ε(k), arises from both kinetic
and interparticle interaction contributions. The latter in-
cludes the contact interaction and the DDI, and the DDI
changes sign with k because of the much stronger con-
finement along z. At low k, the repulsive nature of the
in-plane DDI prevails, stiffening the dispersion relation
(Fig. 1c). In contrast, for k`z & 1, `z being the trans-
verse confinement length, the three-dimensional (3D) na-
ture of the excitation is reestablished and the attrac-
tive part of the DDI dominates, softening ε(k) (Fig. 1d).
This softening is counterbalanced by the contributions
of the repulsive interactions, namely the contact interac-
tion at positive scattering length as, and of the kinetic
energy, increasing with k. For very large k, the kinetic
energy cost prevails and ε(k) eventually bends up into
a single-particle spectrum. For strong-enough DDI, the
dipole-induced softening dominates at intermediate mo-
menta, and ε(k) develops a minimum at krot ∼ 1/`z [11]
(Fig. 1b).

Ultracold atoms allow to regulate the impact of the
DDI in ε(k) by tuning the value of as through a Feshbach
resonance (FR) [32]. This provides a powerful control
knob for the roton physics that is absent in the 4He case.
The figure of merit is the parameter εdd = add/as, de-
fined as the ratio between the dipolar length, add =
µ0µ

2m/12π~2, and as. Here m is the mass and µ the
magnetic moment of the atoms. Increasing εdd (decreas-
ing as) mitigates the energy cost for large-k excitations
and the system can develop a roton minimum in ε(k).
By further increasing εdd, the roton gap, ∆ = ε(krot),
decreases and eventually vanishes (Fig. 1b). In the lat-
ter case, the system undergoes a local instability [18, 19]
and develops a short-wavelength density modulation on
the scale of 1/krot, , resembling the case of the expected
superfluid-to-solid transition in overpressurized 4He [33].

When the dBEC spectrum gets deeply rotonized (i. e.
small ∆), the momentum distribution can be profoundly
modified, providing a signature for the effect. In q2D
geometries (Fig. 1e1), the excitation softening develops
in plane - both in the x and y directions. This leads to a
radial roton corresponding to a set of in-plane momenta
k of |k| = krot. The privileged population of these modes
translates into the emergence of a ring of radius krot in
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Figure 1 | Roton mode in a dBEC. a, dipole ori-
entations with repulsive (blue) and attractive (red) DDI.
b, illustration of the dispersion relation with real (solid
lines) and imaginary (norm of the dotted line) parts of a
dBEC in constrained geometries (see e1-f1) and varying
as (dashed arrow) [11]. c-d, spatial density modulations
associated to small- (c) and large-k (d) excitations. The
shape along z and the color gradient illustrate the density
modulation. The color code, following that of a, pictures
the dominant DDI contribution to ε(k). In b, a roton
emerges at krot when the attractive DDI prevails. In q2D
geometries (e1), the roton in-plane momentum distribu-
tion shows a ring (e2). f1 illustrates the advantageous
q1D geometry, where the roton momentum distribution
is double-peaked (f2). e2 and f2 have the same total
population.

the momentum distribution (Fig. 1e2).
Here we extend the roton physics to a largely unex-

plored geometry: that of axially elongated dBECs with
dipoles oriented orthogonally to the elongation axis y
(Fig. 1f1). Although the above energy arguments equally
apply to this quasi-one-dimensional (q1D) geometry, the
axial elongation provides an important difference. Here,
the system develops a linear roton mode corresponding
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Figure 2 | BdG excitation spectrum. a, Excitation spectrum of the ground state of a BEC with N = 50.000
166Er atoms in a trap with (νx, νy, νz) = (267, 32, 456)Hz and scattering length as = 43.75 a0, obtained by numerically
solving the BdG equations. Roton modes appear as isolated modes lying below the main branch of the spectrum,
forming a ’roton finger’. The lowest roton mode and an exemplary phonon mode are highlighted, with panels b, c
showing the corresponding excited state density modulation (with black dashed line the ground state, red solid line
the excited state) and, b1, c1, the momentum distribution from 30ms ToF expansion (Methods). b, b1 phonon
mode, c, c1 roton mode.

to a narrow set of k with y component ky = ±krot. As
a consequence, the privileged population of this mode
translates into two marked peaks in the momentum dis-
tribution (Fig. 1f2). This geometrical focusing of the ro-
ton population greatly enhances the visibility of the effect
compared to the q2D case (Fig. 1e2-f2).

B. Rotonized dispersion relation in q1D dBECs

The existence of a roton minimum in our q1D ge-
ometry is well explained by a simplified model inspired
from the uniform q2D calculations [11]. Here we con-
sider that the condensate is trapped along x and z,
with harmonic frequencies νx and νz, but homogeneous,
i.e. unconfined, along the axis y. The physics of the
dBEC is well captured by a non-local Gross-Pitaevskii
equation (NLGPE) [2, 34], which contains the trans-
verse confinement, the short-range interactions, and the
DDI (Methods). Within the Thomas-Fermi (TF) ap-
proximation, the BEC density takes the simple form
n(x, z) = n0

(
1− (x/X)2 − (z/Z)2

)
, with n0 the homo-

geneous axial density [12] (Methods). The excitation
spectrum is obtained from the linearisation of the NL-
GPE around the ground-state wavefunction

√
n(x, z).

Due to the homogeneity along y, the elementary excita-
tions have a well-defined momentum ky. Proceeding as
in Ref. [11], we obtain an analytic form for ε(ky) in the
relevant case of 3D modes, i. e. for kyZ � 1 (Methods).
For dominant DDI (εdd ≥ 1), ε(ky) indeed rotonizes. In
the vicinity of the roton minimum the dispersion acquires
a gapped quadratic form similar to that of helium rotons:

ε(ky)2 ' ∆2 +
2~2k2

rot

m

~2

2m
(ky − krot)

2 (1)

for εdd ∼ 1. Here the roton momentum is krot =√
2mEI/~, with EI = 2gn0(εdd − 1)/3 and g =

4π~2as/m, while its gap reads ∆ =
√
E2

0 − E2
I , with

E2
0 = 2gεddn0

~2

2m

(
X−2 + Z−2

)
. Note that the TF radii

X and Z can be evaluated as functions of νx,z, εdd and
gn0 [12] and in particular X2, Z2 ∝ gn0. Then, close
to the instability, ∆ ' 0, krot takes the simple form
krot = κ/`z with `z =

√
~/2πmνz and a geometrical

factor κ that depends only on νz/νx (Methods). In the
case νz/νx = 1, κ = 1.74.

To move beyond this simplified model and closer to
realistic experimental conditions, we develop a numer-
ical approach based on the 3D NLGPE for a generic
anisotropic harmonic confinement of frequencies νx,y,z
(Methods) [14]. For a quantitative understanding of the
experiments, our numerical treatment also includes quan-
tum fluctuations (i. e. local Lee-Huang-Yang (LHY) cor-
rections) [35–41], finite temperature effects [37, 42], and
three-body losses [43] (Methods). Our numerical plat-
form offers rich possibilities to investigate the physics at
play: it allows for real-time evolution of the quantum gas
wavefunction, and provides access to the Bogoliubov-de
Gennes (BdG) excitation spectrum.

The excitation spectrum is obtained by linearizing the
NLGPE around a stationary state and numerically solv-
ing the resulting BdG equations (Methods) [44]. The
calculated spectrum is qualitatively modified compared
to that of an homogeneous system (Fig. 2). In order
to depict the spectrum as a quasi-dispersion relation
even in the presence of an axial confinement, we asso-
ciate to each elementary excitation an effective momen-
tum k

(eff)
y = 〈k2

y〉1/2 [17]. The spectrum is discrete with
phonon-like collective modes at low k

(eff)
y . For higher
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k
(eff)
y the spectrum flattens, but eventually bends up-

wards again due to the dominant kinetic energy. In our
experimentally relevant q1D geometries, instead of de-
veloping a smooth minimum, roton excitations appear as
isolated low-lying modes at intermediate momenta that
depart from the overall spectrum [17]. These so-called ro-
ton fingers are related to confinement of the roton modes
in the inhomogeneous BEC of profile n0(y) [16]. Using
the local-density approximation in Eq. (1), the spatially-
dependent spectrum ε(k, n0(y)) has a minimal roton gap
at the trap center, translating into an effective confine-
ment of the mode.

The confinement is evident from our BdG calculations,
in which the lowest roton mode forms a short-wavelength
density modulation localized at the trap center (Fig. 2c).
This contrasts with phonon modes for which the modu-
lation is delocalised over the entire condensate (Fig. 2b).
Whereas the density modulation (Fig. 2c) and the finite-
momentum peaks (Fig. 1f2) are signatures of the same ef-
fect, from now on we will focus on the latter aspect since
it is the one we probe in the experiments via time-of-flight
(ToF) expansion measurements [2]. Accordingly, we com-
pute the momentum distribution from the ToF expanded
densities associated with the selected modes (Fig. 2b1-c1)
and observe that the roton mode indeed presents as two
symmetric peaks localised at positions corresponding to
±krot.

To enrich the stationary-state picture, we additionally
develop real-time evolution simulations of the 3D NL-

GPE. This enables to fully account for the experimental
procedure, as described in the next Section, as well as the
effects due to finite temperature and atom losses (Meth-
ods). Also the real-time evolution shows a population of
the roton mode with the same signatures as in Fig. 2c-
c1, both in trap and in ToF. The extracted krot agrees
well, within 10%, with the BdG approach in its validity
regime, i. e. when a stationary dBEC state is found.

C. Roton peaks in quench experiments

Our experiment relies on the strong dipolar charac-
ter of Er (add = 65.5a0) and on the ability to fine tune
as below add. The experimental sequence starts with a
166Er dBEC in a trap elongated along the y axis. The
trap aspect ratio, λ = νz/νy, can span from about 4 to
30, corresponding to νz ranging from 150Hz to 800Hz.
We note that νy and νz/νx are kept roughly constant to
≈ 30Hz and ≈ 1.6, respectively (Methods). An external
homogeneous magnetic field, B, defines the dipole ori-
entation (magnetization) with respect to the trap axes
and sets the values of as through a magnetic FR, cen-
tered close to B = 0G. The precise B-to-as conversion
has been measured in Ref. [39]. At the end of the prepa-
ration stage, we obtain a stable BEC at as = 61 a0

(εdd = 1.08, B = 0.4G) with transverse (z) magneti-
zation (Fig. 3a) (Methods).

To access the roton regime, we suddenly quench as to
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the desired lower value and we shortly hold the atoms
in the trap for a time th, typically th = 3ms. We note
that during th, B exponentially converges to its set value
with a 1/e-time of 0.98(5)ms (Methods). We then re-
lease the atoms from the trap, change as back to approx-
imately its initial value, and let the cloud expand for
tf = 30ms, after which we perform resonant absorption
imaging. The imaging beam propagates transversely, i. e.
nearly collinear with the z-axis. Hence the ToF images
probe the two-dimensional density distribution of the ex-
panded cloud, nf(x, y, tf). For tf long enough to ignore
the in-situ width of the cloud, nf(x, y, tf) maps the mo-
mentum distribution of the gas in trap, ñ(kx, ky), as-
suming negligible interactions during the expansion. Our
real-time simulations, accounting for the precise experi-
mental sequence, confirm this assumption (Methods).

First we investigate ñ(kx, ky) as a function of as for
(νz, λ) = (456 Hz, 14.4), and th = 3ms. For large enough
as, ñ(kx, ky) shows a single narrow peak with an inverted
aspect ratio compared to the trapped gas, typical of a
stable BEC [2] (Fig. 3b). We define the center of the
distribution as the origin of k. In contrast, when the
system enters the dominantly dipolar regime by decreas-
ing as , ñ(kx, ky) changes fundamentally. We observe a
sudden appearance of two symmetric finite-momentum
peaks along the ky axis, located at ±k∗y and of simi-
lar shape (Fig. 3c-d). Beside their remarkable symmetry,
these finite-momentum peaks also exhibit a high shot-to-
shot reproducibility, as evidenced by their high contrast
in the averaged distributions (Fig. 3c-d). The observed
side peaks show the privileged population of specific high-
momentum modes (ky = k∗y) in the excitation spectrum
ε(ky) of our trapped dBEC.

To quantitatively investigate the peak structures, we fit
a sum of three Gaussian distributions to the central cuts
of the average ñ(kx, ky) (Fig. 3(b1-d1)) (Methods). From
the fit we extract k∗y , the amplitudes of the side and cen-
tral peaks A∗,0, and derive the contrast of the side peaks,
C = A∗/A0. Typical values of k∗y are ∼ 4-5µm−1. The
evolution of C with as reveals an interesting behaviour
(Fig. 3e). For large as, we observe an essentially zero
and flat contrast. The residual C ∼ 3% arises from the
usual thermal background and the imaging noise. With
decreasing as, C first exhibits a sharp increase and then
saturates to an upper value of about 40%. We define the
onset of the finite-momentum excitation, a∗s , as the value
of as at which C starts to rise. For the (νz, λ) parameter
here considered, we find a∗s = 49.0(2) a0, corresponding
to εdd = 1.34(1).

Our ToF observations directly reveal the presence
of the long-sought roton mode. The observed struc-
tures closely follow the predicted signature of this mode
(Fig. 2c1). In addition, the fitted k∗y are in very good
agreement with the predicted krot from our theory
(Sec. D). Finally, the high shot-to-shot repeatability of
the remarkable peak structure in ñ(kx, ky) suggests the
persistence of a macroscopic phase coherence in the gas.

D. Properties of the roton excitation.
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Figure 4 | Geometrical scaling of the roton mo-
mentum. Measured krot at the onset of a roton pop-
ulation as = a∗s in the quench experiment (dots) as a
function of 1/`z. Error bars show the statistical uncer-
tainty of the fit. Here short th ranging from 3 to 6ms
are used (Methods). The dotted and dashed lines show
the theory predictions using the experimental parame-
ters, from the analytic q1D model of Eq. (1) and from
our real-time simulations reproducing the experimental
procedure, respectively. Both theories use the as values
being just below the predicted roton softening (Meth-
ods). The blue solid line shows a linear fit passing by the
origin, to the data. The fitted slope is 1.61(4).

A major fingerprint of the roton mode in a dipolar
gas is its characteristic dependence on the trap geom-
etry. Its geometrical nature has been proven in vari-
ous contexts, from pancake- [11, 13, 15–17] to our cigar-
shaped traps (Sec. B), highlighting a universal scaling
with krot ∼ 1/`z. To experimentally investigate such ge-
ometrical properties in our elongated dBEC, we repeat
the quench measurements for different trap parameters
(νz, λ) and we extract the corresponding value of krot

(Fig. 4) (Methods). Our data, plotted as a function of
1/`z, reveal a marked increase of krot, and a linear fit to
the data gives a slope of 1.61(4). This value is remark-
ably close to the mean krot`z = 1.59(15) calculated from
our simple analytic model using the experimental param-
eters. To firmly tie our observation to the roton excita-
tion, we perform real-time simulations of the NLGPE, ac-
counting for the specific experimental sequences (Meth-
ods). The extracted parameter-free curve (dashed line
in Fig. 4) is in excellent agreement with the data and
also captures the smooth deviation from a linear slope
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reflecting the experimental details. The comparison be-
tween the experimental observations and our two comple-
mentary theories unambiguously establishes the rotonic
nature of the finite-momentum peaks.

To gain further insights into the roton properties, we
additionally investigate the effects of λ and as. From
all our measurements, we construct a characteristic dia-
gram, presented in terms of the dimensionless parameters
λ and εdd (Fig. 5a). The former parameter governs the
geometric competition between the attractive and repul-
sive parts of the DDI, and εdd embodies the interplay
between dipolar and short-range interactions (Methods).
The white-to-red color scale indicates the values of the
reduced roton momentum krot`z. Each column of the
diagram shows the variation of krot`z with λ, whereas
each row gives the evolution of krot with εdd for a given
trap configuration. We observe krot`z varying at most by
≈ 25% along the lines and rows, which is on the order of
our experimental precision. Close to the instability, both
dependencies are expected to be mild as krot remains
mainly set by its geometrical nature (see Secs. A,B and
e. g. Refs.[11, 15]). The smooth dependence of krot with
as is particularly relevant (Fig. 5b) as it contrasts the ob-
served softening from a phonon instability in which the
minimum in ε2(k) is expected to appear at k = 0 and
then move to larger values when lowering as. From our
analytic q1D model for the roton softening, we extract a

residual increase of krot`z of 17% from as = 44a0 to 37a0

in the geometry (νz, λ) = (457Hz, 14.3), similar to the
experiments.

Besides the geometric determination of krot, εdd and
λ control the roton gap ∆. In the experiment, we ob-
serve that the critical ε∗dd = add/a

∗
s for the onset of the

roton population moves to larger values for more elon-
gated traps (blue-to-red border and C-measurements in
Fig. 5). This increase can be explained by the following
argument: a macroscopic roton population appears for
small enough ∆ (Methods). This condition is realised
when the attractive DDI dominates over the total repul-
sive (contact and repulsive DDI) interaction. As the ratio
of the attractive and repulsive contributions of the DDI
depends on λ, so will a∗s . A larger λ favors the repul-
sive part of the DDI, thus weaker contact interactions
are needed for a similar roton gap, explaining a lower
a∗s . Predictions from our q1D model reproduce well the
observed a∗s , both its variation direction and the actual
values within 10% (Methods).

E. Discussion

In conclusion, we report on the observation of the long-
sought roton mode in a dipolar BEC of Er atoms. Our in-
vestigations take advantage of an axially elongated geom-



7

etry, amplifying the roton signature in momentum space.
Our results, combining experimental studies, numerical
and analytic theories, unambiguously establish the roton
softening of the excitation spectrum and the universal
geometrical scaling krot ∼ 1/`z of the excitation.

Our work opens fascinating new ground for the study
of roton physics in dipolar gases. In the future, it might
be interesting to explore out-of-equilibrium dynamics of
the roton mode, to spectroscopically access the roton
gap, and to directly probe in-trap density modulated

states. These density modulations, providing a signa-
ture of the roton softening in real space, are a precursor
of a supersolid phase, in which a phase-coherent density-
modulated ground-state would arise [45]. Although the
density modulation is expected to be mean-field unstable
against local collapses [46], quantum stabilization may
prevent collapse as for the case of recently explored quan-
tum droplets [37–41]. Future investigations may be di-
rected in exploring, both in theory and experiment, the
possibility of a stable supersolid state in dBECs.
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METHODS

F. Production of 166Er BECs

We prepare a 166Er BEC similarly to Refs. [31, 39].
From a narrow-line magneto-optical trap with 3 × 107

166Er atoms, automatically spin-polarized in their ab-
solute lowest Zeeman sub-level [47], at about 10µK, we
directly load the atomic gas in a crossed optical dipole
trap (ODT) with an efficiency of more than 30%. A
uniform magnetic field, B, is permanently applied along
the vertical z axis, fixing the dipole orientation, while
its value is varied during the experimental sequence, to
tune as (Method H). We achieve condensation by means
of evaporative cooling in the crossed ODT at B = 1.9G
(as = 80(2) a0). During the evaporation procedure, we
first change the power and then the ellipticity of one of
the ODT beams (Method G). The final atom number,
typically 105, and condensed fraction, typically 70%, are
assessed by fitting the ToF absorption images of the gas
to a bimodal distribution, sum of a TF profile and a
broad Gaussian background.

G. Trapping geometries

The BEC is confined in a harmonic trapping poten-
tial V (r) = 2mπ2(ν2

xx
2 + ν2

yy
2 + ν2

zz
2), characterized

by the frequencies (νx, νy, νz). The ODT results from
the crossing of two red-detuned laser beams of 1064 nm
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wavelength at their respective focii. One beam propa-
gates along the y-axis and is denoted hODTb; the other,
called vODTb, propagates nearly collinear to the z-axis.
The vODTb has a maximum power of 7W and an ellip-
tical profile with waists of 110 and 55µm along x and
y respectively. The hODTb has a maximum power of
24W, a vertical waist wz = 18µm, and a controllable
horizontal waist, wx = λ′wz. The ellipticity λ′ can be
tuned from 1.57 to 15 by time averaging the frequency of
the first-order deflection of an Acousto-Optic Modulator
[48]. By adjusting independently λ′ and the powers of
the vODTb and of the hODTb , we can widely control
the geometry of the trap in a dynamic manner. Precisely,
νy is essentially set by the vODTb power, νz by that of
the hODTb. νx is controlled by both the power and ellip-
ticity of the hODTb, with νz/νx ≈ λ′. The independent
control of νy and νz yields an especially easy tuning of
the relevant trap aspect ratio, λ = νz/νy, for our q1D
geometry.

We use the tuning of the hODTb power and ellip-
ticity to perform evaporative cooling to quantum de-
generacy (Method F). After reaching condensation, we
again modify the beam parameters to shape the trap into
a favourable q1D configuration for observing the roton
physics (νy � νx, νz). The different trapping geometries
probed in Figs. 3-5 are achieved by changing the hODTb
power with λ′ = 1.57 and the vODTb power set to its
maximum so that νy and νz/νx are kept roughly con-
stant. The corresponding (λ, νx, νy, νz) are calibrated via
the excitation and probing of the center-of-mass oscilla-
tion of thermal samples and reported in Extended Data
Table I. We note that the final atom number N , BEC
fraction f , and temperature T after the shaping proce-
dure depend on the final configurations, as detailed in
Extended Data Table I. T is extracted from the evolution
with the ToF duration tf of the size of the background
Gaussian in the TF-plus-Gaussian bimodal fit to the cor-
responding ToF images of gas. The values of Nc = fN
and T are used for the initial states ψi of our real-time
simulations (Method N).

H. Quench of the scattering length as

To control as we use a magnetic Feshbach resonance be-
tween 166Er atoms in their absolute ground state, which
is centered around B = 0G. The B-to-as conversion
has been previously precisely measured via lattice spec-
troscopy, as reported in Ref. [39]. Errors on as, taking
into account statistical uncertainties of the conversion
and effects of magnetic field fluctuations (e.g. from stray
fields), are of 3-to-5 a0 for the relevant as range 27-67 a0

in this work. After the BEC preparation and in order to
investigate the roton physics via an interaction quench,
we suddenly change the magnetic field set value, Bset,
twice. First we perform the quench itself and abruptly
change Bset from 0.4G (as = 61 a0) to the desired lower
value at the beginning of the hold in trap (th = 0ms).

Second we prepare the ToF expansion and imaging condi-
tions (see Method I) and abruptly change Bset from the
quenched value to 0.3G (as = 57 a0) at the beginning
of the ToF expansion (tf = 0ms). Due to delays in the
experimental setup, e.g. coming from eddy currents in
our main chamber, the actual B value felt by the atoms
responds to a change of Bset via B(t) = Bset(t)+τdB/dt
[49]. By performing pulsed-radio-frequency spectroscopy
measurements (pulse duration 100µs) on a BEC after
changing Bset (from 0.4 to 0.2G), we verify this law and
calibrate τ = 0.98(5)ms. As a consequence as is evolv-
ing during th and tf . This effect is fully accounted in
the experiment and simulations and, we report the roton
properties as a function of the effective value of as at the
end of th. We use th ranging from 3 to 6ms. The lower
bound on th comes from the time needed for as to effec-
tively reach the regime of interest. Here we then consider
the initial evolution for which thνy ; th/τcoll � 1, 1/τcoll

being the characteristic collision rate. We estimate that
τcoll ranges typically from 40 to 90ms in the initial BECs
of Extended Data Table I at as = 61 a0. We note that
during the considered th, the atom loss remains below
25% for our less confined geometries νz ≤ 600Hz and
can go up 40% in the tightest traps of νz > 600Hz. We
have checked that the roton, if it exists, has developed
within this range of th. In Figs. 4-5, the parameter th is
optimized for each as value to obtain the largest visibility
of the roton peaks (largest C).

I. Imaging procedure

The in-trap density modulation associated with the ro-
ton excitation has a characteristic wavelength of d∗y =
2π/krot ∼ 1µm (e.g. Fig. 2c). This value is much smaller
than the axial width of the cloud (∼ 30µm) and below
our imaging resolution (∼ 3.7µm). In our experiments,
we employ ToF expansion measurements, accessing the
momentum distribution of the gas [2], to probe the ro-
ton mode population. We let the gas expand freely for
tf = 30ms, which translates the imaging resolution in
space into a momentum resolution of ∼ 0.32µm−1. This
means that we can resolve the population of modulation
modes with wavelength . 20µm and the roton mode of
interest should be well detectable.

In the experiments, we record 2D absorption pictures
of the cloud after ToF expansion by means of standard
resonant absorption imaging on the atomic transition at
401 nm. The imaging beam propagates nearly vertically,
with a remaining angle of ∼ 15o compared to the z-axis
within the xz-plane. Thus the ToF images essentially
probe the spatial density distribution nf (x, y, tf) in the
xy plane. When releasing the cloud (tf = 0ms), we
change back B to B = 0.3G (Method H). This change
enables constant and optimal imaging conditions with a
fixed probing procedure, i. e. a maximal absorption cross-
section. In addition, the associated increase of as to 57 a0

allows to minimize the time during which the evolution
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happens in the small-as regime where roton physics de-
velops. Thanks to this we are able to effectively probe
the short-time evolution of the gas. In this work, we use
the simple mapping:

ñ(kx, ky) =

(
~tf
m

)2

nf

(
~kxtf
m

,
~kytf
m

, tf

)
, (2)

which neglects the initial size of the cloud in the trap
and the effect of interparticle interactions during the free
expansion. Using real-time simulations (Method N), we
simulate the experimental sequence and are able to com-
pute both the real momentum density from the in-trap
wavefunction and the spatial ToF distribution 30ms after
switching off the trap. Using the mapping of Eq. (2) and
our experimental parameters, the two calculated distri-
butions are very similar, and, in particular, the two ex-
tracted momenta associated with the roton signal agrees
within 5%. This confirms that the interparticle interac-
tions play little role during the expansion and justifies
the use of Eq. (2).

J. Fit procedure for the ToF images

For each data point of Figs. 3-5, we record between 12
and 25 ToF images. By fitting a two-dimensional Gaus-
sian distribution to the individual images, we extract
their origin (kx, ky) = (0, 0) and recenter each image.
From the recentered images, we compute the averaged
ñ(kx, ky), from which we characterise the linear roton de-
veloping along ky. To do so, we extract a one-dimensional
profile ñ1(ky) by averaging the one-dimensional cut of
ñ(kx, ky) of fixed kx within |kx| ≤ km = 3.5µm−1 :
ñ1(ky) =

∫ km
−km ñ(kx, ky)dkx/

∫ km
−km dkx. To quantitatively

analyse the observed roton peaks, we fit a sum of three
Gaussian distributions to ñ1(ky). One Gaussian accounts
for the central peak and its centre is imposed to k0 ∼ 0.
The two other Gaussians are symmetrically located at
k0 ± k∗y , and we impose their size σ∗ and amplitude A∗
to be identical. We focus on the roton side peaks by con-
straining k∗y > 0.5µm−1 and σ∗ < 3µm−1. In all the
figures, the statistical error of the fit is characterised by
its 95% confidence interval.

In order to analyze the evolution of the contrast C of
the side peaks (see Fig. 3e and Fig. 5), we perform a sec-
ond run of the fitting procedure, in which we constrain
more strictly the value of k∗y . The interval of allowed
values is defined for each trapping geometry (Extended
Data Table I) and is set from the results of the first run of
the fitting procedure. We use the results of the (as, th)-
configurations where the peaks are clearly visible (see
Fig.5) and we set the allowed k∗y-range to that covered by
the 95% confidence intervals of the first-fitted k∗y in these
configurations. This constraint enables that, for as > a∗s ,
the fitting procedure estimates the residual background
population on the relevant momentum range for the ro-
ton physics.

In the ToF images, we qualitatively observe that the
momentum distribution broadens (i. e. larger 〈k2

x + k2
y〉)

when th increases and as decreases. This behaviour effec-
tively limits the visibility of the roton peaks, and explains
that the optimal th for the roton observation (see Method
H) gets shorter for lower as. In Fig. 5, the grey region
indicates the (as,λ)-configurations where the whole mo-
mentum distribution was observed to be too spread out
even at the shortest th = 3ms, so that the roton peaks
could not be clearly detected. This region was then ex-
cluded and no full set of measurements is available. We
note that, in this region of the diagram, 1/`z is the small-
est, making the blurring effect due to the distribution
braodening more drastic, since the roton and BEC peaks
are closer together. The non-detectability of roton peaks
can also relate to the phase diagram characteristics. The
small-as-small-λ region, corresponding to the grey area
lies deeper in the roton regime (as embodied by the in-
crease of a∗s for decreasing λ, see main text). It is then
possible that a larger number of modes are dynamically
destabilized and populated, resulting in a blurring of the
roton signal.

K. Generalized Gross–Pitaevskii equation

Our theory is based on an extended version of the NL-
GPE

i~
∂ψ(r, t)

∂t
=
(
− ~2∇2

2m
+ V (r) +

∫
dr′U(r− r′)n(r′)

+ ∆µ[n]− i~
L3

2
n2
)
ψ(r, t) (3)

≡
(
ĤGP[ψ]− i~

L3

2
n2
)
ψ(r, t), (4)

governing the evolution of a macroscopically occupied
wavefunction ψ(r, t), with corresponding atomic density
n = |ψ(r, t)|2 at position r and time t. The standard
dipolar NLGPE includes the kinetic energy, external trap
potential and the mean-field effect of the interactions.
These correspond to the three first terms of Eq. (3), where
the mean-field interaction potential takes the form of a
convolution of n with the binary interaction potential

U(r) = g

(
δ(r) +

3εdd

4π

1− 3 cos2 θ

|r|3
)
, (5)

for two particles separated by r [34]. The first term corre-
sponds to contact interactions between the particles with
strength g = 4π~2as

m . The DDI gives rise to the second
term, which depends on both the distance and orienta-
tion of the vector r compared to the polarisation axis (z
axis) of the dipoles (angle θ). Most properties of dBECs
are well captured by this standard NLGPE (mean-field)
[2, 34].

Recent experimental and theoretical results, however,
have established the importance of accounting for quan-
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tum fluctuations in dipolar condensates [37–41]. Their ef-
fect can be included in the NLGPE in a mean field treat-
ment through a Lee-Huang-Yang correction to the chem-
ical potential, ∆µ[n] = 32g(nas)

3/2(1 + 3ε2dd/2)/3
√
π,

which is obtained under a local density approximation
[35, 36]. The accuracy of this mean field treatment has
been established, e.g., in Refs. [37, 40, 41], and has
proven succesful in explaining recent experimental results
[38, 39]. The final nonlinear term in the extended NL-
GPE accounts for three-body losses, with an experimen-
tally determined loss parameter L3, which is dependent
on as and typically of the order L3 ' 10−41m6s−1, as
reported in Ref. [39].

L. BdG spectrum calculations

Collective excitations of the dBEC are obtained by lin-
earising the NLGPE around a stationary state ψ0, which
can be obtained by imaginary time propagation (Method
N). We write ψ = e−iµt/~(ψ0 + η[ue−iεt/~ − v∗e+iεt/~]),
where µ is the chemical potential associated with state
ψ0, and u, v are spatial modes oscillating in time with
characteristic frequency ε/~ and η � 1 [44]. Inserting
this ansatz in the NLGPE, and retaining only terms up
to linear order in η we obtain the BdG equations
(
ĤGP[ψ0] +A −A

A −ĤGP[ψ0]−A

)(
u
v

)
= ε

(
u
v

)
,

(6)
where the operator A, acting on a function f and evalu-
ated at point r, is defined as

(Af)(r) =

∫
dr′ψ0(r′)U(r− r′)f(r′)ψ0(r)

+
16√
π
ga3/2

s

(
1 +

3

2
ε2dd

)
|ψ0(r)|3f(r). (7)

The above equations constitute an eigenvalue problem,
which we solve numerically using the Arnoldi method to
obtain eigenmodes (u, v) and corresponding excitation
energies ε. The equations presented here are a gener-
alisation of the BdG equations for dipolar systems as
derived in Ref. [44], to include the LHY correction for
quantum fluctuations. The LHY term generally serves to
stabilise the excitation spectrum, causing the roton insta-
bility point to shift to lower scattering lengths. The ex-
cited states shown in Fig. 2b-c correspond to the density
|ψ0 +η(u−v∗)|2, for particular pairs of (u, v) correspond-
ing to phonon and roton modes. Even while the ampli-
tude η = 0.2 of both modes is taken to be equal in Figs. 2b
and 2c, the roton excitation (Fig. 2c) leads to markedly
larger local density modulations than the phonon excita-
tion (Fig. 2b). The ToF signatures in Fig. 2 are computed
by letting the wave function of the excitation, η(u− v∗),
expand ballistically for 30ms, i.e. neglecting interactions
during the expansion. The resulting density |η(u− v∗)|2
is then plotted (Fig. 2b1, c1).

M. Analytical dispersion relation for an infinite
axially elongated geometry

Equation (1) in the main text results from a similar
procedure as that used in Ref. [11] for rotons in infi-
nite q2D traps. We consider a dBEC homogeneous along
y but harmonically confined with frequencies νx and νz
along x and z. For sufficiently strong interactions the
BEC is in the TF regime on the xz plane, in which the
BEC wavefunction acquires the form ψ0(ρ) =

√
n(ρ),

with n(ρ) = n0

(
1− (x/X)2 − (z/Z)2

)
, where X and Z

are the TF radii, and ρ = (x, z). The calculation of n0,
X and Z is detailed at the end of this section.

Due to the axial homogeneity, the elementary ex-
citations discussed in the previous section have a de-
fined axial momentum ky, and take the form δψ(r, t) =

u(ρ)eikyy−iεt/~−v(ρ)e−ikyy+iεt/~. We consider the GPE
given by Eq. (3) without LHY correction and three-
body losses, and insert the perturbed solution ψ(r, t) =
(ψ0(ρ) + ηδψ(r, t)) e−iµt/~. After linearization we obtain
the BdG equations for f±(ρ) = u(ρ)± v(ρ):

εf−(ρ) = Hkinf+(ρ), (8)
εf+(ρ) = Hkinf−(ρ) +Hint[f−(ρ)], (9)

where

Hkinf±(ρ) =
~2

2m

(
−∇2 + k2

y +
∇2ψ0

ψ0

)
f±(ρ), (10)

Hint[f−(ρ)] = 2

∫
d3r′U(r − r′)e−iky(y−y′)

ψ0(ρ)ψ0(ρ′)f−(ρ′). (11)

Employing f+(ρ) = W (ρ)ψ0(ρ), and for ky � 1/X, 1/Z,
we obtain the following equation for the function W (ρ):

0 = 2gn0

(
1− x̃2 − z̃2

) [ 1

X2

∂2W

∂x̃2
+

1

Z2

∂2W

∂z̃2

]

− gn0(1 + 2εdd)

[
1

X2
x̃
∂W

∂x̃
+

1

Z2
z̃
∂W

∂z̃

]

+

(
2m

~2
(ε2 − E(ky)2)− 2gεddn0

(
1

X2
+

1

Z2

))

− 4m

~2
gn0(1− εdd)E(ky)

(
1− x̃2 − z̃2

)
, (12)

where x̃ = x/X, z̃ = z/Z, E(ky) = ~2k2
y/2m. For εdd = 1

the last term of Eq. (12) vanishes. In that case, the
lowest-energy solution is given by W = 1, whose eigen-
energy builds, as a function of ky, the dispersion ε0(ky)
with

ε0(ky)2 = E(ky)2 + E2
0 , (13)

with E2
0 = 2gεddn0

~2

2m

(
1
X2 + 1

Z2

)
. In the vicinity of

εdd = 1, the effect of the last term in Eq. (12) may be
evaluated perturbatively, resulting in the dispersion

ε(ky)2 ' ε0(ky)2 − 2EIE(ky), (14)
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with EI = 2
3gn0(εdd − 1).

This expression for the dispersion presents a roton
minimum for εdd > 1 at krot = 1

~
√

2mEI . Expanding
Eq. (14) in the vicinity of the roton minimum, ε(ky)2 '
ε(krot)

2 + 1
2

[
d2ε2(ky)
dk2y

]
ky=krot

, we obtain Eq. (1) of the

main text, with ∆ = ε(krot) =
√
E2

0 − E2
I . At the insta-

bility, ∆ = 0, and krot = 1
~
√

2mE0.

Employing a similar procedure as in Ref. [12] we obtain
that the BEC aspect ratio χ = Z/X fulfills:

χ2

[
(1− εdd)(1 + χ)2 + 3εdd

(1 + 2εdd)(1 + χ)2 − 3εddχ2

]
= λ2

⊥, (15)

with λ⊥ = νx/νz and

Z2 =
gn0

2π2mν2
z

[
(1 + 2εdd)−

3εddχ
2

(1 + χ)2

]
(16)

These two equations fully determine the TF solution for
given εdd, gn0, and the ratio νx/νz. By inserting the
expressions of X2 and Z2 in E0, we find for εdd ' 1:

E2
0 =

h2ν2
z

6
(1 + χ)2

(
λ2
⊥ +

1

1 + 2χ

)
(17)

whereas χ simplifies into χ = λ⊥(1 +
√

1 + 1/λ⊥). As
a result, at the instability krot`z depends only on the
transverse confinement aspect ratio λ⊥, and we obtain
the geometrical factor κ introduced in the main text:

κ = krot`z =

(
2

3

)1/4√
1 + χ

(
λ2
⊥ +

1

1 + 2χ

)1/4

. (18)

In order to better compare quantitatively with our
quench experiments, we evaluate the 3D TF solution,
n = n0(1 − (x/X)2 − (y/Y )2 − (z/Z)2) for the axially
trapped condensate prior to the quench. We then use
the central density n0 and the TF radii X and Z in the
evaluation of the roton spectrum above, employing the
value of εdd after the quench. This procedure takes the
quench of as into account by evaluating an initial (i. e.
at th = 0ms) instantaneous roton spectrum, within the
assumption of an immediate change of as. Further re-
finements might be required to fully describe the dynam-
ical population of the roton mode, related to the roton
softening of the time-dependent instantaneous excitation
spectrum depicted in Method O. Yet, as being inspired
from the latter concept, our approach allows for a bet-
ter description of our experiments than purely stationary
calculations.

The evaluation of the 3D TF solution is performed by
following the procedure of Ref. [50]. We introduce the
BEC aspect ratios: χx = Z/X, and χy = Z/Y . For a

given εdd, these aspect ratios fulfil the equations:

χ2
x

A(εdd, χx, χy)

C(εdd, χx, χy)
=

(
νx
νz

)2

, (19)

χ2
y

B(εdd, χx, χy)

C(εdd, χx, χy)
=

(
νy
νz

)2

, (20)

where A(εdd, χx, χy) = 1 + εdd(F1 − F2 + F3),
B(εdd, χx, χy) = 1 + εdd(F1 − F2 − F3), and
C(εdd, χx, χy) = 1 + εdd(F1 + 2F2). Here we have in-
troduced the functions:

F1(χx, χy)=

∫ 1

0

du

[
3u2

√
α2−β2

− 1

]
, (21)

F2(χx, χy)=

∫ 1

0

du

(
3u2−1

2

)[
3u2

√
α2−β2

− 1

]
, (22)

F3(χx, χy)=

∫ 1

0

du

(
9u2(1−u2)

4

)[√
α2−β2 − α
β
√
α2−β2

]
,(23)

with α(χx, χy, u) = (χ2
x + χ2

y)(1 − u2)/2 + u2, and
β(χx, χy, u) = (χ2

x − χ2
y)(1 − u2)/2. Once χx,y are de-

termined one may then evaluate the TF radii:

X2 =
gn0

2π2mν2
x

A(εdd, χx, χy), (24)

Y 2 =
gn0

2π2mν2
y

B(εdd, χx, χy), (25)

Z2 =
gn0

2π2mν2
z

C(εdd, χx, χy), (26)

and the central density

n0 =
(15N)2/5

8π(ABC)1/5

1

(as l̃4)3/5
, (27)

with l̃2 = ~
2πm(νxνyνz)1/3

.

Using this procedure and the experimental parameters
(trap geometry and atom number), we calculate the val-
ues of krot shown in Fig. 4. These values are computed at
a quenched as value taken to be just below the threshold
for the roton softening. To estimate this threshold, we
use here our full numerical platform based on the gener-
alized NLGPE (Method N), as it is expected to better
quantitatively capture the physical details of our exper-
iments. Using our analytical model, we are also able to
estimate a softening threshold in our quench experiment,
corresponding to ∆ = 0 within the above-described sim-
plified approach. The predicted threshold values, a∞s ,
in the experimentally relevant geometries are reported
in Extended Data Table II. Despite of the local density
approximation, and the limited validity of the approxi-
mate calculation of the roton spectrum performed above,
which is restricted to the vicinity of εdd = 1, we note that
the results for krot and a∗s are in very good agreement
with our experimental results (see Figs. 4-5, Extended
Data Table II)
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N. Real-time evolution simulations

Our simulations of the NLGPE are performed using a
split operator technique. The evolution operator over a
time ∆t (∆t→ i∆t for imaginary time evolution) may be
approximately split as e−iĤ∆t/~ = e−iT̂∆t/~e−iV̂∆t/~ +
O(∆t2). In this expression, T̂ is the kinetic energy term,
and V̂ the potential energy. The effective potential en-
ergy for the evolution is given by the sum of external
potential, inter particle interactions, local LHY correc-
tion, and three-body losses.

We first evaluate using imaginary time evolution the
initial BEC wavefunction, ψ0(r), prior to the quench of
as. The initial wavefunction for the subsequent real-time
evolution is then constructed via ψi = ψ0 + ∆ψ, where
∆ψ accounts for thermal fluctuations, which we simu-
late by populating the eigenstates of the harmonic trap
as in Refs. [37, 42]. Starting with this initial wavefunc-
tion ψi, we mimic as close as possible the conditions of
our experiments, including ramping, holding, and ToF
times. In particular, we include an exponential ramp of
the magnetic field B(t) = Bf + (Bi − Bf )e−t/τ , with
τ = 0.98ms, and convert the magnetic field value to the
scattering length as from the experimental measured re-
lation. Moreover, for the value of the three-body loss
coefficient L3 we use a linear fit of the experimentally
determined values.

The simulation of the ToF expansion is performed in
two steps. First we use a multi-grid analysis in order
to rescale the size of the numerical box as the cloud ex-
pands during the ToF expansion. After some expansion
time the density drops significantly, and the subsequent
evolution can be readily calculated via e−iT̂ t/~. Our nu-
merics show clearly that the effect of nonlinearity is small
during the first stages of the evolution, and hence that
the ToF expansion indeed may be employed to image the
momentum distribution of the condensate at the time in
which the trap is opened.

We obtain the Fourier Transform of the wave-
function ψ(r, t), ψ̃(k, t), at different times, evaluat-
ing the integrated momentum distribution ñ(ky, t) =∫
dkxdkz|ψ̃(k, t)|2. For a sufficiently large t, this mo-

mentum distribution shows clear roton side peaks. This
is typically after a few ms, the exact t value depends on
the gas characteristics (in particular T ) and on as. We
evaluate the roton momentum as the mean value of the
momentum in the roton peak.

From the imaginary-time evolution simulations, we are
also able to predict the as threshold for the roton soften-
ing (i. e∆ = 0), as it is equivalent to the threshold for the
instability of the BEC. To find the softening threshold,
we then look for this instability boundary, which, in the
imaginary-time, corresponds to the absence of mean-field
stable solution [40, 41]. To do so, we proceed by steps.
We start by calculating the ground-state solution for a
given as that we know to be well within the stable regime.
We then reduce as in small steps and successively calcu-

late the corresponding ground-state solution using the
solution of the previous step as starting condition. We
do so until no mean-field stable solution can be found.
The predicted instability threshold ai

s is reported in Ex-
tended Data Table II. For the theory predictions shown
in Fig. 4 (real-time evolution and analytical calculation
(Method M)), we use quenched as values such that the
instability boundary is just slightly crossed, meaning as

is taken 1a0 smaller than the instability threshold ai
s.

O. Privileged population of the roton mode in a
quench of as and instantaneous excitation spectrum

It is interesting to note that, even in the presence of a
finite roton gap ∆ in the stationary excitation spectrum,
the roton mode can still be selectively dynamically pop-
ulated in a quench of as [27]. Indeed the quench can
be viewed as performing a temporary destabilization of
the mode of lowest energies in the stationary spectrum,
and thus in particular of the roton mode. This can be
grasped, based on our theoretical description, by decom-
posing the quench evolution in small time steps and lin-
earising the NLGPE around the instantaneous state of
the gas. As the local state differs from the ground state,
the instantaneous spectrum is modified compared to the
stationary one and the non stability of this state leads to
pushing the spectrum down in energy, destabilizing the
lowest energy modes. The dynamically populated modes
are the ones that get instantly destabilized. Then the ro-
ton is favored in this respect as a local minimum in ε(k).
Moreover, the flattening of the dispersion relation around
krot makes the different modes in this region oscillate in
phase. This might lead to a cooperative enhancement of
the population at short th, as suggested in Ref. [27]. Note
that our argument is based on a linear evolution assump-
tion, which is expected to be valid at least for short th.
The dynamical population of the roton mode is an in-
triguing problem, which we plan to further investigate in
the future.

Extended Data Table I | dBEC parameters for the
experimental measurements (Fig. 5). The typical statis-
tical uncertainties on νx and νz are below 1 %, and can
be up to 10 % for νy. The experimental repeatability re-
sults in 5-to-10 % shot-to-shot fluctuations of N , f and
T .

λ νx (Hz) νy (Hz) νz (Hz) N (104) f (%) T (nK)
4.3 114 35 149 9 66 45
10.2 183 30 306 11 62 104
14.3 267 32 456 8.6 50 150
21.3 357 30 638 8.4 36 179
29.7 432 26 771 7 20 171
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Extended Data Table II | Roton softening thresh-
old for the experimental geometries (Table I), deduced
from the C fits for the experimental onset of the popula-
tion (a∗s , also reported in Fig. 5), from the q1D analytical
model (a∞s ) and from imaginary time calculations (ai

s).
The theory and experiment values match well, yet with
a noticeable stronger deviation for the (two) more elon-
gated and tightest traps. We note that these latter cases
depart more from the εdd = 1 regime.

λ νz (Hz) a∗s (a0) a∞s (a0) ai
s (a0)

4.3 149 51.3 54 50
10.2 306 50.2 52.9 46
14.3 456 49 49.1 43
21.3 638 47.7 44.8 39
29.7 771 45.2 34.2 30
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Optical setup improvements

Within this Appendix we discuss major experimental upgrades and improvements of the
optical setup that have been implemented during the course of this thesis. For a description
of the inital optical setup the reader is referred to Ref. [Fri14a].

Three-dimensional optical lattice

To perform experiments with erbium quantum gases in low dimensions, we implement a
three-dimensional (3D) optical lattice. The optical lattice is created in a standard way.
We retro-reflect the light of laser beams, which are focused on the position of the atoms.
The formed standing wave effectively slices the atomic cloud along the lattice beams. This
technique is applied along three (almost) orthogonal axes to form a crystal-like potential for
the atoms. Our lattice is build with a special geometry: Two orthogonal horizontal green
lattice beams at 532 nm1 and one vertical infrared lattice beam at 1064 nm2 create a cuboid
lattice with a twice as large lattice constant along the vertical direction. The cuboid unit
cell features lattice constants of dx = dy = 266 nm and dz = 532 nm, where x and y lie in
the horizontal plane and depict the axis of the two green lattice beams, and z denotes the
vertical axis oriented along the infrared lattice beam. The optical setup of our off-resonant
trapping beams and resonant imaging beams is illustrated in Fig. B.1.

For the vertical lattice, we branch 1064 nm light from the horizontal optical dipole trap
(ODT) setup [Fri14a]. The optical lattice potentials are applied at the very end of the forced
evaporative cooling procedure, where the ODT has already reached low intensities and it
becomes possible to branch off the light. A polarization maintaining high-power fibre3 with
a length of 3 m is used to clean the optical profile and delivers up to 6 W for the vertical
lattice. The angle of the lattice beam with respect to the axis of gravity is ≈ 11 ◦ and the
waist at the position of the atoms is ≈ 300µm. At full power the harmonic confinement of the
retro-reflected vertical lattice beam leads to radial trap frequencies of ω1064

r ≈ 2π× 25 Hz.

1 laser light from model Verdi V10, 10W at 532 nm, from Coherent
2 laser light from model Mephisto MOPA, 42W at 1064 nm, from Innolight (now Coherent)
3 model LMA-PM-15, from NKT Photonics GmbH
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http://www.coherent.com
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http://www.nktphotonics.com/
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Figure B.1.: Overview of the laser setup for optical trapping, absorption imaging and lattice exper-
iments. The laser beams intersect at the central point of the experimental chamber, shown from a
side and a top view. For the horizontal optical lattice beams a diode-pumped solid state laser (Verdi)
at 532 nm (green) is used. The vertical lattice utilizes 1064 nm (red) light from a single-mode mas-
ter oscillator power amplifier (Mephisto MOPA). The lattice beams are created in a retro-reflecting
configuration. The optical dipole trap beams operated at 1064 nm (red) and 1570 nm (dark red) are
already introduced in Ref. [Fri14a] and shown here for completeness. Absorption imaging is performed
with 401 nm (blue) light that is created by a frequency doubled diode laser (TA-SHG-pro). Figure
adapted from [Fri14a].
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The light for the horizontal lattice beams is prepared on a separate laser table, which is
located next to the experimental table. The 532 nm-light is split into two paths and passes
in each path through a large-aperture acusto-optic modulator4 (AOM), which fulfill two
purposes: First, they are used for an active stabilization of the lattice power and second,
they prohibit interference effects of the lattice beams via a detuning of their respective laser
frequencies to each other. Here, we use for the first green lattice beam the plus-first order
and for the second green lattice beam the minus-first order of the respective AOM, leading
to an absolute detuning of ≈ 220 MHz. Then, the light is delivered to the experimental table
via two 8 m polarization-maintaining fibres. The maximum deliverable power is limited due
to stimulated Brillouin scattering [Ipp72] and reaches values of up to 1.2 W, respectively. In
the future, shorter fibres could be implemented to increase the maximum available power.
Monitoring photodiodes (PD) on the experimental table allow for an active stabilization of
the laser power. The two green lattice beams are aligned such that they are orthogonal
to each other and their respective focal waists are ≈ 160µm. At full power, the harmonic
confinement of the retro-reflected green lattice beams leads to radial trap frequencies of
ω532
r ≈ 2π × 40 Hz, respectively.

Reference [Fri14a] gives more details on the additional optical dipole traps and imaging
beams.

Horizontal imaging

One of the most important technical requirements in ultracold atom experiments is a good
performance of the optical imaging. For absorption imaging, resonant laser light illuminates
the atoms and gets partially absorbed, which results in a reduction of the light intensity
when it passes through the atomic cloud. This shadow-like signature is compared to a
reference image and hence used to extract the density of the atoms, i. e. the optical depth.
An important parameter is the resolution of this imaging technique, as it gives the limits on
the size of observable structures within the atomic sample. Further, the quality can also be
limited by technical noise on the image.

In our experiment, we typically image the atomic cloud after a certain time-of-flight (TOF),
where the atoms have already expanded and reached a size of several tens of µm. Still,
to extract most information from the absorption images, it is important to have a good
performance in respect to the two relevant limitations: imaging resolution and imaging noise.
To give an example where a good performance has proven to be of relevance, noise-correlation
experiments can be mentioned. Here, pioneering works have shown that strongly correlated
quantum phases can be observed via density-density correlations of atoms in momentum
space in TOF experiments for high-resolution and low-noise images [Gre05, Föl05].

4 model I-M110-2C10B6-3-GH26 AOM, from Gooch&Housego

https://goochandhousego.com
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Imaging resolution

The maximum possible imaging resolution for our horizontal imaging is given by our numer-
ical aperture (NA), which is about 0.1. This value is set by the geometric size of the CF16
imaging viewport, see Fig. B.1. This NA results in a theoretical diffraction limit of 2.5µm for
our 401 nm imaging light. To reach this limit, we have implemented a self-designed imaging
objective, which has replaced the former final lense before the horizontal CCD-camera, see
Ref. [Fri14a]. The objective consists out of two achromatic doublets5 mounted close to each
other. The optimal combination of lenses has been found via ray-tracing simulations6. With
the new objective the maximum imaging resolution is almost reached. The magnification of
the final setup is 2.9.

Imaging noise

One major contribution to imaging noise arises from residual interference fringes. Inter-
ference fringes appear from scattering of the imaging light at defects or dust on optical
components. As the original absorption image is compared to a reference image, which only
differs by the absence of the atomic cloud, the fringes are expected to cancel after post
processing. However, due to mechanical vibrations of the optical setup, it is possible that
fringes slightly change in position or amplitude for the two subsequent images and hence do
not vanish. The relevant parameter in this context is the timespan between the two images.
A to long time interval between the pictures facilitates the manifestation of vibrations, which
are typically governed by acoustic frequencies.

A reduction of this noise source for our imaging is tackled by exchanging the former CCD
sensor by a fast CMOS camera7. The newly implemented CMOS model allows to improve
the sampling rate of our imaging system by three orders of magnitude, reducing the timespan
between the subsequent images from ≈ 100 ms to below 100µs. This improvement results in
a major suppression of residual fringes for the processed atomic picture, thus decreasing the
noise level.

Further improvements

Throughout the coarse of this thesis we have constantly maintained and renewed the experi-
mental setup. This minor technical updates have had the aim to reduce the daily maintenance
necessities and to improve the performance and stability of the experiment.

Among these updates, the most important improvement, as compared to Ref.[Fri14a], relates

5 model AC508-150 and -250, from Thorlabs
6 software Zeemax Optics Studio
7 scientific camera model Neo 5.5 sCMOS, front illuminated scientific CMOS, with 2560 × 2160 pixel reso-

lution, 6.5× 6.5µm2 pixel size, 16 bit digitization, from Andor Technology

https://www.thorlabs.de
http://customers.zemax.com/os/opticstudio
http://www.andor.com
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to the blue laser setup. The master laser was replaced by a commercial system8 that can
deliver up to 1.2 W of 401 nm light. This allowed us to remove the injection-locked slave
laser for the Zeeman slower (ZS) setup, as the light can be transferred by an end-cap fiber9

to the experiment. For best operation of the ZS about 200 mW laser power after the fiber is
needed. With this setup, we find a nice long-term stability. In addition, we have replaced the
injection-locked slave laser for the transversal cooling section by a similar homemade slave
laser that delivers up to 300 mW, almost a factor of four more power than previously. With
this transversal cooling section, we can increase the atom number trapped in the MOT by up
to a factor of seven, as the perpendicular velocity spread of the atomic beam is reduced.

8 TA-SHG-pro system, from Toptica Photonics AG
9 model PMC-400Si, from Schäfter+Kirchhoff

https://www.toptica.com/
https://www.sukhamburg.com/
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C
Magnetic field stabilization

One of the most relevant requirements for our experiment is a precise and accurate control
of the magnetic field. This control is from importance in different contexts:

• Particle interaction: As a result of the dense Feshbach spectrum with many narrow
Feshbach resonances in lanthanides, see Chapter 4, tuning the scattering length as via
such resonances requires a high level of control on the magnetic field. This control is
especially needed in the strongly interacting regime, where small magnetic field changes
can strongly affect as.

• Low field regime: An interesting direction with dipolar atoms is the study of phenomena
emerging at very low magnetic field values, see Sec. 6.2. In this low-field region, a
stable magnetic field is from particular interest, as the observed phenomena can be
dramatically influenced if the noise reaches similar amplitudes as the bias field. Hence,
the noise has to be reduced in a controlled manner.

• Dipole orientation: One of the major observables in our experiment is the dependence of
the physical processes on the orientation of the dipoles with respect to the confinement
geometry and to each other. Here, it is from particular importance to have the angle of
the dipole orientation, i. e. the magnetic field orientation, well under control to reveal
the underlying physics at play.

With this requirements in mind we have improved the magnetic field control along the
three orthogonal directions in our experiment. While small drifts during the day (typically
a few mG) can easily be calibrated and hence canceled, it is a major challenge to deal
with magnetic field frequency noise, mainly coming from the power lines surrounding the
experiment. This noise is related to the AC-frequency of the power line and shows frequency
components at 50 Hz and multiple higher harmonics, and can have different influences for
various experimental conditions:

• Long time effect: For experiments where we are interested in the properties of the
atomic sample at timescales exceeding holding times of 20 ms, i. e. where also the
oscillatory behavior of the lowest (50 Hz) noise component is covered, the magnetic
field noise leads to an effective broadening of the applied magnetic field. Hence, one
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has to take into account the magnetic field spread and the resulting spread of e. g. the
scattering length as for a specific experiment.

• Dynamical effect: When the effects we want to observe occur at short timescales, the
sinusoidal oscillation of the magnetic field has to be taken into account. While for large
bias fields only oscillations of the noise along the bias field matters1, for magnetic fields
in the order of the amplitude of the noise all three axes have to be accounted. This
proves to be particular striking when the noise oscillations of the different axis are not
of the same amplitude and phase, leading to an oscillating rotation of the magnetic
field direction as a function of time.

As a consequence, for certain measurements it is necessary to cancel this magnetic field noise
in order to observe physical effects that are sensitive to the absolute magnetic field and the
orientation of the dipoles.

Experimental setup

Our aim is to actively cancel the magnetic field noise along the three orthogonal axes.
Therefore, we implement three sets of coils, which can be independently controlled via active
stabilization servo-loops. For each axis we implement a pair of coils with two windings each
on top of the already implemented compensation cage coils (see Ref. [Fri14a]). The coils are
shaped rectangularly and have a geometric size of 1.2×1.2×0.85 m3. While the center of the
coil pairs overlap with the center of the vacuum chamber in x and y, the center of the z-coils
is shifted by 0.25 m in positive z-direction. For our lab coordinate system see Fig. 2.4.

For active feedback, we implement a three-axis magnetic field sensor2 close to the exper-
imental chamber. The sensor is about 10 cm away from the position of the atoms. The
sensor signal is fed back to three PID-controllers, which actively regulate the current sent
to the three cancellation coil pairs. In brief, the cancellation coils create a magnetic field
that has the opposite sign but similar amplitude as the respective noise field, thus canceling
the magnetic field noise along the three orthogonal axes. The output stage consists of three
high-current operational amplifiers3, capable to deliver a maximum current of ±5 A each.
With this we can reach magnetic field values of about ±50 mG along x and y and about
±100 mG along z. The PID-controllers are optimized for a frequency range below 1 kHz.
For our experiment this marks the relevant range of noise-cancellation operation as higher
frequency components are shielded by the steel chamber due to eddy currents and do not
need to be compensated.

1 The total magnetic field accounting for the field of three orthogonal axes is calculated by adding the
quadratic components, i. e. |B| =

√
B2

x +B2
y +B2

z . Hence, for a large bias field along one of the axis,
e. g. Bx, the magnetic field noise along the other axes, which leads to small varying fields By and Bz, can
be neglected.

2 model Mag-03-MS-70, three-axis magnetic field sensor, noise < 10 pt/
√
Hz, from Bartington Instruments

3 model OPA549, from Texas Instruments

http://www.bartington.com/presentation/mag-03-three-axis-magnetic-field-sensor
http://www.ti.com/product/OPA549
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Figure C.1.: Performance of the magnetic-field-stabilization setup along the x-axis. The perfor-
mance is measured with the magnetic field sensor, which is used for stabilization. Performance at
the position of the atomic cloud might differ. Magnetic field fluctuation without (black) and with
(green) active stabilization in the time domain (a-b) and frequency domain (c). (a) Amplitude of
magnetic field noise and (b) normalized total amplitude in logarithmic scale within a narrower time
window. (c) Frequency spectrum of the magnetic field fluctuations up to 500 Hz. On top of a smooth
noise floor, 50 Hz and higher harmonics are the dominant frequency components. The inset shows a
zoom-in into the 50 Hz region.

Performance

To investigate the performance of our magnetic-field-stabilization setup, we analyze the noise
in time and frequency domain without and with active stabilization. The measurements are
performed directly with the magnetic field sensor that is used within the feedback loop4. The
magnetic field noise close to the atomic cloud is found to have peak-to-peak amplitudes of
about 8 mG along x and y and about 2 mG along z. We note that, the lower noise amplitude
along the z-axis results from a passive shielding by the massive optical table, which primarily
affects the z-noise.

The total performance of our magnetic-field-cancellation setup, exemplary shown for the
x-axis, is summarized in Fig. C.1. Similar performance is found along the other two axes.
The initial peak-to-peak amplitude of ≈ 8 mG can be reduces below 1 mG when the stabi-
lization is applied, see Fig. C.1(a-b). The most prominent frequency components are 50 Hz
and 150 Hz, while also other frequency components are contributing, see Fig. C.1(c). Our
magnetic field stabilization manages to reduce the noise amplitude by up to 45 db. At fre-
quencies above 1 kHz the feedback loop acquires a π phase lag, resulting in an enhanced
noise at this frequency components. This high-frequency oscillations can be neglected, as
they are shielded by the steel chamber and do not reach the atomic sample.

4 The magnetic field sensor reports the noise amplitude in voltage, where 14.3mV correspond to 1mG.
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Figure C.2.: Performance of the magnetic-field-stabilization setup measured with 168Er via Zeeman
spectroscopy, see text. The measurements are performed for a bias field along the x-axis. The
normalized atom number without (squares) and with (circles) active stabilization is plotted as a
function of the frequency of the rf pulse, relative to the resonance frequency. The rf frequency can be
converted into magnetic field via the knowledge of the Zeeman splitting, see Eq. 2.7. To estimate the
peak-to-peak width of the noise, we use the ±2σ width of the Gaussian fitting functions (solid lines).
With this method we extract a noise amplitude without and with stabilization of 12.6(1.4) mG and
0.9(1) mG, respectively.

As an ultimate test of the performance, we measure the amplitude of the magnetic field
noise directly with the atomic cloud. For the measurement we resonantly excite the atoms
from the lowest to higher atomic Zeeman states by a radio-frequency (rf) pulse. The pulse
lasts for 20 ms as to cover also the lowest frequency noise component (50 Hz). When the
energy of the rf excitation matches the differential Zeeman energy, atom loss is encountered
due to dipolar relaxation of populated higher spin states. The width of the resonant loss
feature carries information on the magnetic field noise. In particular, it tells how much
the magnetic field was drifting or oscillating during the rf spectroscopy. In turn, the width
can be used as a measure of the performance of our magnetic field stabilization. Figure
C.2 shows our measurements and reveals that the magnetic field noise across the atomic
sample can be reduced below 1 mG along the x-axis. Similar performance is found along the
two orthogonal directions. Our observations confirm the results of Fig. C.1. The achieved
magnetic field stability is a promising starting point to investigate physical phenomena for
which a precise magnetic field control is required.



Bibliography

[Aik12] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino,
Bose-Einstein condensation of erbium, Phys. Rev. Lett. 108, 210401 (2012).

[Aik14] K. Aikawa, A. Frisch, M. Mark, S. Baier, R. Grimm, and F. Ferlaino, Reaching
Fermi degeneracy via universal dipolar scattering , Phys. Rev. Lett. 112, 010404
(2014).

[And87] P. W. Anderson, The resonating valence bond state in la2cuo4 and superconduc-
tivity , Science 235, 1196 (1987).

[And95] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell,
Observation of Bose-Einstein condensation in a dilute atomic vapor , Science 269,
198 (1995).

[And97] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and
W. Ketterle, Observation of interference between two bose condensates, Science
275, 637 (1997).

[And17] L. Anderegg, B. L. Augenbraun, E. Chae, B. Hemmerling, N. R. Hutzler, A. Ravi,
A. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, Radio frequency magneto-optical
trapping of caf with high density , Phys. Rev. Lett. 119, 103201 (2017).

[And18] L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, L. W. Cheuk, W. Ket-
terle, and J. M. Doyle, Laser cooling of optically trapped molecules, ArXiv e-prints
1803.04571 (2018).

[Ash76] N. Ashcroft and N. D. Mermin, Solid state physics, Hartcourt College Publishers,
1976.

[Aue94] A. Auerbach, Interacting electrons and quantum magnetism, Springer-Verlag, New
York, 1994.

[Auz99] F. Auzel and P. Goldner, Rare earth ions in the glass amplifying medium: A
proposal for new doping precursors, Mat. Sci. For. 315, 34 (1999).

[Bai12a] S. Baier, An optical dipole trap for erbium with tunable geometry , Master’s thesis,
Faculty of Mathematics, Computer Science and Physics; University of Innsbruck
(2012).

184

http://link.aps.org/doi/10.1103/PhysRevLett.108.210401
http://link.aps.org/doi/10.1103/PhysRevLett.112.010404
http://link.aps.org/doi/10.1103/PhysRevLett.112.010404
http://science.sciencemag.org/content/235/4793/1196
http://science.sciencemag.org/content/235/4793/1196
http://www.sciencemag.org/content/269/5221/198.abstract
http://science.sciencemag.org/content/275/5300/637
https://link.aps.org/doi/10.1103/PhysRevLett.119.103201
https://link.aps.org/doi/10.1103/PhysRevLett.119.103201
https://arxiv.org/abs/1803.04571
http://www.erbium.at/FF/wp-content/uploads/2015/10/master_simon_baier.pdf


BIBLIOGRAPHY 185

[Bai12b] D. Baillie and P. B. Blakie, Magnetostriction and exchange effects in trapped dipo-
lar Bose and Fermi gases, Phys. Rev. A 86, 023605 (2012).

[Bai16] S. Baier, M. J. Mark, D. Petter, K. Aikawa, L. Chomaz, Z. Cai, M. Baranov,
P. Zoller, and F. Ferlaino, Extended bose-hubbard models with ultracold magnetic
atoms, Science 352, 201 (2016).

[Bak10] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Fölling, L. Pollet,
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[Lah08] T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister, A. Griesmaier, T. Pfau,
H. Saito, Y. Kawaguchi, and M. Ueda, d-Wave collapse and explosion of a dipolar
Bose-Einstein condensate, Phys. Rev. Lett. 101, 080401 (2008).

[Lah09] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, The physics of
dipolar bosonic quantum gases, Rep. Prog. Phys. 72, 126401 (2009).

[Lan32] L. Landau, On the theory of transfer of energy at collisions II, Phys. Z. Sowjetunion
2, 46 (1932).

[Lan41] L. Landau, Theory of the superfluidity of helium II , Phys. Rev. 60, 356 (1941).

[Lan77] L. Landau and E. Lifshitz, Quantum mechanics: Non-relativistic theory,
Butterworth-Heinemann, 1977.

[Law10] J. E. Lawler, J.-F. Wyart, and E. A. D. Hartog, Atomic transition probabilities of
Er I , J. Phys. B 43, 235001 (2010).

[Lee06] P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a mott insulator: Physics of high-
temperature superconductivity , Rev. Mod. Phys. 78, 17 (2006).
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[Mül07] T. Müller, S. Fölling, A. Widera, and I. Bloch, State preparation and dynamics of
ultracold atoms in higher lattice orbitals, Phys. Rev. Lett. 99, 200405 (2007).

[Nat14] S. S. Natu, L. Campanello, and S. Das Sarma, Dynamics of correlations in a quasi-
two-dimensional dipolar bose gas following a quantum quench, Phys. Rev. A 90,
043617 (2014).

https://link.aps.org/doi/10.1103/PhysRevLett.83.2498
https://link.aps.org/doi/10.1103/PhysRevA.96.033602
https://link.aps.org/doi/10.1103/PhysRevA.96.033602
http://dx.doi.org/10.1038/nature22362
http://dx.doi.org/10.1038/nature22362
http://link.aps.org/doi/10.1103/PhysRevLett.96.143005
http://link.aps.org/doi/10.1103/PhysRevLett.96.143005
https://doi.org/10.1063/1.1704009
https://doi.org/10.1063/1.1704009
https://link.aps.org/doi/10.1103/PhysRevLett.116.205301
https://link.aps.org/doi/10.1103/PhysRevLett.116.205301
http://link.aps.org/doi/10.1103/PhysRevA.89.041401
http://link.aps.org/doi/10.1103/PhysRevA.89.041401
http://link.aps.org/doi/10.1103/PhysRevA.77.061603
http://link.aps.org/doi/10.1103/PhysRevA.77.061603
https://link.aps.org/doi/10.1103/PhysRevLett.113.255301
https://link.aps.org/doi/10.1103/PhysRevLett.113.255301
https://link.aps.org/doi/10.1103/PhysRevLett.92.180402
https://link.aps.org/doi/10.1103/PhysRevLett.92.180402
https://www.quantumoptics.ethz.ch/fileadmin/qo-drive-content/Staff/Documents/Torben_Mueller_diploma.pdf
https://www.quantumoptics.ethz.ch/fileadmin/qo-drive-content/Staff/Documents/Torben_Mueller_diploma.pdf
https://link.aps.org/doi/10.1103/PhysRevLett.99.200405
https://link.aps.org/doi/10.1103/PhysRevLett.99.200405
https://link.aps.org/doi/10.1103/PhysRevA.90.043617
https://link.aps.org/doi/10.1103/PhysRevA.90.043617


BIBLIOGRAPHY 197
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