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Abstract

The current era of dilute, ultracold quantum gas experiments, allows experimentalists to
study a vast number of new physical topics, ranging from Hubbard-models to strongly corre-
lated quantum matter to liquid-like, gaseous droplets. At the heart of all these experiments
lies the exquisite control over system parameters and over the interactions between atomic
constituents. So far, the majority of experiments worked with contact-interacting atoms,
and only recently the magnetic atoms chromium, dysprosium, and erbium could be brought
to quantum degeneracy. The magnetic interaction between these atoms gives rise to numer-
ous new physical phenomena and effects. One prime example is the formation of a roton
minimum in the excitation spectrum of a dipolar Bose-Einstein condensate (BEC), similar
to the one observed in superfluid helium. Other important features arise from the fact that
dipolar interactions can be used to carefully cancel contact interactions in a BEC. This yields
small interaction energies at the mean-field level in the system, where higher order effects
from quantum fluctuations become important.

The work in the present thesis is carried out with bosonic erbium, an element with one
of the highest magnetic interactions among current atomic quantum gas experiments. The
aim of our studies lies in further understanding dipolar quantum gases in a regime, where
dipolar and contact interactions cancel and the system is close to a mean-field instability.
Our experiments focus on two regimes: (i) in the first one, a global collapse of the BEC
is expected from standard mean-field theory, whereas (ii) in the second one, the BEC is
expected to collapse under a modulational instability. Starting with the former case, instead
of globally collapsing, our experiments showed a smooth crossover from a BEC to a highly
dense macrodroplet state. A careful comparison of the excitation frequency of a low-lying
collective mode with an extended mean-field theory – including a Lee-Huang-Yang (LHY)
energy correction – could show that the macrodroplet state is stabilised by quantum fluctu-
ations. In the second case, the BEC is expected to exhibit a roton minimum in its excitation
spectrum. Here, a fully softened roton minimum is expected to trigger a collapse of the
BEC under a modulational instability. We could prove the existence of the roton minimum
in a dipolar BEC for the first time and confirmed the tunability of the roton momentum
with the trapping geometry of the BEC. Furthermore, by performing Bragg spectroscopy
measurements of the full excitation spectrum, we could observed the formation of the roton
minimum in the excitation spectrum and its energy softening when tuning the interatomic
interactions.

Due to the stabilising role of quantum fluctuations, also the modulational instability of a
BEC is arrested, resulting typically in an incoherent assembly of small quantum droplets,
first observed in the group of T. Pfau in Stuttgart with dysprosium atoms. However, for high
enough densities, our two groups and the group from G. Modugno in Pisa, found a parameter
regime, where the dipolar BEC features a globally linked and phase coherent state, that is
density modulated and stabilised by quantum fluctuations. This state shows the spontaneous
breaking of the U(1) gauge symmetry and the translational invariance simultaneously and,
hence, has properties of a supersolid. The present thesis investigates the lifetime of these
supersolid states with erbium and examines their coherence properties, as well as dynamics
that appear due to the dynamical formation process.
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Our experimental results, together with the groups from Stuttgart and Pisa, expand the
list of possible phases in dipolar quantum gases to states, that are stabilised by quantum
fluctuations. They provide new grounds for theorists and experiments to study the behaviour
and the properties of these exciting new states and open a bridge to superfluid droplets of
liquid helium.
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1
Introduction

1.1. Motivation

Nature surrounds us in our everyday life and reveals itself in an incredible number of facets:
From our sun to the seas and mountains on our earth. From forests to concrete cities. But,
even though its complexity goes far beyond what an individual mind could possibly capture,
its sophistication is rooted in small, similar building blocks - single atoms. The shape and
all the properties of every matter, is given by the interactions between its constituent atoms
and their kinetic energy. Matter may appear therefore in different forms, called phases. If
the interaction between the atoms dominates over their kinetic energy, the atoms start to
arrange in an ordered, solid structure, which possesses a fixed volume and shape. As the
kinetic energy increases and eventually becomes comparable with the interaction energy,
the solid structure might disappear and matter turns into an unordered liquid. It loses its
ability to keep a fixed shape but still possesses an essentially fixed volume. Once the kinetic
energy dominates over the interactions between the atoms, matter also loses its property
to occupy a fixed volume and turns into a gas.1 Throughout modern history, humanity
devoted a lot of time and resources to understand the different phases of matter. Researchers,
early on, characterised the chemical properties of different matter and ordered its different
constituent atoms in a periodic table of elements. It was found that different elements can
have very diverse properties: The atoms may vary in their chemical reactivity with others,
their stability, and also their optical and magnetic properties might differ. Therefore, they
constitute a rich toolbox that nature greatly knows how to apply.

In the 20th century, quantum theory emerged and scientists realised that matter and its
phases need to be described by energetically discrete quantum states, each represented by
a wave function. Furthermore, it was discovered that all atoms can be divided into two
distinct classes - fermions and bosons. Fermions were found to obey the Pauli exclusion
principle and, as a consequence, two identical fermions are prohibited to occupy the same
quantum state. Bosons, however, do not obey the aforementioned principle and therefore
multiple bosons may exist in the same quantum state. In 1924, Albert Einstein [Ein24] and
Satyendranath Bose [Bos24] predicted a novel phase of matter for non-interacting bosonic

1 Note that for even higher kinetic energies, eventually the constituting atoms may break apart, which results
in a plasma phase.

1



2 CHAPTER 1. INTRODUCTION

particles, called a Bose-Einstein condensate (BEC). This new phase was predicted to occur
only below a critical temperature, Tc, and reveals itself in a macroscopic occupation of a
single quantum state. At first, the BEC phase of matter seems hard to picture next to the
classical phases such as a solid, liquid, or gas. As we will see, it should not be viewed as a
simple expansion of the list of possible phases, but the BEC rather establishes an extension
of the classical phases to the quantum world. Indeed, the first experimental observation of
Bose-Einstein condensation was in a liquid.

At the beginning of the 20th century, 4He was liquefied and allowed experimentalists for the
first time to reach cold temperatures of a few Kelvin [Del10]. It was found that, as the
liquid 4He was cooled below a temperature of about Tc ≈ 2.2 K, the fluid suddenly exhibited
a phase transition to a state with an extraordinarily high heat conductivity [All37] and an
essentially frictionless flow [Kap38, All38]. This new phase was in stark contrast to what
was known from ordinary fluids, and therefore it was called superfluid. It was speculated
early on that the superfluid phase emerged in connection with a Bose-Einstein condensate
that formed in 4He, as the temperature of the liquid crossed Tc [Lon38]. Only decades later
it was experimentally proven, that up to ∼ 10 % of the helium atoms are indeed occupying
the same quantum mechanical ground state [Sno92] and thus form a BEC.

In Einstein’s early proposal [Ein24], he was considering the BEC phase for non-interacting
particles, where at zero temperature all atoms occupy the same quantum mechanical state.
The reason why for superfluid helium, even at zero temperature, the fraction of condensed
atoms does not reach unity is the strong interactions between the helium atoms. As superfluid
helium is a liquid, its high density means that the average distance, d, between two atoms2

is in the same range as their interaction potential, aHe. Therefore, helium is considered a
strongly interacting system, in which ∼ 90 % of the atoms are depleted out of the BEC. This
strongly interacting character of the superfluid also leads to a peculiarity in the system’s
dispersion relation (i. e. excitation spectrum), which exhibits a so-called roton minimum.
The roton minimum describes density wave excitations, which have a wavelength in the order
of aHe and form an energetic minimum in the excitation spectrum of superfluid helium. It
was first predicted by Landau [Lan41] to describe essential properties of helium, such as the
critical velocity of the superfluid flow or the fraction of the system that is superfluid. The
direct observation of the roton minimum in the excitation spectrum was only later achieved
in scattering experiments [Pal58, Gri93].

Around 1970, as more and more about superfluid helium was understood, theoretical pro-
posals were made about a possible observation of Bose-Einstein condensation also in solid
helium [And69, Che70, Leg70]. As superfluid helium stays liquid at room pressure even at
zero temperature[Sim34],3 one needs to pressurize the liquid to obtain solidify helium [Kee26].
It was speculated, that also solid helium might allow for a superfluid flow within solid mat-
ter [Bon12b]. This counter-intuitive property was coined supersolidity. It is still an active
research topic, where not only the connection of the roton minimum to the solidification
point but also the observation of supersolidity itself is under ongoing discussions [Bal10].

In 1995, a BEC was also observed for the first time in gaseous matter. With the advent

2 The typical interatomic distance is in the order of a few Å. With 1Å = 1 · 10−10 m.
3 Due to its high zero-point energy, it is energetically favourable for helium to stay liquid rather than freeze.
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of laser cooling techniques, researchers were able to cool atomic gases of rubidium [And95],
lithium [Bra95] and sodium [Dav95] to low enough temperatures that the gas undergoes a
phase transition to a BEC and, similar to helium, becomes superfluid4 [Mat99, Mad00]. In
contrast to superfluid helium, gaseous BECs feature a density that is about 8 orders of mag-
nitudes lower. Therefore, the interaction range between two atoms is much smaller than the
inter-particle distance, d, and gaseous BECs are considered weakly interacting. In this regime
of low density and low temperature, the interatomic interaction is well described by a single
parameter, the s-wave scattering length, as. The interactions in this regime are called contact
interactions, which turned out to be highly tunable via Feshbach resonances [Chi10].

The connection between gaseous BECs and superfluid helium is ever since a flourishing
research direction. The high interaction tunability of gaseous BECs allowed to perform
measurements in a regime where as ∼ d [Pap08] and observe effects in the regime of strong
interactions, which are known to be important in helium. However, essential properties
of superfluid helium, are typically absent in gaseous BECs with contact interactions. For
example, the excitation spectrum does not feature a roton minimum [Ste02]. Therefore,
in 2003 theoretical proposals [San03, O’D03] tried to establish a roton minimum in the
excitation spectrum of a gaseous BEC and suggested to use dipolar interactions between the
atoms. In this case, the roton minimum is expected to be highly tunable in experiments and
its energy can be tuned to zero, leading to a potential modulational instability, where the
gas collapses in a density wave.

Over the last 25 years, more and more elements were brought to quantum degeneracy. Re-
searchers realised BECs with alkali atoms [Dav95, And95, Bra95, Fri98, Mod01, Web03,
Zwi03], alkaline earth atoms [Kra09, Ste09], gaseous He [Rob01], Yb [Tak03], Cr [Gri05] and,
most recently, Dy [Lu11] and Er [Aik12]. Nowadays, each atomic element has its own quality
and application for research, where the latter three ones - Cr, Dy, and Er - feature a high
magnetic dipole moment that is inherent to the atoms. Therefore, these elements exhibit a
strong and permanent magnetic dipole-dipole interaction.

As shown in this thesis, Er proved to be a good choice to observe a roton minimum in
the excitation spectrum of a gaseous BEC. Furthermore, recent works, including the ones
presented in this thesis, could tune the roton’s energy to zero and enter the mean-field
unstable regime. They revealed the pronounced impact of quantum fluctuations, which can
stabilise the quantum gas against collapse, where a new type of quantum state was shown
to exist. A new phase of dipolar quantum matter – the dipolar supersolid – that exhibits
the spontaneous breaking of both, the system’s gauge and translational symmetry.

1.2. Thesis overview

The present thesis focusses on the study of dipolar Bose-Einstein condensates of highly
magnetic erbium atoms. Its main achievements cover:

4 In gaseous BECs superfluidity was proven via the observation of quantizes vortices. See also [Yar79, Pit03]
for the case of superfluid helium.
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(I) The discovery of a crossover from a Bose-Einstein condensate to a dense macrodroplet
state, which is stabilised by quantum fluctuations against collapse.

(II) The experimental verification of a roton minimum in the excitation spectrum of dipolar
Bose-Einstein condensates.

(III) The realisation of density modulated states in dipolar Bose-Einstein condensates
breaking both, the translational and the gauge symmetry simultaneously - so-called
dipolar supersolid states.

Chapter 2 reviews the basic properties of an erbium atom, which are important for under-
standing the fundamental ingredients of the physics investigated in this thesis. It recapit-
ulates briefly the experimental apparatus that our group in Innsbruck is using to produce
degenerate quantum gases of erbium, before focussing on one specific isotope – 166Er. This
bosonic isotope will accompany us throughout this thesis.

Chapter 3 introduces the excitation spectrum of a dipolar Bose-Einstein condensate, ob-
tained with Bogoliubov theory. After recapping the analytic case of a homogeneous gas, we
discuss two effects beyond this standard mean-field theory – the quantum depletion and the
Lee-Huang-Yang energy correction. The latter one is of prime importance for the results
shown in this thesis as the Lee-Huang-Yang correction has an important influence on the
ground state stability of a dipolar BEC. We will see that it allows for a stabilisation of an
expected collapse of the BEC and gives rise to a highly dense macrodroplet state, which we
confirm experimentally.

In Chapter 4, we focus again on the excitation spectrum but in a more particular case, where
the BEC is confined along the direction of the atomic dipoles. We will see that this peculiar
geometry allows the BEC to develop an excitation spectrum with a roton minimum, which
was predicted for dipolar BECs already in 2003 [San03], but took until now to be observed
experimentally.

Chapter 5 presents a new state of matter, newly found in dipolar quantum gases, that
shows the simultaneous presence of a density modulation with global phase coherence. It
was coined dipolar supersolid, referring to supersolidity, which originated in the context of
helium. As we will find out, the dipolar supersolid combines both, the quantum mechanical
stabilisation from the Lee-Huang-Yang correction and the roton mode, discussed in the
previous chapters.

Finally, Chapter 6 concludes the present thesis.

1.3. List of publications

The following list contains all publications discussed in this thesis. They are given in chrono-
logical order that also defines the thematic structure of the chapters. The additional publi-
cations that emerged during the time of this thesis are covered in Appendix A.
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2
Degenerate Bose gases of erbium
atoms

Erbium is a chemical element from the lanthanide series of the periodic system. It was
first found in the middle of the 19th century [Mos43]. In nature, it occurs mainly in chem-
ical compounds with phosphor and oxygen, known as monazit, and therefore needs to be
leached with acids [Kum15]. Over the second half of the previous century, together with
other lanthanides, erbium became an important element for highly advanced technologies of
modern society. In its oxidized form, erbium is used for example in LEDs and liquid crystal
displays [Ken05, Sin16]. Due to its optical properties, it is used as a dopant in fiber-based
telecommunication systems or for lasers [Bec99]. Therefore, the need and supply of erbium
almost constantly increased over the last decades, where nowadays, most of erbium-oxide is
produced from China [Gor02]. Next to the flourishing technological advances in our modern
society, erbium also offers interesting properties to study fundamental research.

In this chapter, I will introduce in Sec. 2.1 the properties of an erbium atom that are relevant
for this thesis and compare them to other elements, nowadays used in degenerate quantum
gas experiments. In Sec. 2.2, I discuss the experimental apparatus in our laboratory in
Innsbruck and sketch the underlying scheme with which our group produces Bose-Einstein
condensates for our scientific research. Afterwards, the dipolar and the contact interaction
between two atoms is discussed in Sec. 2.3.

2.1. Erbium properties

2.1.1. Atomic shell structure

Atomic erbium has an average atomic mass of 167.26 u1 and has six stable isotopes, with
natural abundances ranging between ∼0.1% and ∼34% [Mic11]. Five isotopes are bosonic
whereas one is fermionic, see Table 2.1. Up to now, 166Er, 167Er, 168Er, and 170Er have been

1 1 unified atomic mass unit = 1 u = 1.66053906660(50) · 10−27 kg.

7



8 CHAPTER 2. DEGENERATE BOSE GASES OF ERBIUM ATOMS

brought to quantum degeneracy [Aik12, Aik14, Cho16, Tra18].2 The 166Er isotope was first
Bose-Einstein condensed within the framework of this thesis. It is the working horse for all
studies presented here.

Table 2.1.: All stable isotopes of erbium together with their natural abundance and their quantum
statistics. Data taken from [Mic11].

Isotope nat. abundance

162Er 0.14% bosonic
164Er 1.6% bosonic
166Er 33.5% bosonic
167Er 22.9% fermionic
168Er 27.0% bosonic
170Er 14.9% bosonic

A single erbium atom consists of 68 electrons that surround the atomic nuclei. The majority
of these electrons fill up a xenon core, while 14 are distributed on the two outermost shells.
These 14 electrons fill up the outermost 6s-shell completely and only partially fill up a
submerged 4f -shell. Therefore, the total electronic configuration of the atom is written

[Xe]4f126s2.

It is this electronic configuration that gives rise to a multitude of important properties of
the atom. It leads to a plethora of optical transitions on the one hand and a large mag-
netic moment on the other hand. Individual electrons from either the 4f - or the 6s-shell,
can be easily excited with visible or infrared laser light. Among all these optical transi-
tions, one finds electronically excited states that feature lifetimes from a few nanoseconds
up to tens of milliseconds [Ral11, Mar78]. Therefore, different transitions can be used in
experiments for different tasks, such as cooling, imaging or transferring atoms into different
internal states [McC06, Aik12]. Transitions with particularly long lifetimes might be used
to implement new coupling-schemes between atoms or even optical clocks [Liv16, Wil02].

2.1.2. Magnetic properties

The configuration of the electronic shell has also another important consequence on the
atomic properties. As the 4f -shell contains only 12 out of 14 possible electrons, the atom
experiences a high orbital angular momentum of L = 5 together with a spin angular momen-
tum of S = 1. Following the LS-coupling scheme, one obtains a ground state with a large
total angular momentum of J = 6, which gives the atom a high magnetic moment of

µ = mJgJµB = 6.982806(6)µB.

2 Recently, we managed to create a BEC of 164Er by evaporating the atoms in a magnetic field of 3.1G.
However, due to the low natural abundance of this isotope, the BEC contained only 5× 103 atoms.
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Here, mJ = −6 describes the projection of the total angular momentum on the quantisation
axis for an atom in the lowest Zeeman state. Furthermore, the g-factor gJ = 1.163801(1)
was determined experimentally in Ref. [Con63] and µB denotes Bohr’s magneton.

Table 2.2.: A few representative elements with their respective magnetic moment (rounded to the
closest integer). The data is taken from Refs. [Bra97, Dav95, Gri05, And95, Ste09, Web03, Ino18,
Aik12, Mia14, Lu11, Suk10, Tak03].

Isotope µ (µB)

7Li 1
23Na 1
52Cr 6
84Sr 0
87Rb 1
133Cs 1

Isotope µ (µB)

153Eu 7
164Dy 10
165Ho 9
166Er 7
169Tm 4
174Yb 0

To put the magnetic moment of erbium in comparison with other elements, used in (ultra-)cold
experiments nowadays, Table 2.2 lists a few representative examples. Alkali elements have in
their ground state a magnetic moment of ∼ 1µB. Due to a single electron in the outermost s-
shell, they have mJ = 1/2 and gJ ≈ 2. Other specific elements, like 84Sr or 174Yb, have com-
pletely filled electronic shells and therefore feature an essentially vanishing magnetic moment.
These elements are interesting for example in precision-measurements [Hu17, Jam14, Har15],
where insensitivity to external magnetic fields is necessary. In contrast to all of these ele-
ments, 52Cr and most of the lanthanides possess a more complex electronic shell structure.
For them, multiple electrons contribute to the atom’s total angular momentum and give
these elements much larger magnetic moments than alkalis. As one can see, Er is among
the elements with the highest magnetic moment, together with Dy, Ho, and Eu. It is this
high magnetic moment that leads to a multitude of interesting quantum phenomena, some
of which are presented in the publications throughout this thesis.

2.2. Experimental apparatus

The design and the building of the experimental apparatus started in 2009 in our group.
Over the years, the machine was constantly improved and upgraded. Its main technical
parts and working principles are described in more detail in the PhD thesis of Ref. [Fri14a].
Here, only the apparatus’ main parts are briefly reviewed and the recent upgrades during
the last few years are discussed for completeness.

2.2.1. Vacuum setup and magneto optical trapping

At the heart of the apparatus lies a vacuum system that is seperated in an ulta-high vacuum
(UHV) and a high vacuum (HV) section via a differential pumping stage, see Fig. 2.1. At the
HV section, solid pieces of erbium are heated up to 1100 ◦ C with a high tempearture oven. A
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Figure 2.1.: Drawing of the experimental apparatus. A high-temperature oven (red) creates an
atomic vapour beam in which atoms are flying through a transversal cooling stage (light blue) and
a ZS (green), which slows the atoms down (right to left in image). After the ZS, the atoms are slow
enough to be captured with a MOT in the main chamber (yellow). The grey-shaded elements depict
essential parts of the vacuum chamber such as ion pumps, gate valves, and an atomic beam shutter
to block the atomic beam. For further details see text. Image courtesy of Albert Frisch [Fri14a].

small exit-aperture on the oven creates a hot atomic vapour beam that is travelling towards
the UHV section. Directly out of the oven the mean velocity of the atoms is ⟨v⟩ ≈ 420 m/s. In
a first stage, the atoms are radially cooled by a two-dimensional optical molasses (transversal
cooling), that is used to increase the flux of the atomic beam. Consecutively, the atoms are
slowed down by a Zeeman-Slower (ZS) to a velocity of a few m/s and enter the UHV section.
Here, a narrow-line magneto optical trap (MOT) is used to trap and cool the atoms. During
the course of this thesis the laser setup for the MOT was upgraded. We changed from a
dye-based laser system to a fiber-based system,3 which is seeded with a diode-laser.4 The
upgrade of this laser system improved the overall stability of the atom number in the magneto
optical trap and allows us to load 2.3 × 107 atoms in 3 s from the atomic beam. Due to the
MOT’s narrow transition, the atoms are spin-polarized in the lowest Zeeman sublevel and
have a temperature of around 8µK [Fri12].

2.2.2. Evaporative cooling to quantum degeneracy

For further cooling, the atoms need to be loaded from the MOT to a far-detuned optical
dipole trap (ODT) operated at 1064 nm [Gri00]. The initial laser for the ODT was a single-

3 Raman Fiber Amplifier from MPB incl. frequency doubling stage. It converts 28mW of seed light into
around 1W of 583 nm light.

4 DLpro from Toptica with a wavelength of 1166 nm.
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mode MOPA Mephisto,5 which degraded in power and had to be replaced. Here, we changed
to a fiber-based laser system,6 whose laser light is separated by an additional high-power
fiber7 from the experimental apparatus, see Fig. 2.2. The laser power after this additional
fiber is currently limited by Brioullin scattering to about 15 W but is sufficient for loading
enough atoms from the MOT into the ODT. As described in Ref. [Bai12], the ODT has a
tunable beam waist (scanning system), which allows us to load around 5.3× 106 atoms with
a final temperature of typically 23µK. The atoms are cooled further by forced evaporative
cooling. Here, the trap-depth of the ODT is stepwise linearly reduced in 10 s to obtain a
Bose-Einstein condensate (BEC) of 1.2× 105 166Er atoms, surrounded by additional 2× 104

thermal atoms, corresponding to a thermal fraction of about 15%.

main chamber
(top view)
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peri-
scope
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system
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Figure 2.2.: Laser setup for horizontal ODT. The laser light is supplied by a 45 W single-frequency
laser, operating at 1064 nm. From the available laser power, only 20 W are needed and sent through
a water-cooled high-power fiber to the experiment table. Before the fiber, a rotatable waveplate in
combination with a polarising beam splitter cube allows us to cycle the amount of laser power that is
sent through (inset). In an experimental run, typically 20 W on the fiber are only needed to load the
atoms from the MOT into the ODT. For the consecutive evaporation in the experiment, the power
is reduced to reduce thermal stress on the fiber. The outcoupler of the high power fiber replaced the
degraded MOPA laser, where a few beam-shaping optics were included. Furthermore, we changed a
-50:100 mm cylindrical telescope in front of the chamber to a spherical one, to obtain an ODT beam
with a minimum aspect ratio of 1, that allowed us to obtain higher atomic densities for the BECs in
the experiments.

5 MOPA Mephisto from Innolight/Coherent with 42W output power.
6 High-power fiber laser from Azurlight with 45W output power at 1064 nm.
7 Photonic crystal fiber from NKT photonics with 5m length.
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2.3. Scattering properties of 166Er

For evaporatively cooling the erbium atoms, they need to rethermalise and maintain a ther-
mal equilibrium as the system transitions into a Bose-Einstein condensate. This thermalisa-
tion is ensured by interactions between the atoms, which are in the case of erbium twofold.
The atoms possess on the one hand the dipolar interaction, due to their magnetic moment,
and on the other hand the contact interaction, originating from s-wave scattering between
the atoms. As we will see, these interactions are not only important for cooling the sample,
but also dictate the physics in the obtained Bose-Einstein condensate.

2.3.1. Magnetic dipole-dipole interaction

Due to their large magnetic moments, discussed in Sec. 2.1.2, two atoms in the Bose-Einstein
condensate may interact via a long-range and anisotropic dipole-dipole interaction (DDI).
This interaction depends on the atoms respective magnetic moments, µ1,2, and their dis-
tance, r. Its potential is described by

VDDI(r) =
µ0
4π

(µ1 · µ2)r2 − 3(µ1 · r)(µ2 · r)

r5
, 2.1

with µ0 being the vacuum permeability constant. In usual experiments, a magnetic field
is applied that polarizes the atoms along the same direction, eB. Furthermore, if both
atoms are in the same internal Zeeman state, they possess the same magnetic moment and
µ1 = µ2 = µeB. Under these conditions the DDI becomes

VDDI(r) =
µ0µ

2

4π

1 − 3cos2θ

r3
2.2

and depends on the relative angle, θ, between the atomic dipoles with respect to their
polarization axis, see Fig. 2.3. From Eq. 2.2 one sees that the DDI is proportional to r3.

θ
r

Figure 2.3.: Schematic illustration of the magnetic interaction between two atomic dipoles, polarized
along the same direction (arrows).

This long-range character means that the total energy of a three-dimensional system of
dipolar atoms is an extensive quantity and thus not only depends on the system’s density,
but on the size of the total system. The other peculiar property of the DDI is its anisotropy,
as the strength and the sign of the interaction depends on θ. When two magnetic atoms
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are orientated head-to-tail, i. e. θ = 0◦, they experience an attractive force, whereas for a
side-by-side orientation, θ = 90◦, they repel each other. It is interesting to note that for the
condition θ ≈ 54.7◦ the DDI vanishes completely.

As will become clear when discussing the excitation spectrum of a BEC, in Sec. 3.1.3, an
important quantity is the Fourier-transform of the DDI potential [Lah09]

ṼDDI(k) = µ0µ
2

(
cos2α− 1

3

)
. 2.3

Here, α is the angle between the momentum vector, k, and the orientation of the magnetic
dipole moment. It is important to realise that, eventhough the DDI is longrange, its Fourier-
transform in Eq. 2.3 only depends on α and not on the absolute value of k.

To quantify the length scale of the DDI, one can define a so-called dipolar scattering length

add =
µ0µ

2m

12π~2
, 2.4

with ~ being the reduced Planck’s constant. The dipolar scattering length is particularly
high for magnetic lanthanides, due to both their high magnetic moment and the high atomic
mass m, see Table 2.3. It defines the relevant length scale of the DDI and can be directly used
to compare the strength of the dipolar interaction to the contact interaction. The numerical
factors in Eq. 2.4 are chosen such that a homogeneous, dipolar BEC is stable as long as the
length scale associated with the contact interaction exceeds add.

Table 2.3.: Dipolar scattering length of a few representative elements used in experiments with
(ultra-)cold gases. The values are given in units of Bohr’s radius, a0. The data is obtained with the
references in Table 2.2.

Isotope add (a0)

7Li 0.06
23Na 0.19
52Cr 15.1
84Sr 0
87Rb 0.70
133Cs 1.08

Isotope add (a0)

153Eu 60.7
164Dy 133
165Ho 108
166Er 65.5
169Tm 21.9
174Yb 0

2.3.2. Contact interaction

Next to the magnetic dipole-dipole interaction, the atoms exhibit also a contact interac-
tion, which is typically well approximated by the so-called s-wave scattering length, as,
for low enough temperatures [Tay06]. In contrast to the dipolar interaction, the contact
one is isotropic and short-ranged. It can be shown that the interatomic interaction poten-
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tial, usually given by Lennard-Jones type potentials, is well approximated by the pseudo-
potential [Jon24, Pit03, Hua57, Chi10]

Vcon(r) =
4π~2as
m

δ(r)
∂

∂r
r = gδ(r)

∂

∂r
r. 2.5

Its strength can be tuned in experiments with a homogeneous magnetic field, B, by means
of a Feshbach resonance (FR) which directly allows to change as (see Ref. [Chi10] for an
extensive review).

To explore physical phenomena with dipolar atoms, it is important to have a precise tun-
ability of the relative strength between the dipolar and the contact interaction. Here, the
ratios between the two interactions’ length scales, ϵdd = add

as
, allows for a classification of

two regimes. One is the dipolar dominated regime, for ϵdd > 1. The other one is the contact
dominated regime, for ϵdd < 1. In experiments, as the magnetic interaction is mainly fixed by
the magnetic moment of the atoms, one therefore usually tunes as with a FR. It is therefore
important to identify suitable magnetic fields that allow for a precisely tunable as to cover
both regimes.

In our experiment, the first isotope that was brought to Bose-Einstein condensation was
168Er [Aik12]. It features multiple resonances at a low magnetic field of a few Gauss.8

However, to obtain BECs of this isotope with high atom numbers (∼ 1 × 105), the atoms
need to be evaporatively cooled at a magnetic field of 300 mG, which is below the magnetic
field of the first Feshbach resonance. Furthermore, at this magnetic field ϵdd > 1. Therefore,
in order to enter ϵdd < 1, one would have to magnetically jump across the first Feshbach
resonance and utilise its high-field side, where as can be tuned below add. This additional
preparation step limits the production of 168Er BECs with high atom numbers in a regime
where ϵdd < 1.

Therefore, our group investigated a new isotope of erbium, 166Er, and achieved first Bose-
condensates in September 2015. The evaporation for this isotope yields atom numbers of
1.2 × 105 at a magnetic field of 2.1 G with a condensed fraction of around 80 %. Early
investigations to look for Feshbach resonances were performed by loss spectroscopy. Here,
after the preparation of the BEC, the magnetic field is switched within a few milliseconds to a
final value ranging between 0 G and 5.5 G. Consecutively the atomic cloud is hold for 240 ms
before counting the atom number, NBEC, after a time of flight expansion. Figure 2.4 shows
the obtained loss spectrum which indicates four pronounced loss features in the magnetic field
range investigated. These loss features are a direct consequence of the presence of Feshbach
resonances at the corresponding magnetic fields [Ino98, Ste99a, Esr99, Wer05, Fri14b]. Close
to the pole of a FR as diverges and increased three-body recombination is present, leading to
the observed atom loss. Importantly, this spectroscopic measurement shows a pronounced
loss feature close to 0 G, which is a strong indication that this isotope features a Feshbach
resonance below its magnetic field for evaporation.

In a next step, we performed a careful mapping of the relation between as and B for this
isotope using lattice spectroscopy - a technique that has been used successfully for example in
Ref. [Bai16a]. Here, the dipolar BEC was loaded adiabatically into a deep, three-dimensional

8 1Gauss= 1G = 10−4 T.
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Figure 2.4.: Atomic loss spectrum of an 166Er BEC in an optical dipole trap. The arrows indicate
pronounced loss features, which indicate the presence of Feshbach resonances. As the BEC is prepared
at 2.1 G, the overall atom number gets reduced for B & 3 G, as a pronounced resonance is crossed in
the preparation.

optical lattice. Consecutively, particle-hole excitations are created by modulating the inten-
sity of one lattice beam with a given frequency ω. This process results in a modulation of
the tunnelling rate between neighbouring atoms in the optical lattice and supplies energy,
~ω, for particles to hop on neighbouring lattice sites. The needed energy for this process has
multiple contributions coming from dipolar and contact interactions, but if the lattice depth
is carefully calibrated, the only unknown parameter is as. After modulating, the lattice
is adiabatically ramped back and the recovered atom number in the BEC is measured. If
the in-lattice modulation creates particle-hole excitations, energy is pumped into the system
and, hence, the recovered BEC fraction is reduced. By performing measurements at various
ω, one obtains a resonant feature, whos center defines the excitation energy of particle-holes
and allows to extract as with rather high precision.

The measurements for as at various B are presented in Fig. 2.5. The data is modelled with
a product of five FR [Chi10]

as(B) = abg(B)

5∏

i=1

(
1 − ∆i

B −Bi

)
. 2.6

It includes the four FR, shown in Fig. 2.4, and another one at 6.55 G, which is also seen with
loss spectroscopy. To improve the fit performance we assume a linearly varying background
scattering length

abg(B) = A+ k ·B. 2.7

The necessity to include in the model a linearly varying background points to the difficulties
to define a clear background scattering length for erbium. Due to the high density of Feshbach
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Figure 2.5.: Conversion of as-to-B for 166Er obtained from lattice spectroscopy, see text and
Ref. [Bai16a]. The solid line is a model fit. Two resonances are shown as solid vertical lines. The fit
also includes three more Feshbach resonances at magnetic fields, which are seen in loss spectroscopy,
but their positions and widths are kept constant. Their inclusion in the fitting slightly improves the
overall matching with the experimental data. The shading shows the fits statistical uncertainty cor-
responding to one standard deviation. For all fit values see Table 2.4. The inset shows ϵdd, extracted
from the fit, in the region of low B.

resonances and the presence of a few very broad ones [Fri14b], the assignment of a unique
value of the background scattering length is difficult. Therefore, including a linear variation
in abg yields a good description of as in the B-field range investigated here. The fit results
and their standard error are summarized in Table 2.4. The corresponding values of ϵdd are
shown in the inset of Fig. 2.5. As one can see, the FR close to 0 G allows one to smoothly vary
ϵdd from the contact to the dipole dominated regime. The latter is entered for B . 0.7 G. It
is the regime that is explored in this thesis.

Table 2.4.: Fit results for conversion between as and B for the 166Er isotope at low magnetic field.

A = 61(4)a0 k = 5(1) a0/G
B1 = 0.04(3) G ∆1 = 0.04(2) G
B2 = 3.06(9) G ∆2 = 0.15(4) G

B3 = 4.01 G ∆3 = 0.02 G
B4 = 4.95 G ∆4 = 0.009 G
B5 = 6.55 G ∆5 = 0.04 G



C
h
a
p
t
e
r

3
Bogoliubov theory and quantum
fluctuations

This Chapter discusses the important role of quantum fluctuations in dipolar Bose-Einstein
condensates. We will see that the inclusion of the first order correction – called Lee-Huang-
Yang energy correction – to the mean field description tremendously enriches the phase
diagram of a dipolar BEC. New quantum phases appear, ranging from macrodroplets to
crystal-like droplet arrays and supersolids. The existence of such phases crucially depends
on the stabilisation mechanism arising from quantum fluctuations. The publication at the
end of this chapter discusses our experimental investigations of an unexplored region in this
new phase diagram, where the dipolar BEC smoothly evolves into a highly dense macrodroplet
state. Our findings, together with the work from the group of Tilman Pfau [Kad16, FB16],
prove the role of the LHY correction for experiments with dipolar BECs.

Once we introduced the Gross-Pitaevskii equation (GPE) and derived the Bogoliubov-de-
Gennes (BdG) equations in Sec. 3.1, we will discuss the excitation spectrum of a homoge-
neous BEC with contact and dipolar interactions. Moving on to Sec. 3.2, we will introduce
the concept of quantum fluctuations and see that they can be quantitatively deduced from
the excitation spectrum. Section 3.3 then presents the extended Gross-Pitaevskii equation
(eGPE) theory that incorporates the LHY correction at the mean-field level and discusses
the resulting phase diagram for dipolar BECs. The Chapter ends with our publication in
Sec. 3.4.

3.1. Gross-Pitaevskii equation approach: an overview

Before I present the theoretical description of a gaseous Bose-Einstein condensate at the
mean-field level, it is important to recall a few of its fundamental properties, see also
Refs. [Pit03, Leg06]. First of all, due to the very low temperature achieved in experiments
(typically few tens or hundreds of nanokelvin), one obtains BECs with very low thermal frac-
tions. Therefore, most of the atoms are occupying the system’s energetically lowest quantum
state, described by a wave function Ψ0(r), and only a small fraction of atoms is distributed
on excited states, described by ψi(r). Secondly, for our experimental parameters, we have

17
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around 105 atoms in a trap volume† of the order 10µm3. Therefore, the BEC has a density
n ≈ 1020 m−3 and a mean particle distance of around 50 nm. As we have seen in Sec. 2.3.2,
the contact interaction is in the order of as = 100 a0 ≈ 5 nm and thus much smaller than
the mean distance between the particles. Therefore, we are in the limit of weak interactions,
n|as|3 ≪ 1, and we can assume to a good approximation that only two atoms are interacting
with each other at a given time.

Before being able to describe a gaseous BEC, we have to briefly review the formalism of
second quantisation, which can be used to define the Hamiltonian for a quantum many-body
system. The idea is to describe the system’s state with field operators [Pit03],

Ψ̂†(r) = Ψ0(r)â†0 +
∑

i ̸=0

ψi(r)â†i , 3.1

Ψ̂(r) = Ψ0(r)â0 +
∑

i ̸=0

ψi(r)âi, 3.2

where â†i (âi) describes the creation (annihilation) of a single particle in state i. As we are
dealing with bosonic atoms in this thesis, it is assumed that the field operators obey the
bosonic commutation relations

[âi, â
†
j ] = âiâ

†
j − â†j âi = δij 3.3

and
[âi, âj ] = [â†i , â

†
j ] = 0. 3.4

The field operators can be then used to construct the Hamiltonian [Pit03, Gro61, Pit61,
Bar12] of the system, which reads

Ĥ =

∫ (
~2

2m
∇Ψ̂†(r)∇Ψ̂(r)

)
dr +

∫
Vtrap(r)Ψ̂†(r)Ψ̂(r)dr+

+
1

2

∫
Ψ̂†(r′)Ψ̂†(r)Vint(r

′ − r)Ψ̂(r′)Ψ̂(r)dr′dr. 3.5

The first term describes the kinetic energy of the atoms, the second one the energy contri-
bution from the trapping confinement, Vtrap(r), and the last term describes the contact and
dipolar interactions, Vint(r

′ − r), between two particles.

As the Hamiltonian contains all properties of the system, it unambiguously defines its evolu-
tion in time. One can calculate the time-dependence of the field operator via the Heisenberg
equation, i~∂tΨ̂(r, t) = [Ψ̂(r, t), Ĥ] and obtains [Pit03]

i~∂tΨ̂(r, t) =

(
−~2∇2

2m
+ Vtrap(r) +

1

2

∫
Ψ̂†(r′, t)Vint(r

′ − r)Ψ̂(r′, t)dr′
)

Ψ̂(r, t), 3.6

where we used the commutation relations (Eq. 3.3 and Eq. 3.4). Equation 3.6 describes the
temporal evolution of the system and the particles in all quantum states under the influence

† A volume can be defined by means of the harmonic oscillator lengths, lx,y,z =
√

~/mωx,y,z, with 2π × ωi

beeing the harmonic trapping frequency along direction i.
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of the trapping potential and the internal interactions between the atoms, but unfortunately
it still consists of coupled equations between all the different quantum states, as can be see
from Eq. 3.1. For this reason, it is in general very hard to solve Eq. 3.6 directly and further
approximations are needed.

Looking at Eq. 3.1, one may easily see the separation of the field operator into a BEC part,
proportional to Ψ0(r), and a remaining, non-condensed part, given by the sum over the
excited states. This separation is useful, as on the one hand, it allows us in the following
to easily take the limit where the non-condensed part of the system is negligible. Under
this approximation, Eq. 3.6 turns into an equation, that contains only a single field (i. e.
wave function), as we will see. On the other hand, the non-condensed part can be used
to investigate corrections to the system’s wave function. It is intimately connected to the
presence of quantum fluctuations, which will be discussed in Sec. 3.2.

3.1.1. GPE and mean field

For most of the experiments in gaseous BECs, the majority of all atoms occupy the system’s
energetically lowest state. Therefore, one can neglect occupations of atoms in higher excited
states and one may approximate

Ψ̂†(r) ≈ Ψ0(r)â†0. 3.7

Furthermore, the atom number in the BEC is given by the expectation value ⟨â†0â0⟩ = N .
In the limit of high enough atom numbers, N ≫ 1, one can approximate the operators â0
and â†0 with their respective c-number

√
N and obtains [Pit03]

Ψ̂†(r) ≈
√
NΨ0(r). 3.8

This means, in the limit where most of the atoms sit in the condensate and we are dealing
with high particle numbers, the field operators of the system’s Hamiltonian can be replaced
with the classical field Ψ0(r) which is typically called the system’s wave function. This
approximation has the advantage that it describes the BEC by a mean field, that a single
atom in the condensate sees. It, therefore, simplifies Eq. 3.6 to a single equation – the
Gross-Pitaevskii equation (GPE) [Gro61, Pit61] – that describes the evolution of the mean
field

i~∂tΨ(r, t) =

(
−~2∇2

2m
+ Vtrap(r) + g|Ψ(r, t)|2 +

∫
Ψ(r′, t)VDDI(r

′ − r)Ψ(r′, t)dr′
)

Ψ(r, t).

3.9
Here, the interaction potential Vint(r

′ − r) = Vcon(r′) + VDDI(r
′ − r) is already inserted (see

Eq. 2.2 and Eq. 2.5).

The GPE can be readily used to describe both, the stationary ground state and the time-
dependent dynamics of a BEC. In general, its solutions have to be calculated numerically
and only under certain approximations one might obtain analytic results. For example,
analytic solutions of the stationary ground states can be obtained with a Gaussian ansatz
for the wave function or within the Thomas-Fermi approximation, where the kinetic energy
is neglected [Pit03, Bar12, Lah09].
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Let us investigate the energetic stability of a dipolar BEC in different trap geometries and
for interaction parameter regions with Eq. 3.9. For this, it is useful to look at the different
contributions to the system’s energy. Here, we find that the total energy of the BEC is given
by

E = Ekin + Etrap + Econ + Edip 3.10

with

Ekin =

∫
~2

2m
|∇Ψ(r)|2dr, 3.11

Etrap =

∫
Vtrap|Ψ(r)|2dr, 3.12

Econ =
g

2

∫
|Ψ(r)|4dr, 3.13

Edip =
1

2

∫∫
|Ψ(r)|2VDDI(r

′ − r)|Ψ(r′)|2dr′dr. 3.14

The regimes where a stable BEC can exist can be calculated for example with a variational
Gaussian ansatz for the BEC wave function. If, for a given given as and trap geometry, one
finds a finite-sized solution which posses an energetic minimum in E, it is a (meta)stable
state [Bis16]. If no such solution exists, the GPE does not support a stable BEC. Fig-
ure 3.1 (a) shows the stability diagram for an 166Er BEC for various trapping geometries,
which differ by their harmonic trapping frequencies ω∥ (ω⊥) along (perpendicular) to the
direction of the atomic dipoles. The trapping geometries are classified by their aspect ra-
tio λ = ω∥/ω⊥ and are varied from a cigar, λ < 1, to a pancake trap, λ > 1. For cigar
shaped traps, the BEC is elongated along the axial direction and the DDI is on average
attractive. Therefore, the critical s-wave scattering length for a collapse, a∗s , lies close to
add. As λ increases, the BEC becomes more pancake shaped and the average DDI becomes
less attractive. Therefore, the GPE supports stable ground states at lower as.

To gain insight into the collapse, Figs. 3.1 (b-d) show the E-landscape of the variational
calculations for different BEC sizes at three different as. In the stable regime at as > add
(b), one finds a state with a global minimum in E. This state is elongated along the weaker
confining axis. As as is reduced close to a∗s , the total-energy landscape exhibits a second
minimum (c) for a solution that is infinitely small along the radial direction. The global
minimum from (b) turns into a local minimum, indicating that the system is only metastable
at a finite size and close to a collapse. As as is reduced further, (d), this local minimum
vanishes and the GPE does not support any finite-sized ground state solution any more.
Here, it is energetically favourable for the BEC to collapse radially.

The stability diagram of a dipolar BEC was first investigated with chromium atoms [Koc08].
There, the authors prepared a BEC in a harmonic trapping potential and consecutively
reduced as until they observed a collapse of the BEC. Repeating this measurement for dif-
ferent λ, changing from a cigar to a pancake trap, they could confirm the stability regimes
expected from the GPE. Furthermore, the authors observed slight discrepancies for λ & 5,
where a∗s was higher than expected from a Gaussian ansatz for the GPE. It was later shown
in Ref. [Boh09] that this Gaussian ansatz may fail for pancake shaped traps, as the collapse
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may happen not globally, but locally due to density fluctuations. This inherently connects
to the presence of roton excitations that develop in a BEC, as we will see in Chapter 4.

3.1.2. Spectrum of excitations within mean field theory

The GPE can be not only used to study the ground-state properties of a dipolar BEC but
also its dynamical response to external perturbations, e. g. a time-dependent Vtrap(r, t). This
dynamics can be described within Bogoliubov theory [Bog47, Pit03, Gri93], which allows
one to decompose the response of the BEC into elementary excitations. These excitations
describe an orthogonal set of new quantum states, which characterise the time evolution
of the system. To name two intuitive examples, a simple elementary excitation can be a
center-of-mass excitation of a trapped BEC or a breathing of the BEC’s size, but also more
intriguing elementary excitations, like phonons or rotons, exist (see Chapter 4). Together,
all elementary excitations describe the spectrum of excitations of the BEC – a concept that
we will introduce now.

To obtain the governing equations that describe the wave function and the time-dependency
of an elementary excitation, one typically considers a small perturbing wave function, ψ(r, t),
which is added to the ground-state wave function Ψ0(r) of the BEC. The total wave function
of the system is then assumed to be

Ψ(r, t) = Ψ0(r) + ηψ(r, t), 3.15

with η ≪ 1. Inserting Eq. 3.15 in the GPE (Eq. 3.9) and neglecting terms of O(η2) yields

i~ ∂t
(

Ψ0(r) + ηψ(r)

)
≈
[
H0 +

∫
Ψ0(r

′)Vint(r− r′)Ψ0(r
′)dr′

]
Ψ0(r)+

+ η

[∫
Ψ0(r

′)Vint(r− r′)ψ∗(r′)dr′ +

∫
ψ(r′)Vint(r− r′)Ψ0(r

′)dr′
]

Ψ0(r)+

+ η

[
H0 +

∫
Ψ0(r

′)Vint(r− r′)Ψ0(r
′)dr′

]
ψ(r), 3.16

with H0 = − ~2
2m∇2 + Vtrap(r). The t-dependence was omitted for readability. It was first

realised by Nikolay Bogoliobov [Bog47] that Eq. 3.16 may be directly solved via

ψ(r, t) = u(r)e−iωt + v∗(r)eiωt, 3.17

with u(r) and v(r) fulfilling ∫
|u(r)|2 − |v(r)|2dr = 1. 3.18

As we will see below, this definition of ψ(r, t) directly defines an excitation mode of the
system with an eigenenergy ϵ = ~ω. When inserting Eq. 3.17 into Eq. 3.16, one obtains two
coupled equations, which can be written in a matrix representation [Ron06]

(
HGP[Ψ0] +B B

−B −HGP[Ψ0] −B

)(
u(r)
v(r)

)
= ϵ

(
u(r)
v(r)

)
. 3.19
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Figure 3.1.: (a) Stability diagram of an 166Er BEC with 1×105 atoms, for different values of as and
trap geometries λ (see insets). For all calculations the geometric mean of the trapping frequencies
is kept constant at ω̄ = (ω∥ω2

⊥)1/3 = 2π × 100 Hz. The results are obtained from the GPE with a
Gaussian ansatz for the BEC’s wave function. (b-d) Examples of the E-landscape versus the radial
and axial size (σ⊥ and σ∥, respectively) of the BEC for three exemplary as in a cigar shaped trap
[indicated in (a)]. (b) At high as > add = 65.5 a0 an energetic global minimum (black cross) exists
at a finite size, indicating a stable ground state. (c) As as is decreased, the global minimum turns
into a local minimum, where the system is still metastable. (d) For even lower as the local minimum
disappears and the system becomes unstable, as it can minimise its energy by becoming infinitely
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Here,

HGP[Ψ0] = H0 +

∫
Ψ0(r

′)Vint(r− r′)Ψ∗
0(r

′)dr′ 3.20

describes the direct interaction term, i. e. the interaction between the particles inside the
condensate. Therefore, this term relates directly to the energy of the system’s ground state.
Furthermore, B is an operator defined via

(
Bh
)
(r) =

∫
Ψ0(r

′)Vint(r− r′)h(r′)dr′Ψ∗
0(r), 3.21

acts on a function h = u(r), v(r) and is evaluated at position r. Its integral describes the
interaction between particles in the excited state and the ground state and is called exchange
interaction.

It can be shown that the matrix in Eq. 3.19 can be diagonalised and that the chosen ansatz
for ψ(r, t) are the corresponding eigenstates. To see this, I refer the reader to Ref. [Ron06],
where a transformation of u(r) = 1/2(f(r) − g(r)) and v(r) = 1/2(f(r) + g(r)) simplifies
Eq. 3.19 to (

0 HGP[Ψ0]
HGP[Ψ0] + 2B 0

)(
f(r)
g(r)

)
= ϵ

(
f(r)
g(r)

)
. 3.22

After taking the square on both sides, one arrives at two independent equations

HGP[Ψ0]
(
HGP[Ψ0] + 2B

)
f(r) = ϵ2f(r), 3.23(

HGP[Ψ0] + 2B
)
HGP[Ψ0] g(r) = ϵ2g(r), 3.24

from which only one has to be solved to obtain ϵ, u(r), and v(r). These solutions have to
be calculated numerically in general. Only under further assumptions, like a homogeneous
density, or an infinitely extended Bose-Einstein condensate, an analytic solution can be
obtained.

3.1.3. Excitation spectrum of a homogeneous BEC

To give a first insight into the excitation spectrum [Pit03, Lah09, Bar12, Ron06, Bla17], let
us consider the simplest example of an unconfined, homogeneous BEC and look for solutions
of Eq. 3.23. The system’s ground state may be written as Ψ0(x, y, z) =

√
n0. As the BEC

is unconfined, the atoms are completely delocalised and momentum, k, is a good quantum
number to describe the elementary excitations. Therefore, we can choose plane waves as a
complete basis set for u(r) = ueikr and v(r) = veikr. The amplitudes u and v are chosen
such that the normalisation in Eq. 3.18 is fulfilled. With this ansatz, we get for the direct
interaction term [Eq. 3.20]

HGP[Ψ0] = − ~2

2m
∆ + n0

∫
Vint(r)dr = − ~2

2m
∆ + E0, 3.25

which contains a constant energy offset E0, which is the interaction energy that a single
particle has with the remaining atoms in the BEC’s ground state, i. e. the chemical potential.
As we are working in the limit of small perturbations, we can assume that any excitation
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does not alter the chemical potential in the BEC. Then, E0 is a constant energy offset for
both, the particles in the ground state and the ones in the excitation mode, and we can
neglect it. For the exchange interaction term (Eq. 3.21), we find [similar for v(r)]

(
Bu
)
(r) = un0

∫
Vint(r)e−ikrdr = un0Ṽint(k), 3.26

where Ṽint(k) represents the Fourier transform of the interaction potential at momentum
k.

This plane-wave ansatz allows us to easily calculate the eigenenergies ϵ of the excitation
modes. As we solve Eq. 3.23 with f(r) = v(r) + u(r), we obtain

~2k2

2m

(
~2k2

2m
+ 2n0Ṽint(k)

)(
v + u

)
= ϵ2

(
v + u

)
. 3.27

In a last step, one typically introduces the excitation energy of a free particle, ϵ0k = ~2k2
2m , and

can insert the Fourier transform of the interaction potential Ṽint(k) = g
(
1 + ϵdd(cos2α− 1)

)
,

with α being the angle between the momentum vector k and the magnetic dipole orientation,
as derived in Sec. 2.3. This gives the Bogoliubov description of a homogeneous, interacting
BEC with an excitation spectrum

ϵ(k) =

√
ϵ0k

(
ϵ0k + 2n0g

(
1 + ϵdd(cos2α− 1)

))
3.28

and the Bogoliubov amplitudes

uk =

√
ϵ0k + n0g

(
1 + ϵdd(cos2α− 1)

)

2ϵk
+

1

2
, 3.29

vk = sign
(
Ṽint(k)

)
√
ϵ0k + n0g

(
1 + ϵdd(cos2α− 1)

)

2ϵk
− 1

2
. 3.30

As the Hamiltonian in the Bogoliubov theory is diagonal with the Bogoliubov Ansatz, ψ(r, t)
can now be interpreted as elementary excitations of the BEC with eigenenergy ϵ(k).

On the one hand, the concept of elementary excitations allows us to describe the dynamics of
the BEC. On the other hand, it also directly contains important information on the system
properties. For example, it defines the sound velocity of the gas cα = limk→0 ϵ(k)/k, which
becomes anisotropic for dipolar interactions [Bis12], or describes fluctuations that are present
in the BEC. These fluctuations can be viewed as particles constantly fluctuating between
different elementary excitation modes and the BEC and can have surprising consequences
for dipolar BECs. As we will see in the publications of Sec. 3.4 and Chapter 5, they give rise
to new types of states, which were unexplored prior to this thesis.

3.2. Beyond mean field effects: quantum fluctuations

When deriving the GPE equation in Sec. 3.1.1, we neglected particles occupying excited
states ψ̂(r) in order to approximate the system’s field operator Ψ̂(r) with its wave function
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Ψ0(r). We discussed, that this is a good approximation for systems like gaseous Bose-Einstein
condensates. Here, the interaction between the particles can be typically considered as weak,
as the density n is small enough to fulfil n|as|3 ≪ 1. Nevertheless, real physical systems
always exhibit finite fluctuations of particles, which occupy excited states. These fluctuations
may stem for example from thermal atoms, but also at zero temperature, it is known that
the interaction between the particles depletes them from the condensate into excited states.
This depletion can have a back-action on the ground-state energy of the system itself, which
is known as the Lee-Huang-Yang (LHY) correction.

The pronounced impact that quantum fluctuations is best seen for the case of superfluid
helium. In this liquid BEC, the system’s high density leads to an inter-particle distance
that is in the same order as the range of interactions, aHe. This has the consequence that
superfluid helium is considered a strongly interacting system, na3He ∼ 1, where it was found
that only ∼ 10% of the particles actually are in the BEC and the remaining ∼ 90% are
depleted [Sos90, Sno92, Sno95]. This situation makes it challenging to theoretically describe
superfluid helium, as pertubative methods fail and more modern theoretical approaches,
like variational methods [Usm82, Vit88] and Monte Carlo calculations [Kü84, Whi87] are
needed.

Over the last century, the scientific community focussed a lot on the study of superfluid
helium and, therefore, corrections to mean-field theory and finite particle occupations in
excited states are rather well understood [Pen56, Hua57, Lee57, McM65]. They can be
readily applied to the case of gaseous BECs, where for most of the experiments the LHY
correction and the depletion of the mean-field ground state is typically small. In this case,
both effects can be calculated from Bogoliubov theory, as we will see now. For simplicity, we
still assume a homogeneous, unconfined BEC. Therefore, the following calculations might be
considered within a local density approximation (LDA).

3.2.1. Quantum depletion

In order to calculate the density of depleted atoms, ndep, in a dipolar BEC, we may use the
ansatz from Bogoliubov theory in Eq. 3.17. The atom number in an individual excited state,
k, is given by

ndep,k = |ψk(r)|2 = |ukeikr + v∗ke−ikr|2 = |vk|2 +
1

2
3.31

where in the last step the normalisation (Eq. 3.18) is used. One sees, that the number of
depleted atoms is only determined by the vk amplitude in the Bogoliubov theory and an
additional 1/2, which is called vacuum occupation. By integrating over all excited modes,
excluding the BEC at k = 0, we obtain the density of depleted atoms [Bog47, Lim11]

ndep =

∫

k ̸=0
ndep,k =

∫

k ̸=0

(
|vk|2 +

1

2

)
. 3.32
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Inserting the Bogoliubov amplitude for an interacting BEC, obtained in Eq. 3.30, yields [Lim11]

ndep =

∫

k ̸=0

ϵ0k + n0g
(
1 + ϵdd(cos2α− 1)

)

2ϵk
dk =

8n0
3
√
π
Q3(ϵdd)

√
n0a3s 3.33

which depends on the BEC’s density n0 as and a function

Q3(ϵdd) =

∫ 1

0

(
1 − ϵdd + 3ϵddu

2
)3/2

du. 3.34

Figure 3.2 (a) shows the functional dependence of Q3 with the relative strength of the dipolar
interactions ϵdd. For the purely contact-interacting BEC we find Q3(0) = 1, whereas for a
BEC with dominant dipolar interactions Q3(1) ≈ 1.3, showing that the presence of dipolar
interactions is increasing the quantum depletion. It is important to realise, that Q3(ϵdd)
becomes imaginary for ϵdd > 1, as we assumed an unconfined BEC, which becomes energeti-
cally unstable in the GPE mean-field theory and hence would collapse. In experiments with
a BEC of 166Er, one obtains typical densities of n0 ≈ 5 × 1020 m−3, which results in a small
depletion of ∼ 1% at ϵdd = 1.

3.2.2. Lee-Huang-Yang energy correction

Besides the depletion of atoms from of the BEC, the interactions are also having an ef-
fect on the total energy of the system. From Bogoliubov theory one obtains the following
correction [Lim11, Lim12]

∆ELHY =
1

2

∫

k ̸=0

(
ϵk − ϵ0k − n0g

(
1 + ϵdd(cos2α− 1)

))
dk = 3.35

=
64

15
√
π
gn20Q5(ϵdd)

√
n0a3s 3.36

with

Q5(ϵdd) =

∫ 1

0

(
1 − ϵdd + 3ϵddu

2
)5/2

du. 3.37

∆ELHY is known as the LHY energy correction and increases the ground-state energy of the
system. The functional dependence of Q5 is shown in Figure 3.2 (b). Again, one finds a
monotonic increase from Q5(0) = 1 to Q5(1) ≈ 2.6 revealing also the increase of this energy
correction with the dipolar interaction strength. Also here, Q5 acquires an imaginary value
for ϵdd > 1.

3.2.3. Experimental observations of the LHY correction in contact interacting
BECs

Usually, in BEC experiments, effects from quantum fluctuations are small corrections com-
pared to the atom number and energy of the ground state. Therefore, early experiments
with contact-interacting BECs tried to enhanced quantum fluctuations. One experiment
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with 85Rb observed quantum fluctuations via increasing as with a Feshbach resonance to
enter the strongly interacting regime

√
na3s ∼ 1 [Pap08]. Another interesting approach was

altering the excitation spectrum of a 23Na BEC with an optical lattice [Xu06], which lead
to a strong increase of the quantum depletion. Other early studies focussed on precise mea-
surements of collective oscillations in a molecular BEC, obtained from a two-component
fermionic mixture of 6Li. Here, the LHY correction was observed in an upshift of the os-
cillation frequency compared to mean-field theory [Alt07]. Beyond mean-field effects were
also observed by carefully studying in-situ density profiles of 6Li molecular BECs to directly
obtain the system’s equation of state [Shi08, Nav10] or from studies of the critical tempera-
ture of Bose-Einstein condensation in a trapped 39K gas [Smi11]. More recent experiments
realised a measurement of the single-atom momentum distribution in a weakly-interacting
gaseous BEC of metastable 4He∗ [Cha16] and studied the quantum depletion in a homo-
geneous experimental setup with 39K [Lop17]. Even though, these experiments proved the
importance of quantum fluctuations in gaseous Bose-Einstein condensates, so far no experi-
ment had been realised with additional dipolar interactions.

3.3. Mean-field theory including quantum fluctuations

In 2016 an experiment [Kad16] with strongly dipolar BECs of 164Dy found a surprising result.
The authors tuned the interactions of the BEC into a region where a collapse was expected
from GPE theory. However, instead of collapsing, the BEC formed a crystal of multiple,
small droplets with typically ∼ 1000 atoms each and a few 100 ms lifetime. This result came
as a surprise, as the stability of a dipolar BEC was expected to be understood from the
measurements with 52Cr [Koc08]. The main difference between these two elements was the
strength of their magnetic interactions: while 52Cr possesses a dipolar scattering length of
add ≈ 15 a0, the one from 164Dy is about 130 a0 and therefore almost an order of magnitude
higher. In the early days in which this experiment was published, there were two ideas to ex-
plain this unexpected stabilisation mechanism. One was the LHY correction [Wä16b, Bis16]
and another idea was suggesting repulsive three-body forces to explain the experimentally
found droplets [Lu15, Bis15, Bla16].

To understand the role, that the LHY correction can play for a dipolar BEC, Refs. [Lim11,
Wä16b, Bis16] proposed an extended Gross-Pitaevskii equation (eGPE)

i~ ∂tΨ(r) =

[
− ~2∇2

2m
+ Vtrap(r) + g|Ψ(r)|2 +

∫
Ψ(r′)VDDI(r− r′)Ψ(r′)dr′+

+
64

15
√
π
gQ5(ϵdd) (n(r)as)

3/2

︸ ︷︷ ︸
LHY correction

]
Ψ(r), 3.38

which is based on the GPE (Eq. 3.9) but contains an additional energy term, coming from
the LHY correction (see Eq. 3.36). Note that, even though the LHY is a beyond-mean-field
effect, it is here incorporated again at the mean field level. Furthermore, Eq. 3.38 relies on
a local density approximation, because the LHY correction is obtained from a homogeneous
BEC (see Sec. 3.1.3 and Sec. 3.2.2). That means for a given density, n(r), in space, we assume
its LHY correction is given by the homogeneous case of the same density.
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To understand how the LHY correction can stabilise a collapsing BEC, one may notice two
important properties: (i) the LHY energy correction is always positive, meaning that it will
act similar to a repulsive force between the atoms, as the density in the BEC increases.
(ii) Its density dependence is n5/2 and, therefore, stronger than the n2 dependence of the
interaction energies (see Eq. 3.14). Consequently, even for attractive interactions in the BEC,
at high enough density, the repulsion coming from the LHY correction will stabilise the BEC.
Figure 3.3 shows two exemplary variational calculations for a BEC in a cigar shaped trap
and for interaction parameters, where the system is expected to collapse radially in GPE
theory. The presence of the LHY correction results in an energy barrier, which prevents
the system from reaching too small radial sizes, i. e. too high densities. Hence, the BEC
can form a stable state – called droplet. For high enough atom numbers, the density of the
droplet saturates and the state becomes incompressible [Wä16a, Bai17].
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Figure 3.3.: Comparison of variational calculations of (a) the GPE with (b) the eGPE. The color
maps show the total-energy landscape of a 166Er BEC with 1 × 105 atoms in a cigar-shaped trap
with λ = 0.5, ω̄ = 2π × 100 Hz and as = 40 a0 (see also Fig. 3.1). In the GPE theory, the system
is expected to collapse radially, while for the eGPE theory the LHY correction acts as a repulsive
barrier for small σ⊥ and creates a stable ground state solution at finite size (cross). Note that the
color scales are truncated for visibility. The calculations are based on the theory in Ref. [Bis16].

Within our group, Rick van Bijnen and Gabriele Natale developed a code to numerically
calculate ground states, excitation spectra and real-time evolutions of a dipolar BEC within
the eGPE theory. These calculations were tremendously helpful for us to get a deeper insight
into our physical system and also to provide quantitative comparisons between experiment
and theory. Figure 3.4 shows the ground-state phase diagram obtained from numerically
solving the eGPE. For high as & 51 a0, similar to the GPE theory, one finds a regular BEC;
see (b). However, at lower as, the eGPE exhibits a much richer phase diagram than the
GPE (see Fig. 3.1). For λ . 1.5, one finds a smooth crossover from the regular BEC solution
to a single macrodroplet; see (c) [Wä16a]. This droplet state has a much smaller radial
size than a regular BEC. Therefore, it is very elongated along the dipole direction and has
a density than can be up to an order of magnitude higher. Interestingly, when changing
the trap geometry from a cigar to a pancake trap, i. e. increasing λ, the axial confinement
can squeeze the single droplet axially and prevent it from elongating. As a result, it can
be energetically more favourable for a macrodroplet to split into multiple, smaller ones and
form a droplet crystal; see (d) [Wen17, Bai18]. These types of states were initially observed
in Ref. [Kad16].
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Figure 3.4.: Ground-state phase diagram of 1 × 105 166Er atoms calculated numerically from the
eGPE in different trapping geometries with ω̄ = 2π× 100 Hz. (a) Show the three regimes of a regular
BEC, which also exists in the GPE theory, a macrodroplet regime and a droplet crystal regime.
The two latter ones only exists due to the presence of quantum fluctuations in the system. The
regular BEC is connected via a crossover to the macrodroplet regime. To access the droplet crystal
regime a phase transition has to be crossed. (b-d) gives exemplary isodensity profiles, at 90% of the
corresponding maximum density, in the three regimes depicted in (a). Here, the atomic dipoles are
oriented along the z direction.

The LHY correction in the eGPE Hamiltonian has been initially studied theoretically in
the context of non-dipolar mixtures of bosons in Ref. [Pet15a]. There, the author predicted
the existence of a self-bound mixture BEC in free space, which was later confirmed by two
independent groups with spin-mixture BECs of 39K [Cab18, Sem18]. To form a self-bound
droplet, a carefully tuned balance between repulsive inter -species and attractive intra-species
interactions are needed, which renders the energy contribution from the LHY term dominant
and stabilises the mixture to a self-bound object. For the case of dipolar atoms, the DDI
replaces the role of the inter-species interactions and the droplet exists due to a carefully
tuned interplay between contact and dipolar interactions. Also for the dipolar case, the
droplets can be self-bound, as was theoretically proposed in Ref. [Bai16b] and later confirmed
experimentally in Ref. [Sch16].

For both, non-dipolar and dipolar systems, the droplets show great similarities to liquid
droplets of superfluid helium, which is a highly active field of research. On the one hand,
helium droplets are seen as a bridge between Bose gases and bulk superfluid helium, to study
the transition from the weakly to the strongly interacting regime [Dal01]. On the other hand,
helium droplets provide an ultracold surrounding to study chemical reactions [Nor01, Toe01,
Toe04].

It was, therefore, for our team very interesting to experimentally study the nature of this
stabilization mechanism, which led to the publication that is presented at the end of this
Chapter. Here, we investigated for the first time the crossover region from an BEC to a
macrodroplet in a cigar shaped trap. When reducing the contact interactions, we found
indeed a smooth crossover to a high-density macrodroplet state, that was stable beyond the
GPE mean-field stability regime. Compared to the pancake trap geometry, the crossover
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provides a smooth transition to a droplet state and one does not have to cross a phase tran-
sition to a droplet crystal. The latter typically creates excitations in the system during the
preparation. Therefore, in the crossover region, the system stays close to the ground state.
Furthermore, we performed measurements of an energetically low-lying collective mode, as
initially proposed to test quantum fluctuations [Lim12]. A comparison of the obtained oscil-
lation frequencies with numerical studies of the eGPE theory yielded a very good agreement.
Also the group from Tilman Pfau in Stuttgart obtained evidence for the presence of quantum
fluctuations in 164Dy droplets, by estimating the density of the droplets [FB16]. Therefore,
our two groups could establish the important role of the LHY correction as being the stabil-
isation mechanism that leads to the formation of dipolar droplets.

After the first observations of dilute droplets in dipolar BECs and the confirmation of the
stabilising role played by quantum fluctuations, a wealth of theoretical papers were published.
To name just a few, the authors from Ref. [Bai17] studied the full spectrum of collective
excitations of a single self-bound dipolar droplet in free space and also in a trap. They
found that the droplet is expected to support axial low-angular-momentum excitations and
investigated the excitation spectrum for increasing atom numbers, as the droplet transitions
from a compressible to an incompressible liquid-like state. Another interesting direction
is the study of vortices in droplets, where the authors in Ref. [Lee18] found that vortices
in a BEC may be brought over to a dipolar droplet via interaction tuning. However, the
authors also found that a vortex-line along the axial direction of the droplet is expected
to be unstable against a quadrupole mode (see also [Cid18]). Other works focussed on the
extension of the dipolar droplets to lower spatial dimensions [Edl17]. Furthermore, there
has been intensive theoretical efforts to quantify quantum fluctuations in the dimensional
crossover regimes for dipolar and non-dipolar quantum gases [Ilg18] and also for the presence
of optical lattices [Kum19].
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to a Macrodroplet in a Dipolar Quantum Fluid

L. Chomaz,1 S. Baier,1 D. Petter,1 M. J. Mark,1,2 F. Wächtler,3 L. Santos,3 and F. Ferlaino1,2,*
1Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften,

6020 Innsbruck, Austria
3Institut für Theoretische Physik, Leibniz Universität Hannover,

Appelstrasse 2, 30167 Hannover, Germany
(Received 22 July 2016; revised manuscript received 15 September 2016; published 22 November 2016)

In a joint experimental and theoretical effort, we report on the formation of a macrodroplet state in an
ultracold bosonic gas of erbium atoms with strong dipolar interactions. By precise tuning of the s-wave
scattering length below the so-called dipolar length, we observe a smooth crossover of the ground state
from a dilute Bose-Einstein condensate to a dense macrodroplet state of more than 2 × 104 atoms. Based
on the study of collective excitations and loss features, we prove that quantum fluctuations stabilize the
ultracold gas far beyond the instability threshold imposed by mean-field interactions. Finally, we perform
expansion measurements, showing that although self-bound solutions are prevented by losses, the interplay
between quantum stabilization and losses results in a minimal time-of-flight expansion velocity at a finite
scattering length.

DOI: 10.1103/PhysRevX.6.041039 Subject Areas: Atomic and Molecular Physics,
Quantum Physics

I. INTRODUCTION

The extraordinary success of ultracold quantum gases
largely stems from the simplicity with which the physics at
the many-body level can be controlled and described,
allowing access to a wide range of theoretical models of
general interest [1]. Notably, the actual many-body inter-
actions are often very well captured via simple mean-field
(MF) potentials, proportional to the local particle density n
and accounting for the average mutual effect of all
neighboring particles [1]. Moreover, short-ranged inter-
actions, even if complex or unknown, can be simply
accounted for via a contact potential and parametrized
by the sole s-wave scattering length as, which in turn can
be widely tuned by means of Feshbach resonances (FRs)
[2]. The MF treatment of a Bose gas leads to the celebrated
Gross-Pitaevskii equation (GPE) and Bogoliubov–de
Gennes (BdG) spectrum of collective modes, which are
very powerful in describing the physics of an ultracold
bosonic gas: its ground-state properties as a Bose-Einstein
condensate (BEC), as well as its dynamics [1].
Beyond the great achievements of dilute gases as a test

bed for MF theories, the quest for beyond-MF effects has
triggered great interest in the ultracold community. The

general question of how the many-body ground state of
bosons is modified by quantum fluctuations (QFs) of
elementary excitations was first addressed by Lee,
Huang, and Yang (LHY) in the 1950s [3]. The so-called
LHY term, which accounts for the first-order correction to
the condensate energy, scales for a contact-interacting gas
as asn

ffiffiffiffiffiffiffiffi
na3s

p
. While in the weakly interacting regime the

effect of QFs is negligible and difficult to isolate from MF
contributions, it can be sufficiently amplified by increasing
as via a FR. Based on this concept, recent experiments with
alkali have observed clear shifts of the BdG spectrum and
equation of state caused by the LHY term in strongly
interacting Fermi [4–6] and Bose gases [7,8].
While in these measurements the LHY correction does

not modify the qualitative behavior of the gas, it has been
recently pointed out [9] that, in systems with competing
interactions of different origin, the MF interaction can be
made small and the LHY term dominant, so that the latter
dictates the physics of the system, even inweakly interacting
gases. In this regime, a novel phase of matter is expected to
appear, namely, a liquidlike droplet state. For purely contact-
interacting gases, this situation is hard to realize since it
would require, for instance, Bose-Bose mixtures with
coincidental overlapping FRs [9]. In contrast, dipole-dipole
interaction (DDI) genuinely offers this possibility in a
single-component atomic gas by competing with the iso-
tropic MF contact interaction [10,11]. In the pure MF
picture, a paradigm of the competition between DDI and
contact interaction is embodied by the ability of quenching a
dipolar BEC to collapse by varying εdd ¼ add=as, where
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add ¼ μ0μ
2m=12πℏ2 is a characteristic length set by the

DDI, with m the mass and μ the magnetic moment of the
atoms [12,13]. Here, ℏ stands for the reduced Planck
constant and μ0 for the vacuum permeability. In general,
because of the special geometrical tunability of DDIwith the
external trapping potential and dipole orientation, the
stability and phase diagram remarkably depend on
λ ¼ ν∥=ν⊥, where ν∥ (ν⊥) is the trapping frequency along
(perpendicular to) the dipole orientation [11,12,14].
In parallel, recent breakthrough experiments with an

oblate dysprosium (Dy) dipolar BEC (λ > 1) have shown
that when quenching up εdd, the system, instead of collaps-
ing, forms a metastable state of several small droplets
[15,16]. This observation has triggered an intense debate
on the nature of such a state and its underlying stabilization
mechanism [17–23]. Eventually, Dy experiments indicated
QFs as the origin of the stabilization [16], which were
quickly confirmed by theoretical works [20–22].
Furthermore, these theoretical studies highlight the richness
of the dipolar-gas phase diagram, in which a dilute-BEC, a
multidroplet, and a single-droplet phase are found for
distinct as, add, atom number N, and λ. Up to now, droplet
physics has only been investigated in a single setup, using
Dy BEC and exploring a specific region of the phase
diagram: In the considered pancake geometry (λ > 1),
multiple stable solutions—single droplet or multidroplet—
coexist, resulting in the formation of variable mesoscopic
assemblies of a small droplet in the experiments.
In the present work, we (i) demonstrate the generality of

droplet physics, by using a dipolar BECof erbium (Er) atoms
[24], (ii) quantitatively investigate the specific role played by
QFs in dipolar systems, and (iii) explore a pristine region of
the phase diagram, studying a cigar-shaped geometry
(λ ≪ 1), and observe the crossover from a dilute BEC to a
singlemacrodroplet statewhen increasing εdd, as predicted in
Refs. [21,22].Given the complexity of the physics at play,we
combine distinctmeasurements, based on the observations of
the density distributions, collectives excitations, expansion
dynamics, and lifetime of the dipolar quantum gas, which
together offer a comprehensive picture of droplet physics.
The exquisite control of the scattering length gained in our
experiment, together with a direct comparison to parameter-
free simulations includingQF effects, ultimately enable us to
depict in which way QFs dictate the physics at play, beyond
proving their crucial stabilizing role.

II. EXPERIMENTAL PROCEDURES

The atomic properties of Er offer a privileged platform to
explore a variety of interaction scenarios. Besides its
strongly magnetic character and its many FRs [25], Er
has several stable isotopes. This feature adds an important
flexibility in terms of the choice of the background as [26].
In our early work on Er BECs, we employed the 168Er
isotope, which has a background as about twice as large as
the dipolar length, add ¼ 65a0 [27,28].

In the work reported here, we produce and use a BEC of
166Er in the lowest internal state. This isotope provides us
with two major advantages. First, its background as is
comparable to its dipolar length, add ¼ 65.5a0, realizing
εdd ¼ add=as ≈ 1 without the need of Feshbach tuning.
Second, 166Er features a very convenient FR at ultralow
magnetic-field valuesB. To preciselymapas as a function of
B, we use a spectroscopic technique based on the measure-
ment of the energy gap of the Mott insulator state in a deep
three-dimensional optical lattice [28,29]. A detailed descrip-
tion is given in the Supplemental Material [30]. Between 0
and 3 G, we observe a smooth variation of as, which results
from two low-lying FRs whose centers are fitted to 0.05(5)
and 3.0(1) G, respectively; see Fig. 1. This feature gives easy
access into the εdd > 1 regime, allowing variation of εdd
from 0.70(2) to 1.58(18) by changing B from 2.5 to 0.15 G;
see Fig. 1 upper inset. By fitting our data [2], we extract
asðBÞ valid for B in the [0.15, 2.5]-G range, which we use
throughout this paper [30].
We achieve Bose-Einstein condensation of 166Er using

an all-optical scheme very similar to Ref. [27] with cooling
parameters optimized for 166Er [30]. In short, we drive
forced evaporative cooling at a magnetic field B ¼ 1.9 G,
corresponding to as ¼ 81ð2Þa0 [εdd ¼ 0.81ð2Þ]. In this
phase, B is oriented along the vertical z axis. At the end
of the evaporation, we obtain a BEC of N ¼ 1.2 × 105

atoms with a condensed fraction above 80%.
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FIG. 1. Scattering length in 166Er. as as a function of B. The data
points (circles) are extracted from spectroscopic measurements in a
lattice-confined gas and the solid line is a fit to the data with its
statistical uncertainty (gray shaded region [30]). Upper inset:
Zoom-in of εdd as a function of B. The gray dashed line marks
εdd ¼ 1; see also the other figures. The lower inset illustrates the
geometry of our experimental setup, the relevant axes (x, y, z), the
optical-dipole-trap beam (shaded region), the magnetic field
orientation (green arrow) along which the dipoles are aligned,
and the ∥- and ⊥-imaging view axes (blue arrows). The dashed
lines picture the small angles of these axes to y and z [30].
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To reach the λ ≪ 1 regime, we slowly modify, in the
last step of the evaporation, the confining potential to the
final cigar shape, with typical frequencies ðνx; νy; νzÞ ¼
½156ð1Þ; 17.2ð4Þ; 198ð2Þ� Hz. Simultaneously, we decrease
B to 0.8 G [as ¼ 67ð2Þa0] and then change the magnetic-
field orientation to the weak trapping axis (y) while keeping
its amplitude constant [30]. Finally, we ramp B to the
desired target value (and equivalently as) in tr [30], hold for
a time th, and perform absorption imaging of our gas after a
time-of-flight (TOF) of tTOF. Two imaging setups are used
in order to measure the density distribution integrated either
along the dipoles (∥ imaging) or perpendicular to them
(⊥ imaging) [30]. Figure 1 (lower inset) illustrates the final
geometry of our system with ν∥ ¼ νy, ν⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν2x þ ν2zÞ=2

p
,

giving λ ¼ 0.097ð3Þ, and defines the relevant axes.
Here, we explore the properties of the system when the

repulsive MF contact interaction is weakened enough to be
overcome by the DDI (λ ≪ 1, εdd > 1), after adiabatically
changing (tr ≥ 45 ms) or quenching (tr ¼ 10 ms) as to its
target value [30]. For tr ≥ 45 ms, the system evolves
following its ground state and gives access to the slow
dynamics, whereas for the tr ¼ 10 ms case, we can probe
the fast dynamics and study the relaxation towards an
equilibrium. The key question is whether QFs protect the
system from collapsing. Indeed, in this regime, the MF
treatment would imply that the attractive BEC becomes
unstable, leading to a twofold dramatic consequence [1].
First, some modes of the BdG spectrum acquire complex
frequencies. Second, in a trap, the density distribution of
the cloud undergoes a marked change on short time scales
(≤1=ν⊥), described as a “collapse”, which can develop into
a rapid loss of coherence [12,31], and pattern formations,
such as anisotropic atom bursts (“bosenova”) and special
d-wave-type structures, as observed in rubidium [32] and
dipolar gases of chromium [12,13], respectively. This fast
dynamics has been proved to be well encompassed by GPE
simulation [13,14,33].

III. DENSITY DISTRIBUTION

In a first set of experiments, we study the stability of
our dipolar Er BEC by probing the evolution of the
TOF density distribution for different as. Figures 2(a)–2(c)
show the absorption images acquired with ∥ imaging
[Figs. 2(a)–2(c)] and the corresponding central cuts
(x ¼ 0) of the 2D column density profiles [Fig. 2(d)]. In
striking contrast to the MF predictions, we observe that the
system remains stable for as well below add, with a central
coherent core surviving for times much longer than 1=ν⊥
(from several tens to hundreds of ms). The density distribu-
tion does not exhibit any special patterns,which is typical of a
collapsing cloud [12,13,32].
For as > add [Fig. 2(a)], the density distribution of the

gas shows good agreement with the MF Thomas-Fermi
(TF) profile on top of a broad Gaussian distribution,

accounting for the thermal atoms; see Fig. 2(d), dashed
lines. When lowering as below add [Fig. 2(b)], we observe a
sharpening of the central core, whose profile starts to
deviate from the MF-TF shape (see Ref. [30] for a
quantitative description). When decreasing as even further
[Fig. 2(c)], a similar bimodal structure holds on although
the dense core loses atoms. Because of the high density
reached, three-body (3B) collisions regulate the lifetime of
the central core; see discussion below and Ref. [23]. We
note that we observe a similar qualitative behavior of the
density distribution when using an adiabatic ramp of as.
However, the importance of the central peak is reduced as,
in this case, losses already set in during the ramp.
In contrast with the behavior of the central core, the

distribution of the thermal atoms, encompassed by the
broad Gaussian function of the bimodal fits [see Fig. 2(d),
dotted lines], remains mainly unaffected by the change of
as, highlighting an absence of significant heating and
population transfer, and thus an apparent decoupling of
the evolution of the coherent and thermal parts.
For further analysis, we fit the data to a bimodal

distribution made of the sum of two Gaussian functions,
as it offers a smaller residue than the fit to the MF-TF
distribution for as ≲ 70a0; see Fig. 2(d). We note that the
beyond-MF effects on the density profile are expected to be
more sophisticated than a Gaussian shaping. However,
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FIG. 2. Density profiles in the BEC-to-droplet crossover.
(a)–(c) 2D column density distributions probed with ∥ imaging
and (d) corresponding central cuts along the x ¼ 0 line (dots) for
tr ¼ 10 ms, th ¼ 6 ms (>1=ν⊥), and different as (see legend).
Each distribution is obtained by averaging four absorption images
taken after tTOF ¼ 27 ms. In (d), the lines show the central cuts of
the 2D bimodal fit results, the solid (dashed) lines showing the
two-Gaussian (MF-TF plus Gaussian) distributions and the
dotted lines the corresponding broad thermal Gaussian part.
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theoretical studies show good agreement between the
Gaussian ansatz and the full numerical solution for our
parameter range [22,23].
Being a smoking gun for long-range phase coherence,

the survival of a bimodal profile in the TOF distribution far
beyond the MF instability threshold points to a persistent
coherent behavior. This absence of a collapse advocates the
outbreak of an additional stabilization mechanism, which
we now further investigate by probing global properties of
the gas.

IV. COLLECTIVE OSCILLATION

In a second set of experiments, we unveil the origin of
the stabilization mechanism by studying the elementary
excitations of the coherent cloud. This is a very powerful
probe of the fundamental properties in quantum degenerate
gases [1,34]. In particular, collapse is intimately related
to the softening of some collective modes at the MF-
instability threshold. We focus here on the axial mode,
which is the lowest-lying excitation in the system above the
dipole mode. It corresponds to a collective oscillation of the
condensate length along y (R∥) with frequency νaxial.
The axial oscillation comes along with a smaller-amplitude
oscillation of the radial sizes in phase opposition; see
Fig. 3(a). As a result, this mode has a mixed character
between a compression and a surface mode [1]. The
compression character is particularly relevant since it
involves a change in the density and it is therefore sensitive
to the LHY corrections [35].
We excite the axial mode either by ramping B during the

final preparation stage or by transiently increasing the power
of the vertical optical dipole trap beam, after ramping B to
Bf. Here, ν∥ is abruptly changed from 17 Hz to typically
21 Hz, kept at this higher value for 8 ms, and finally set back
to 17 Hz. Following the excitation, we let the cloud evolve
for a variable th and image its TOF density distribution with
⊥ imaging. To extract νaxial, we probe the axial width R∥ of
the central coherent component of the gas [30] with th and fit
it to a damped sine; see inset of Fig. 3(b).
Figure 3 shows the observed νaxial normalized to the

trapping frequency ν∥ [36] as a function of as for adiabatic
[Fig. 3(b)] and nonadiabatic [Fig. 3(c)] ramps. Both cases
exhibit a similar qualitative behavior. For as > add, the
oscillations show a smooth dependence on εdd, with νaxial
increasing by about 5% with an average value of 1.70ν∥
[37]. When lowering as, the oscillation of the coherent part
remains visible well below the εdd ¼ 1 threshold and νaxial
exhibits a marked increase. νaxial=ν∥ grows up to 2.6(1) at
as ¼ 54a0 for tr ¼ 100 ms [Fig. 3(b)]. For tr ¼ 10 ms
[Fig. 3(c)], νaxial=ν∥ first increases similarly to the adiabatic
case [Fig. 3(b)], reaches a maximum of ∼2.13ð7Þ at 57a0
(εdd ¼ 1.15), and finally decreases for even smaller as
(open squares). The latter behavior can be explained by the
fact that the larger quenches in the interaction excites

additional high-energy modes while it drives the system
away from the linear response regime [38]. A similar
behavior is found from our theory predictions including the
LHY term (see below), thus highlighting a qualitative
agreement even in this small-as range.

V. THEORY

To account for our observation and discern between the
MF instability picture and QF mechanisms, we develop a
beyond-MF treatment of our system at T ¼ 0. The coherent
gas is described here by means of the generalized nonlocal
nonlinear-Schrödinger equation (gNLNLSE), which
includes the first-order correction from QF effects, i.e.,
the LHY term, and 3B loss processes. The gNLNLSE
reads as [20,23]

iℏ
∂ψ
∂t ¼

�
Ĥ0 þ μMFðn; ϵddÞ þ Δμðn; ϵddÞ − iℏ

L3

2
n2
�
ψ ;

ð1Þ

B
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FIG. 3. Axial mode. (a) Illustration of the axial mode in our
experimental setup. The black arrows sketch the oscillations of
the widths of the coherent gas along the characteristic axes of the
trap, with weights indicating their relative amplitudes. (b),
(c) Measured νaxial=ν∥ (squares) as a function of as together
with the theoretical predictions, including (solid line) or not
(dashed lines) the LHY term for tr ¼ 100 ms (b) and tr ¼ 10 ms
(c). Theoretical predictions are obtained from RTE (see text) for
as varied from 50a0 to 95a0. In the MF case, predictions fail for
as ≤ ac (orange area) due to the occurrence of the collapsing
dynamics which rules out the collective excitation picture.
ac ¼ 57a0 [ac ¼ 64a0] in (b) [(c)]. In (c), νaxial cannot be reliably
extracted for quenches to as ≤ 56a0, nor from the experiment
(open squares) or from the LHY theory (open circles, thin line).
The inset in (b) exemplifies a measurement of R∥ (triangles) and
its fit to a damped sine (solid line) for as ¼ 80a0. We typically fit
4–5 oscillations for all our as.

L. CHOMAZ et al. PHYS. REV. X 6, 041039 (2016)

041039-4



where Ĥ0 ¼ ½ð−ℏ2ΔÞ=2m� þ VðrÞ is the noninteracting
Hamiltonian and VðrÞ ¼ 2π2m

P
η¼x;y;zν

2
ηη

2 the harmonic
confinement. The MF chemical potential, μMF½nðrÞ; ϵdd� ¼
gnðrÞ þ R

d3r0Vddðr − r0Þnðr0Þ, results from the competi-
tion between short-range interactions, controlled by the
coupling constant g ¼ 4πℏ2as=m, and the DDI term with
VddðrÞ ¼ ½ðμ0μ2Þ=4πr3�ð1 − 3cos2θÞ and θ the angle sus-
tained by r and the dipole moment μ. Here, nðrÞ ¼ jψðrÞj2.
The beyond-MF physics is encoded in the LHY term,
leading to an additional repulsive term in the chemical
potential, Δμðn; ϵddÞ ¼ ½32=ð3 ffiffiffi

π
p Þ�gn

ffiffiffiffiffiffiffiffi
na3

p
FðϵddÞ. The

function FðϵddÞ ¼ 1
2

R
dθk sin θk½1þ ϵddð3 cos2 θk − 1Þ�5=2

is obtained from the LHY correction in homogeneous 3D
dipolar BECs [39–41] using local-density approximation
[42]. The last non-Hermitian term in Eq. (1) accounts for
3B loss processes [43]. In our calculations, we use the
experimentally determined values of the 3B recombination
rate of the condensate L3ðasÞ [30].
As discussed in Refs. [22,23], due to the repulsive LHY

term, Eq. (1) sustains stable ground-state solutions for any
as and λ. For pancake traps (λ > 1), the solution of Eq. (1)
is not unique. The phase diagram reveals three types of
solutions: the one of a dilute BEC, a single droplet solution,
and a third one, which separates the previous two phases,
that corresponds to a metastable region of multidroplet
states. The latter has been observed in Dy experiments [15].
However, the single-droplet solution appears difficult to
access because of the overhead multidroplet state and the
stringent 3B loss mechanisms. Remarkably, in cigar-shaped
traps (λ < 1), Eq. (1) has only one possible solution. In the
εdd parameter space, the corresponding wave function
exhibits a smooth crossover from a dilute BEC to a single,
high-density, macrodroplet solution for increasing εdd. It is
worth noting that the crossover physics, e.g., the formation
and lifetime of the droplet state, is expected to crucially
depend on the 3B collisional processes. In the following,
we concentrate on the λ < 1 case, which corresponds to our
experimental setting.
The continuous and smooth change of the static proper-

ties of the system with increasing εdd is consistent with
our observations on the evolution from a dilute into an
high-density state; see Fig. 2.
Based on Eq. (1), we theoretically investigate the

dynamics of the coherent gas. In order to compare as close
as possible the theory to our experimental results, we
precisely account for the experimental sequence by perform-
ing real-time evolution (RTE) starting from the ground state
of Eq. (1) at as ¼ 67a0 with N ¼ 1.2 × 105 atoms. We
simulate a linear ramp in as from 67a0 to a variable final
value of as in tr, followed by a compression of the axial
trap from ν∥ ¼ 17.3 to 21 Hz during 8 ms. We then record
the axial width from the standard deviation of nðrÞ,
σy ¼

ffiffiffiffiffiffiffiffi
hy2i

p
, as a function of the subsequent holding time.

The evolution of σy is well fitted by a sinusoidal function,

whose frequency constitutes our theoretical prediction
of νaxial.
In Fig. 3, we present our calculations with and without

the LHY term. The MF simulations reveal a critical
scattering length ac < add below which the system collap-
ses, thus ruling out the collective mode excitation picture
for as < ac. This is in qualitative disagreement with
the experimental observations. Moreover, for decreasing
as ≥ ac, the MF predictions of νaxial are sizably shifted
compared to our measurements. In contrast, the experiment
shows an excellent match with the theory including the
LHY term, thus ruling out the MF scenario and demon-
strating the crucial role played by QFs in stabilizing the
system. Then, QFs qualitative modify the phase diagram
and drive the formation of a special coherent state, namely,
a single macrodroplet [20–23]. The lowering of ac ¼ 57a0
found in Fig. 3(b) compared to Fig. 3(c) (ac ¼ 64a0) arises
from the more stringent interplay between QFs and 3B
losses within this longer ramp, both mechanisms being able
to drive the system out of the instability region.

VI. LOSS DYNAMICS

To further investigate the respective roles of 3B losses
and QFs, we study the time evolution of the atom number
of both the central core (Ncore) and thermal (Nth) compo-
nents along the BEC-to-droplet crossover. Since in the
droplet regime the core density ncoreðrÞ dramatically
increases, 3B losses are expected to play an important
role even for moderate and low values of L3 [23].
Notwithstanding, 3B losses and QFs exhibit different power
dependencies on nðrÞ [see Eq. (1)] and, thus, the atom-loss
dynamics should disclose their competition: while QFs tend
to stabilize a high-density state, namely the droplet, 3B
losses favor lower densities.
Figures 4(a) and 4(b) show Ncore and Nth, extracted from

the double-Gaussian fit as a function of as after a non-
adiabatic [Fig. 4(a)] and adiabatic [Fig. 4(b)] change of as.
Both cases show a similar evolution. When lowering as,
Ncore is first constant for as > add, then shows a sharp drop
starting around as ∼ add, and finally curves up for lower as.
We note that in the adiabatic case, Ncore decreases faster as
compared to the nonadiabatic one and finally saturates
around 7 × 103 at lower as. We attribute these to the longer
timing involved, and we observe a similar trend as well as a
similar saturation value for longer th [see, e.g., Fig. 4(c)].
Remarkably, Nth remains mainly unaltered over the

whole range of as and the whole system does not show
any appreciable heating. This suggests that the condensed
atoms, which are ejected from in the core, leave the trap
instead of being transferred to the thermal component,
confirming a picture in which the thermal and the con-
densed component have uncoupled dynamics.
We now compare the experiment with the theory, which,

as previously, precisely accounts for the experimental
sequence and its timing by performing RTE along
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Eq. (1). Here, we compute the final atom number N ¼R
nðrÞd3r as a function of as with and without the LHY

term. Remarkably, the observed evolution of Ncore is very
well reproduced by our beyond-MF calculations (solid
lines), whereas in the absence of the LHY stabilization, the
calculations predict losses in the condensed core to occur at
values of as too large compared to the measured ones; see
Figs. 4(a) and 4(b).
The observed evolution of Ncore is well reproduced by

our beyond-MF calculations (solid lines). The agreement is
particularly remarkable for the quench [Fig. 4(a)] while it is
slightly degraded in the adiabatic ramp [Fig. 4(b)], with an
overestimation of the remaining Ncore at small as. This can
be explained by noting that, due to the longer time during
which the losses set in, a more acute importance is given to
L3, and by considering the effects of QFs on its value.
Indeed, it is of interest to note that many-body effects
modify the 3B correlation function g3 [44], leading to an
enhanced loss rate. This then justifies the larger predicted
Ncore in our simulation based on the simple noninteracting

value g3 ¼ 1 [30] compared to the experiment (we estimate
g3 ∼ 1.3 for our typical parameters), and the increased
discrepancy with decreasing as, where QFs are doomed to
prevail. In contrast, the MF calculations deviate from the
experiment with enhanced losses in the as ∼ add region. We
note that the abrupt and high saturation ofNcore at as < add,
distinct from the experimental observations, is a signature
of the collapse, reestablishing lower density in the gas via
fast “explosive” dynamics.
Finally, we investigate the in-trap time evolution of Ncore

after quenching as in the droplet regime; see Fig. 4(c). Our
measurements reveal three different time scales for the
losses. At very short th (≈0–3.5 ms), Ncore is roughly
constant, which we attribute to the time needed for the
high-density state to develop. It follows a fast decay
(≈3.5–25 ms), in which the atoms are ejected from the
high-density core via 3B losses, and witnesses the for-
mation of a high-density coherent state. The steepness of
this fast decay appears to critically depend on as, with a
marked acceleration below the MF instability threshold.
Then, the loss dynamics substantially slows down
(≈25–1000 ms) while a coherent central core is still visible
in the density profile (with Ncore ∼ 104 atoms).
From the loss curves [Fig. 4(c)] and using the general 3B

loss relation ð1=NcoreÞðdNcore=dthÞ ¼ −L3n̄2, we are able
to extract the mean in situ density n̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hncoreðrÞ2i

p
of the

high-density component in the BEC-to-droplet crossover.
Here, we estimate NcoreðthÞ and ðdNcore=dthÞ from an
empirical fit to our data and compute n̄ using an indepen-
dent measurement of the 3B loss coefficient L3 [30].
Figure 4(d) shows our results for th ¼ 4, 16 ms. We
observe a prominent increase of n̄ across the threshold
as ∼ add, and a surviving high-density state deep into the
MF instability regime.
The formation of the droplet state is particularly visible

for the th¼4ms case. Here, n̄ grows from 6.2ð9Þ ×
1020 m−3 at as¼67a0 to a maximum of 35ð7Þ×1020m−3

at as¼ 57a0, while it is slightly reduced to ∼24 × 1020 m−3

at as ∼ 46a0. This direct estimate of n̄ advocates the
activation of the LHY term when lowering as; additionally,
its magnitude as well as its evolution are in good agreement
with our simulations including the LHY correction.
Our results together with the good agreement between

theory and experiments provide an alternative confirmation
of the central role of beyond-mean-field physics. The
lifetime of the high-density core reveals, on the one hand,
the activation of the LHY term and the crossover toward a
dense droplet state, and on the other hand, the counteracting
role of 3B losses in regulating the maximum density in the
droplet regime.

VII. EXPANSION DYNAMICS

Besides their dissimilar stability diagram, collective
excitations, and density distribution, a dilute BEC in the
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FIG. 4. Lifetime and in situ density of the high-density core. (a),
(b) MeasuredNcore (squares) and Nth (circles) versus as after (a) a
nonadiabatic (tr ¼ 10 ms, th ¼ 8 ms) and (b) an adiabatic
(tr ¼ 45 ms, th ¼ 0 ms) ramp. The data show a better agreement
with the theory with the LHY term (solid line) as compared to the
MF theory (dashed line). (c) Time decay of Ncore for as ¼ 65a0
(triangles), 57a0 (circles), and 50a0 (squares) after quenching as
(tr ¼ 10 ms). We fit a double exponential function to the data
(solid lines) [30]. (d) From the fit, we deduct the mean in situ
density of the core n̄ (see text) for th ¼ 4 ms (triangles) and
16 ms (squares) and as a function of as. The error bars include the
statistical errors on the fit and on L3. The solid lines show results
of the RTE including the LHY correction for th ¼ 0 ms (red),
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MF regime and a quantum droplet are also expected to
exhibit a markedly different expansion dynamics. While the
first is confined by an external trapping potential and thus
freely expands in its absence, a droplet state is self-bound
(SB) by its underlying interaction in analogy with the
He-droplet case [20–23]. As in our previous discussions,
the evolution from a trap-bound to a self-bound solution is
expected to be regulated by the interplay between QFs and
3B loss processes.
We investigate the expansion dynamics of our system for

various as. To preserve the high density of the coherent
component, our measurements focus on short time scales
with tr ¼ 10 ms and th ¼ 5 ms. After preparing the system
at the desired as, we abruptly switch off the optical dipole
trap, let the gas expand for a variable tTOF, and probe the
cloud width using the ∥ imaging. We fit the observed
density distribution to a double-Gaussian function, as
previously described. To extract the width ση of the
high-density core (ncore), we compute the second moments
σ2η ¼

R
η2ncoreðrÞdr along η ¼ x, z, where ncore is extracted

from the double-Gaussian fit. Figure 5(a) exemplifies the
TOF evolution of ση¼x at as ¼ 93a0, 64a0, and 55.5a0.
When entering the εdd > 1 regime, atoms in the high-
density core exhibit a marked slowing-down of the expan-
sion dynamics, which cannot be explained within the MF
approach.
To systematically study this effect, we repeat the above

measurements for different values of as (i.e., εdd). From
σηðtTOFÞ, we extract the value of the expansion velocity vη

by fitting the data to σηðtTOFÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2η;0þv2ηt2TOF

q
. Figure 5(b)

shows vx in an εdd range from 0.7 to 1.5. When the system
approaches the droplet regime with decreasing scattering
length (as < add), vx undergoes a strong reduction and
drops to a minimum equal to vx ¼ 0.40ð2Þ μm=ms at about
56a0 (εdd ∼ 1.17). For further lowering of as, vx starts to
increase again. A similar behavior is observed for vz. We
note that only the high-density component reveals this
intriguing dependency on as, whereas the thermal part
shows an almost constant expansion velocity [45].
Considering the fit-free character of our simulations as

well as the experimental challenge of accurately estimating
the expansion velocities [46], we conclude that our obser-
vations agree well with the theory predictions including the
LHY term; see solid line in Fig. 5(b). The TOF evolution is
calculated using a multigrid numerical scheme [30]. We
record the evolution of ση with tTOF and extract the
corresponding expansion velocities from the asymptotic
behavior of dση=dtTOF. Our simulations show a slowing-
down with a minimum of vx ¼ 0.32 μm=ms at as ∼ 56a0
(εdd ∼ 1.17), followed by an increase at lower as. In
contrast, calculations in the absence of beyond-MF cor-
rections fail to reproduce the experimental data. Here, the
velocity is first slightly more reduced above the MF
instability threshold εdd ∼ 1 than is expected with LHY

corrections, it then already increases at this threshold. The
first point relies on the trivial slowing-down of a BEC
whose mean repulsion energy is weakened (by reducing as
or decreasing its population Ncore). The second point
reveals a collapsing behavior that gives rise to an explosive
evolution of the density profile. The minimal velocity is
found here to be vx ¼ 0.56 μm=ms at as ¼ 68a0, which is
a much higher value than both our experimental results and
our theory predictions including the LHY correction.
The expansion behavior can be qualitatively well under-

stood considering the so-called released, or internal, energy
ER. This is the energy of the system when subtracting the
energy related to the confinement [1]. In the MF scenario,
ER > 0, as long as the ground state is stable. The BEC
expands ballistically and vη decreases for decreasing as and
N. In the unstable regime, the expansion velocity depends
crucially on the value of th at which the trap is switched off
due to the occurrence of an in situ collapse dynamic. On the
contrary, in the presence of QF, a stable ground state always
exists. The sharp variability in th is expected to be
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σxðtTOFÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x;0 þ v2xt2TOF

q
, from which we extract vx. (b) vx

as a function of as (squares). For comparison, the as-independent
expansion velocities of the thermal component are also shown
(circles). The experimental data are in very good agreement with
our parameter-free theory from RTE simulations including the
LHY term (solid line) and rule out the MF scenario (dotted line).
For clarity, we show only vx; similar results are found for vz.
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suppressed. Assuming a fixedNcore (i.e., no 3B losses), one
can show that ER decreases with decreasing as and even-
tually reachesER < 0 for as < aSB, marking the onset of the
SB solution (e.g., aSB ¼ 56a0 for N ¼ 1.2 × 105) [30].
However, in stark contrast to the MF case, ER increases
with decreasingNcore in the droplet regime.We note that aSB
is then shifted to lower valueswhenNcore gets reduced by 3B
losses, thus affecting the lifetime of the self-bound solution.
The existence of a minimal expansion velocity is thus a

direct consequence of the competition between the decrease
ofER for decreasingas at a fixedNcore and the increase ofER
for decreasing Ncore in the droplet regime. In the crossover
regime, the system smoothly evolves towards a fully self-
bound state (vη ¼ 0) until 3B losses, occurring in the trap or
in the initial phase of the expansion, set in to unbind the
system and to reduce the lifetime of the droplet state.

VIII. CONCLUSION

In summary, we demonstrate the existence of the cross-
over from a dilute BEC to a quantum droplet state driven by
QFs. Our experiments not only demonstrate that LHY
stabilization is a general feature of strongly dipolar gases,
but also thoroughly investigate the driving role of QFs in
dictating the system properties, in particular, its collective
mode, its atom losses, and expansion dynamics. This clear
and quantitative demonstration of the impact of QFs in
dipolar gases intrinsically relies on our unique and precise
knowledge of as that alone enables a direct comparison to a
parameter-free theory, which is based on a generalized GPE
with LHY correction. Our combined experimental and
theoretical results ultimately offer an experimental valida-
tion of the modeling proposed in Ref. [20] and thus of the
latter results of Refs. [21–23].
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Appendix: Supplementary material

1. Bose-Einstein condensation of 166Er

We prepare an ultracold gas of the 166Er isotope fol-
lowing a similar trapping and cooling scheme as the one
employed for 168Er [1, 2]. We load a crossed-ODT from a
narrow-line MOT of 3× 107 166Er atoms at about 10µK.
At the end of the MOT sequence, the atoms are automat-
ically spin-polarized in their lowest Zeeman sub-level [2].
The dipole orientation follows the one of the external
applied magnetic field, B. In our experiment, the lat-
ter is controlled by independent tuning of the compo-
nents Bx, By, Bz along the experimental coordinate sys-
tem (x, y, z), as defined in Fig. 1 (lower inset).

The ODT results from the crossing at their foci of two
red-detuned laser beams at a wavelength of 1064 nm. One
beam propagates horizontally along the y-axis, and the
other propagates vertically and nearly collinear to the z-
axis. The z-beam has a maximum power of 10 W and an

elliptical profile defined by its waists of (w
(z)
x , w

(z)
y ) =

(110, 55)µm. The y-beam has a maximum power of

27 W, a vertical waist w
(y)
z = 18µm, and a tunable hori-

zontal waist, w
(y)
x . The latter can be conveniently tuned

from 1.57w
(y)
z to 15w

(y)
z by time averaging the frequency

of the first-order deflection of an Acousto-Optic Modu-
lator (AOM). This scanning scheme enables both an ef-
ficient loading of the MOT into the ODT (> 30% of
the atoms are loaded) and an adiabatic and controlled
tuning of the trap aspect ratio λ over a broad range.
We achieve Bose-Einstein condensation of 166Er atoms
by means of evaporative cooling in the crossed ODT
at |B| = Bz = 1.9 G (as = 80(2) a0). Typically, we
first rapidly (in 600 ms) reduce the power and aspect ra-

tio w
(y)
x /w

(y)
z of the y-beam from 24 W to 4 W and 10

to 1.6, respectively. We further decrease the power of
the y-beam from 4 W to 0.3 W in 3 s in an exponential
manner and then exponentially increase the aspect ratio

w
(y)
x /w

(y)
z from 1.6 to 8 in 2.5 s. The final trap frequen-

cies are typically of (νx; νy; νz) ∼ (40; 40; 180) Hz. We fi-
nally obtain BECs of typically N = 1.2×105 atoms with

∗ Francesca.Ferlaino@uibk.ac.at

more than 80% condensed fraction and a temperature
T ∼ 70 nK. We typically measure N and the condensed
fraction from a bimodal fit of the 2D column density dis-
tribution measured along //-imaging with tToF = 27 ms.
T is extracted from the evolution of the thermal size of
the bimodal fit with tToF varying from 14 to 28 ms.

2. Experimental setup and axes

In our setup we define the orthonormal (x, y, z)-
coordinate system in the following way: the vertical axis
z is aligned with gravity and the y axis with the hori-
zontal ODT beam; see Fig. 1. The polarizing magnetic
field is created by three orthogonal pairs of coils. These
pairs of coils define an orthonormal (X,Y, Z)-coordinate
system with Z = z and (X,Y ) rotated by a small angle
θ as compared to (x, y). The magnetic field components
BX , BY , BZ , each created by each pair of coils, can be
controlled independently. We estimate θ to be about 15o

by sensing directly the atomic cloud, as its dipolar char-
acter makes it sensitive both to the trap geometry and
to the magnetic field direction.

The small tilt θ between the dipoles and y causes a
small reduction of the mean DDI energy and correspond-
ing small shifts of the expected characteristics compared
to the one predicted for θ = 0: the MF collapse threshold
should appear at a lower as and, for a given as, νaxial/ν//
and vη are shifted respectively down and up. We have
experimentally evaluated the shift of νaxial deep in the
stable BEC regime (|B| =

√
B2
X +B2

Y = 2 G) to be of
the order of 2% and in the droplet regime to be about 10
to 15%, as confirmed also by our theoretical predictions.

Finally, we also note a tilt between the//-imaging beam
and our reference frame, corresponding to an angle of
θim
//,0 ∼ 28o compared to y and θim

// = 13o compared to Y

in the xy-plane. The ⊥-imaging axis is tilted by ∼ 15o,
mainly in the xz-plane. Such tilts shift the observed size
compared to the ideal case of imaging along and perpen-
dicular to the dipoles. Such an effect is not expected
to impact the measurement of the collective frequencies,
whereas it might bring a systematic shift of vx because
of a mixed projection of vX and vY , the two first veloc-
ity components in the (X,Y, Z)-coordinate system, which
are respectively perpendicular and along the dipoles.
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In the theoretical calculations presented in the main
text (Eq. (1), RTE and Gaussian ansatz), for simplicity,
we do not account for these angles, whose effects are es-
timated to be smaller than our systematics.

3. Precision measurements of the as-to-B
conversion in a three-dimensional optical lattice

Precise determination of the as-to-B conversion is a
delicate issue, especially in the case of complex species,
such as Er, for which comprehensive multi-channel cal-
culations are still out of reach and the knowledge of
as should thus rely on experimental investigations. We
perform lattice modulation spectroscopy in a three-
dimensional optical lattice. From the measurements of
the energy gap in the Mott insulator state we extract
as(B). Our lattice experiments focuses in the region of
low B-field [0, 2.5 G] and are based on a lattice setup
and procedure similar to the one described in Ref. [3].
In brief, after producing the BEC, we load the atoms in
a three-dimensional optical lattice by exponentially in-
creasing the lattice-beam power in 150 ms. The typical
final depths are (sx, sy, sz) = (20, 20, 100), given in units
of the respective recoil energies h × (4.2, 4.2, 1.05) kHz.
At these lattice depths, the gas is in the Mott insulator
state. We then vary B = (0, 0, Bz) to the desired value
by rapidly changing Bz in 2 ms, either just before or just
after loading the lattice. We use the latter option for the
smallest B values at which L3 is enhanced because of its
proximity to the near-zero-field resonance. In this case,
we further hold 20 ms to make sure the magnetic field is
fully established before performing the modulation.

To perform spectroscopy measurements, we sinu-
soidally modulate sy at a variable frequency νm for 90 ms
with a peak-to-peak amplitude of about 30%. Finally, we
ramp down the lattice depths to zero in 150 ms, and mea-
sure the recovered condensed fraction as a function of νm

from //-imaging ToF picture. For the smallest B values
considered, we also ramp B back to 2 G in 2 ms before
switching off the lattice-beams in order to again minimize
3B loss effects.

When varying νm, we observe a resonant depletion of
the condensate due to particle-hole excitations. The res-
onance condition in the Mott-insulator regime is given
by

hνex = Us + Udd − Vdd. (A.1)

Here Us, Udd and Vdd are respectively the on-site con-
tact interaction, the on-site dipolar interaction and the
nearest-neighbor dipolar interaction along y in the cor-
responding extended Bose-Hubbard model. Udd and Vdd

can be accurately predicted from the knowledge of the
lattice depths and dipole orientation and in our typical
experimental condition, they are equal to h×−344.8 Hz
and h×31.5 Hz respectively. By subtracting the theoret-
ical dipolar contributions to the measured frequency, we

extract Us, which is directly proportional to the scatter-
ing length as. A precise mapping of as in the ultralow
B-field region is then obtained by repeating the above
measurements at various B values; see Fig. 1.

In the low B-field region shown in Fig.1, our lattice
spectroscopy reveals the presence of two FRs, one located
at about zero B field and the other one at about 3 G.
The existence and position of these two FRs agree with
our Feshbach spectroscopy measurements performed in
an harmonically trapped thermal cloud, where the max-
ima in 3B losses approximately pinpoint the resonance
positions. In this measurement, further FRs are identi-
fied at 4.1 G and 5 G.

The scattering length of 166Er can be parametrized by
the following simple expression [4]

as(B) = abg(B)

[
1 +

4∑

i=1

∆Bi
B −Bi

]
(A.2)

in which the specific positions (Bi) and widths (∆Bi)
of the two first resonances as well as the background
scattering length are obtained from a fit to our lat-
tice spectroscopy measurement. From the fit, we ob-
tain B1 = 48(45) mG, ∆B1 = 39(20) mG, B2 = 3.0(1) G,
∆B2 = 110(35) mG. The B-dependent background scat-
tering length abg(B) accounts for the overlapping res-
onances and reads as abg(B) = 62(4) + kB with k =
5.8(1.2) a0/G. We also account for the small effect of
the two next resonances, whose positions B3, B4 and
widths ∆B3,∆B4 are fixed to their estimates from the
loss-spectroscopy measurements to 10 mG. We check that
the precise values of this parameters has little effect on
our empirical description along Eq. A.2 of as in the B-
range of interest here, namely [0, 2.5] G.

4. Ramps in scattering length

Our measurements rely on controlled variations of the
scattering length as(B). In our experiments, we either
adiabatically change as using tr = 45 ms or we quench it
using tr = 10 ms. The adiabatic condition for as reads as

1

as

das

dt
≤ min (νx, νy, νz) = ν// for λ� 1 (A.3)

As shown in Fig. S1, we use two different types of time
variations of B and thus of as: (i) a simple linear ramp
in B and (ii) we design a specific B(t) variation in order
to minimize the adiabaticity parameter 1

as
das
dt /ν//. The

resulting as shows an exponential-type variation with t.
The adiabaticity condition of Eq. (A.3) is more stringent
for lower as. For ramping down to as = 48 a0, we find
that (i) verifies Eq. (A.3) for tr & 100 ms and (ii) for
tr & 20 ms. Data from Figs. 1, 3 and 4 (a, c-d) (resp.
Figs. 2, 4 (b) and 5) use ramp (i) (resp. (ii)).

For our theoretical description, we use a linear change
of as(t), similar to case (ii).
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5. Determination of the three-body recombination
rate coefficient

Since three-body inelastic losses play a crucial role
in the many-body dynamics and lifetime of the droplet
state, we run a dedicated set of measurements to de-
termine L3. We first prepare a non-degenerate thermal
sample of Er atoms at T = 490(10) nK in an harmonic
trap. We then record the decay of the atom number,
Nth, as a function of th in a range from 0 to 1 s. Nth

is obtained from a Gaussian fit to the measured density
distribution.

To fit the time evolution of Nth, we use the integrated
3B rate equation, which reads as 1

Nth

dNth

dth
= −Lth

3 〈n2〉.
Here, 〈n2〉 is the mean square density on the cloud. To
describe the scaling of 〈n2〉 with Nth, we use its predic-
tion for an ideal gas at thermal equilibrium at T whose
state occupancies follow Boltzmann law and take into
account the anti-evaporation effect [5]. Then Lth

3 is ex-
tracted from a fit of Nth(th) along:

Nth(th) =
N0

(1 + 3γ0N2
0 th)1/3

(A.4)

where N0 is the atom number at th = 0 ms and γ0 is
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FIG. S1. Predicted evolution of the scattering length as
(upper panel) and the adiabaticity parameter 1

as

das
dt
/ν// (lower

panel) over the ramp from B = 0.8 G to the extreme Bf =
0.17 G (as = 45 a0). The parameters are shown as a function
of the normalized time t/tr and the universal variation of the
adiabaticity parameter is obtained from normalizing to ν//tr.
We show the cases of three different ramps: a linear ramp in
B (dashed red line) which is used in a first set of experiments
(i), a polynomial ramp in B (solid blue line) which is used in
a second set of experiments (ii), a linear ramp in as (dotted
green line) which is used in the simulation (RTE).

defined via the relation

Lth
3 =

√
27 γ0

(
kBT

2πmν̄

)
(A.5)

with kB the Boltzmann constant and ν̄ = (νxνyνz)
1/3.

We account for the as-dependence of Lth
3 near a FR by

repeating the measurement at different B. We check that
the measured Lth

3 does not depend on the B orientation
and measure its B-dependency using |B| = By and for B
varying in 0.1 to 1.9 G. Note that, due to the bosoniza-
tion effect, the L3 in a quantum degenerate bosonic gas
is equal to Lth

3 /3!. Figure S2 shows L3 in a quantum
degenerate bosonic gas of 166Er as a function of as using
the measured as-to-B conversion. Despite the existence
of many coupled molecular potential in Er, we measure a
low L3(as), comparable to the typical values reported in
alkali atoms. L3(as) varies between 1.7(3)×10−40m6/s at
as = 18(17) a0 and 3.2(3)× 10−42 m6/s at as = 80(2) a0.

6. Time-of-Flight measurements

For our ToF measurements, we abruptly extinguish the
ODT in about 100µs. In order to accurately image our
gas while minimally influencing its dynamics during the
expansion, we split the ToF in two parts. During a first
part, lasting tToF − tB, B remains unchanged and the
dynamics occur at the original as and dipole orientation.
At time tB before the image is taken, B is modified both
in amplitude and in direction, in order to correctly set the
quantization axis for the imaging light to be σ− polarized.
The amplitude |B| of the imaging field is chosen constant
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L 
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 /s
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FIG. S2. Measured 3B recombination rate coefficient L3

of a quantum degenerate gas of 166Er as a function of as for
B varying from 0.1 to 1.9 G. We extract L3 from the mea-
surement of Lth

3 on a thermal gas at T = 490(10) nK using
Boltzmann law and taking into account anti-evaporation ef-
fect; see text.
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and equal to 0.31 G for all as considered. tB is set to
be 12 ms for //-imaging and 15 ms for ⊥-imaging where
the change in B is more drastic for the typical dipole
orientation (Y ) used in this experiment.

We note that our resolution limit for both //- and ⊥-
imaging is estimated to be & 3µm. Moreover the effec-
tive pixel sizes are set to 8.4µm and 3.1µm in our setup.
These limit the size of the structure we are able to ob-
serve as well as the minimal tToF we can use, which is
typically tToF ≥ 16 ms.

7. Averaging experimental density distribution

In order to obtain a better image quality and resolu-
tion, we typically average four experimental absorption
images taken in the same condition and with the same
experimental series (i.e. within less than a few hours in-
terval). In order to average the images we first define
a region of interest (ROI) of typically 300µm × 300µm
containing the cloud shadow and translate the ROI to su-
perimpose the cloud centers. To estimate the translation
amplitudes for each individual image, we use the center
from a simple Gaussian fit to the 2D density distribution
ROIs. In this averaging process, we use a sub-grid reso-
lution of 1/10 of a pixel to more accurately superimpose
the centers. We fit the averaged density distribution af-
ter binning back to the original resolution. We note that
fits on the sub-pixel resolved images give similar results.

8. Extracting the frequency of the collective modes

As stated in the main text, we focus on the axial mode,
which reveals itself by a collective oscillation of the axial
size R// of the BEC, along with smaller amplitude oscilla-
tions of the radial size in phase opposition. We extract its
frequency νaxial by studying the larger amplitude oscilla-
tion of R//. For this, we probe the ToF density distribu-
tion of the gas with ⊥-imaging after a ToF of 30 ms. We
focus on the sizes of the central, high-density component
of the cloud, which we study as a function of th for dif-
ferent as. We note that the precise shape of the column
density profile is expected to change as a function of as

and this in a different way for the two axis x and y under
observation in ⊥-imaging. This complicates the analy-
sis, in particular compared to the //-imaging where both
axes are nearly equivalent. Here, we extract the sizes of
the central component, using various methods and select
the most reliable method according to as. Typically, we
use a bimodal MF TF plus Gauss fit for as ≥ 57 a0. For
as ≤ 57 a0, we select a central region in the cloud and per-
form a simple Gaussian fit on it. Such a determination
should give access to the variations, if not to its abso-
lute value, of R// with th at fixed as and thus enables to
determine νaxial. In particular, we have checked that for
large as, the two fits (Gaussian on a central region and
MF-TF plus gaussian bimodal fits) give very similar and

compatible values of νaxial. For example for as = 93 a0

we find νaxial = 30.65(4) Hz and 30.55(6) Hz for the MF-
TF and Gaussian fit respectively. For as = 60 a0, we find
respectively νaxial = 36.1(3) Hz and 36.7(3) Hz.

To fit νaxial, we use a damped-sine function of th. Typ-
ically we fit the evolution of R// for th varying from 0 to
few hundreds of ms, depending on the damping rate ob-
served. The upper value of th used is never less than
150 ms such that at least 4 to 5 oscillations are observed
and fitted. We also note that for our shortest tr = 10 ms
we typically discard the first 4 ms of the evolution in or-
der to ensure that the magnetic field is safely stabilized
at its target value.

9. Bimodal fits of the density distribution in
//-imaging.

To quantitatively analyse the experimental column
density distribution imaged along//-imaging, we perform
bimodal fits on the 2D averaged profiles n//(x, z). The
bimodal fits are made of the sum of two peak distri-
butions, describing respectively a high-density, coher-
ent part and a thermal incoherent background. To ac-
count for the change of the profile of the density dis-
tribution across the BEC-to-droplet crossover, we use
two types of fitting functions ffit(x, z): (i) A sum of a
MF-TF and a Gaussian distribution, which account re-
spectively for the coherent and the thermal part. For
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FIG. S3. Residues of the two bimodal fits used in our anal-
ysis of the //-images as a function of as for tr = 10 ms and
th = 6 ms: MF-TF plus Gauss fit (blue triangle) and double
Gaussian fit (red square).
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the integrated column density, the MF TF distribution

writes fTF(x, z) =
(

1− (x−x0)2

R2
x
− (z−z0)2

R2
z

)3/2

[6].(ii) The

sum of two Gaussian distributions. Typically the central
Gaussian can be anisotropic with any orientation axis.

As expected, the thermal background is broader than
the central coherent component and for the tToF consid-
ered its width is typically at least 1.6 times larger. It is
first fitted by taking out the central part of the density
distribution at radius typically smaller than 1.3 times its
width.

The quality of the bimodal fit is evaluated by the norm

of the residue ρ = 1−
∫

dx dz (n//(x,z)−ffit(x,z))
2

∫
dx dz n//(x,z)2

. For both

distributions, it satisfies ρ > 0.98.

The evolution of ρ with as informs us further on the
physical properties our gas, as stressed in the main text in
Sec. III. Fig. S3 shows the extensive variations of ρ, thus
completing the data of Fig. 2 and the physical picture de-
scribed there. First, as stated in Sec. III, by considering
the agreement of MF-TF plus Gauss distribution, one is
able to identify a deviation from the MF-TF behavior.
Indeed ρ shows here a marked decrease when lowering
as below add from 0.997 to 0.985 and a further satura-
tion around this value. On the contrary, the residue of
the double Gaussian fit increases when lowering as be-
low add before decreasing again for as below 57 a0, and
remains above 0.99 over the whole range of as.

However, we point out that we are not able to dis-
tinguish, from the mere density profiles, between a MF
or beyond-MF character of the deviation from MF-TF
regime. Even though theoretical studies point out the
difference in density profile expected by the arising of
beyond-MF effects compared to the simple reduction of
the MF interactions [7–10], bimodal fit agreement does
not enable a reliable distinction. Indeed, the difference is
minute and surely blurred by the presence of a thermal
fraction. Hence, even though a more complex profile is
expected, the double Gaussian fit agrees particularly well
to our data and is here used to extract global properties
of the system for further studies. We note that such a
procedure has been also adopted in [11, 12] for the array
of micro droplets, and the Gaussian ansatz has also been
used in theoretical works [8, 9], in which the Gaussian
solution shows a good approximation as compared to the
much heavier numerical solution. To further prove the
role of QFs in our paper, we extensively account for em-
blematic global properties that characterize the droplet
physics (see Figs. 3, 4and 5).

10. Describing the atom number decay

In Figure 4 (c) and in the main text we have briefly
described the evolution of the atom number in the co-
herent part Ncore with th. There our aim was to extract
the mean density and we did not expand on the mere
description of the Ncore(th).

We note that Ncore(th) is well accounted for by a dou-
ble exponential decay evolution of respective amplitude
N0(1− p) and N0p. N0 is the initial atom number. Each
decay corresponds to a different time constant, respec-
tively tfast and tslow, and starts after a different delay
time, respectively td and tD. We fix tD = td + 2tslow.
For tr = 10 ms td is approximately constant and equal to
3.65 ms. The absence of evolution for th < td indicates
that the magnetic field may not have reached the target
value in the first ms. For tr = 45 ms, td can be set to
0. tfast, tslow and p (and N0) depend on as, typically de-
creasing with it. The evolution is illustrated in Fig. S4
for tr = 10 ms.

11. Gaussian Ansatz including L3

A good qualitative (and to a large extent quantitative)
insight in the physics of dipolar condensates in the pres-
ence of LHY stabilization may be gained from a simplified
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Gaussian ansatz of the form

ψ(r, t) =
√
N(t)eiφ(t)

∏

η=x,y,z

e
− η2

2w2
η

+iη2βη(t)

π1/4w
1/2
η

, (A.6)

where the variational parameters are the number of
atoms N(t), the global phase φ(t), the widths wη, and
the phase curvatures βη. The Lagrangian density reads:

L =
i~
2

(
ψ
∂ψ∗(r, t)

∂t
− ψ∗ ∂ψ(r, t)

∂t

)
+

~2

2m
|∇ψ(r, t)|2

+ V (r)|ψ(r, t)|2 +
g

2
|ψ(r, t)|4 +

2

5
gLHY|ψ(r, t)|5

+
1

2

∫
d3r′Vdd(r− r′)|ψ(r, t)|2|ψ(r′, t)|2. (A.7)

We insert ansatz (A.6) into Eq. (A.7), obtaining the La-
grangian L =

∫
d3rL:

L = N

{
~φ̇+

~
2

∑

η

β̇w2
η +

m

4

∑

η

ω2
ηw

2
η

+ 2
~2

2m

∑

η

(
β2
ηw

2
η +

1

4w2
η

)}

+ N2

{
g(1 + εddF (wy/wx, wy/wz))

2(2π)3/2
∏
η wη

}

+ N5/2

{(
2

5

)5/2
gLHY

π9/4
∏
η w

3(2
η

}
, (A.8)

with

F (κx, κz) =
1

4π

∫ π

0

dθ sin θ

∫ 2π

0

dφ

[
3 cos2 θ(

κ2
x cos2 φ+ κ2

z sin2 φ
)

sin2 θ + cos2 θ
− 1

]
. (A.9)

The variational parameters are determined from the cor-
responding Euler-Lagrange equations [13]:

d

dt

(
∂L

∂λ̇

)
− ∂L

∂λ
=

∫
d3r

[
Γ
∂ψ∗

∂λ
+ Γ∗

∂ψ

∂λ

]
, (A.10)

where λ = N,φ,wη, βη, and Γ(r) = −i~L3

2 |ψ(r)|4ψ(r).

Introducing the dimensionless units τ = ω̃t, wη = l̃vη, l̃ =√
~/mω̃, with ω̃ = (

∏
ωη)1/3, and after some algebra, we

obtain a close set of equations for the Gaussian widths
and the number of atoms:

Ṅ = − 3R∏
η v

2
η

N3, (A.11)

v̈η = −vη


7R2N4

∏
η′ v

4
η′

+
2RN2

∏
η′ v

2
η′

∑

η′′ 6=η

v̇η′′

vη′′


− ∂U

∂vη
, (A.12)

with R = L3

π335/2ω̃l̃6
, and

U =
1

2

∑

η

[
v−2
η +

(ωη
ω̃

)2

v2
η

]
+

2

3

PQN3/2

(∏
η vη

) 3
2

+
PN∏
η vη

(
1 + εddF

(
vy
vx
,
vy
vz

))
, (A.13)

with P =
√

2
π
a
l̃

and Q = 512F (εdd)

25
√

5π
5
4

(a/l̃ )3/2.

Due to their simplicity, Eqs. (A.11) and (A.12) per-
mit a much more flexible simulation of the exact exper-
imental conditions and sequences compared to the ob-
viously more exact but numerically much more cumber-
some simulation of the gNLNLSE. We have checked that
the results of the Gaussian ansatz approach are in ex-
cellent agreement both qualitative and to a large extent
also quantitative to full simulations of the gNLNLSE, in
what concerns lowest-lying excitations, atom losses, and
expansion velocities.

12. Self-bound droplets

The Gaussian ansatz approach allows for an intuitive
understanding of the degree of self-bound (SB) charac-
ter of the system. As mentioned in the main text, a SB
solution is characterized by a negative released energy,
ER < 0. In absence of losses, we may evaluate ER by
means of the Gaussian Ansatz for the ground-state of a
trapped BEC with scattering length as and fixed N . Fig-
ure S5 shows the results for ER for different N values.
Whereas ER increases with growing N for large as, for
small as in the droplet regime ER increases with decreas-
ing N . For each N there is a finite scattering length aSB

such that if as ≤ aSB the droplet will be fully self-bound
(vη = 0). Given its N -dependence, aSB shifts to lower
values with decreasing N . 3B losses add a time depen-
dence on N and thus on aSB that governs the lifetime
of the droplet state. We note that for small (tr, th) ER

may change its sign during the ToF due to atom losses,
i.e. a SB solution may unbind during the ToF. In our ex-
periments, the interplay of losses and LHY stabilization
leads to a minimal released energy, that translates into a
minimal expansion velocity as shown in the main text.

13. Simulation of the ToF expansion using the
gNLNLSE

ToF expansion is simulated using the gNLNLSE by
means of a multi-grid method, i.e. dynamically enlarg-
ing the numerical grid following the expansion. This is
necessary due to the obvious difference in length scales at
the beginning and at the end of the ToF. We note that the
precise description of the ToF dynamics is very relevant,
since in contrast to standard cases, nonlinear dynamics
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FIG. S5. Released energy ER as a function of as for N =
1.2 × 105 (solid), 5 × 104 (dashed), and 104 (dotted). Note
that ER < 0 indicates a SB solution.

and losses here may play an important role during the
expansion, especially within the LHY stabilized regime.
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4
The rotonic excitation spectrum
of a dipolar Bose-Einstein
condensate

This Chapter focusses on one of the central results of this thesis, namely the study of the
excitation spectrum of a trapped dipolar BEC. Key concepts of the excitation spectrum
have been already introduced for the homogeneous system in Chapter 3. Here, we extend
the discussion to the case of trapped dipolar BECs. Off-resonant laser lights are commonly
used to create optical traps for neutral atoms. The shape of the trap is typically harmonic
with frequencies (ωx, ωy, ωz). By adjusting the optical power and laser beam sizes, it is
possible to modify the trap from a spherical one (ωx = ωy = ωz) to a pancake (ωx, ωy ≪ ωz)
or a cigar (ωy ≪ ωz, ωx,). As we will see, for the latter two cases the orientation of the
atomic dipoles in the BEC plays an important role. If the dipoles are oriented along a
tightly confining axis, the BEC develops a so-called roton-maxon excitation spectrum along
the weaker trap axes. This excitation spectrum has striking similarities to the excitation
spectrum found in superfluid helium [Gri93].

In Sec. 4.1, I will discuss what is a roton and how a dipolar BEC may develop it in its
excitation spectrum. To understand the basic properties of the roton and its necessary
ingredients it is useful to study the analytic case of an infinitely pancake shaped BEC.
Section 4.2 introduces the dynamic structure factor (DSF), which is a useful way to visualise
the excitation spectrum. Additionally, the DSF describes the strength of the density response
of the system when it is perturbed externally with momentum, ~k, and energy, ~ω. How
this external perturbation can be described theoretically and is realised in experiments is the
topic of Bragg spectroscopy in Sec. 4.3. Here, I will also briefly review the setup for Bragg
spectroscopy in our experiment, which has been one of the major experimental upgrades
done during this thesis. Finally, Sec. 4.4 and 4.5 are two publications in which our group
proved the existence and characterized the rotonic excitation spectrum in a dipolar BEC of
166Er.
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CHAPTER 4. THE ROTONIC EXCITATION SPECTRUM OF A DIPOLAR

BOSE-EINSTEIN CONDENSATE

4.1. Excitation spectrum of a BEC confined along the dipole
direction

In a seminal work from Santos et al. [San03]†, the authors showed that the trap geometry of a
dipolar Bose-Einstein condensate has not only important consequences on the stability of the
system, but also strongly modifies its excitation spectrum. They consider a pancake-shaped
dipolar BEC, harmonically trapped, with a frequency ωz, along the confining direction (z)
and infinite in the other two directions. The atomic dipoles point parallel to z, out of the
confining plane. This additional confinement provides another length scale for the system,
which is given by the harmonic oscillator length, lz =

√
~/mωz. As we will see below, lz

allows one to separate the in-plane excitations into quasi-two-dimensional ones and three-
dimensional ones. The former excitations are associated with wavelengths much bigger than
lz, where the transverse degree of freedom is not influencing the excitation mode and the
dipolar interactions between the atoms in the excited mode are essentially repulsive. The
latter excitations, with wavelengths in the order (or smaller) than lz have a three dimen-
sional character, meaning that the dipolar repulsion between atoms reduces with shorter
wavelengths and eventually becomes attractive.

To study the excitation spectrum of a dipolar pancake-shaped BEC, one can use an analytic
approach given in Refs. [San03, Ped05, Fis06, Lah09, Bla12]. Here, the BEC wave function
in the transverse direction is considered to be a Gaussian function. Under this assumption,
one can integrate out the z-dimension of the GPE (see Eq. 3.9 and Sec. 3.1.1) and reduce the
problem to the remaining radial dimension in plane, ρ. Importantly, this ansatz allows to
describe the DDI (see Sec. 2.3) by an effective two-dimensional interaction potential, whose
Fourier transform becomes

Ṽ 2D
DDI(kρ) =

µ0µ
2

3
√

2πlz
F⊥ (kρlz/

√
2) 4.1

with
F⊥(x) = 2 − 3

√
πxex

2
erfc(x), 4.2

where kρ describes the momentum in the radial direction and erfc(x) is the complementary
error function. In contrast to the unconfined system, where the DDI interaction is indepen-
dent on the modulus of k (see Eq. 2.3), the confined case features a momentum-dependence
in kρ, see Fig 4.1. One finds a reduction of Ṽ 2D

DDI(kρ) with higher momenta, which eventually
changes sign and becomes negative for kρlz & 1. Thus, for small momenta the DDI is mainly
repulsive, but for higher momenta it turns attractive. This momentum dependence has im-
portant consequences on the excitation spectrum, which can be calculated from Bogoliubov
theory (Sec. 3.1). One finds an analytical expression for the excitation spectrum

ϵ2D(kρ) =

√
ϵ0k

(
ϵ0k + 2n2D

g√
2πlz

(
1 + ϵddF⊥

(
kρlz/

√
2
)))

, 4.3

with n2D being the areal density of the atomic cloud. This excitation spectrum is shown
in Fig. 4.2 for various ϵdd. For low ϵdd (i. e. as ≫ add) the contact interactions domi-
nate in the system and its excitation spectrum shows an almost linear dispersion relation.

† See also the work from O’Dell et al. [O’D03] which appeared at a similar time.
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Figure 4.1.: Effective two-dimensional dipolar interaction potential Ṽ 2D
DDI for an infinitely pancake-

shaped 166Er BEC with n2D = 1.85 × 1014 m−2 and ωz = 2π × 160 Hz.

However, as ϵdd increases, the dipolar interaction, with its momentum-dependence, become
more dominant and starts to visibly ’bend down’ the excitation spectrum in a momentum
region around kρlz ≈ 1.5. Eventually, for high enough ϵdd (& 6 for the parameters in
Fig. 4.2) the spectrum shows an energetic maximum at kmaxlz ≈ 0.8, followed by an ener-
getic minimum at krotlz ≈ 1.7. This maximum and minimum is called maxon and roton,
respectively, and their names come from the excitation spectrum observed in superfluid he-
lium [Lan41, Gri93, Pal58, Yar59]. In contrast to the excitation spectrum in superfluid
helium, the excitation spectrum in a dipolar quantum gas is easily tunable with the trans-
verse confinement length scale lz and with ϵdd. The former allows to modify the momentum
of the roton minimum, krot, and the latter allows to change its energy, ∆ = ϵ2D(krot).

The early work from Santos et al. on the possibility of a rotonic excitation spectrum lead
to a wealth of theoretical works, which continue up to date. Early questions regarded the
stability diagram and ground states of dipolar BECs in finite-sized pancake traps, which
were investigated for example in Refs. [Ron07, Mar12]. Here, it was found that in certain
parameter regions, the system might acquire unusual density profiles due to the DDI, for
example a blood-cell shape, close to instability. In the same parameter region roton modes,
carrying an angular momentum, were found, see also Ref. [Bis13a]. These angular rotons
were theoretically shown to drive an angular collapse of the BEC, breaking spontaneously
the radial symmetry in a perfectly cylindrical system [Wil09]. Other works focussed on
the new length scale that the roton mode establishes in dipolar BECs. Reference [Wil08]
showed that, when the BEC is subjected to a small, local density perturbation, the roton
minimum reveals itself as density ripples in the condensate with a wavelength ∼ 1/krot.
Reference [Nat10] reported that the roton mode may also dominate the wavelength of faraday
patterns, that emerge when a BEC is periodically non-linearly modulated. For radially
anisotropic systems, like slightly deformed pancakes or tilted atomic dipoles, the rotonic
excitation spectrum can become anisotropic in the plane of the pancake. It was shown
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Figure 4.2.: Radial excitation spectra of an infinitely pancake-shaped 166Er BEC (see inset), with
parameters corresponding to the ones in Fig. 4.1. Solid lines show the spectrum for different ϵdd =
(0.22, 0.42, 1.00 2.62, 6.55, 16.38), top to bottom, respectively. The dotted line corresponds to the
free particle energy, ϵ0k. The dashed line exemplifies an excitation spectrum at ϵdd = 21.8, where the
modes around the roton minimum are unstable with an imaginary eigenenergy, see text. Below the
ϵ2D = 0−line, the y-scale shows thus the norm of the excitation spectrum multiplied by −1.

first theoretically in Ref. [Tic11] and also experimentally proven, though not with a rotonic
spectrum, that dipolar BECs feature an anisotropic speed of sound and critical superfluid
velocity [Bis12, Wen18] .

As the experimental observation of a rotonic excitation spectrum remained elusive, further
theoretical efforts investigated different experimental signatures of the roton minimum. For
example, in Refs. [JL13a, Bis13b, Bla13] the authors investigated the spatial dependence of
the roton excitations and found that the roton mode is concentrated in high density regions,
which is typically the trap center for an inhomogeneously trapped BEC. In this central
region, the local atom number fluctuations of the BEC were found to be amplified in the
presence of a roton mode in the spectrum. As the experimental observation of in-situ atom
number fluctuations, relies on rather good imaging resolution, other approaches proposed to
use weak optical lattices [Cor13, JL13b, Bis19]. Here, it was found that the whole BEC can
be easily density modulated or even destabilized when the optical lattice wavelength matches
∼ 1/krot.

Despite all the theoretical efforts that took place, the experimental observation of a roton
mode in dipolar BECs remained elusive up to the works presented at the end of this chapter.
There might be two reasons, why experiments lagged behind theory. The first one is simply
the limited number of laboratories working with dipolar quantum gases, which concentrate
on chromium, erbium and dysprosium. Furthermore, from these three elements, chromium
has a too small magnetic dipole moment to exhibit a roton in its excitation spectrum for
current experimental atom numbers. The second one relies on the fact that the pancake-
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shaped geometry is not working as fruitfully for typical experimental parameters as expected.
Looking on the parameters in Fig. 4.2, to observe a rotonic excitation spectrum in a pancake
shaped dipolar BEC, one finds that for typical densities in experiments one needs rather large
values of ϵdd. For 166Er a value of ϵdd ≈ 6 would correspond to as ≈ 11 a0, which is close to the
0-Gauss-Feshbach resonance used in our experiment (see Sec. 2.3). Usually, when interactions
are tuned closer to a Feshbach resonance, three-body loss limits the BECs lifetime (at least
in the case of the 0-Gauss-Feshbach resonance of 166Er) below any reasonable timescale to
perform measurements on the excitation spectrum. In our experiments we therefore chose
another geometry, a cigar-shape, to observe the roton minimum in the excitation spectrum.
As will be discussed in Sec. 4.3 and Sec. 4.4, this geometry is advantageous as it allows for
higher densities in experiments and also geometrically ’focusses’ the roton mode along one
predefined axis in the experiment.

For our publication in Sec. 4.4, we did choose to look on the dynamics in the BEC, when its
interactions are quenched into the instability regime of the GPE theory. Here, it is impor-
tant to understand that, as the system comes closer to instability, ∆ approaches zero in the
excitation spectrum. Within Bogoliubov theory, the unstable regime is characterised by an
excitation spectrum with an imaginary ∆ (see Fig. 4.2), where the excitation modes close to
the roton minimum become imaginary. As a consequence (see Eq. 3.17) these modes will ex-
ponentially grow in time and the system dynamically transforms away from the ground-state
solution, closely before the instability point. It undergoes thus a modulational instability
in which a density modulation with a wavelength ∼ 1/krot exponentially grows in time.
In Sec. 4.4, we utilised this instability to prove the existence of the roton mode in dipolar
quantum gases for the first time. We studied the momentum distribution in time and found
an exponentially increasing number of atoms, appearing around krot as the roton minimum
gets populated. By carefully measuring the momentum of these atoms for different trapping
potentials, we could furthermore confirm the scaling of krot with 1/lz. These first measure-
ments proved the existence of the roton mode in the excitation spectrum, but were limited
to the unstable regime.‡ We therefore pursued another technique, called Bragg spectroscopy,
which allowed us to study the rotonic excitation spectrum also in the stable regime. This
technique is presented in Sec. 4.3 but it first requires the introduction of a new quantity of
the excitation spectrum - the dynamic structure factor.

4.2. The dynamic structure factor

A well established way to describe the response of a many-body system to an external
perturbation is given by the framework of linear response theory. A general discussion of
this theory is found in Refs. [Pit03, Kub56, Kub57]. Here, I will only briefly review the
theoretical parts, that are necessary for the further discussion of the experimental results in
Sec. 4.4 and Sec. 4.5.

‡ Note that when we speak here of an unstable regime, it referes to the GPE theory without LHY correction.
In reality, the BEC does not collapse completely under a density modulation, but is also stabilised by the
LHY, as will be discussed in Chapter 5.
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4.2.1. General description and Bogoliubov approach

Within linear response theory, one of the most studied observables is the density operator,
n̂(r), and its fluctuation, δn̂(r) = n̂(r) − ⟨n̂(r)⟩, around the system’s equilibrium density,
⟨n̂(r)⟩. To derive general expressions for the density response, one typically considers the
Fourier transformation of the density fluctuations

δρ̂k =

∫
dre−ikrδn̂(r). 4.4

To obtain the density response of the system to an external perturbation with momentum,
~k, and energy, ~ω, one needs to consider the coupling that the perturbation introduces
between a state |m⟩, of energy Em, and another state |l⟩, of energy El. As discussed in
Ref. [Pin66, Pit03], the density response of the system can be calculated from perturbation
theory. One obtains the so-called dynamic structure factor

ST (k, ω) =
1

Q

∑

m,l

e−Em/kBT
∣∣∣⟨l| δρ̂†k |m⟩

∣∣∣
2
δ(~ω − ~ωm,l), 4.5

where Q =
∑

m e−Em/kBT is the partition function, δ(~ω−~ωm,l) is the Dirac delta function
and ~ωm,l = Em − El is the energy difference between the corresponding states. Here, k
defines the momentum at which the density of the system responds. Note that the DSF is
generally defined for a finite temperature, T , and contains therefore the Boltzmann constant,
kB. To gain more insights in the DSF from Eq. 4.5 for Bose-Einstein condensates, the matrix
elements ⟨l| δρ̂†k |m⟩ should be evaluated. In order to do this, one needs to know the system’s
ground state, |m = 0⟩ (resp. Ψ0(r) in mean-field theory), and its excited states |m ̸= 0⟩. As
shown for example in Ref. [Cso96, Bla02] a useful approach to calculate the excited states is
the Bogoliubov theory, which is discussed in Sec. 3.1 and Sec. 3.1.3 of this thesis. One finds
the linear response of a Bose condensed gas at temperature T

ST (k, ω) =
∑

m̸=0

∣∣∣
(
u∗m(r) + v∗m(r)

)
eikrΨ0(r)

∣∣∣
2
×

×
[(
⟨m̂⟩ + 1

)
δ(~ω − ~ωm) + ⟨m̂⟩δ(~ω + ~ωm)

]
, 4.6

where the Bogoliubov amplitudes, u∗m(r) and v∗m(r), of the excited states are given via
Eq. 3.17. At non-zero tempearture each excitation mode has a mean occupation of ⟨m̂⟩. The
two last terms in Eq. 4.6 describe two processes that may happen in the system. The first
term, proportional to δ(~ω−~ωm), describes particles that are excited out of the condensate
into the excited state |m⟩. The second term, proportional to δ(~ω+ ~ωm), describes excited
particles that are de-excited into the condensate by the perturbing field. An important limit
of Eq. 4.6 can be done by assuming T = 0, where ⟨m̂⟩ = 0 for all excited states. Then the
DSF simplifies to

S(k, ω) =
∑

m̸=0

∣∣∣
(
u∗m(r) + v∗m(r)

)
eikrΨ0(r)

∣∣∣
2
× δ(~ω − ~ωm) ≡

∑

m̸=0

Sm(k, ω). 4.7

As one can see, S(k, ω) contains not only all excited states from the excitation spectrum,
but includes also the coupling strengths between the ground-state and the excited states. It
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is therefore an ideal way to analyse and visualise the excitation spectrum of a BEC, when
its density is perturbed with a momentum ~k at an energy ~ω.

4.2.2. Cigar-shaped dipolar BECs

In our experiments, the dipolar BEC is always confined in all three dimensions in a harmonic
trap with trapping frequencies ωx,y,z. We employ a cigar-shape geometry that has only one
weaker confining direction, which is in our case ωy ≪ ωx, ωz. One main difference compared
to the pancake shape from Sec. 4.1 is that one achieves higher densities in experiments than
for the case where ωy, ωx ≪ ωz and thus, the spectrum shows a roton minimum already
at smaller ϵdd (or higher as, further away from the pole of the used Feshbach resonance,
see Sec. 2.3). Furthermore, the roton mode develops only along the weak axis, y, instead of
radially symmetric in x and y.

In order to be able to thoroughly compare the theoretical excitation spectrum with the
experiment, we rely on numerical calculations of the ground state and the corresponding
excitation modes with Bogoliubov theory (see Sec. 3.1). This is necessary, as the rotonized
spectrum was shown to be sensitive to different ansatzes, yielding slightly different spec-
tra [Bai15]. Figure 4.3 shows two examples of S(k, ω) along the axial momentum, ky, of an
166Er BEC. In Fig. 4.3 (a) the contact interactions dominate and ϵdd < 1. When comparing
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Figure 4.3.: Axial excitation spectra for a cigar-shaped 166Er BEC with 2.45×104 atoms (inset) and
(a) ϵdd = 0.82 and (b) ϵdd = 1.43. In both cases the trap has harmonic frequencies (ωx, ωy, ωz) =
2π × (260.8, 26.7, 256.4) Hz and the atomic dipoles are oriented along z. Each excitation mode is
slightly broadened in energy with a Gaussian function for visibility. The color-scale in (a) and (b) is
normalised to the maximum DSF, S∗

rot = S(krot,∆), of the roton mode (indicated by arrow).

to the infinite pancake case from Fig. 4.2, one realizes two important differences. On the one
hand, the excitation spectrum contains distinct excitation modes that are discrete in energy,
and does not show a continuum of modes. This comes from the fact that the present calcu-
lations describe a finite sized system, which can contain only a discrete number of modes.
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On the other hand, each individual mode shows a broadening in ky. Also this is the effect of
the finite system size, as an individual excitation mode cannot be any more well described
by a plane-wave and contains contributions from a broader momentum range. The color
code indicates the strength of S(k, ω) of each mode, where one sees that modes at low ky
(and low energy) show less response than higher-ky modes. This suppression is known as
phononic suppression and directly connects to the finite compressibility of the interacting
gas [Pit03].

Figure 4.3 (b) shows the case of dominat dipolar interactions with ϵdd > 1. For the given
system parameters, one finds a well isolated roton mode. Similar to the roton minimum
in Fig. 4.2, this mode can be easily tuned in ∆ with ϵdd and its mean momentum, krot,
with the z-confinement. Importantly, the DSF reveals a high value of S(k, ω) of the roton
mode, which can exceed the values of the other modes in Fig. 4.3 (a) and (b) easily by an
order of magnitude. This high value of S(k, ω) shows a high susceptibility of the system’s
response when it is perturbed at the roton momentum and leads for example to the postulated
instability, mentioned in Sec. 4.1 and Refs. [Cor13, JL13b, Bis19], when the BEC is exposed to
a weak lattice potential. It furthermore reveals a pronounced increase of density fluctuations
at wavelengths around 2π/krot present in the BEC.

4.3. Bragg spectroscopy

In our second experimental work, presented in Sec. 4.5, we mapped out the dipolar BEC’s
response over a similar momentum and energy range as presented in Fig. 4.3. This was
achieved with Bragg spectroscopy, which is a widely used tool in physics and was estab-
lished about two decades ago also for ultracold quantum gas experiments. It was used for
example to show the existence of the phononic branch in the excitation spectrum of contact-
interacting BECs [SK99, Ste02] and to characterize the system’s intrinsic momentum un-
certainty [Ste99b]. Bragg spectroscopy was also employed to measure phase fluctuations
of one-dimensional BECs [Ric03] and to characterize the transition from a one-dimensional
superfluid to a Mott insulating state [Sto04]. Besides these early works, Bragg spectroscopy
could be used to measure the quantum depletion of a homogeneous BEC [Lop17] and was
also implemented in various quantum gas experiments with fermionic atoms [Vee08, Kuh10,
Hoi13].

4.3.1. Basic theoretical description

A carefully written discussion of the Bragg spectroscopy technique and its theoretical ap-
proaches are given in Ref. [Bla02]. I therefore remind here only on the essential ingredients
to understand Bragg spectroscopy within the (e)GPE approach. An ideal way to experimen-
tally probe the DSF of a quantum system is to look on its response when it is perturbed
with a plane-wave potential applied for a given time τ

V (t) =

{
V0 cos(k · r− ωt). if 0 < t < τ

0. otherwise
4.8
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The potential has a depth of V0 and a wave vector k. It furthermore contains a frequency ω,
that makes its wave fronts move with a velocity ω/|k| in the direction of k. The perturbing
potential in Eq. 4.8 can be included in the (e)GPE. As shown in Ref. [Mor98, Bla02], one may
use Bogoliubov theory to calculate the occupation of each excitation mode with time. This
approach relies on the assumption of a negligible perturbation of the ground state itself. In
the limiting case of zero temperature, one obtains for the occupation of a single excitation
mode after τ

⟨m⟩ = N0

∣∣∣∣
∫
drV0

∫ τ

0
dt′eiωmt′cos(k · r− ωt′)

(
u∗m(r) + v∗m(r)

)
|Ψ0(r)|

∣∣∣∣
2

4.9

where N0 describes the total atom number in the initially unperturbed condensate. One can
rewrite the time-dependent integral in Eq. 4.9 using Euler’s formula to obtain

∫ τ

0
dt′eiωmt′cos(k · r− ωt′) =

1

2

∫ τ

0
dt′
(

eik·r−i(ω−ωm)t′ + e−ik·r+i(ω+ωm)t′
)

≈ 1

2

∫ τ

0
dt′eik·r−i(ω−ωm)t′ = τ

sin ((ω − ωm)τ/2)

(ω − ωm)τ/2
eik·r 4.10

where the term, proportional to ω + ωm can be neglected within the rotating wave approxi-
mation. Under this approximation Eq. 4.9 simplifies to

⟨m⟩ =
πN0V

2
0 τ

2

∣∣∣∣
∫
dr
(
u∗m(r) + v∗m(r)

)
eik·r |Ψ0(r)|

∣∣∣∣
2

F (ω − ωm, τ). 4.11

The function

F (ω − ωm, τ) =
2 sin2 ((ω − ωm)τ/2)

πτ(ω − ωm)2
4.12

takes the finite time of the perturbation into account, which can be seen as a frequency
broadening of the perturbing potential in ω. In the limit of long pulses,

lim
τ→∞

F (ω − ωm, τ) = δ(ω − ωm) 4.13

becomes a delta function and Eq. 4.11 can be written with Eq. 4.7 to

⟨m⟩ =
πN0V

2
0 τ

2
Sm(k, ω). 4.14

Therefore, the occupation of a single mode |m⟩ is directly determined by its DSF. That
means for a well characterised Bragg potential, one can measure the DSF directly via the
population in |m⟩ after the Bragg excitation.

4.3.2. Experimental implementation

To experimentally probe the DSF of a quantum system, one essentially relies on a clean
implementation of the periodic potential, given in Eq. 4.8. Most of the quantum gas exper-
iments in the last decade followed the early ideas of the Ketterle group [Ste99b, SK99] and
the Davidson group [Ste02], which are based on Ref. [Ber97]. This scheme is illustrated in
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k1, ωL k2, ωL-ω

y

V (t)

Figure 4.4.: Bragg excitation scheme with two laser beams (solid arrows). In experiments, the
beams interfere at the atom’s position and create an optical potential with wave vector k. A frequency
difference ω between the two beams makes the interference pattern move with a velocity ω/|k| (dashed
arrow). This scheme excites the system with a rate proportional to S(k, ω).

Fig. 4.4. Two coherent laser beams of frequency ωL, coming from different spatial directions,
with wave vectors k1 and k2, are directed on the atomic cloud, where they create an inter-
ference pattern with a wave vector k = k1−k2. An additional frequency difference, ω ≪ ωL,
between the two beams introduces a constant movement of the interference pattern.

In experiments, ω can be easily tuned for example via acusto-optical modulators. A change
in k needs a change of k1 or k2, which typically requires a realignment of the laser beams. As
this realignment usually involves direct work on the experimental machine and inherently is
not very reproducible, we developed a Bragg spectroscopy setup, that allows for an easy and
reproducible way to change both k and ω. It is implemented by using holographic gratings,
that are uploaded on a digital micro-mirror device. The underlying concept is discussed in
the supplemental material of the publication in Sec. 4.5 and in Ref. [Pet15b].

To give the reader an intuition how a Bragg spectroscopy pulse is perturbing a BEC, Fig. 4.5
shows a numerical real-time simulation of a Bose Einstein condensate in a cigar-shaped trap
(see also Sec. 4.4). In the example the perturbing potential (Eq. 4.8) is applied along the
positive y direction over the whole timing from t ∈ [0, 7] ms. The frequency is chosen such
that the Bragg excitation is resonantly exciting the BEC. Fig. 4.5 (a) shows the integrated in-
situ density along y versus t. At the beginning of the simulation, at time t = 0 ms, the density
has an inverted parabolic shape, similar to a BEC in the Thomas-Fermi regime [Pit03]. As
the time progresses, the Bragg excitation excites atoms from the BEC, which start to move
along the positive y direction. The superposition of the wave function of the excited atoms
and the wave function of the ground-state atoms leads to a density wave with a wave vector
k, which travels through the BEC. The contrast of this density wave increases with time, as
more and more atoms are occupying the excited mode. Fig. 4.5 (b) shows the corresponding
momentum distribution of the whole system, where the excited particles are visible as a
pronounced side peak appearing at ky = 4.3µm−1, next to the peak of the ground state
atoms at ky ≈ 0µm−1. This insight is relevant for experiments, as it shows that the Bragg
excitation can be either probed directly in-situ (given a good enough imaging resolution) or
via the momentum-space, which can be accessed by standard time-of-flight imaging.
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Figure 4.5.: Simulation of a Bragg spectroscopy pulse on a dipolar BEC with 5 × 104 atoms in a
(ωx, ωy, ωz) = (250, 31, 160) Hz trap. The Bragg excitation has a duration τ = 7 ms, ω = 2π×375 Hz,
V0/h = 14 Hz and k = 4.3µm−1 along the positive y direction. (a) Integrated in-situ density profile
ny =

∫
n(x, y, z)dxdz versus time. (b) Corresponding integrated momentum distribution, nk, along

y of the atomic cloud.

In our publication in Sec. 4.5 we measured the excited fraction of atoms after the Bragg
excitation in time-of-flight. By performing measurements over a broad momentum and
energy range, we were able to show the developement of the roton minimum in the excitation
spectrum for increasing ϵdd. We furthermore probed the excited fraction at krot for a fixed
V0 and for various ϵdd, that directly reveals the increase of the DSF at the roton momentum
in the system. Interestingly, when comparing our measurements to theory, we found a
quantitative deviation from the established theory in Sec. 3.4, which includes the Lee-Huang-
Yang correction. This deviation questioned for the first time if the inclusion of the LHY as
a mean-field energy shift is justified or not. Also a further experimental work with dipolar
droplets [Bö19b] found similar discrepancies and showed the importance of correlations in
the system. Up to date, it is still an open point how these discrepancies can be best included
in current theories.
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The concept of a roton, a special kind of elementary excitation 
forming a minimum of energy at finite momentum, has been 
essential for the understanding of the properties of superfluid 
4He (ref. 1). In quantum liquids, rotons arise from the strong 
interparticle interactions, whose microscopic description 
remains debated2. In the realm of highly controllable quan-
tum gases, a roton mode has been predicted to emerge due 
to magnetic dipole–dipole interactions despite their weakly 
interacting character3. This prospect has raised considerable 
interest4–12; yet roton modes in dipolar quantum gases have 
remained elusive to observations. Here we report experi-
mental and theoretical studies of the momentum distribu-
tion in Bose–Einstein condensates of highly magnetic erbium 
atoms, revealing the existence of the long-sought roton mode. 
Following an interaction quench, the roton mode manifests 
itself with the appearance of symmetric peaks at well-defined 
finite momentum. The roton momentum follows the predicted 
geometrical scaling with the inverse of the confinement 
length along the magnetization axis. From the growth of the 
roton population, we probe the roton softening of the excita-
tion spectrum in time and extract the corresponding imagi-
nary roton gap. Our results provide a further step in the quest 
towards supersolidity in dipolar quantum gases13.

Quantum properties of matter continuously challenge our intu-
ition, especially when many-body effects emerge at a macroscopic 
scale. In this regard, the phenomenon of superfluidity is a paradig-
matic case, which continues to reveal fascinating facets following its 
discovery in the late 1930s2,12. A major breakthrough in understand-
ing superfluidity thrived on the concept of quasiparticles, intro-
duced by Landau in 19411. Quasiparticles are elementary excitations 
of momentum k, whose energies ε define the dispersion (energy–
momentum) relation ε(k).

To explain the special thermodynamic properties of superfluid 
4He, Landau postulated the existence of two types of low-energy 
quasiparticle: phonons, referring to low-k acoustic waves, and 
rotons, gapped excitations at finite k initially interpreted as elemen-
tary vortices. The dispersion relation continuously evolves from lin-
ear at low k (phonons) to parabolic-like with a minimum (roton) at 
a finite k =  krot. Neutron scattering experiments confirmed Landau’s 
remarkable intuition14. In liquid 4He, krot scales as the inverse of the 
interatomic distance. This manifests a tendency of the system to 
establish a local order, which is driven by the strong correlations 
among the atoms2.

In the realm of low-temperature quantum physics, ultra-
cold quantum gases realize the other extreme limit for which the  

interparticle interactions—and correlations—are typically weak, 
meaning that classically their range of action is much smaller than 
the mean interparticle distance. As a result of this diluteness, roton 
excitations are absent in ordinary quantum gases, that is, in Bose–
Einstein condensates (BECs) with contact (short-range) interac-
tions12. However, about 15 years ago, seminal theoretical works 
predicted the existence of a roton minimum both in BECs with 
magnetic dipole–dipole interactions (DDIs)3 and in BECs irradi-
ated by off-resonant laser light15. Following the lines of the latter 
proposal, a roton softening has recently been observed in BECs 
coupled to an optical cavity16. Here, the excitation arises from the 
infinite-range photon-mediated interactions and the inverse of the 
laser wavelength sets the value of krot. In addition, roton-like soften-
ing has been created in spin–orbit-coupled BECs17,18 and quantum 
gases in shaken optical lattices19 by engineering the single-particle 
dispersion relation.

Our work focuses on dipolar BECs (dBECs). As in superfluid 
4He, the roton spectrum in such systems is a genuine consequence 
of the underlying interactions among the particles. However, in 
contrast to helium, the emergence of a minimum at finite momen-
tum does not require strong interparticle interactions. It instead 
exists in the weakly interacting regime and originates from the 
peculiar anisotropic and long-range character of the DDI in real 
and momentum space3–12. Despite the maturity achieved in the the-
oretical understanding, the observation of dipolar roton modes has 
remained so far an elusive goal. For a long time, the only dBEC avail-
able in experiments consisted of chromium atoms20, for which the 
achievable dipolar character is hardly sufficient to support a roton 
mode. With the advent of the more magnetic lanthanide atoms21,22, 
a broader range of dipolar parameters became available, opening 
the way to access the regime of dominant DDI. In this regime, novel 
exciting many-body phenomena have been recently observed, as the 
formation of droplet states stabilized by quantum fluctuations23–25, 
which may become self-bound26. Lanthanide dBECs hence open 
new roads toward the long-sought observation of roton modes.

Prior to this work, dipolar rotons have been mostly connected to 
pancake-like geometries3–6,8–12. Here, we extend the study of roton 
physics to the case of a cigar-like geometry with trap elongation 
along only one direction (y) transverse to the magnetization axis 
(z) (Fig. 1a). The anisotropic character of the DDI (Fig. 1b, inset) 
together with the tighter confinement along z is responsible for the 
rotonization of the excitation spectrum along y (Fig. 1b). To illus-
trate this phenomenon, we consider an infinite cigar-shaped dBEC 
and focus on its axial elementary excitations, of momentum ky. 
These excitations correspond in real space to a density modulation 
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along y of wavelength 2π /ky. For low ky, the atoms sit mainly side-
by-side and the repulsive nature of the DDI prevails, stiffening the 
phononic part of the dispersion relation (Fig. 1b, bottom left panel). 
In contrast, for ℓky z ≳  1, where ℓz is the characteristic z confinement 
length, the excitation favours head-to-tail alignments and the DDI 
contribution to ε(ky) eventually changes sign3 (Fig. 1b, bottom right 
panel). The resulting softening of ε(ky) is counterbalanced by the 
contributions of the repulsive contact interaction, and of the kinetic 
energy, which ultimately dominates at very large ky. For strong 
enough DDI, this competition gives rise to a roton minimum in 
ε(ky), occurring at a momentum ky =  krot set by the geometrical scal-
ing ~ ∕ ℓk 1 zrot  (see below and, for example, refs 3,8,9).

Similar to the helium case, the roton energy gap, Δ  =  ε(krot), 
depends on the density and on the strength of the interactions. In 
ultracold gases, both quantities can be controlled. In particular, 
the scattering length as, setting the strength of the contact interac-
tion, can be tuned using Feshbach resonances12. As as is reduced,  
Δ  decreases, vanishes and eventually becomes imaginary (Fig. 1b). 
In this last case, the system undergoes a roton instability and the pop-
ulation at ky =  0 is transferred to ± krot at an exponential rate5,6. The 
population of the roton mode is then readily visible in the momen-
tum distribution of the gas (Fig. 1c,d). In the extensively studied 
pancake geometries, the roton population in k-space spreads over a 
ring of radius k =  krot because of the radial symmetry of the confine-
ment (Fig. 1d). Such a spread can be avoided using a cigar geom-
etry. Here, the roton population focuses in two prominent peaks at  
ky =  ± krot, enhancing the visibility of the effect (Fig. 1c).

We explore the above-described physics using strongly mag-
netic 166Er atoms. The experiment starts with a stable dBEC in a  

cigar-shaped harmonic trap of frequencies νx,y,z, elongated along 
the y axis. The trap aspect ratio, λ =  νz/νy, can be tuned from about 
4 to 30, corresponding to νz ranging from 150 to 800 Hz, whereas 
νy and νz/νx are kept constant at about 35 Hz and 1.6, respectively 
(Methods). An external homogeneous magnetic field, B, fixes the 
dipole orientation (magnetization) with respect to the trap axes 
and sets the values of as through a magnetic Feshbach resonance, 
centred close to B =  0 G. In previous experiments, we precisely 
calibrated the B-to-as conversion for this resonance25. The BEC is 
prepared at =a a61s

i
0 (B =  0.4 G) with transverse (z) magnetization. 

The characteristic dipolar length, defined as μ μ π= ∕ ℏa m 12dd 0 m
2 2,  

is 65.5a0, where m is the mass and μm is the magnetic moment of 
the atoms, ħ =  h/2π  is the reduced Planck constant, μ0 is the vacuum 
permeability and a0 is the Bohr radius.

To excite the roton mode, we quench as to a desired lower value, 
as

f , and shortly hold the atoms in the trap for a time th. We measure 
that as converges to its set value with a characteristic time constant 
of 1 ms during th. We then release the atoms from the trap, change 
as back close to its initial value and let the cloud expand for 30 ms. 
We probe the momentum distribution ∼n k k( , )x y  by performing  
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Fig. 1 | Roton mode in a dBeC. a, An axially elongated geometry with 
dipoles oriented transversely. b, Real (solid lines) and imaginary (norm of 
the dotted line) parts of the dispersion relation of a dBEC in the geometry 
in a, showing the emergence of a roton minimum for decreasing as 
(dashed arrow). The DDI changes from repulsive (blue) to attractive (red) 
depending on the dipole alignment (inset). The bottom panels show the 
dipole alignment (colour code as in the inset) associated with small-ky 
(left panel) and large-ky (right panel) density modulations, respectively. 
c,d, Distributions on the kxky plane associated with the roton population in 
cigar (a) or pancake (d) geometries with an identical roton population and 
colour scale.
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Fig. 2 | Observed roton peaks and characteristic scalings. a–c, The top 
panels show ∼n k k( , )x y  obtained by averaging 15–25 absorption images 
for (νz, λ) =  (456 Hz,14.4), th =  3 ms and as =  54a0 (a), as =  44a0 (b) and 
as =  37a0 (c). The bottom panels show the corresponding cuts at kx ≈  0 
(dots) and their fits to three-Gauss distributions (lines), from which 
we extract krot and A*. d, Measured krot depending on ∕ ℓ1 z at as ≲   *as  for 
νy ≈  35 Hz (circles) and νy =  17(1) Hz (triangle). e, krot depending on as for  
(νz, λ) =  (149 Hz, 4.3) (circles). In d,e, the error bars show the 95% 
confidence interval of the three-Gauss fits (see the bottom panels in a–c). 
The squares (diamonds) show predictions from the SSM (NS) in their 
range of validity (Methods). The lines are guides to the eye.
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standard resonant absorption imaging on the expanded cloud 
(Methods). The measurement is then repeated at various values of 
as <  add in a fixed trap geometry. The momentum distribution shows 
a striking behaviour (Fig. 2). For large enough as, ñ k k( , )x y  shows a 
single narrow peak with an inverted aspect ratio compared to the 
trapped gas, typical of a stable BEC12 (Fig. 2a, top). We define the 
centre of the distribution as the origin of k. In contrast, when fur-
ther decreasing as below a critical value a *s , we observe a sudden 
appearance of two symmetric finite-momentum peaks, of similar 
shape and located at ky =  ± krot (Fig. 2b,c, top panels). By repeating 
the experiment several times, we observe that the peaks consistently 
appear at the same locations, and they are visible in the averaged 
distributions. To quantitatively investigate the peak structures, we 
fit a sum of three Gaussian distributions to the central cuts of the 
average ∼n k k( , )x y  (Fig. 2a–c, bottom panels). From the fit, we extract 
the central momentum, krot, and the amplitude, A*, of the side peaks.

A major fingerprint of the roton mode in dBECs is its geometrical 
nature, leading to a universal scaling ~ ∕ ℓk 1 zrot  (see, for example, 
refs 3,4,8,9). In addition, the dependency of krot on as close to the insta-
bility is expected to be mild as krot remains mainly set by its geomet-
rical nature3,8. We investigate both dependencies in the experiment. 
In a first set of experiments, we repeat the quench measurements 
for various trap parameters and extract krot. We clearly observe the 
expected geometrical scaling. krot shows a marked increase with 

π ν∕ ℓ = ∕m h1 2z z , matching well with a linear progression with 
a slope of 1.61(4) (Fig. 2d). Note that no dependence of krot on νy is 
observed. In a second set of experiments, we fix the trap geometry 
and explore the dependence of krot on as. We observe that, within 
our experimental uncertainty, krot stays constant when decreasing 
as (Fig. 2e). This behaviour contrasts with the one expected for  
a phonon-driven modulation instability that exhibits a strong  
as-dependence27.

To gain a deeper understanding of the roton excitations in our 
system and its dynamical population, we develop both an ana-
lytical model and full numerical simulations (NSs) and compare 
the findings with our experimental data. Our analytical model 
starts by calculating the roton spectrum of the stationary BEC, 
generalizing the results of ref. 3 to a non-radially symmetric con-
figuration. Since the roton wavelength is much smaller than the 
extension of our three-dimensional (3D) BEC along y, this mode 
can be evaluated using a local density approximation in y. Hence, 
for our model, we consider a dBEC homogeneous along y, of axial 
density n0, harmonically confined along x and z. To analytically 
evaluate the roton spectrum, we approximate the BEC wavefunc-
tion using the Thomas–Fermi (TF) approximation. For dominant 
DDI, εdd =  add/as ≥  1, we find that ε(ky) indeed rotonizes (Methods). 
In the vicinity of the roton minimum and for εdd ~ 1, the computed 
dispersion acquires a gapped quadratic form similar to that of 
helium rotons:

ε Δ≃ +
ℏ ℏ −k

k
m m

k k( )
2

2
( ) (1)y y

2 2
2

rot
2 2

rot
2

The roton momentum reads as Δ= − ∕ℏ∕k m E2 ( )rot 0
2 2 1 4 ,  

where Δ = −E E0
2

I
2 , EI =  2gn0(εdd −  1)/3, g =  4π ħ2as/m and 

ε= +ℏ − −E g n X Z2 ( )
m0

2
dd 0 2

2 22
. The TF radii X,Z satisfy X2,Z2 ∝  gn0, so 

that E0 ∝  hνz, with a scale set by εdd and νz/νx but independent of gn0 
(ref. 15). Close to the instability (Δ ≃ 0), the roton momentum thus 
follows a simple geometrical scaling, κ= ∕ ℓk zrot  with the geometri-
cal factor κ depending on νz/νx alone. For completeness, we have also 
performed full 3D numerical calculations of the static Bogoliubov 
spectrum of a finite trapped dBEC, confirming the existence and 
scaling of the roton mode (Supplementary Information).
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The above stationary description accounts for the existence of 
the roton mode in the cigar geometry used in experiments, and pre-
dicts the scaling of krot and Δ with the system parameters. However, 
the quench of as introduces dynamics, which is crucial to quantita-
tively reproduce the experimental observations. The reduction of as 
decreases the contact interaction and additionally induces a compres-
sion of the cloud. This yields a dynamical modification of the local 
roton dispersion relation, and the roton may be destabilized during 
the evolution. This dynamical destabilization is well accounted for 
by a self-similar model (SSM) describing the evolution of the cloud 
shape after the quench12. In particular, we consider a 3D harmonic 
confinement, and, starting from the stationary TF profile at as

i, we 
evaluate the evolution of the cloud along the change of as assum-
ing that the TF shape is maintained but with time-dependent TF 
radii (Methods). We then estimate the local (along y) instantaneous 
roton spectrum ε(ky, y,th) using a local density approximation, that 
is, evaluating equation (1) with the experimentally calibrated as(th), 
and the n0(y, th), X(y,th) and Z(y,th) estimated from the 3D profile. 
We indeed find that the roton gap decreases and eventually turns 
imaginary (Δ(th)2 <  0) (Fig. 3a). When this occurs the population at 
ky ≈  krot exponentially grows with an instantaneous local rate 2Im[
ε(ky,y,th)]/ħ, with Im[.] indicating the imaginary part, giving rise 
to two symmetric side peaks in the axial momentum distribution 

∫ ∫ ε∝∼ ( )n k t k y t t y( , ) exp 2 Im[ ( , , )]d dy
t

y1 h 0
h  (Fig. 3b) (Methods). 

The centre of the peaks, ± krot(th), also evolves with th but quickly 

converges after a few milliseconds to its final value, krot (Fig. 3c).  
The measured krot and the calculated values from our parameter-
free theory are in remarkable agreement (Figs. 2d,e and 3c).

Our SSM quantitatively explains the experimental observations 
and provides us with a physical understanding. For completeness, 
we perform NSs of the system dynamics. We calculate the time 
evolution of the generalized non-local Gross–Pitaevskii equation 
(NLGPE), which accounts also for quantum fluctuations, three-
body loss processes and finite temperature, not included in the SSM 
(Supplementary Information). The first two contributions limit the 
peak density of the atomic cloud and stabilize the dBEC against col-
lapse4–6,24,25, whereas the last term thermally seeds the initial roton 
mode population. The NSs confirm both the SSM results and the 
experimental observations. Indeed, the calculations show that, a few 
milliseconds after the quench, the system develops roton peaks in 
momentum space (Fig. 3d) and short-wavelength density modula-
tions at the centre of the BEC (Fig. 3e), showing the predicted roton 
confinement9. The extracted value of krot and its geometrical scaling 
are in very good quantitative agreement with both the experimental 
data and the SSM calculations (Figs. 2d,e and 3c). Interestingly, the 
time scales for the emergence of roton peaks in the NS are a few mil-
liseconds longer than those observed in the experiment. The origin 
of this time shift remains an open question, whose answer could, for 
example, require a refinement of current models of quantum fluc-
tuations. However, despite this delay, the growth rate of the roton 
population in the NS matches both the experimental observations 
and the SSM predictions in the early dynamics (Fig. 3b).

In the experiment, we study the time evolution of the roton mode 
in a fixed geometry (νz, λ). In a first set of measurements, we fix as

f  
and follow the dynamics by recording the momentum distribution 
at various th. We observe that krot does not change significantly while 
the roton population initially grows, in excellent agreement with the 
theories (Fig. 3b,c). The growth rate is a particularly relevant quan-
tity as it is directly connected to the imaginary excitation energy in 
the Bogoliubov description (for the roton, its gap), as revealed by 
our theory. In a second set of experiments, we thus systematically 
study the growth rate of the roton population for various as

f  (Fig. 4).  
Our data show that the roton mode begins to become populated 
from a critical value of the scattering length, a *s . For >a a52s

f
0, we do 

not observe the roton peaks at any time. For as
f  ≲  52a0, after a time 

delay, A* undergoes an abrupt increase. At longer time, A* then satu-
rates and eventually slowly decreases while atoms are coincidentally 
lost (Fig. 4a). By further lowering as

f , the roton population exhibits 
a faster growth rate and shorter time delay.

From the growth rate of the roton population, we now extract an 
overall roton gap ̄Δ a( )s  (Methods). In brief, the dynamical varia-
tion of the gap is determined by the leading time dependence of 
as and ̄∫ Δ∝ ∕ℏ( )A a t t a t( , ) exp 2 d Im[ ( ( ))]*

t
s
f

h 0 s
h . To investigate 

the scaling ̄Δ a( )s , we first consider the analytical expression of the 
elementary local roton gap, Δ as a function of as (see equation (1)). 
Developing Δ in the vicinity of =a a *s s  yields Δ ∝ − ∕a a a( ) ( )*s s s

1 2. 
Here we confirm this scaling by considering the generic power-law 
dependence ̄Δ δ∕ℏ = Γa aIm[ ( )] ( )s s  with δ = ≤

β−( )a a a( ) ( )*a a
as s s

*s s

0
. 

Consequently, A* grows as ∫Γ δ Γ=( )a t t Texp 2 ( ( ))d exp(2 )
t

0 s h
h . By 

rescaling the time variable as ∫ δ→ =t T a t t( ( ))d
t

h h 0 s
h , we determine 

the parameters a *s  and β such that all of the curves of Fig. 4a fall 
on top of each other (Fig. 4b). The best overlap of the experimen-
tal curves is found for = .a a53 0(4)*s 0 and β =  0.55(8). We then per-
form an exponential fit to all of the rescaled data for Th <  3 ms and 
extract Γ =  465(83) s−1. The same analysis, applied to the calculated 
population growth from the SSM for different as

f , gives ≃ .a a52 8*s 0,  
β ≃ .0 55 and Γ ≃ −472s 1, which are very close to the experimental 
values. This time-resolved study allows us to readily extract the 
imaginary roton gap, ̄ΔIm[ ], from both the experiment and the 
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Fig. 4 | Population growth and roton gap. Results for (νz, λ) =  (149 Hz, 
4.3). a,b, A* depending on th and on the rescaled time Th, after quenching 
to =a a39s

f
0, a44 0, a47 0, a50 0 and a52 0. The shaded areas show the 

95% confidence interval from the three-Gauss fit. The black line shows 
an exponential fit to the full data set with Th <  3 ms. c, Extracted Δ ̄Im[ ] 
depending on as and on th (inset) from the experiments (dashed line with 
pentagons) with the propagated errors (shaded area) from the time-
rescaling analysis and exponential fit (see b), and from the SSM (solid line). 
The dotted line and the corresponding shaded area show the experimental 

*as  and the confidence interval of its fit. The inset shows the same 
configuration as Fig. 3 ( =a a50s

f
0).
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SSM, as a function of as and th (Fig. 4c). Our observations show the 
softening of the roton mode at =a a *s s  and the expected increase of 

̄ΔIm[ ] for <a a *s s , nicely grasping the dynamics during the growth 
of the roton population (inset of Fig. 4c). The observed behaviour 
shows again a remarkable agreement with the theory predictions.

To conclude, our work demonstrates the power of weakly inter-
acting dipolar quantum gases to access the regime of large-momen-
tum, yet low-energy, excitations dressed by interactions. This newly 
accessible regime, which is largely unexplored in ultracold gases, 
raises fundamental questions and opens novel directions. Future 
key developments are to study the impact of such low-lying exci-
tations on the superfluid behaviour of a dBEC8–10,12, the interplay 
between phononic and rotonic modes in the stability diagram of 
the quantum gas4,7 and the possible role of roton excitations as the 
triggering mechanism of the recently observed instability leading 
to the formation of metastable droplet arrays in elongated traps24,28. 
Of particular interest is the prospect of creating a supersolid and 
striped ground states in dBECs13,28. Indeed, the short-wavelength 
density modulation tied to the roton softening together with the 
quantum stabilization mechanism can favour the formation of such 
an exotic phase of matter, in which crystalline order coexists with 
phase coherence. In contrast to recent experiments29,30, where the 
density modulation is imposed by external fields yielding a super-
solid-like arrangement of infinite stiffness, a dipolar supersolid 
would be compressible. Hence, experiments on dBECs provide the 
exciting opportunity to unveil similarities and differences among 
complementary approaches to supersolidity.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0054-7.
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Methods
Trapping geometries. The BEC is confined in a harmonic trapping potential 

π ν ν ν= + +V m x y zr( ) 2 ( )x y z
2 2 2 2 2 2 2 , characterized by the frequencies (νx,νy,νz). 

The trap results from the crossing of two red-detuned laser beams of 1,064 nm 
wavelength at their respective foci. One beam, called vODTb, propagates nearly 
collinear to the z axis and the other, denoted hODTb, propagates along the y axis. 
By adjusting independently the parameters of the vODTb and hODTb, we can 
widely and dynamically control the geometry of the trap (see Supplementary 
Information). In particular, νy is essentially set by the vODTb power while νz (and 
νx) is set independently by that of the hODTb. This yields an easy tuning of the trap 
aspect ratio, λ =  νz/νy, relevant for our cigar-like geometry.

After reaching condensation (see Supplementary Information), we modify the 
beam parameters to shape the trap into an axially elongated configuration, favourable 
for observing the roton physics ν ν ν≪( , )y x z . The trapping geometries probed in the 
experiments, whose (λ,νx,νy,νz) are reported in Supplementary Table 1, are achieved 
by changing the hODTb power with the vODTb power set to 7 W, so that νy and νz/νx 
are kept roughly constant. Only the green triangle in Fig. 2d is obtained in a distinct 
configuration, with a vODTb power of 2 W, leading to (νx,νy,νz) =  (156, 17, 198)Hz 
and λ =  11.6. The (λ,νx,νy,νz) are experimentally calibrated via exciting and probing the 
centre-of-mass oscillation of thermal samples. We note that the final atom number 
N, BEC fraction f and temperature T after the shaping procedure depend on the final 
configurations, as detailed in Supplementary Table 1.

Quench of the scattering length as. To control as, we use a magnetic Feshbach 
resonance between 166Er atoms in their absolute ground state that is centred around 
B =  0 G (ref. 31). The B-to-as conversion has previously been precisely measured 
via lattice spectroscopy, as reported in ref. 25. Errors on as, taking into account 
statistical uncertainties of the conversion and effects of magnetic field fluctuations 
(for example, from stray fields), are of 3–5a0 for the relevant as range 27–67a0 in 
this work. After the BEC preparation and to investigate the roton physics via an 
interaction quench, we suddenly change the magnetic field set value, Bset, twice. 
First, we perform the quench itself and abruptly change Bset from 0.4 G ( =a a61s

i
0)  

to the desired lower value (corresponding to as
f ) at the beginning of the hold in 

the trap (th =  0 ms). Second, we prepare the time-of-flight (TOF) expansion and 
imaging conditions (see the section entitled Imaging procedure) and abruptly 
change Bset from the quenched value back to 0.3 G (as =  57a0) at the beginning 
of the TOF expansion (tf =  0 ms). Due to delays in the experimental set-up (for 
example, coming from eddy currents in our main chamber), the actual B value 
felt by the atoms responds to a change of Bset via B(t) =  Bset(t) +  τdB/dt (ref. 32). By 
performing pulsed-radiofrequency spectroscopy measurements (pulse duration 
100 μ s) on a BEC after changing Bset (from 0.4 to 0.2 G), we verify this law and 
extract a time constant τ =  0.98(5) ms. Hence, as is also evolving during th and tf 
on a similar timescale. This effect is fully accounted for in the experiments and 
simulations, and we report the roton properties as a function of the effective value 
of as at th. We use th ranging from 2 to 7 ms. The lower bound on th comes from the 
time needed for as to effectively reach the regime of interest. We then consider the 
initial evolution for which ν τ∕ ∕ ≪t t, 1yh h coll , with 1/τcoll being the characteristic 
collision rate. We estimate that τcoll ranges typically from 40 to 90 ms in the initial 
BECs of Supplementary Table 1 at =a a61s

i
0. Experimentally, we observe that the 

roton, if it ever develops, has developed within the considered range of th.

Imaging procedure. In our experiments, we employ TOF expansion measurements, 
accessing the momentum distribution of the gas12, to probe the roton mode 
population. We let the gas expand freely for tf =  30 ms, which translates the spatial 
imaging resolution (~ 3.7 μ m) into a momentum resolution of ~0.32 μ m−1 while our 
typical roton momentum verifies krot ≳  2 μ m−1. After TOF expansion, we record 2D 
absorption pictures of the cloud by means of standard resonant absorption imaging 
on the atomic transition at 401 nm. The imaging beam propagates nearly vertically, 
with a remaining angle of ~15° compared to the z axis within the xz plane. Thus, the 
TOF images essentially probe the spatial density distribution nTOF(x,y,tf) in the xy 
plane. When releasing the cloud (tf =  0 ms), we change B back to B =  0.3 G (see the 
section entitled Quench of the scattering length as). This change enables constant 
and optimal imaging conditions with a fixed probing procedure (that is, a maximal 
absorption cross-section). In addition, the associated increase of as to 57a0 allows 
us to minimize the time during which the evolution happens in the small-as regime 
where the roton physics develops, such that we effectively probe only the short-time 
evolution in this respect. In this work, we use the simple mapping:

=
ℏ ℏ ℏ



















∼n k k
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m
n

k t
m

k t
m
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x yf

2

TOF
f f

f

which neglects the initial size of the cloud in the trap and the effect of interparticle 
interactions during the free expansion. Using real-time simulations (see 
Supplementary Information), we simulate the experimental sequence and are able to 
compute both the real momentum distribution from the in-trap wavefunction and 
the spatial TOF distribution 30 ms after switching off the trap. Using the mapping of 
equation (2) and our experimental parameters, the two calculated distributions are 
very similar, and, in particular, the two extracted momenta associated with the roton 

signal agree within 5%. This confirms that the interparticle interactions play little 
role during the expansion and justifies the use of equation (2).

Fit procedure for the TOF images. For each data point in Figs. 2–4, we record 
between 12 and 25 TOF images. By fitting a 2D Gaussian distribution to the 
individual images, we extract their origin (kx, ky) =  (0, 0) and recentre each 
image. From the recentred images, we compute the averaged ∼n k k( , )x y , from 
which we characterize the linear roton developing along ky. To do so, we extract 
a 1D profile ∼n k( )y1  by averaging ∼n k k( , )x y  over kx within ∣ ∣ ≤ = .k k 3 5x m  μ m−1: 

∫ ∫= ∕
− −

∼ ∼n k n k k k k( ) ( , )d dy k

k
x y x k

k
x1

m

m

m

m . To quantitatively analyse the observed roton 
peaks, we fit a sum of three Gaussian distributions to ∼n k( )y1 . One Gaussian accounts 
for the central peak and its centre is constrained to k0 ~ 0. Its amplitude is denoted 
A0. The two other Gaussians are symmetrically located at ±k k*y0 , and we constrain 
their sizes and amplitudes to be identical, respectively equal to σ* and A*. We focus 
on the roton side peaks by constraining > .k* 0 5y  μ m−1 and σ* <  3 μ m−1 (peak at finite 
momentum of moderate extension compared to the overall distribution).

To analyse the onset and evolution of the roton population (see Fig. 4), we 
perform a second run of the fitting procedure, in which we constrain the value 
of k*y  more strictly. The interval of allowed values is defined for each trapping 
geometry on the basis of the results of the first run of the fitting procedure. We 
use the results of the (as

f , th) configurations where the peaks are clearly visible and 
we set the allowed k*y  range to that covered by the 95% confidence intervals of the 
first-fitted k*y  in these configurations. This constraint enables the fitting procedure 
to estimate the residual background population on the relevant momentum range 
for the roton physics, even for as >  a*s (see, for example, Fig. 4a).

Time-rescaling analysis and roton gap estimate. In Fig. 4a,b, we systematically 
analyse the time evolution of the roton population for various as

f  and link it to the 
roton spectrum in a quench picture. The roton population is embodied by the 
amplitude A* of the three-Gaussian fit (see the section entitled Fit procedure for 
the TOF images), which measures the density ∼n k( )1 rot . A* is observed to initially 
increase if <a a*s

f
s , its growth rate increases for decreasing as

f  and a*s  depends on 
the trap geometry.

If dynamically unstable, the krot component is expected to grow exponentially 
with an instantaneous rate 2Im[ε(krot, th)]/ħ. We hence expect an initial growth of 
A* of the form:

̄∫ Δ∝ ∕ℏ






A a t t a t*( , ) exp 2 d Im[ ( , )] (3)
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s
f

h
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s
fh

where ̄Δ a t( , )s
f

h  is the instantaneous value of the overall roton gap, 
corresponding to an average over the cloud, after quenching as to as

f . Our results 
show that the most relevant effect of the quench on the roton spectrum is given 
by the reduction of as itself. Hence, the time dependence of ̄Δ  is determined by 
as(t) and, by monitoring A a t*( , )s

f
h , one can readily extract the scattering-length-

dependent gap ̄Δ a( )s , ̄ ̄Δ Δ=a t a t( , ) ( ( ))s
f

s . To investigate the scaling ̄Δ a( )s , we 
first consider the simpler case of the static and local roton gap Δ. From equation 
(1) of the main text characterizing this elementary gap, assuming n0, X and Z 
fixed, and using the fact that Δ = =a a( *) 0s s , one can easily obtain that for as in 
the vicinity of a*s , Δ ∝ − ∕a a a( ) ( * )s s s

1 2. Here we verify this scaling for the global 
and dynamical quantity ̄Δ a( )s , considering the generic power-law dependence 

Im[Δ(as)]/ħ =  Γδ(as) with δ = ≤
β

−( )a a t a( ) ( ( ) *)*a a
as s s

s s
0

, in which the parameters Γ , 
a*s  and β mainly depend on the trap geometry.

Our full set of data A a t*( , )s
f

h  for the geometry (νz, λ) =  (149 Hz, 4.3) enables us 
to assess this scaling. Indeed, equation (3) then reads:

∫Γ δ∝






A a t a t t*( , ) exp 2 ( ( ))d (4)

t

s
f

h
0

s
h

This defines a time rescaling ∫ δ→ =t T a t t( ( ))d
t

h h 0 s
h  along which all our 

experimental data A*(as,th) should collapse in a unique curve, marked by an initial 
exponential growth of rate 2Γ. The relevant values of a*s , β and Γ are the ones that 
result in the best overlap of the data for the initial growth of A* (minimal spread in Th).

To determine a*s  and β, we then plot our full data set as a function of Th for 
various trial values of these parameters and evaluate the relevance of the trial 
couple βa( *, )s . Precisely, we assess the dispersion in Th of the full data set for 
a few fixed =A A* *

i . We use a panel of 10 values of A*
i  within [80, 200] μ m2, 

corresponding to the range of the initial growth of A* for the geometry of Fig. 4a,b.  
We interpolate the experimental data A*(Th) for each as

f  using piecewise cubic 
polynomial interpolation, and extract the corresponding set of T i

h at which 
=A T A*( ) *

i i
h . For each i, we evaluate the spread of the T a( )i

h s
f  by two complementary 

quantities: the square root of their variance and the discrepancy between the 
maximal and minimal value of the set. We finally estimate the accuracy of a unified 
dependence A*(Th) for a given ( βa*,s ) via the geometrical average of these two 
complementary quantities for all of the ten A*

i  values. We fit the relevant a*s  and 
β by minimizing this averaged spread. For the experimental data of Fig. 4a,b, this 
results in = .a a* 53 0(4)s 0 and β =  0.55(8).
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Using these values of a*s  and β, we observe that the initial growth of A* extends 
for Th ≤  3 ms (before saturating and decreasing for longer Th). We estimate Γ by 
performing an exponential fit on the full set of data A*(Th) with Th ≤  3 ms. This gives 
Γ =  465(83) s−1. Note that Fig. 4a,b show only 5 values of as

f  while the reported analysis 
considers all available experimental data (that is, 11 values between 31a0 and 52a0).

From the formula with the estimated a*s , β and Γ, we can then compute the 
global roton gap ̄Δ . The extracted value is meaningful only for ̄Δ < 02 . For the 
experiments, we also restrict its relevance to Th ≤  3 ms so that, for example, in the 
inset of Fig. 4c, ̄ΔIm[ ] is shown up to th =  4 ms, after which the roton population is 
observed to deviate from the exponential growth picture (see Figs. 3b and 4a). Note 
that the ̄ΔIm[ ] estimates at the different th are not independent.

In Fig. 2, we report on the roton momentum as a function of the system 
characteristics (as and ℓz). Here we estimate krot from a th value that is individually 
optimized for each as and ℓz investigated (largest visibility). We point out that the 
selected th corresponds, in the A* dynamics, to the late stage of the exponential 
growth, close to the maximum (that is, Th ~ 3 ms). Here, the atom loss remains at 
the level of a few per cent.

In Fig. 2d, we show the value of krot at the onset of the population of the roton 
mode (that is, at =a a*s s ). We estimate a*s  for each trap geometry by analysing the 
evolution of the roton population with as. We employ a simplified approach with 
respect to the one in Fig. 4 (see Supplementary Information), which we estimate 
to lead to a maximum underestimate for a*s  of about 1.5a0, lying within our 
experimental uncertainty on as (see Supplementary Table 2).

Analytical dispersion relation for an infinite axially elongated geometry. 
Equation (1) in the main text results from a similar procedure to that used in ref. 3 
for rotons in infinite pancake traps. We consider a dBEC homogeneous along y but 
harmonically confined with frequencies νx and νz along x and z. For sufficiently 
strong interactions, the BEC is in the TF regime on the xz plane, in which the BEC 
wavefunction acquires the form ψ ρ ρ= n( ) ( )0 , with n(ρ) =  n0(1 −  (x/X)2 −  (z/Z)2), 
where X and Z are the TF radii, and ρ =  (x,z). The calculation of n0, X and Z is 
detailed at the end of this section.

Due to the axial homogeneity, the elementary excitations of the Bogoliubov–
de Gennes spectrum have a defined axial momentum ky, and take the form 
δψ ρ ρ= −ε ε− ∕ℏ − + ∕ℏr t u v( , ) ( )e ( )eik y i t ik y i ty y , where u and v denote the amplitudes 
of the spatial modes oscillating in time with characteristic frequency ε/ħ (see 
Supplementary Information for more details). We consider the standard NLGPE 
without beyond mean-field correction and three-body losses, and insert the 
perturbed solution ψ(r,t) =  (ψ0(ρ) +  ηδψ(r,t))e−iμt/ħ, where μ is the chemical potential 
associated with ψ0 and η ≪ 1. After linearization, we obtain the Bogoliubov–de 
Gennes equations for f±(ρ) =  u(ρ) ±  v(ρ):

ε ρ ρ=− +f H f( ) ( ) (5)kin

ε ρ ρ ρ= ++ − −f H f H f( ) ( ) [ ( )] (6)kin int

where

ρ
ψ

ψ
ρ= ℏ −∇ + +

∇
± ±












H f
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2
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2
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2
0

0
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where δ= + ε
π
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U gr r( ) ( )

r
3
4

1 3cosdd
2

3  is the binary interaction potential for two 

particles separated by r including both contact and dipolar interactions and 
= π ℏg a

m
4 2

s  (see Supplementary Information). θ is the angle between r and the 
magnetization axis (z).

Employing f+ (ρ) =  W(ρ)ψ0(ρ), and for ≫ ∕ ∕k X Z1 , 1y , we obtain the 
following equation for the function W(ρ):
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where = ∕∼x x X , = ∕∼z z Z and = ℏ ∕E k k m( ) 2y y
2 2 . For εdd =  1, the last term of 

equation (9) vanishes. In that case, the lowest-energy solution is given by W =  1, 
whose eigen energy builds, as a function of ky, the dispersion ε0(ky) with

ε = +k E k E( ) ( ) (10)y y0
2 2

0
2

with ε= +ℏ ( )E g n2
m X Z0

2
dd 02

1 12

2 2 . In the vicinity of εdd =  1, the effect of the last term in 
equation (9) may be evaluated perturbatively, resulting in the dispersion

ε ε≃ −k k E E k( ) ( ) 2 ( ) (11)y y y
2

0
2

I

with

ε= −E gn2
3

( 1)dI 0 d

This expression for the dispersion presents a roton minimum for εdd >  1 at 
=

ℏ
k mE2rot

1
I . Expanding equation (11) in the vicinity of the roton minimum, 

ε ε≃ +
ε
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k k( ) ( )y ot

k

k
k k

2
r

2 1
2

d ( )

d
y

y
y

2 2

2

rot

, we obtain equation (1) of the main text, with  

Δ ε= = −k E E( )rot 0
2

I
2 . At the instability, Δ =  0, and =

ℏ
k mE2rot

1
0 .

Employing a similar procedure as in ref. 15, we obtain that the BEC aspect ratio 
χ =  Z/X fulfils:

χ
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ε χ ε χ

λ
− + +

+ + −
= ⊥

















(1 )(1 ) 3
(1 2 )(1 ) 3

(12)2 dd
2

dd

dd
2

dd
2

2

with λ⊥ =  νx/νz and

π ν
ε

ε χ
χ

= + −
+

















Z
gn

m2
(1 2 )

3
(1 )

(13)
z

2 0
2 2 dd

dd
2

2

These two equations fully determine the TF solution for the given εdd, gn0 and λ⊥. 
By inserting the expressions of X2 and Z2 into E0, we find for ε ≃ 1dd :
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whereas χ simplifies to χ λ λ= + + ∕⊥ ⊥(1 1 1 ) . As a result, at the instability, ℓk zrot  
depends only on the transverse confinement aspect ratio λ⊥, giving the geometrical 
factor κ:

κ χ λ
χ

= ℓ = + +
+
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∕
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1 4
2

1 4

Self-similar model and instantaneous roton spectrum. The dynamics of the 
condensate during and after the quench is crucial for the understanding of the 
resulting momentum peaks and their direct relation to the growth of roton 
excitations. Due to its large characteristic momentum, the roton spectrum may 
be evaluated at any time using local density approximation. On the other hand, 
the evolution of the local density is determined by the global dynamics of the 
condensate induced by the quench. Hence, interestingly, the analysis of the effect of 
the quench on the roton spectrum may be performed by combining a self-similar 
theory of the global dynamics33, describing the evolution at low ky, and the model 
of the roton spectrum developed in the section entitled Analytical dispersion 
relation for an infinite axially elongated geometry, accounting for the high-ky 
region of interest. We note that this analysis approximates the real-time evolution 
provided by the standard NLGPE12,34,35. This treatment is valid for moderate-
enough quenches so that each of the descriptions applies (see below for an in-depth 
discussion) and as long as the high-k mode population only minimally impact the 
BEC dynamics, that is, for short-enough timescales.

Here, we assume that the condensate preserves its TF shape during the 
evolution:

= − − −











































n t n t x
X t

y
Y t

z
Z t

r( , ) ( ) 1
( ) ( ) ( )

(16)0

2 2 2

where X(t), Y(t) and Z(t) are the rescaled TF radii. Their evolution after the quench 
can be deduced from solving the hydrodynamics equations (see Supplementary 
Information). Prior to the quench of as, the stationary TF solution is obtained 
from the self-consistent equations deduced from the hydrodynamics equations by 
cancelling all time derivatives. Solving these equations and using normalization 
provides X(0), Y(0), Z(0) and n(0) for known atom number N and trap frequencies 
νx,y,z. We use this stationary solution as the initial condition at the start of the 
quench (t =  0), and solve the system of differential equations resulting from the 
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hydrodynamics evolution to obtain the rescaled radii. An example for the relevant 
parameters of Fig. 3 is shown in Supplementary Fig. 3.

For a given position y, we then evaluate the local TF profile: 
n(r,t) =  n0(y,t)[1 −  (x/X(y,t))2 −  (z/Z(y,t))2], where n0(y,t) =  n0(t)[1 −  (y/Y(t))2], 
X(y,t) =  X(t)[1 −  (y/Y(t))2]1/2 and Z(y,t) =  Z(t)[1 −  (y/Y(t))2]1/2, with 
n0(t) =  n0(0)X(0)Y(0)Z(0)/X(t)Y(t)Z(t). We may then employ a local density 
approximation and evaluate the local (in y) instantaneous roton spectrum using 
the results of the section entitled Analytical dispersion relation for an infinite 
axially elongated geometry:

ε

ν
π

π

≃ − −

+ +












k y t

h l

k
n y t a a t k

n y t a
X y t Z y t
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0 dd s
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0 dd 2 2

The roton population grows exponentially when the spectrum becomes imaginary, 
leading to the appearance of peaks at large momenta. From the local instantaneous 
roton spectrum, we may estimate the associated peak in the momentum 
distribution as

∫ ∫~ −ε′ ′











∼n k t y( , ) d e 1 (18)y
t k y t

1
2 d Im[ ( , , )]

t
y0

where we assume equal seeding for all unstable modes. We then evaluate the total 
population of the peak ∫= ∼N t k n k t*( ) d ( , )y y1 , as well as the roton momentum 

∫⟨ ⟩ =
∼

k k kd
*

y y
n k t

N t

( , )

( )
y1 .

The previously discussed SSM does not properly describe the evolution when 
the shrinking of the condensate, and hence the increase of its peak density, is too 
large. As the gas gets dense, quantum fluctuations, which are not considered in the 
SSM, introduce in our experiments an effective repulsion that crucially prevents large 
densities or condensate collapse (see Supplementary Information). This limits the use 
of the SSM to the vicinity of a*s . Moreover, for our tightest trap, the SSM results are 
also unreliable, since the theory predicts condensate collapse before the momentum 
peak develops. That said, as shown in the main text, the SSM provides not only a 
clear intuitive understanding of our measurements, but to a very large extent also 
a very good quantitative agreement with both our experimental results and our NS 
based on a generalized NLGPE, which is detailed in the Supplementary Information.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon  
reasonable request.
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A. Production of 166Er BECs.

We prepare a 166Er BEC similarly to Refs. [1, 2]. From a
narrow-line magneto-optical trap with 3× 107 166Er atoms,
automatically spin-polarized in their absolute lowest Zeeman
sub-level [3], at about 10µK, we directly load the atomic gas
in a crossed optical dipole trap (ODT) with an efficiency of
more than 30%. A uniform magnetic field, B, is permanently
applied along the vertical z axis, fixing the dipole orientation,
while its value is varied during the experimental sequence, to
tune as (see Method Quench of the scattering length as).
We achieve condensation by means of evaporative cooling in
the crossed ODT at B = 1.9G (as = 80(2)a0). During the
evaporation procedure, we first change the power and then the
ellipticity of one of the ODT beams (see Section B). The final
atom number, typically 105, and condensed fraction, typically
70%, are assessed by fitting the time-of-flight (ToF) absorp-
tion images of the gas to a bimodal distribution, sum of a TF
profile and a broad Gaussian background.

B. Details on the trapping geometries.

The harmonic potential V (r) = 2mπ2(ν2
x x2 + ν2

y y2 + ν2
z z2)

trapping the 166Er atoms results from the crossing of two
red-detuned laser beams of 1064nm wavelength at their re-
spective focii; the hODTb propagating along the y-axis and
the vODTb, propagating nearly collinear to the z-axis. The
vODTb has a maximum power of 7 W and an elliptical pro-
file with waists of 110 and 55 µm along x and y respectively.
The hODTb has a maximum power of 24 W, a vertical waist
wz = 18 µm, and a controllable horizontal waist, wx = λ ′wz.
The ellipticity λ ′ can be tuned from 1.57 to 15 by time averag-
ing the frequency of the first-order deflection of an Acousto-
Optic Modulator [4]. By adjusting independently λ ′ and the
powers of the vODTb and of the hODTb, we can control
the geometry of the trap. Precisely, νy is essentially set by
the vODTb power, νz by that of the hODTb, and νx is con-
trolled by both the power and ellipticity of the hODTb, with
νz/νx ≈ λ ′.

We use the tuning of the hODTb power and ellipticity to
perform evaporative cooling to quantum degeneracy (see Sec-
tion A). After reaching condensation, we again modify the
beam parameters to shape the trap into an axially elongated
configuration (νy � νx,νz). The trapping geometries probed
in the experiments, (λ ,νx,νy,νz), are reported in Supplemen-

tary Table 1. They are achieved by changing the hODTb
power with λ ′ = 1.57 and the vODTb power set to its max-
imum so that νy and νz/νx are kept roughly constant. Only
the green triangle in Fig. 2d is obtained in a distinct configu-
ration, with a vODTb power of 2W, leading to (νx,νy,νz) =
(156,17,198)Hz and λ = 11.6. The (λ ,νx,νy,νz) are exper-
imentally calibrated via exciting and probing the center-of-
mass oscillation of thermal samples. We note that the final
atom number N, BEC fraction f , and temperature T after the
shaping procedure depend on the final configurations, as de-
tailed in Supplementary Table 1. T is extracted from the evo-
lution with the ToF duration tf of the size of the background
Gaussian in the TF-plus-Gaussian bimodal fit to the corre-
sponding ToF images of the gas. The values of Nc = f N and
T are used for the initial states ψi of our real-time simulations
(see Section G).

Supplementary Table I — dBEC parameters for the exper-
imental measurements (Figs. 2-4). The typical statistical un-
certainties on νx and νz are below 1%, and can be up to 10%
for νy. The experimental repeatability results in 5-to-10%
shot-to-shot fluctuations of N, f and T .

λ νx (Hz ) νy (Hz ) νz (Hz ) N (104) f (%) T (nK)
4.3 114 35 149 9 66 45
4.9 154 40 195 10 65 50
10.2 183 30 306 11 62 104
14.3 267 32 456 8.6 50 150
21.3 357 30 638 8.4 36 179
29.7 432 26 771 7 20 171

C. a∗s for various trap geometries.

We estimate a∗s for each trap geometry of Fig. 2d by study-
ing the roton population as a function of as. When decreas-
ing as, the roton population and in particular its contrast
C = A∗/A0 (see Method Fit procedure for the ToF images)
exhibits a sharp increase from an essentially zero and flat con-
trast. We extract a∗,cs as the value of the scattering length
corresponding to the onset of the increase of the contrast for
th = 3ms; see Supplementary Fig. 1 and Supplementary Ta-
ble 2. This is a simplified approach with respect to the one in
Fig. 4 (see Method Time-rescaling analysis and roton gap
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estimate.), which we estimate to lead to a maximum under-
estimate for a∗s of about 1.5a0, which lies within our experi-
mental uncertainty on as.

Supplementary Table II — Roton softening threshold for
the geometries realized in the experiment (Table I), deduced
from the C fits for the experimental onset of the population
(a∗,cs ) and from imaginary time NS (a∗,st

s ). The fit uncertainties
on the experimental values are typically of 0.2a0, except for
the last trap it is of 0.8 a0.

λ νz (Hz ) a∗,cs (a0) a∗,st
s (a0)

4.3 149 51.4 50
10.2 306 50.2 46
14.3 456 49 43
21.3 638 47.7 39
29.7 771 45.2 30

35 40 45 50 55
0,0
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C
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Supplementary Figure 1 — Onset of the roton popula-
tion. Evolution of C with as at th = 3ms, in the geome-
tries (νz,λ ) = (149Hz,4.3) (green squares) and (νz,λ ) =
(456Hz,14.4) (blue circles). The error bars correspond to the
propagated errors from the 95% confidence interval on A∗,0
from the three-Gauss fit. We empirically fit a linear step func-
tion to identify a∗,cs (line).

D. Generalized Non-local Gross-Pitaevskii equation.

Our theory is based on an extended version of the non-linear
Gross-Pitaevskii Equation (NLGPE)

ih̄
∂ψ(r, t)

∂ t
=
(
− h̄2∇2

2m
+V (r)+

∫
dr′U(r− r′)n(r′)

+ ∆µ[n]− ih̄
L3

2
n2
)

ψ(r, t) (1)

≡
(

ĤGP[ψ]− ih̄
L3

2
n2
)

ψ(r, t), (2)

governing the evolution of a macroscopically occupied wave-
function ψ(r, t), with corresponding atomic density n(r, t) =
|ψ(r, t)|2 at position r and time t. The standard dipolar NL-
GPE includes the kinetic energy, external trap potential and
the mean-field effect of the interactions [5, 6]. These corre-
spond to the three first terms of Eq. (1), where the mean-field
interaction potential takes the form of a convolution of n with
the binary interaction potential

U(r) = g
(

δ (r)+
3εdd

4π
1−3cos2 θ
|r|3

)
, (3)

for two particles separated by r [6]. The first term corresponds
to contact interactions between the particles with strength
g = 4π h̄2as

m . The DDI gives rise to the second term, which
depends on both the distance and orientation (angle θ ) of
the vector r compared to the polarisation axis (z axis) of the
dipoles. Most properties of dBECs are well captured by this
standard NLGPE (mean-field) [5, 6].

Recent experimental and theoretical results, however, have
established the importance of accounting for quantum fluctu-
ations in dBECs [1, 7–10]. Their effect can be included in the
NLGPE in a mean field treatment through a Lee-Huang-Yang
correction to the chemical potential, ∆µ[n] = 32g(nas)

3/2(1+
3ε2

dd/2)/3
√

π , which is obtained under a local density approx-
imation [11, 12]. The accuracy of this mean field treatment
has been established, e.g., in Refs. [8–10], and has proven suc-
cesful in explaining recent experimental results [1, 7]. The fi-
nal nonlinear term in the extended NLGPE accounts for three-
body losses [13], with an experimentally determined loss pa-
rameter L3, which is dependent on as and typically of the order
L3 ' 10−41m6s−1, as reported in Ref. [1].

E. Bogoliubov-de Gennes spectrum.

Collective excitations of the dBEC are obtained by linearis-
ing the NLGPE (see Section D) around a stationary state
ψ0, which can be obtained by imaginary time propagation
(see Section G). We write ψ = e−iµt/h̄(ψ0 + η [ue−iεt/h̄ −
v∗e+iεt/h̄]), where µ is the chemical potential associated with
state ψ0, and u,v are spatial modes oscillating in time with
characteristic frequency ε/h̄ and η � 1 [14]. Inserting this
ansatz in the NLGPE, and retaining only terms up to linear
order in η we obtain the Bogoliubov-de Gennes (BdG) equa-
tions
(

ĤGP[ψ0]+ A −A
A −ĤGP[ψ0]−A

)(
u
v

)
= ε

(
u
v

)
, (4)

where the operator A, acting on a function f and evaluated at
point r, is defined as

(A f )(r) =
∫

dr′ψ0(r′)U(r− r′) f (r′)ψ0(r)

+
16√

π
ga3/2

s

(
1 +

3
2

ε2
dd

)
|ψ0(r)|3 f (r). (5)
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The above equations constitute an eigenvalue problem, which
we solve numerically using the Arnoldi method to obtain
eigenmodes (u,v) and corresponding excitation energies ε .
The equations presented here are a generalization of the BdG
equations for dipolar systems as derived in Ref. [14], to in-
clude the LHY correction accounting for quantum fluctua-
tions.

In order to depict the spectrum as a quasi-dispersion rela-
tion even in the presence of an axial confinement, we asso-
ciate to each elementary excitation an effective momentum
k(eff)

y = 〈k2
y〉1/2 [15]. The spectrum is discrete with phonon-

like collective modes at low k(eff)
y . For higher k(eff)

y , the spec-
trum flattens, but eventually bends upwards again due to the
dominant kinetic energy. Instead of developing a smooth min-
imum, roton excitations appear as isolated low-lying modes
at intermediate momenta that depart from the overall spec-
trum [15]. These so-called roton fingers are related to con-
finement of the roton modes in the inhomogeneous BEC of
profile n0(y) [16], see also discussion in the main text.

The confinement is evident from the BdG calculations, in
which the lowest roton mode forms a short-wavelength den-
sity modulation localized at the trap center (Supplementary
Fig. 2e). This contrasts with phonon modes for which the
modulation is delocalised over the entire condensate (Sup-
plementary Fig. 2c). The excited states shown in Supplemen-
tary Fig. 2b-e correspond to the density |ψ0 + η(u− v∗)|2, for
particular pairs of (u,v) corresponding to phonon and roton
modes (Supplementary Fig. 2c and e), and exemplary modes
at higher energies (Supplementary Fig. 2b and d). Even while
the amplitude η = 0.2 of the excited modes is taken to be
equal in Figs. 2b - 2e, the roton excitation (Supplementary
Fig. 2e) leads to markedly larger local density modulations
than the phonon excitation (Supplementary Fig. 2c). The ToF
signatures in Supplementary Fig. 2 are computed by letting
the wave function of the excitation, η(u− v∗), expand ballis-
tically for 30ms, i.e. neglecting interactions during the expan-
sion. The resulting density |η(u− v∗)|2 is then plotted (Sup-
plementary Fig. 2b1 - e1).

Carrying out the numerical BdG spectrum calculation for
various trap parameters, scattering lengths and atom numbers
confirms the geometrical scaling krot ∼ 1/`z, as well as its
weak dependence on as close to the instability as expected
from the analytical model. We note in particular a good quan-
titative agreement of krot`z in Supplementary Fig. 2 with the
(stationary) analytic factor κ = 1.3 for this same trap geom-
etry (see Method Analytical dispersion relation for an in-
finite axially elongated geometry). A qualitative agreement
of the BdG stationary spectrum with the experimental obser-
vations is however not fully reached because of the role of the
dynamics. A treatment of this effect is provided by the SSM
and NS as discussed in the main text (see also the correspond-
ing Method and Section G).

Finally, an alternative way of visualizing the excitation
spectrum is achieved by computing the dynamical structure

factor at T = 0 for each mode (u,v) [17, 18],

S(k,ω ′) = ∑
j

∣∣∣∣
∫

dr[u∗(r)+ v∗(r)]eik·rψ0(r)

∣∣∣∣
2

δ (ω ′−ω),

(6)
where ω = ε/h̄. The structure factor of the axial modes of our
finite trapped system (Supplementary Fig. 2a) presents fea-
tures resembling a roton-maxon spectrum, its continuum limit
being a single-valued spectrum as depicted in Fig. 1b. To en-
hance the visibility, the delta function in Eq. (6) is replaced
by a Gaussian with a small finite width in ω . Since the dy-
namical structure factor determines the response of the system
when probed at specific energies and momenta, such as e.g.
in Bragg spectroscopy experiments [18, 19], it is interesting
to note the difference in amplitude between the roton modes
and other parts of the spectrum. In particular, in our quench
experiments where the system is effectively driven at a range
of energies and momenta, one would expect the strongest re-
sponse from the roton modes.

F. Self-similar dynamics of the BEC.

In our self-similar model we account for the dynamics of
the BEC profile and its effect on the roton spectrum (see de-
tails in the corresponding Method). To do so, we assume that
the condensate preserves its TF shape during the evolution:

n(r, t) = n0(t)

[
1−
(

x
X(t)

)2

−
(

y
Y (t)

)2

−
(

z
Z(t)

)2
]
,

(7)
where X(t) = bx(t)X0, Y (t) = by(t)Y0, and Z(t) = bz(t)Z0
are the re-scaled TF radii, with bx,y,z(t) the scaling coeffi-
cients (bx,y,z(0) = 1). The corresponding hydrodynamic equa-
tions reduce to:

m
2

∇
[

Ẍ
X

x2 +
Ÿ
y

y2 +
Z̈
Z

z2
]

=−∇µ(r, t), (8)

where µ(r, t) = V (r) + gn(r, t) +
∫

d3r′Vdd(r− r′)n(r′, t) is
the local chemical potential. The latter acquires the form:

µ(r, t) = V (r)+ gn0

[
D−A

( x
X

)2
−B

( y
Y

)2
−C

( z
Z

)2
]
,

(9)
where D(t) = 1 + εddF1, A(t) = 1 + εdd(F1−F2 +F3), B(t) =
1 + εdd(F1−F2−F3), and C(t) = 1 + εdd(F1 + 2F2). Here we
have introduced the functions:

F1(χx,χy)=
∫ 1

0
du

[
3u2

√
α2−β 2

−1

]
, (10)

F2(χx,χy)=
∫ 1

0
du
(

3u2−1
2

)[
3u2

√
α2−β 2

−1

]
, (11)

F3(χx,χy)=
∫ 1

0
du
(

9u2(1−u2)

4

)[√
α2−β 2−α

β
√

α2−β 2

]
, (12)
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Supplementary Figure 2 — BdG excitation spectrum. a, Excitation spectrum of the ground state of a BEC with N = 50.000
166Er atoms in a trap with (νx,νy,νz) = (267,32,456)Hz and scattering length as = 43.75a0, obtained by numerically solving
the BdG equations. Roton modes appear as isolated modes lying below the main branch of the spectrum, forming a ’roton
finger’. The dynamic structure factor S corresponding to each of the modes is indicated with colored shading. Highlighted in
green are several exemplary modes, with panels b - e showing the corresponding excited state density modulation (black dashed
line indicating the ground state, red solid line the excited state), and panels b1 - e1, the corresponding momentum distribution
from 30 ms ToF expansion (Methods). b, b1 intermediate mode, c, c1 phonon mode, d, d1 single particle mode, e, e1 roton
mode.

with χx(t) = Z(t)/X(t), χy(t) = Z(t)/Y (t), α(χx,χy,u) =

(χ2
x + χ2

y )(1− u2)/2 + u2, and β (χx,χy,u) = (χ2
x − χ2

y )(1−
u2)/2. Substituting Eq. (9) into Eq. (8) we obtain a closed set
of equations for the scaling parameters:

1
(2π)2

b̈x

ν2
x

=−bx +
1

b2
xbybz

A(t)
A(0)

, (13)

1
(2π)2

b̈y

ν2
y

=−by +
1

bxb2
ybz

B(t)
B(0)

, (14)

1
(2π)2

b̈z

ν2
z

=−bz +
1

bxbyb2
z

C(t)
C(0)

. (15)

Prior to the quench of as, the stationary TF solution is obtained
from the self-consistent equations χx(0) = νx

νz

√
C(0)/A(0)

and χy(0) =
νy
νz

√
C(0)/B(0). Solving these equations and

using normalisation provides X(0), Y (0), Z(0), and n(0) for
known numbers of atoms N and trap frequencies νx,y,z. We use
this stationary solution as the initial condition at the start of
the quench (t = 0), and solve the system of differential equa-
tions (13), (14) and (15) to obtain the scaling coefficients. An
example for the relevant parameters of Fig. 3 is shown in Sup-
plementary Fig. 3.

G. Numerical simulations of the evolution.

Our simulations of the NLGPE are performed using a
split operator technique. The evolution operator over a time
∆t (∆t → i∆t for imaginary time evolution) may be approxi-
mately split as e−iĤ∆t/h̄ = e−iT̂ ∆t/h̄e−iV̂ ∆t/h̄ + O(∆t2). In this
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Supplementary Figure 3 — Self-similar dynamics in
quench. SSM results after a quench from ai

s = 61a0 to
af

s = 50a0 in the trap (νz,λ ) = (149Hz,4.3) and using the ex-
perimental cloud characteristics (configuration of Fig. 3). For
reference, we plot the experimentally known as(th) (circles,
left axis). We show the 3D TF radii X (down triangles), Y
(diamonds), Z (up triangles) and n0 (squares) renormalized by
their th = 0-values (right axis). The compression mainly oc-
curs along X . The subsequent increase of n0 is less than 2 %
when ∆(y = 0) touches zero in this configuration (Fig. 3a).
This demonstrates that the dominant effect on the roton spec-
trum at the instability comes from the reduction of as itself,
even in the case of af

s relatively close to a∗s .

expression, T̂ is the kinetic energy term, and V̂ the poten-
tial energy. The effective potential energy for the evolution
is given by the sum of external potential, interparticle interac-
tions, local LHY correction, and three-body losses (see Sec-
tion D).
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We first evaluate using imaginary time evolution the ini-
tial BEC wavefunction, ψ0(r), prior to the quench of as. The
initial wavefunction for the subsequent real-time evolution is
then constructed via ψi = ψ0 + ∆ψ , where ∆ψ accounts for
thermal fluctuations, which we simulate by populating the ex-
cited states of the system as described in Ref. [20]. The ex-
cited states used in this procedure are obtained from the full
BdG calculation detailed in Section E. Starting with this ini-
tial wavefunction ψi, we mimic as close as possible the condi-
tions of our experiments, including ramping, holding, and ToF
times. In particular, we include the experimentally calibrated
as(t) (Method Quench of the scattering length as). More-
over, for the value of the three-body loss coefficient L3 we use
a linear fit of the experimentally determined values [1]. From
the simulated evolution, we obtain the 3D wavefunction of the
gas as a function of th, ψ(r, th), from which we can extract the
spatial and momentum distributions.

The simulation of the ToF expansion is performed in two
steps. First we use a multi-grid analysis in order to rescale
the size of the numerical box as the cloud expands during the
ToF expansion. After some expansion time the density drops
significantly, and the subsequent evolution can be readily cal-
culated via e−iT̂ t/h̄. Our NS show clearly that the effect of
nonlinearity is small during the first stages of the evolution,
and hence that the ToF expansion indeed may be employed

to image the momentum distribution of the condensate at the
time in which the trap is opened.

We evaluate the integrated momentum distribution
ñ(ky, th) =

∫
dkxdkz|ψ̃(k, th)|2 with ψ̃(k, th) the Fourier

transform of ψ(r, th). After th of a few ms, ñ(ky, th) shows
clear roton peaks. The exact th value for the peak emergence
depends on the gas characteristics (in particular T ) and on as.
We evaluate the roton momentum as the mean value of the
momentum in the roton peak.

From the imaginary-time evolution simulations, we are also
able to predict the as = a∗,st

s threshold for the mean-field in-
stability of the BEC, which corresponds to the absence of
a mean-field stable solution [9, 10]. To find this instability
boundary, we proceed by steps. We start by calculating the
ground-state solution for a given as that we know to be well
within the stable regime. We then reduce as in small steps
and successively calculate the corresponding ground-state so-
lution using the solution of the previous step as starting con-
dition. We do so until no mean-field stable solution can be
found. The predicted a∗,st

s are reported in Supplementary Ta-
ble II. For the theory predictions shown in Fig. 2d (NS and
SSM; see Method Analytical dispersion relation for an in-
finite axially elongated geometry), we use quenched as val-
ues such that the instability boundary is just slightly crossed,
as = a∗,st

s −1a0.
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[8] Wächtler, F. & Santos, L. Quantum filaments in dipolar Bose-
Einstein condensates. Phys. Rev. A 93, 061603 (2016).
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Wemeasure the excitation spectrum of a stable dipolar Bose-Einstein condensate over a wide momentum
range via Bragg spectroscopy. We precisely control the relative strength ϵdd of the dipolar to the contact
interactions and observe that the spectrum increasingly deviates from the linear phononic behavior for
increasing ϵdd. Reaching the dipolar-dominated regime ϵdd > 1, we observe the emergence of a roton
minimum in the spectrum and its softening towards instability.We characterize how the excitation energy and
the strength of the density-density correlations at the roton momentum vary with ϵdd. Our findings are in
excellent agreement with numerical calculations based on mean-field Bogoliubov theory. When including
beyond-mean-field corrections, in the form of a Lee-Huang-Yang potential, we observe a quantitative
deviation from the experiment, questioning the validity of such a description in the roton regime.

DOI: 10.1103/PhysRevLett.122.183401

The spectrum of elementary excitations is a key concept
providing insight into the quantum behavior of many-body
systems. An emblematic example is the one of superfluid
helium. At low momentum, the interactions among par-
ticles lead to collective-excitation modes with a linear
energy (ε)-momentum (q) dependence. Those are known as
phonons, highlighting their analogy to sound waves. In
addition, the strong interactions in He induce pronounced
correlations at the mean interparticle distance d. Such
correlations reveal themselves in an energy minimum in
the excitation spectrum at q ≈ 1=d, termed roton [1]. Its
physical interpretation, and even its mere existence, has
been intensively debated for decades [2]. In today’s under-
standing, the roton relates to the system’s tendency to
establish a crystalline order [3], possibly providing access
to supersolid phases [4]. Between the phonon and the roton,
a local energy maximum, termed maxon, appears.
For gaseous Bose-Einstein condensates (BECs),

the excitation spectrum also embeds the many-body inter-
acting behavior. In the weakly interacting bulk regime,
the excitation spectrum is well described within the
Bogoliubov theory and takes the form εðqÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðqÞ2 þ 2EðqÞV intðqÞ

p
, with EðqÞ ∝ q2 being the free-

particle energy and V intðqÞ being the mean-field interaction
energy contribution [5]. In the case of short-range (contact)
interactions, V int is independent of q and a roton minimum
is absent, as confirmed in experiments [6–10]. Deviations
from the Bogoliubov theory were observed in the strongly
interacting regime [11,12], yet a roton minimum has
remained elusive [13].
Quantum gases with dipole-dipole interactions (DDIs),

underlying a q dependence of V int, bring a paradigm shift in
themany-body behavior [14–18]. In particular, dipolarBECs

(DBECs) are predicted to support a roton mode in their
Bogoliubov spectrum [19,20]. This roton spectrum requires
specific conditions, namely, (i) an anisotropic geometry,
tighter along the dipole direction, and (ii) a dominant DDI
over the contact interaction. These conditions enable V int to
depend and change sign with q ¼ jqj, yielding a local
minimum in εðqÞ for q along the weak confinement axes.
Conditions (i) and (ii) also dictate the rotonmode’s character-
istics: its momentum qrot is governed by the confinement
length along the dipoles (i), and εðqrotÞ is controlled by the
ratio ϵdd ¼ add=as of the dipolar (add) and s-wave scattering
(as) lengths (ii). In particular, εðqrotÞ decreases (softens) for
increasing ϵdd and ultimately vanishes, yielding amean-field
instability. The existence of dipolar rotons has been dem-
onstrated in recent quench experiments, via the exponential
growth of the roton mode’s population when εðqrotÞ turns
imaginary, i.e., in the roton instability regime [21].
In this Letter, we directly probe the phonon-maxon-roton

excitation spectrum of a stable DBEC of ultracold erbium
atoms. By precisely controlling ϵdd (via as), we observe the
emergence of a roton minimum at large momentum and
study in detail its softening. Our spectroscopic approach is
based on the well-established technique of Bragg spectros-
copy [6–12,22–26]. For DBECs, this technique has been
previously applied on Cr in the regime of weak DDI [27],
proving the anisotropy of εðqÞ, and consequently of the
speed of sound, recently confirmed with a different
technique with Dy [28]. Bragg spectroscopy has also been
employed to observe rotonlike minima in the dispersion
relations of hybrid systems of short-range interacting atoms
and light [29–31].
Our Bragg spectroscopy is performed using a DBEC of

strongly magnetic 166Er atoms, prepared as in Refs. [17,21].
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After preparation, we confine the DBEC in a cigar-shaped
optical dipole trap with harmonic frequencies ωx;y;z ¼
2π × ð261; 27; 256Þ Hz. A homogeneous magnetic field
B maintains spin polarization of the sample in the lowest
Zeeman sublevel, with atomic dipoles aligned along z; see
Fig. 1(a). It also sets the value of as via a magnetic
Feshbach resonance (FR) [32], centered at about 0 G, for
which the B-to-as conversion has been precisely extracted
with a �2a0-wide prediction interval in the as range here
explored [17,21]. Systematic uncertainties on as are
estimated to be up to �3a0 [33]. The dipolar length,
add ¼ μ0μ

2m=12πℏ2 ¼ 65.5a0, results from the atomic
magnetic moment μ, and mass m of 166Er. μ0 is the vacuum
permeability and ℏ ¼ h=2π the reduced Planck constant.
After preparation, as equals 67a0, corresponding to
ϵdd ≈ 1. In this geometry, a roton mode is expected to
emerge along the axial (y) direction for ϵdd > 1 and softens
for increasing ϵdd. The roton minimum appears at a
momentum qrot ∼ 1=lz, with lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p
≈ 0.5 μm.

To reach ϵdd > 1, we decrease as to the desired value by
ramping B closer to the FR’s pole. The ramping time tr is
chosen to be long enough to ensure adiabaticity with

respect to the tight trapping frequencies (tr > 1=ωx;zÞ but
short enough to avoid too strong three-body collisional
losses near the FR. For the highest ϵdd, we find an optimal
trade-off for tr ¼ 15 ms, defining our fastest ramp. This
ramp is not fully adiabaticwith respect to the axial dynamics.
We observe small-amplitude breathing and sloshing modes
along y, which we account for in our spectroscopic mea-
surements [33]. After ramping B, we hold the atoms for a
time th, after whichwe performBragg spectroscopy to probe
the excitation spectrum of our DBEC of N atoms.
Our Bragg spectroscopy setup is illustrated in Fig. 1(a)

and detailed in Ref. [33]. In brief, it uses two coherent laser
beams of wave vector kL ¼ 2π=λL, with λL ¼ 401 nm,
propagating in the z-y plane and intersecting each other
under an angle θ. At the cloud’s position, the beams form a
light grating along y of potential depth V0 and wave vector
q ¼ 2kL sinðθ=2Þ. The two beams have a small frequency
difference ω, causing the grating to travel at a velocity ω=q.
A key feature of our setup is the wide dynamical tunability
of θ. This is obtained by creating the Bragg beams
using holographic gratings [33,35], generated with a
digital micromirror device [30]. By uploading different
holograms, we can vary θ, and accordingly q from 0 to
1.8l−1z . Moreover, by employing hologram sequences and
changing their display rate, ω can be directly varied, up to
∼2π × 1 kHz. In the experiment, we illuminate the DBEC
with a Bragg pulse of duration τ. The value of τ ¼ 7 ms is
chosen to be long enough to minimize Fourier broadening
of the frequency spectrum, and yet short with respect to a
quarter of the axial trap period [8,23,25]. Immediately after
the pulse, we switch off the trap and let the cloud expand
for 30 ms. We then image the atoms along z via standard
absorption imaging, from which we extract the momentum
distribution of the cloud, nðqx; qyÞ.
The Bragg excitation can be interpreted as a stimulated

two-photon transition, imparting a well-defined momentum
q and energy ℏω to the atoms; see Fig. 1(b). In bulk
systems, for a fixed q and varying ω, atoms, initially at
qy ¼ 0, are resonantly transferred to qy ¼ q for ℏω ¼ εðqÞ
[6–9]. When accounting for finite-size effects, the response
is broadened in q. The dynamic structure factor, which
quantifies the system’s response to an external perturbation,
can be related to the fraction of excited atoms during a
Bragg pulse,F ¼ Nexc=ðN0 þ NexcÞ. Here,N0 (Nexc) is the
number of the zero-momentum (Bragg-excited) atoms. In
the linear response regime [9,22,23],

F ¼ π2V2
0τ

h2
S̃0ðq;ωÞ; ð1Þ

where S̃0ðq;ωÞ is the zero-temperature dynamic structure
factor, Fourier broadened in ω due to the finite τ, see
Ref. [33].
Figure 1(c) shows a representative nðqx; qyÞ for a q ≳ l−1z

excitation. For this high q, the Bragg-excited atoms are well
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FIG. 1. (a) The DBEC (gray ellipsoid) is axially elongated along
y and the atomic dipoles point along z. Two Bragg beams of
frequency ωl and ωl − ω (blue arrows) form a traveling grating
along y with a wave vector q and velocity ω=q (blue shading).
(b) The Bragg excitation drives a stimulated two-photon transition
(dashed arrows), transferring a momentum q and an energy ℏω to
the atoms, resonant for ℏω ¼ εðqÞ (solid line). Δ ≫ ω is the
detuning from the intermediate state. (c) Example of nðqx; qyÞ
after a Bragg excitation with ðq; ωÞ ¼ ½1.74ð9Þl−1z ; 2π × 180 Hz�.
(d) Corresponding nðqyÞ (dots), fitted with a multi-Gauss function
(dashed line). The solid line shows the component of the fit
corresponding to the Bragg-excited atoms. (e) hq2yi vs ω for
q ¼ 0.74ð3Þl−1z . The solid line shows a Gaussian fit used for
extracting ωq and normalizing the data.
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resolved as a side peak. From a multi-Gauss fit to the
integrated density nðqyÞ, we extract F ; see Fig. 1(d) [33].
For q≲ l−1z , the zero-momentum peak and the Bragg-
excited one overlap andF cannot be precisely extracted. To
access S̃0ðq;ωÞ for all q, we use the momentum variance
hq2yi ¼

R
nðqyÞq2ydqy, which relates to the imparted energy

into the system. AsF , hq2yi gives access to S̃0ðq;ωÞ, but via
a more complex relation [5,22,23,33,36]. Figure 1(e)
exemplifies a resonance in hq2yi when varying ω at fixed
q. We extract its center frequency ωq via a Gaussian fit. By
varying q over the experimentally accessible range, we
probe the lowest-lying branch of the axial excitation
spectrum εðqÞ ¼ ℏωq [33].
Figure 2 shows the results of our Bragg measurements,

revealing how εðqÞ is modified when tuning from ϵdd < 1
to ϵdd > 1. For ϵdd < 1, εðqÞ shows a linear dependence
over the whole q range, characteristic of phonon modes,
Figs. 2(a) and 2(b). From a linear fit to εðqÞ, we estimate the
sound velocity c ¼ limq→0εðqÞ=q ¼ 1.01ð1Þ mm=s along
y. As we probe the system for increasing ϵdd > 1, we find
an overall reduction of the excitation energies and increas-
ing deviations of the spectra from the linear phonon
behavior, Figs. 2(c) and 2(d). When further increasing
ϵdd, the spectrum starts to flatten at large q, Figs. 2(e) and
2(f). Ultimately, at the highest ϵdd, we observe a local
minimum occurring at q ≈ qrot ¼ 1.27ð6Þl−1z , providing an

unambiguous signature of the existence of the roton mode,
Figs. 2(g) and 2(h). At intermediate momenta between the
phonon and roton regimes, a maxon [local maximum in
εðqÞ] is also identifiable. Because of optical constraints on
our Bragg setup, the maxon regime is not fully accessible;
see black region in Figs. 2(e) and 2(g). To compare our
measurements with theory, we perform calculations of
S̃0ðq;ωÞ, by calculating the Bogoliubov modes from the
Gross-Pitaevskii equation (GPE) linearized around equi-
librium at the final as [24,33,37]. Here we explicitly do not
include beyond-mean-field effects [33]; see later discus-
sion. Over the entire range of ϵdd, our theory describes
the experimental data, both qualitatively and quantitatively.
In the calculations of Fig. 2, we let as vary within the
prediction interval (�2a0) of our B-to-as conversion to best
match the measured spectrum.
To get a deeper insight into the roton softening, we

perform Bragg measurements at a fixed q ¼ qrot and extract
ωq, denoted ωrot, as a function of as for fixed N. As shown
in Fig. 3, ωrot exhibits a reduction that becomes increas-
ingly sharp for decreasing as. Below 52a0, we observe that
the system undergoes a roton instability, i.e., a spontaneous
population of the roton mode even without applying a
Bragg pulse; see also Ref. [21]. We find that the softening
of ωrot is well approximated by an as-power-law scaling.
By fitting the data to ωrotðasÞ ¼ Aðas − a�sÞp, we extract
the critical scattering length at which ωrot vanishes,
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FIG. 2. Excitation spectra from ϵdd < 1 to ϵdd > 1: (a), (c), (e), (g) Measured hq2yi for varying q (columns, delineated by white
tick marks) and ω at given as. Each column is fitted with a Gaussian function and renormalized by the fitted peak amplitude.
Black columns are inaccessible to measurements [33]. (b), (d), (f), (h) Extracted εðqÞ (white dots) from (a), (c), (e), (g), respectively.
Here and throughout the Letter, the error bars denote � one standard deviation. The solid lines are guides to the eye, based on the
analytic formula from Ref. [24]. The color map shows the calculated S̃0ðq;ωÞ, normalized by the maximum of S̃0ðq;ωÞ at qlz ¼ 1.3
and as ¼ 82a0. For [(a), (b); (c), (d); (e), (f); (g), (h)], N ¼ ½4.6ð5Þ; 3.9ð4Þ; 3.3ð3Þ; 2.5ð3Þ� × 104 and as ¼ ðasexp; aths Þ ¼
½ð80.0; 82.0Þ; ð60.5; 62.5Þ; ð55.3; 54.5Þ; ð52.5; 51.6Þ�a0, respectively.
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a�s ¼ 51.9ð2Þa0, matching our instability observation. We
also observe a scaling exponent of p ¼ 0.27ð2Þ (A is a
scaling coefficient). The pronounced dependence of the
roton energy on the interparticle interactions, i.e., on both
as and the atomic density, makes the measurements at low
energy very sensitive to fluctuations. Indeed, small fluc-
tuations and drifts in B and N can already drive the system
into instability, eventually preventing a reliable measure-
ment of the spectrum for ωrot ≲ 2π × 100 Hz; e.g., see
horizontal error bar in the inset. For comparison, we
additionally probe the as dependence of the excitation
energy ωq near the maxon at q ¼ 0.74ð3Þl−1z , denoted ωm.
We observe that ωm decreases much slower than the roton
case. As shown in the inset of Fig. 3, the two modes’
energies cross around as ¼ 52.8a0. For a�s < as < 52.8a0,
ωrot < ωm, showing the emergence of a local minimum in
the spectrum of a stable DBEC. At as ¼ 52.2ð2Þa0, the
minimum can be distinguished with a confidence level of
98% [33].
Figure 3 also shows ωrot extracted from our numerical

calculations, together with its variation within the predic-
tion interval of as. The theory describes our observation
very well and confirms the rapid variation of the roton
energy with as. We have also performed calculations
including beyond-mean-field effects in the form of a
Lee-Huang-Yang correction in the GPE [38–41]. This
additional term has proven to be crucial to understanding

the behavior of a DBEC in the droplet regime [17,18,
42–44]. Interestingly, the agreement between theory and
experiment becomes worse with a discrepancy that cannot
be accounted for with the experimental as uncertainty. Such
a discrepancy can have several origins. These range from
additional experimental uncertainties (e.g., N values,
effects of residual density-dependent dynamics [33]) to
more fundamental reasons. As speculated in Ref. [21], this
mismatch could call into question the validity of standard
treatments of beyond-mean-field effects in the roton
regime. For instance, the standard inclusion of a Lee-
Huang-Yang term in the GPE relies on a local density
approximation and is justified for negligible quantum
depletion and higher-order corrections [11,40–51]. These
conditions might not be completely fulfilled in the roton
regime. Future theoretical efforts, combined with stringent
validity tests on experiments, are needed to shed light on
this important aspect.
The emergence of a roton minimum intrinsically con-

nects to an increase of density-density correlations. This is
quantified by the amplitude of S̃0ðqrot;ωrotÞ [7,23,24,33],
which is related via Eq. (1) to the fraction of excited atoms
at the Bragg resonance F res. In the experiment, we explore
this aspect by measuring F as a function of ω at q ¼ qrot
using a fixed V0. From a Gaussian fit to the data, we extract
F res. We repeat the experiment for various as in the ϵdd > 1
regime; see Fig. 4. When approaching the roton instability
(a�s), F soars, with an increase by about a factor of 3 when
changing as by less than 15%. Such a behavior is also
confirmed by our theoretical calculations. Experimentally,
we find that the linear-response regime, i.e., the validity of
Eq. (1), extends up to F res ≈ 25%; see inset of Fig. 4.
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In conclusion, we measure the excitation spectrum of a
DBEC and its evolution from the contact-dominated regime
to the dipolar-dominated regime. In the latter regime, we
observe the emergence of a roton minimum. Comparisons
with theory reveal a good agreement with mean-field
Bogoliubov calculations and show deviations when includ-
ing beyond-mean-field corrections, calling for further
studies of their effects and their treatment in the roton
regime. Similar to the cases of superfluid helium [4,52–54]
and of hybrid systems of atoms and light [55,56], the roton
minimum may provide a path for the creation of supersolid
or crystalline phases in DBECs [4,28,57–59]. With the
achievement of a precise knowledge and control of the
roton softening, our work provides a first step in this
direction.
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PREPARATION AND CALIBRATION OF THE
dBECs

A dBEC of 166Er is prepared in the same way as de-
scribed in Refs. [1, 2]. Trapping is provided by crossed
optical beams forming a harmonic potential V (r) =
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)/2 for the atoms. At the end

of the preparation procedure, V (r) has a cigar-shaped
geometry with ωx,y,z = 2π × (261, 27, 256) Hz. The fre-
quencies are measured via exciting and probing either
the center-of-mass oscillation of dBECs (for ωx and ωz)
or the breathing mode of cold, thermal samples (for ωy).
The uncertainties of the trapping frequencies are at the
few-percent level. After reshaping the trap, we ramp as

linearly from as = 67 a0 to its final value in a time tr, by
performing a corresponding ramp in B, computed from
the calibrated B−to−as conversion [1, 2]. The ramp time
is chosen to be relatively long, tr ≥ 15 ms; see main text.
In our Bragg spectroscopy measurements, we apply the
Bragg pulse after an additional holding time th.

The number of atoms in the probed dBEC, N , is ex-
tracted from time-of-flight (TOF) measurements, per-
formed using the same experimental sequence as for the
Bragg measurements, but, instead of applying the Bragg
pulse, simply waiting th + τ/2 before releasing the atoms
from the trap. We extract the integrated density distri-
bution from standard absorption-imaging technique after
30 ms of TOF. We fit a two-dimensional bimodal func-
tion made of a Gaussian and an inverted parabola at the
power 3/2 to the density distribution. The values of N
reported in the main text corresponds to the number of
atoms in the parabolic peak. We note that N typically
fluctuates by up to 10% between experimental runs. In
addition, by measuring N at th and at th + τ , we observe
three-body losses during the Bragg pulse up to 20% for
the lowest values of as. Finally, we point out that the
bimodal function employed to extract N is an approxi-
mate description of a finite temperature BEC and may
lead to an underestimation of N , especially at our lowest
as values. The experimentally calibrated N and ωx,y,z
are used as fixed parameters in the theory calculations;
see below.
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FIG. S1. Example of calibration measurements of the
breathing and sloshing modes for the measurements at as =
52.5 a0 of Fig. 2 (g, h) of the main text. We record the varia-
tions with th of the cloud’s size (upper panel) and position in
TOF. From the position we compute the mean atomic veloc-
ity vat(th) (lower panel). The solid lines are sinusiodal fits to
the data. We time the Bragg pulse (orange shaded area) to
be centered on the cloud’s size maximum. The correspond-
ing mean atomic velocity is in this case vat = −68(16)µm/s.
Similar measurements and analyses have been performed for
each measurement reported in the main text.

ACCOUNTING FOR THE BREATHING AND
SLOSHING MODES: TIMING AND DOPPLER

SHIFTS

Our fastest as-ramps are not fully adiabatic with re-
spect to the axial dynamics and may induce small-
amplitude breathing and sloshing modes along y. Such
excitations could affect our Bragg measurements. The
former mode induces density oscillations and can influ-
ence the value of the roton excitation energy. The lat-
ter mode causes a sizable momentum-dependent Doppler
shift of the Bragg excitation frequency [3]. We account
for these effects in our experiment by performing dedi-
cated calibration measurements. In particular, we probe
the evolution of the atomic density distribution after
TOF, as a function of th. We perform such calibration
measurements for each as-ramp employed in the experi-
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ment.
The breathing excitation reveals itself in the evolution

of the axial size; see Fig. S1 (upper panel). To minimize
the impact of the breathing mode on our measurements,
we synchronize the Bragg pulse symmetrically around the
moment at which the size in TOF reached its maximum.
Then, the in-situ density of the dBEC changes the least
and remains close to its highest value during probing.
The corresponding th, after which we switch the Bragg
beams on, is typically between 10 and 20 ms.

The sloshing mode reveals itself in the variation of
center-of-mass position of the atomic cloud. This gives
direct access to the mean velocity, vat(th), of the atoms
in the dBEC as a function of th; see Fig. S1 (lower panel).
By averaging over the duration of the Bragg pulse, vat =
〈vat(th)〉τ , we extract the induced Doppler shifts for the
Bragg excitation, ωD = vatq which we then use to correct
the applied Bragg frequencies ω. To check the accuracy
of our treatment, we have repeated Bragg spectrscopy
measurements at various as and q using Bragg pulses
corresponding to distinct ωD. In particular, to achieve
distinct ωD, we reversed the Bragg excitation direction
to compare measurements with ±q and used pulses start-
ing at different th, yielding vat ≈ {−vmax, 0, vmax}, vmax

being the maximum insitu mean velocity. A set of such
measurements is exemplified in Fig. S2, where we show
both the uncorrected and corrected resonance frequen-
cies ωq. The good agreement of the Doppler-corrected
values proves the validity of our approach. All data re-
ported in the main text are Doppler-corrected.

We stress that the value of ωD increases with q. As
an example, ωD/2π varies from 15 Hz to 40 Hz for q
varying from 0.74 l−1

z to 1.74 l−1
z in the measurements

of Fig. 2 (h). In the analysis of our data, it has thus been
important to carefully account for this effect.

BRAGG SETUP

Our Bragg spectroscopy setup is illustrated in
Fig. S3 (a, b). It employs a digital micromirror de-
vice (DMD), DLP-V9500 from Vialux with 1920 ×
1080 micromirrors. The DMD features a programmable
mirror area, consisting of 10.8× 10.8 µm-sized micromir-
rors that can be individually tilted in one of two direc-
tions. Depending on the mirror’s tilting direction, the
incoming light is reflected either into the Bragg spec-
troscopy setup or on a beam dump. We illuminate the
mirror area with a single frequency laser beam of wave-
length λL = 401 nm. The beam has an elliptic shape
with waists of (wz, whor) = (10, 1) mm. Here, wz (whor)
denotes the beam’s waist in the z (horizontal) direction;
see Fig. S3 (c). The beam is sent on the DMD’s mir-
ror area under an angle of ∼ 25◦ with respect to its
perpendicular axis, fulfilling the condition for a blazed
grating. This ensures a maximum diffraction efficiency
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FIG. S2. Bragg resonance frequencies ωq at |q| = qrot and
as = 52.7 a0 measured using three different Bragg pulses,
characterized by the couple {q, vat} (abscissa’s labels). For
each measurement, both the uncorrected (diamond) and
Doppler-corrected (circle) frequencies are shown. The dashed
line indicates the mean of the Doppler-corrected resonance
frequenies.

of the incoming beam into the beam path of the Bragg
spectroscopy setup.

Following Ref. [4], the general idea is to use binary
holograms that represent maps of titling directions for
the micromirrors of the DMD. By placing the DMD in
the Fourier-plane of the atoms, the holograms allow for
both amplitude and phase modulation of the laser beam
at the atoms’ position. They consist of an underlying
binary grating with two Gaussian envelopes separated
by a distance d on the DMD; see Fig. S3 (d). The Gaus-
sian envelopes cut out two beams from the incoming one.
Additionally, the envelopes correct for the local intensity
inhomogeneities of the incoming beam. After the DMD,
the two beams travel parallel with a distance d between
each other before being focused in a first optical tele-
scope; see Fig. S3 (b). Due to the binary grating struc-
ture of the holograms, each beam splits at the telescope’s
focus point into a 0th order and ±1st side orders. The fo-
cus point is used to let only the +1st order of each beam
pass by filtering out the other ones. The two remain-
ing +1st order beams constitute our two Bragg beams
and have a similar Gaussian profile as well as similar in-
tensities. After the telescope they are reflected down to
our experimental chamber where a last lens focuses them
under an angle θ onto our atomic cloud. At the focus
point, matching the atom’s position, the beams create
an interference pattern with a wavevector q along y. By
uploading a hologram with a different d one can change θ
and thus q in an almost continuous manner. We note that
due to optical constraints in the experiment (not shown
in Fig. S3), we can not create interference patterns in the
range of q = [0.4− 0.7] l−1

z .
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FIG. S3. Setup for Bragg spectroscopy: (a) Top view of the Bragg spectroscopy setup, showing the beam path of the incoming
beam (dashed arrow), the beams travelling in the Bragg-spectroscopy setup (solid arrow), and the dumped part of the incoming
beam (dotted arrow). (b) Side view of the beams travelling in the Bragg spectroscopy setup when a holographic grating pattern
is displayed on the DMD (see text for details). (c) Sketch of the elliptic beam shape of the incoming laser beam on the DMD.
(d) Examples of binary holograms uploaded on the DMD that allow to create two beams in the Bragg spectroscopy setup,
travelling parallel separated by a distance d. The three smaller images on the right show a zoom of one part of a hologram with
a phase shift of the underlying binary grating, resulting in three distinct phase difference, ϕ, of the Bragg beams. (e) Example
of light interference patterns at the position of the atomic cloud, obtained from offline calibrations with a CCD camera.

Furthermore, the relative phase, ϕ, of the two beam’s
wavefronts is directly related to the phase of the applied
binary grating on the DMD. It thus allows us to intro-
duce a frequency difference ω = dϕ/dt by displaying a se-
quence of holograms during the Bragg excitation, where
the phase of one of the two Bragg beams is constantly
shifted in time; see Fig. S3 (d). Practically, we set a se-
quence of nine holograms, which defines a phase revo-
lution of 2π, and display it in a loop with a fixed rate,
γ. This results in ω = 2πγ/9. The discrete phase steps
of 2π/9 are sufficient to not suffer from higher frequency
harmonics in our measurements. We note that γ is lim-
ited by the maximal refreshing rate of the DMD. Fur-
thermore, the inherent dark time of the DMD at each

hologram update results in a decrease of the average in-
tensity of the light grating when increasing γ. In the
experiment, we compensate for this effect by increasing
the intensity in the Bragg beams to maintain a constant
V0.

We further note, that the binary grating in our am-
plitude holograms take phase aberrations of the opti-
cal setup into account and corrects for them [4]. These
corrections are obtained from offline calibrations with
a CCD camera and greatly improve the beam pointing
of the individual Bragg beams on the atomic cloud, as
all lenses in the optical setup are spherical singlets. In
Fig. S3 (e), we show three example images of final inter-
ference patterns, obtained with a CCD camera during
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offline calibrations.
As the Bragg spectroscopy setup uses amplitude holo-

grams, typically only ∼ 0.1% of the incoming laser light
is used for the Bragg pulse. We take advantage of the
strong transition of erbium at 401 nm. First it allows a
wide tuning of V0 via the frequency detuning, ∆, of the
laser light from the atomic resonance. Second, its short
wavelength also leads to a higher maximum q for a fixed
maximum θ as compared to longer laser wavelengths.

In the measurements presented in the main
manuscript, the detuning ∆ = 2π × 71(1) GHz is
chosen such that we achieve suitable depths of the
Bragg potential (typically V0 ∼ h × 10 − 100 Hz),
while spontaneous light scattering remains negligible
on the experimental time scale. We extract V0 via the
Kapitza-Dirac-diffraction technique [5]. We note that
this approach neglects the inhomogeneity of the atomic
cloud over the wavelength of the interference pattern
and the interactions in the system.

IMAGE ANALYSIS

To probe the system’s response to the Bragg pulse,
we image the atomic cloud after a TOF expansion of
30 ms. As described in the main text, we perform ab-
sorption imaging along the z direction. During the first
15 ms of the TOF, the B-field is kept constant to avoid
any sudden change of the dipolar or contact interactions
when the atomic density is high. We then set the B-field
to B = 0.3 G and then rotate its direction to obtain a
maximal imaging-light scattering cross-section and con-
stant imaging conditions. Assuming ballistic expansion,
we obtain the mean momentum distribution n(qx, qy), by
averaging typically four individual images; see Fig. 1 (c)
in main text. Due to slight variations of the cloud’s po-
sition from shot to shot, each single image is recentered
by extracting the cloud’s center from a two-dimensional
Gaussian fit. In order to obtain the momentum dis-
tribution along the excitation direction of our Bragg
pulses, we numerically integrate n(qx, qy) along qx from
[−4.5,+4.5] µm−1 and obtain n(qy) (1 pixel in our imag-
ing corresponds to ∼ 0.32 µm−1). To extract information

on S̃0(q, ω) from n(qy), we measure either the fraction of
excited atoms, F , or the momentum variance, 〈q2

y〉, as
introduced in the main text and detailed below.

The procedure used to extract 〈q2
y〉 depends on q. For

qlz > 0.7, we use an asymmetric region of interest (ROI)
ranging from qy = [−1.9 µm−1, c̃ q], reflecting the fact
that the Bragg excited atoms occur around qy = q > 0.
The factor c̃ varies between [2.5, 4.5] in order to account
for the change in the cloud’s momentum width with as

(increasing for increasing as). At low momenta qlz < 0.5,
the excited fraction of atoms lies completely within the
unscattered peak and only a broadening of the atomic
cloud on resonance is observed. Therefore, we choose a
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FIG. S4. Resonance frequencies at as = 52.5 a0 obtained
from 〈q2y〉-analysis (cirlces) and F-analysis (diamonds). In
the latter case, we do not report on values for qlz < 1.1 as F
can not be reliably extracted.

symmetric ROI from qy = c̃phon[−1.6,+1.6] µm−1, where
c̃phon is varied between [1, 3] for different as. We fur-
thermore note that for qlz < 0.2 we are not able to ex-
tract a reliable signal in our measurements, as a potential
broadening of the atomic cloud on resonance can not be
resolved.

In order to extract the excited fraction F , we use a big-
ger ROI that includes the full thermal fraction of atoms
and fit a three-Gauss function. The individual Gaus-
sian distributions account for the unscattered atoms in
the dBEC N0 (centered at qy ≈ 0), the excited atom in
the Bragg excitation Nexc (centered at qy ≈ q) and the
broad thermal background. The center positions of the
Gaussian distributions for the unscattered atoms and the
thermal background are kept the same. The center for
fitting the excited fraction is limited to [0.95, 1.05] q. F
is then defined as F = Nexc/(N0 +Nexc), thus discarding
the initial (thermal) population at q and focusing on the
mere fraction of atom promoted during the Bragg pulse.

We extract ωq and Fres by a Gaussian fit to the res-
onances in 〈q2

y〉 and F for varying ω and fixed q. For
too low ω, the discrete phase steps of our holograms
do not provide a well-defined excitation energy over the
timescale of the 7-ms Bragg excitation. Hence, in our
analysis, we discard points at 0 < ω/2π ≤ 40 Hz (cor-
responding here to the non-Doppler-corrected frequen-
cies; the 0 Hz-case is the static case). Nevertheless, we
note that an inclusion of these points do not alter the
extracted resonance frequencies within their uncertain-
ties. Comparing the 〈q2

y〉 and F analysis, we also verify
that both analysis procedures give the same resonance
frequencies within their uncertainties; see Fig. S4).
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SCATTERING-LENGTH VALUE AND ITS
UNCERTAINTIES

In our experiments we control the contact interaction
as by means of a magnetic Feshbach resonance, centered
close to 0 G [6]. From previous lattice-spectroscopy mea-
surements, where we probe the excitation gap in the Mott
insulator regime [1], we have obtained a precise map-
ping of the as-to-B conversion. In those measurements,
the statistical uncertainty on as has an average value of
s̄ = 1.8 a0 coming from the uncertainty on the resonance
frequency of the Gaussian fit to the spectroscopic data.
From a fit to the as-data, we obtained a precise B-to-
as conversion function for B ranging from 0 to 3 G [1].
For as ranging from 80 a0 down to 51 a0 (B from 2.1 G
to 0.21 G), our conversion function yields a confidence
interval of width c̄ varying from ± 0.9 to ± 1.3 a0. This
results into a prediction interval of width p̄ =

√
c̄2 + s̄2

varying from ± 1.9 a0 to ± 2.1 a0, which defines our con-
version uncertainty. In addition we estimate the system-
atic uncertainty to be ±3 a0 with a dominant contribu-
tion coming from the uncertainty on the depth of the lat-
tice potential in the spectroscopic measurements (which
crucially determine the on-site Wannier function’s shape
and thus the conversion of the resonance frequency value
into as).

Besides the conversion and systematic uncertainties,
statistical uncertainties on as arise from magnetic field
fluctuations and drifts in our experiments. For each
dataset we perform independent magnetic-field calibra-
tions by performing radio-frequency (RF) spectroscopy
on cold thermal clouds with a 1-ms RF pulse. Here we
use the same experimental B ramp as for the Bragg mea-
surement and apply a RF pulse of 1 ms duration, either
after holding a time th or a time th+τ . The mean value of
these two measurements is used to extract as. Further-
more, it probes the change of B over the Bragg pulse,
which can be up to 3 mG. Additionally, we have inde-
pendently estimated that B fluctuates up to ±2 mG. In
total, we consider a B uncertainty of ±2.5 mG, which we
convert in an as uncertainty based on the B-to-as con-
version formula. This can be up to ± 0.2 a0, which is
the case for our lowest as. In conclusion, in the relevant
regime for this work, the statistic, conversion and sys-
tematic uncertainties on as are of ± 0.2 a0, p̄ ∼ ±2 a0,
and ±3.2 a0, respectively.

CONFIDENCE LEVEL OF THE EXISTENCE OF
A ROTON MINIMUM

In order to confirm the existence of a local minimum
in the excitation spectrum of our dBECs, we compare
the maxon with the roton energy and extract a confi-
dence level from a statistical analysis. First, we focus
on a scattering length value of as = 52.5(2) a0 for which
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FIG. S5. Analysis on the extracted resonance frequencies ωm

(triangles) and ωrot (circles) for 52.5(2) a0 (a) and 52.2(2) a0

(b). In (a, b) filled symbols show data from Fig. 3, where
as empty symbols show data points from Fig. 2 (h). Error
bars represent ± one standard deviation of the corresponding
Gaussian fits. (c) shows the corresponding differences ∆ (after
averaging for 52.5 a0) together with its uncertainties, deduced
from standard error propagation.

two sets of data are available (from Fig. 2 (h) and inset
of Fig. 3). From both resonance frequencies ωm and ωrot,
we obtain the corresponding mean values ω̃m and ω̃rot.
Calculating the difference ∆ = ω̃m − ω̃rot = −0.08(5)ωz
reveals the existence of a roton minimum with a 93%
confidence level; see Fig. S5 (a,c). The existence of a ro-
ton minimum in the spectrum is even more evident by
analyzing ∆ = ωm − ωrot at 52.2(2) a0, where the mini-
mum is deeper. Here, we find ∆ = −0.15(7)ωz giving a
confidence level of 98% for the existence of a minimun in
the spectrum of a stable dBEC; see Fig. S5 (b,c).

THEORY

To compare our experiment with theory predictions,
we perform numerical calculations of the dynamic struc-
ture factor following the procedure detailed in the sup-
plementary information of Ref. [2]. The calculations are
based on a Bogoliubov treatment of an extended GPE
with energy functional ĤGP[ψ], for which our 166Er
dBEC is the ground-state. The classical field ψ describes
the macroscopic wavefunction of N atoms and is nor-
malized to N . The dBEC state, |0〉, corresponds to the
wavefunction ψ0. The Bogoliubov analysis gives access,
in second-order perturbation, to the discrete modes, |l〉,
of the dBEC’s excitation spectrum, to their energies h̄ωl
and the Bogoliubov spatial amplitudes ul and vl.

In the present calculations, we can in principle account
for the effect of the quantum fluctuations, by includ-
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ing the Lee-Huang-Yang term ∆µ[n] = 32g(nas)
3/2(1 +

3ε2dd/2)/3
√
π in ĤGP[ψ] (here g = 4πh̄2as

m and n = |ψ|2).
∆µ[n] has been obtained under a local density approx-
imation [7, 8] when computing the Bogoliubov modes.
The relevance of the inclusion of such a potential correc-
tion has been demonstrated in various studies of dipolar
Bose gases close to the mean field instability [1, 2, 9–
12]. However, as described in the main text, a better
agreement with experimental data, close to the insta-
bility, is found instead by omitting the Lee-Huang-Yang
term. ∆µ[n] is then only included in ĤGP for computing
the dotted line and the corresponding yellow shading in
Fig. 3 of the main text. It is discarded from all other
theory calculations reported in the main text.

The knowledge of the Bogoliubov modes allows one to
compute the bare zero-temperature dynamic structure
factor S0(q, ω), which is defined as [13, 14],

S0(q, ω) =
∑

l

∣∣〈l|δn̂†q|0〉
∣∣2 δ(ω − ωl), (1)

with δn̂q being the density fluctuation operator in mo-
mentum space:

δn̂q =

∫
dr eiq·r

(
ψ̂†(r)ψ̂(r)− 〈0|ψ̂†(r)ψ̂(r)|0〉

)
, (2)

and ψ̂ is the field operator. The matrix elements of the
density fluctuation operator are computed as

〈l|δn̂†q|0〉 =

∫
dr[u∗l (r) + v∗l (r)]eiq·rψ0(r). (3)

Considering Eq. (1), one sees that S0(q, ω) consists of in-
finitely narrow peaks centered around ω = ωl. The inte-
grated amplitude of each peak corresponds to the contri-
bution of the mode l to the quantum density fluctuations
of the dBEC at momentum q.

For our experimental probing, the relevant quantity
is the Fourier-broadened structure factor, S̃0(q, ω) =[
τsinc2(τω′/2) ∗ S0(q, ω′)

]
(ω), where ∗ denotes a con-

volution over ω′. This ultimately writes

S̃0(q, ω) =
∑

l

∣∣〈l|δn̂†q|0〉
∣∣2 τsinc2(τ(ω − ωl)/2). (4)

S̃0(q, ω) shows the same peaks in frequency as S0(q, ω)
but broadened with a typical width 1/τ . The ampli-

tude of S̃0(q, ω) on resonance matches the contribution
of the mode |l〉 to the quantum density fluctuations of
the dBEC at momentum q, multiplied by the Bragg pulse
duration, τ .

CONNECTION BETWEEN MEASURED
QUANTITIES AND DSF

In our experiment, we probe the dynamic structure
factor either via the fraction of atoms excited from the

dBEC peak at qy = 0 to the Bragg peak at qy = q or
via the momentum variance along the y axis. Following
Refs. [13, 14], we derive the relations of our observables

to S̃0(q, ω). The occupation of each mode after the pulse
is given by (Ref. [14], Eq. (2.31)):

Fl =
〈Nl(t = τ)〉 − 〈Nl(t = 0)〉

N
(5)

=
π2V 2

0 τ

h2

∣∣〈l|δn̂†q|0〉
∣∣2 τsinc2(τ(ω − ωl)/2), (6)

with 〈Nl(t)〉 being the mean number of atoms in the mode
l at time t (t = 0 matching the beginning of the Bragg
pulse). Equation (1) of the main text is then found by
simply summing F =

∑
l Fl and using Eq. (4). We note

that in our data analysis, the thermal (i. e. initial) popu-
lation at qy = q is encompassed in the broad background
Gaussian and thus excluded from the definition of F ,
similarly to Eq. (5).

For the momentum variance, the situation is more
complex. Assuming a fully ballistic expansion and a lin-
ear perturbation regime, h̄2〈q2

y〉/2m matches the energy
transferred during the Bragg pulse. For each mode, the
energy transferred during the pulse writes FlNh̄ωl. Us-
ing Eq. (6), one finds

〈q2
y〉 − 〈q2

y〉0 =

4π3mV 2
0 τN

h3

∑

l

∣∣〈l|δn̂†q|0〉
∣∣2 τωlsinc2(τ(ω − ωl)/2). (7)

where 〈q2
y〉0 is the value of 〈q2

y〉 for the dBEC (ofN atoms)
in absence of a Bragg pulse (at t = 0) and typically de-
pends on the value of as. Because of the multiplication
of ωl in the sum, 〈q2

y〉 can only be related to S̃0(q, ω)
approximately. When only one mode contributes signifi-
cantly to S̃0(q, ω), at a given (q, ω) one can write

〈q2
y〉 − 〈q2

y〉0 ≈
8π4mV 2

0 τNε(q)

h4
S̃0(q, ω). (8)

Note that, for a fixed q, ε(q) is a constant multiplying the
overall amplitude but not affecting the peak position in ω.
We highlight again that, in the experiment, we observe no
significant difference in the extracted ε(q) when analyzing
F or 〈q2

y〉; see Fig. S4.
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5
Supersolid states in dipolar
Bose–Einstein condensates

In this chapter, we discuss recent experiments on supersolidity, which opened a new avenue
with dipolar Bose-Einstein condensates. It is a particularly interesting research topic for our
group, and me personally, as it connects to our previous works on the Lee-Huang-Yang sta-
bilization and the roton mode, which are presented in Chapter 3 and Chapter 4, respectively.
Simultaneously with two other experimental groups, the one lead by G. Modugno [Tan19a]
and the one from T. Pfau [Bö19a], we discovered the existence of a new, exotic state in dipolar
quantum gases, that exhibits global phase coherence together with a spontaneously formed
density modulation. These two properties relate directly to the spontaneous breaking of two
continuous symmetries in our system. On the one hand, the state breaks the U(1) gauge
symmetry, leading to a global phase coherence [Pit03]. On the other hand, it possesses an
inherent density modulation, that breaks the translational symmetry. Both properties are
hallmarks of supersolidity, and, hence, these type of states are called dipolar supersolids.

In Sec. 5.1, I will present the historical idea of supersolidity. A more thorough theoretical
definition is then given in Sec. 5.2 together with the state-of-the-art of current experiments.
Section 5.3 is discussing supersolidity in the context of dipolar BECs and sets the stage for
our group’s two publications, presented in Sec. 5.4 and Sec. 5.5.

5.1. Historical idea of a superfluid solid

In the late 1930s, experiments by Kapitza [Kap38] and Allen and Misener [All38] found an
anomalously low viscosity of liquid 4He, when cooled below a temperature of about 2.2 K.
The authors observed for the first time superfluidity - an essentially frictionless flow of the
helium fluid. It took about two decades for scientists to understand the main features of
this intriguing new phase of matter and explain its accompanying properties, such as the
extra-ordinarily high heat conductivity [All37] or the phenomenon of second sound [Pes44,
Lan47]. Nowadays, it is known that the characteristics of superfluid helium are intimately
connected to two important properties of the superfluid: (i) The occurrence of Bose-Einstein
condensation that happens in this system below the critical temperature of 2.2 K and (ii)
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the strong interactions between the particles, which give rise to a maxon-roton excitation
spectrum [Lon38, Leg99, Pit03].

Even at zero temperature, superfluid helium does not freeze at room pressure. Therefore, to
obtain solid helium, it needs to be pressurised [Kee26, Sim34, Kee38]. It was known early on
that there is a phase transition between superfluid and solid helium that can be crossed by
applying pressure. Based on early theoretical publications that extended the definition of a
BEC to an interacting system [Pen56] and described the possibility of a density modulated,
superfluid state [Gro57], consecutive works [And69, Che70, Leg70, Mat70, Mul71] introduced
the idea of Bose-Einstein condensation, and the accompanied superfluidity, also in the context
of solid helium. This possible property of superfluidity in solid helium is called supersolidity
and seems at first sight counter-intuitive - or even paradoxical.

To get an intuitive picture of a supersolid object Ref. [Bon12b] gives an insight into some
of its peculiar properties: A supersolid can be viewed as a rigid object, where a part of
its constituents is expected to be localised on a lattice structure, while the remaining part
is delocalised over the system. This delocalised part can be for example delocalised de-
fects [And69, Che70], which are expected to undergo Bose-Einstein condensation and become
superfluid. As the delocalised part still experiences the lattice structure of the solid, its wave
function may feature a periodic modulation. This delocalised part might therefore show
superfluid flow within solid helium. Along with its first theoretical description, theorists
also looked for experimental signatures of supersolidity in helium. An early proposal [Leg70]
suggested a torsional oscillator, to measure the moment or inertia (MoI) of solid helium. It
was expected that, as solid helium is cooled into a possible supersolid phase, its MoI should
reduce below the expected MoI of a classical, rigid object. This non-classical moment of
inertia should arise in supersolid helium, as the superfluid part of the solid would remain at
rest and hence would not contribute to the MoI.

Another, mind-boggling, property of supersolid helium concerns mass transport within the
solid [Bon12b]. If one imagines an experiment, where the supersolid is brought in direct
contact with a superfluid of the same kind of constituents, the superfluid outside of the
supersolid may couple to the superfluid part inside the supersolid. As a consequence, the
superfluid outside, might flow through the supersolid. Therefore, mass transport of a su-
perfluid through a supersolid may happen. However, this property would vanish, when a
superfluid of another constituent would be used.

5.2. Supersolidity

For a more theoretically thorough description, a supersolid implies two main properties
[Bon12b]. Due to its solid character, it exhibits density long-range ordering, while the su-
perfluid character requires off-diagonal long-range ordering. The density long-range ordering
breaks the translational invariance in the system, as exhibited in crystalline structures such
as solids, where the density

ρ(r) = ρ(r + Rc) 5.1



5.3. A NEW TYPE OF QUANTUM STABILISED GROUND STATE IN DIPOLAR
GASES 95

is periodic with a vector Rc. Importantly, for a supersolid phase the breaking of the trans-
lational invariance needs to happen spontaneously, e. g. due to a change in the internal
interactions between the particles in the system. It is, for example, not sufficient to exter-
nally impose a periodic structure on the system. Superfluidity is intimately connected to
Bose-Einstein condensation [Leg06] and a supersolid is expected to feature a macroscopically
occupied quantum mechanical state, in which the condensed fraction of particles occupies
the k = 0 momentum and the reciprocal lattice momentum, kc = 2π/|Rc|, simultane-
ously [Bon12b].

The broken translational symmetry has interesting consequences on the properties of the
supersolid. For example, Leggett showed in Ref. [Leg70] that the presence of a density
modulation limits the superfluid fraction of the system to values smaller than one, even at
zero temperature. This is in stark contrast to the superfluid phase, where the superfluid
fraction approaches unity at zero temperature even in presence of strong quantum depletion
(i.e. a small condensed fraction). Another interesting feature is the presence of two gapless
excitation branches in the excitation spectrum of a supersolid, as has been shown for example
in Ref. [Sac12] for soft-core bosons. The two branches reflect the two spontaneously broken
symmetries in the system, where one is connected to excitations of the crystal structure and
the other one is connected to a superfluid flow of particles.

Up to date, multiple platforms have been investigated to realise and study states that possess
the above discussed properties of a supersolid. The earliest candidate for supersolidity was
helium [Tho69, And69, Che70]. A non-classical moment of inertia [Kim04b, Kim04a, Bal10]
and superfluid mass transport in solid helium [Ray08] showed first indications of a super-
solid state, but were later found to be explainable with temperature-dependent dislocations,
impurities or a changing shear modulus in the solid [Kim08, Cho10, Cho18a]. The ad-
vent of ultracold quantum gas experiments provided additional systems, with high purity
and great tunability of inter-particle interactions, to look for supersolidity [Bon12a]. Recent
theoretical proposals for Rydberg states [Hen10, Cin10] or dipolar bosons with additional
three-body repulsion [Lu15] were identified to exhibit supersolid properties. Experimentally,
recently the group from T. Esslinger realised a supersolid-like state with a BEC coupled to
a crossed optical cavity [Léo17] and the group of W. Ketterle found supersolid properties
in a spin-orbit coupled BEC [Li17]. In both experiments the translational invariance breaks
spontaneously. However, the wavelength of the density modulation is set externally by the
wavelength of lasers. This has an important consequence, as the created supersolid states
exhibit a rigid density modulation. Therefore, no low-momentum phonons may be excited
in these systems and the crystal structure shows no possible excitation.

5.3. A new type of quantum stabilised ground state in dipolar
gases

All the mentioned platforms at the end of Sec. 5.2 have one common ingredient, that seems
necessary for a phase transition from a superfluid to a (potentially) supersolid phase. It is
the presence of a roton mode in the excitation spectrum that becomes soft at the transition
point [Mot12, Ji15, San03]. As the roton mode lowers its energy towards the ground state
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energy, the density fluctuations in the system at the roton wavelength strongly increase (see
also Sec. 4.2). For superfluid helium, once the roton mode has a low enough energy the
system crystallises and transitions into a solid [Sch71]. In the case of gaseous BECs, it
was long believed, that the system should collapse at the roton instability. Only recently,
the discovery of the stabilisation mechanism by quantum fluctuations raised hopes again to
observe supersolidity in dipolar quantum gases, as was speculated early on from the group
of Tilman Pfau [Kad16] and also our group (see Sec. 4.4).

In Sec. 3.1.1 the GPE equation (Eq. 3.9) for a dipolar BEC was introduced and its stability
of the ground state was discussed. There, we argued that in this mean-field theory a collapse
of the BEC was inevitable once the total interaction energies in the system become negative,
which typically coincides with a fully softened excitation mode. But this picture changed with
the observation of the Lee-Huang-Yang stabilisation mechanism, which prevents the system
from reaching too high densities (see Sec. 3.3) and therefore can establish a stable state,
beyond the modulational instability triggered by a roton mode – similar to the solidification in
superfluid helium. In fact, the very first experimental observation of dipolar droplets [Kad16]
was in a crystal-shaped assembly, that had a great similarity to a solid phase. However,
in these early measurements, the observed droplet crystals did not show any global phase
coherence [FB16]. Consecutive other works [Wen17, Bai18] showed that the eGPE (Eq. 3.38),
which includes the LHY correction, supports stable crystals of droplets and, even new ground
states were found where the droplets showed a non-negligible density overlap[Bai18, Roc19].
These later works raised hopes for the possibility to establish coherence across the droplet
crystal and, thus, eventually a supersolid phase for dipolar BECs.

In our previous observations of roton mode population (see Sec. 4.5), we performed an inter-
action quench of the BEC it into a regime where it becomes favourable to spontaneously and
coherently populate the roton mode. In these measurements, we were able to create density
modulated dipolar BECs, which preserved on short timescales the phase coherence across
the system. However, the created states were quickly decohering due to non-equilibrium
dynamics and the fact that we were working in a regime, where no ground-state with sig-
nificant density overlap between droplets is expected. Nevertheless, this work provided
important insights for more recent experiments, of our group (see Sec. 5.4), the group of
G. Modugno [Tan19a] and the one from T. Pfau [Bö19a]. Especially Ref. [Tan19a] did a
first, fine tuning of the contact interactions and could show that a global phase coherence
can persist in a density modulated quantum gas of dysprosium atoms. Only shortly after,
also our group found good parameter regions for 166Er and could observe density modulated
states, that maintain a global phase coherence across the system.

It turned out that the important ingredients contain: (i) a roton mode in the system, (ii) a
rather shallow, cigar-shaped trapping potential that the kinetic energy of the atoms remains
weak while keeping the density moderately high, (iii) high enough atom numbers and (iv)
a very precise tuning of as, better than the level of 1 a0. Fig. 5.1 (a) shows ground-state
calculations of the density profile of a BEC. The interaction parameters are chosen such
that the system exhibits a roton mode (see also Fig. 4.3). As discussed in Sec. 4.2, when the
contact interactions between the atoms are slightly reduced, the roton mode may lower its
energy towards zero. At this point, the ground state is found to exhibit a phase transition
to a density modulated state, exemplified in Fig. 5.1 (b). More importantly, this new ground
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state exhibits a wave function, that shows a clear density link between the peaks, which
allows for superfluid flow across the entire system. It is therefore a good candidate to look
for density modulated states that might be able to preserve a global phase coherence in
experiments.
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Figure 5.1.: Ground state density profile, n2D (integrated along the atomic dipole direction, z), of
a dipolar BEC in a (ωx, ωy, ωz) = 2π× (250, 31, 160) Hz trap with 5× 104 atoms. (a) Shows a regular
BEC for as = 51.0 a0 while in (b) the ground state develops a spontaneous density modulation for
as = 50.8 a0, while preserving a density link across the whole system. This type of state is referred
to as a dipolar supersolid.

Fig. 5.2 shows axial cuts of the wave function (along y) of the roton mode on the BEC side of
the phase transition and the supersolid ground state on the other side of the phase transition.
As the regular BEC approaches the transition point, one observes a small reduction of the
roton mode’s wavelength, combined with an increase of its wave function amplitude. The
latter is directly connected to the increase of density fluctuations and the dynamic structure
factor of the BEC, as discussed in Sec. 4.2. Once the system crosses the phase transition, a
density modulation appears in the ground state whose wavelength matches well the roton
mode. This underlines the important role that the roton mode plays in the transition from
a regular BEC to a supersolid phase.

In order to study these supersolid states, our group performed experiments in both labora-
tories, the ERBIUM and the Dysprosium lab. The former one investigated 166Er, while the
other one focussed on 164Dy. The resulting publication is presented in Sec. 5.4. We found for
both elements states that showed global phase coherence in combination with a spontaneous
density modulation in a small interaction parameter region, as expected from the ground
state calculations. We furthermore observed that the system decoheres, as one reduces the
interactions further, towards a regime where the density link in the ground state vanishes.
Here, one enters the regime of an incoherent droplet array. This observation suggests the
idea of a solid-like phase, in which the density modulation of the system persists, but it has
lost its global phase coherence, which is consistent with the earlier observations of dipolar
droplet assemblies [Kad16, Wen17]. Interestingly, our study found a pronounced difference
in the lifetime of the created states. In the case of 166Er the state survives a few tens of
milliseconds, which is limited by three-body recombination processes that cause atom loss
in this highly dense state. Contrary, for 164Dy the lifetime exceeded hundreds of millisec-
onds, as three-body losses are less prominent. Ultimately, this allowed for the creation of
supersolid states via direct evaporative cooling of 164Dy, which was also demonstrated in the
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Figure 5.2.: Axial wave function cuts of the roton mode (ψrot, red) and the ground state (ψGS, blue)
across the BEC-to-supersolid phase transition (vertical, black line at 51 a0). The figure shows how
the axial modulation of the roton mode is evolving across the phase transition into the supersolid
ground state. The atom number is fixed to 5 × 104 and the trap has harmonic trapping frequencies
are (ωx, ωy, ωz) = (250, 31, 160) Hz. ψGS is normalised to the maximum value, ψm,BEC on the BEC
side of the phase transition.

publication in Sec. 5.4.

The observation of global phase coherence in this density modulated state is, in itself, not
a proof of supersolidity, as it does not directly inform about superfluidity in this system.
Therefore, additional measurements that revealed signatures of superfluid behaviour quickly
followed in experiments. As mentioned in Sec. 5.2, the presence of two broken symmetries
reveals itself as two gapless excitation branches in the excitation spectrum of a supersolid,
where the energetically lower lying branch is expected to be connected to superfluid flow
between different density peaks in the system. The spectrum of a dipolar supersolid was
experimentally investigated in Refs. [Tan19c, Guo19, Nat19]. Another experiment [Tan19b]
could also show the reduction of the moment of inertia of the supersolid states compared to
its classical value, which is an observable that was also used to search for supersolidity in
helium. Reference [Ilz19] studied the response of the supersolid states after creating phase
excitations in the system. This experiment found a rather fast re-establishment of phase
coherence in the supersolid and was furthermore able to identify a parameter region where
re-phasing did not any more occur.

In our most-recent work with 166Er, we studied the created supersolid states with high-energy
Bragg spectroscopy. The corresponding publication is given in Sec. 5.5 and shows that the
probing of free-particle excitations in the supersolid state gives a response of the system that
is determined by both, the density modulation contrast and by phase variations in the wave
function. The established technique, therefore, allowed us to identify the important role of
variations in the phase of the wave function in the experimentally created supersolid states.
Furthermore, we could show the occurrence of coherent phase variations mainly due to the
crossing of the phase transition in the preparation scheme, which emphasises the importance
of dynamics in the currently investigated supersolid states.
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By combining theory and experiments, we demonstrate that dipolar quantum gases of both 166Er and
164Dy support a state with supersolid properties, where a spontaneous density modulation and a global
phase coherence coexist. This paradoxical state occurs in a well-defined parameter range, separating the
phases of a regular Bose-Einstein condensate and of an insulating droplet array, and is rooted in the roton
mode softening, on the one side, and in the stabilization driven by quantum fluctuations, on the other side.
Here, we identify the parameter regime for each of the three phases. In the experiment, we rely on a detailed
analysis of the interference patterns resulting from the free expansion of the gas, quantifying both its
density modulation and its global phase coherence. Reaching the phases via a slow interaction tuning,
starting from a stable condensate, we observe that 166Er and 164Dy exhibit a striking difference in the
lifetime of the supersolid properties, due to the different atom loss rates in the two systems. Indeed, while in
166Er the supersolid behavior survives only a few tens of milliseconds, we observe coherent density
modulations for more than 150 ms in 164Dy. Building on this long lifetime, we demonstrate an alternative
path to reach the supersolid regime, relying solely on evaporative cooling starting from a thermal gas.
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I. INTRODUCTION

Supersolidity is a paradoxical quantum phase of matter
where both crystalline and superfluid order coexist [1–3].
Such a counterintuitive phase, featuring rather antithetic
properties, has been originally considered for quantum
crystals with mobile bosonic vacancies, the latter being
responsible for the superfluid order. Solid 4He has long
been considered a prime system to observe such a phe-
nomenon [4,5]. However, after decades of theoretical and
experimental efforts, an unambiguous proof of superso-
lidity in solid 4He is still missing [6,7].
In search of more favorable and controllable systems,

ultracold atoms emerged as a very promising candidate,
thanks to their highly tunable interactions. Theoretical
works point to the existence of a supersolid ground state
in different cold-atom settings, including dipolar [8]

and Rydberg particles [9,10], cold atoms with a soft-
core potential [11], or lattice-confined systems [7].
Breakthrough experiments with Bose-Einstein condensates
(BECs) coupled to light have recently demonstrated a state
with supersolid properties [12,13]. While in these systems
indeed two continuous symmetries are broken, the crystal
periodicity is set by the laser wavelength, making the
supersolid incompressible.
Another key notion concerns the close relation between a

possible transition to a supersolid ground state and the
existence of a local energy minimum at large momentum
in the excitation spectrum of a nonmodulated superfluid,
known as the roton mode [14]. Since excitations corre-
sponding to a periodic density modulation at the roton
wavelength are energetically favored, the existence of this
mode indicates the system’s tendency to crystallize [15]
and it is predicted to favor a transition to a supersolid
ground state [4,5,9].
Remarkably, BECs of highly magnetic atoms, in which

the particles interact through the long-range and anisotropic
dipole-dipole interaction (DDI), appear to gather several
key ingredients for realizing a supersolid phase. First,
as predicted more than 15 years ago [16,17] and recently
demonstrated in experiments [18,19], the partial attraction
in momentum space due to the DDI gives rise to a roton
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minimum. The corresponding excitation energy, i.e., the
roton gap, can be tuned in the experiments down to
vanishing values. Here, the excitation spectrum softens
at the roton momentum and the system becomes unstable.
Second, there is a nontrivial interplay between the trap
geometry and the phase diagram of a dipolar BEC. For
instance, our recent observations have pointed out the
advantage of axially elongated trap geometries (i.e., cigar
shaped) compared to the typically considered cylindrically
symmetric ones (i.e., pancake shaped) in enhancing the
visibility of the roton excitation in experiments. Last but
not least, while the concept of a fully softened mode is
typically related to instabilities and disruption of a coherent
quantum phase, groundbreaking works in the quantum-gas
community have demonstrated that quantum fluctuations
can play a crucial role in stabilizing a dipolar BEC [20–26].
Such a stabilization mechanism enables the existence,
beyond the mean-field instability, of a variety of stable
ground states, from a single macrodroplet [22,24,27] to
striped phases [28], and droplet crystals [29]; see also
related works [30–33]. For multidroplet ground states,
efforts have been devoted to understanding if a phase
coherence among ground-state droplets could be estab-
lished [28,29]. However, previous experiments with 164Dy
have shown the absence of phase coherence across the
droplets [28], probably due to the limited atom numbers.
Droplet ground states, quantum stabilization, and dipolar

rotons have caused a huge amount of excitement with very
recent advancements adding key pieces of information to
the supersolid scenario. The quench experiments in an
166Er BEC at the roton instability have revealed out-of-
equilibrium modulated states with an early-time phase
coherence over a timescale shorter than a quarter of the
oscillation period along the weak-trap axis [18]. In the same
work, it has been suggested that the roton softening
combined with the quantum stabilization mechanism
may open a promising route towards a supersolid ground
state. A first confirmation came from a recent theoretical
work [34], considering an Er BEC in an infinite elongated
trap with periodic boundary conditions and tight transverse
confinement. The supersolid phase appears to exist within a
narrow region in interaction strength, separating a roton
excitation with a vanishing energy and an incoherent
assembly of insulating droplets. Almost simultaneously,
experiments with 162Dy BECs in a shallow elongated trap,
performing a slow tuning of the contact interaction,
reported on the production of stripe states with phase
coherence persisting up to half of the weak trapping period
[35]. More recently, such observations have been con-
firmed in another 162Dy experiment [36]. Here, theoretical
calculations showed the existence of a phase-coherent
droplet ground state, linking the experimental findings to
the realization of a state with supersolid properties. The
results on 162Dy show, however, transient supersolid prop-
erties whose lifetime is limited by fast inelastic losses

caused by three-body collisions [35,36]. These realizations
raise the crucial question of whether a long-lived or
stationary supersolid state can be created despite the
usually non-negligble atom losses and the crossing of a
discontinuous phase transition, which inherently creates
excitations in the system.
In this work, we study both experimentally and theo-

retically the phase diagram of degenerate gases of highly
magnetic atoms beyond the roton softening. Our inves-
tigations are carried out using two different experimental
setups producing BECs of 166Er [22,37] and of 164Dy [38]
and rely on a fine-tuning of the contact-interaction strength
in both systems. In the regime of interest, these two atomic
species have different contact-interaction scattering lengths
as, whose precise dependence on the magnetic field is
known only for Er [18,22,39], and different three-body-loss
rate coefficients. Moreover, Er and Dy possess different
magnetic moments μ and masses m, yielding the dipolar
lengths, add ¼ μ0μ

2m=12πℏ2, of 65.5a0 and 131a0, respec-
tively. Here, μ0 is the vacuum permeability, ℏ ¼ h=2π the
reduced Planck constant, and a0 the Bohr radius. For both
systems, we find states showing hallmarks of supersolidity,
namely, the coexistence of density modulation and global
phase coherence. For such states, we quantify the extent of
the as parameter range for their existence and study their
lifetime. For 166Er, we find results very similar to the one
recently reported for 162Dy [35,36], both systems being
limited by strong three-body losses, which destroy the
supersolid properties in about half of a trap period.
However, for 164Dy, we have identified an advantageous
magnetic-field region where losses are very low and large
BECs can be created. In this condition, we observe that the
supersolid properties persist over a remarkably long time,
well exceeding the trap period. Based on such a high
stability, we finally demonstrate a novel route to reach the
supersolid state, based on evaporative cooling from a
thermal gas.

II. THEORETICAL DESCRIPTION

As a first step in our study of the supersolid phase in
dipolar BECs, we compute the ground-state phase diagram
for both 166Er and 164Dy quantum gases. The gases are
confined in a cigar-shaped harmonic trap, as illustrated in
Fig. 1(a). Our theory is based on numerical calculations of
the extended Gross-Pitaevskii equation [40], which
includes our anisotropic trapping potential, the short-range
contact and long-range dipolar interactions at a mean-field
level, as well as the first-order beyond-mean-field correc-
tion in the form of a Lee-Huang-Yang (LHY) term
[18,22–24,27]. We note that, while both the exact strength
of the LHY term and its dependence on the gas character-
istics are under debate [18,19,25,31,41], the importance of
such a term, scaling with a higher power in density, is
essential for stabilizing states beyond the mean-field
instability [18,25,41]; see also Refs. [8,42–44].
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Our theoretical results are summarized in Fig. 1. By
varying the condensed-atom number N and as, the phase
diagram shows three very distinct phases. To illustrate
them, we first describe the evolution of the integrated in situ
density profile nðyÞ with fixed N for varying as, Fig. 1(b).
The first phase, appearing at large as, resembles a regular
dilute BEC. It corresponds to a nonmodulated density
profile of low peak density and large axial size σy exceed-
ing several times the corresponding harmonic oscillator
length (ly ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωy

p
); see Fig. 1(e) and the region

denoted BEC in Figs. 1(f) and 1(g). The second phase
appears when decreasing as down to a certain critical value,
a�s . Here, the system undergoes an abrupt transition to a
periodic density-modulated ground state, consisting of an
array of overlapping narrow droplets, each of high peak
density. Because the droplets are coupled to each other via a
density overlap, later quantified in terms of the link strength
S, particles can tunnel from one droplet to a neighboring
one, establishing a global phase coherence across the cloud;
see Fig. 1(d). Such a phase, in which periodic density
modulation and phase coherence coexist, is identified as
the supersolid (SSP) one [10,34]; see the SSP region in
Figs. 1(f) and 1(g). When further decreasing as, we observe
a fast reduction of the density overlap, which eventually
vanishes; see Fig. 1(c). Here, the droplets become fully
separated. Under realistic experimental conditions, it is
expected that the phase relation between such droplets
cannot be maintained; see later discussion. We identify this
third phase as the one of an insulating droplet (ID) array

[27,28,45]; see the ID region in Figs. 1(f) and 1(g). For low
N, we find a single droplet of high peak density, as in
Refs. [24,27]; see dark blue region in Fig. 1(f). Generally
speaking, our calculations show that the number of droplets
in the array decreases with lowering as or N. The existence
of these three phases (BEC, SSP, ID) is consistent with
recent calculations considering an infinitely elongated
Er BEC [34] and a cigar-shaped 162Dy BEC [36], illustrat-
ing the generality of this behavior in dipolar gases.
To study the supersolid character of the density-modu-

lated phases, we compute the average of the wave function
overlap between neighboring droplets S. As an ansatz to
extract S, we use a Gaussian function to describe the wave
function of each individual droplet. This is found to be an
appropriate description from an analysis of the density
profiles of Figs. 1(b)–1(d); see also Ref. [46]. For two
droplets at a distance d and of identical Gaussian widths σy
along the array direction, S is simply S ¼ expð−d2=4σ2yÞ.
Here, we generalize the computation of the wave function
overlap to account for the difference in widths and
amplitudes among neighboring droplets. This analysis
allows us to distinguish between the two types of modu-
lated ground states, SSP and ID in Figs. 1(f) and 1(g).
Within the Josephson-junction picture [47–49], the tunnel-
ing rate of atoms between neighboring droplets depends on
the wave function overlap, and an estimate for the single-
particle tunneling rate can be derived within the Gaussian
approximation [46]; see also Ref. [40]. The ID phase
corresponds to vanishingly small values of S, yielding
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tunneling times extremely long compared to any other
relevant timescale. In contrast, the supersolid phase is
identified by a substantial value of S, with a correspond-
ingly short tunneling time.
As shown in Figs. 1(f) and 1(g), a comparative analysis

of the phase diagram for 166Er and 164Dy reveals similarities
between the two species (see also Ref. [36]). A supersolid
phase is found for sufficiently high N, in a narrow region
of as, upper bounded by the critical value as�ðNÞ. For
intermediate N, a�s increases with increasing N. We note
that, for low N, the nonmodulated BEC evolves directly
into a single droplet state for decreasing as [50]. In this
case, no supersolid phase is found in between; see also
Refs. [24,27]. Despite the general similarities, we see that
the supersolid phase for 164Dy appears for lower atom
number than for Er and has a larger extension in as. This is
mainly due to the different add and strength of the LHY
term. We note that, at large N and for decreasing as, Dy
exhibits ground states with a density modulation appearing
first in the wings, which then progresses inwards until a
substantial modulation over the whole cloud is established
[51]; see inset of Fig. 1(g). In this regime, we also observe
that a�s decreases with increasing N. These types of states
have not been previously reported and, although challeng-
ing to access in experiments because of the large N, they
deserve further theoretical investigations.

III. EXPERIMENTAL SEQUENCE
FOR 166Er AND 164Dy

To experimentally access the above-discussed physics, we
produce dipolar BECs of either 166Er or 164Dy atoms. These
two systems are created in different setups and below we
summarize the main experimental steps; see also Ref. [40].
Erbium.—We prepare a stable 166Er BEC following

the scheme of Ref. [18]. At the end of the preparation,
the Er BEC contains about N ¼ 8 × 104 atoms at
as ¼ 64.5a0. The sample is confined in a cigar-shaped
optical dipole trap with harmonic frequencies ωx;y;z ¼
2π × ð227; 31.5; 151Þ Hz. A homogeneous magnetic field
B polarizes the sample along z and controls the value of as
via a magnetic Feshbach resonance (FR) [18,22,40]. Our
measurements start by linearly ramping down as within
20 ms and waiting an additional 15 ms so that as reaches its
target value [40]. We note that ramping times between 20
and 60 ms have been tested in the experiment and we do not
record a significant difference in the system’s behavior.
After the 15-ms stabilization time, we then hold the sample
for a variable time th before switching off the trap. Finally,
we let the cloud expand for 30 ms and perform absorption
imaging along the z (vertical) direction, from which we
extract the density distribution of the cloud in momentum
space, nðkx; kyÞ.
Dysprosium.—The experimental procedure to create a

164Dy BEC follows the one described in Ref. [38]; see also

Ref. [40]. Similarly to Er, the Dy BEC is also confined in a
cigar-shaped optical dipole trap and a homogeneous
magnetic field B sets the quantization axis along z and
the value of as. For Dy, we will discuss our results in
terms of magnetic field B, since the as-to-B conversion is
not well known in the magnetic-field range considered
[25,40,41,52]. In a first set of measurements, we first
produce a stable BEC of about N ¼ 3.5 × 104 condensed
atoms at a magnetic field of B ¼ 2.5 G and then probe the
phase diagram by tuning as. Here, before ramping the
magnetic field to access the interesting as regions, we
slowly increase the power of the trapping beams within
200 ms. The final trap frequencies are ωx;y;z ¼ 2π ×
ð300; 16; 222Þ Hz. After preparing a stable BEC, we ramp
B to the desired value within 20 ms and hold the sample for
th [40]. In a second set of measurements, we study a
completely different approach to reach the supersolid state.
As discussed later, here we first prepare a thermal sample at
a B value where supersolid properties are observed and then
further cool the sample until a transition to a coherent
droplet-array state is reached. In both cases, at the end
of the experimental sequence, we perform absorption
imaging after typically 27 ms of time-of-flight (TOF)
expansion. The imaging beam propagates horizontally
under an angle α of ≈45° with respect to the weak axis
of the trap (y). From the TOF images, we thus extract
nðkY; kzÞ with kY ¼ cosðαÞky þ sinðαÞkx.
A special property of 164Dy is that its background

scattering length is smaller than add. This allows us to
enter the supersolid regime without the need of setting B
close to a FR, as is done for 166Er and 162Dy, which
typically causes severe atom losses due to increased three-
body-loss coefficients. In contrast, in the case of 164Dy, the
supersolid regime is reached by ramping B away from the
FR pole used to produce the stable BEC via evaporative
cooling, as the as range of Fig. 1(g) lies close to the
background as reported in Ref. [52]; see also Ref. [40]. At
the background level, three-body-loss coefficients below
1.3 × 10−41 m6 s−1 have been reported for 164Dy [25].

IV. DENSITY MODULATION AND
PHASE COHERENCE

The coexistence of density modulation and phase coher-
ence is the key feature that characterizes the supersolid
phase and allows us to discriminate it from the BEC and ID
cases. To experimentally probe this aspect in our dipolar
quantum gases, we record their density distribution after a
TOF expansion for various values of as across the phase
diagram. As for a BEC in a weak optical lattice [53] or for
an array of BECs [54–56], the appearance of interference
patterns in the TOF images is associated with a density
modulation of the in situ atomic distribution. Moreover, the
shot-to-shot reproducibility of the patterns (in amplitude
and position) and the persistence of fringes in averaged
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pictures, obtained from many repeated images taken under
the same experimental conditions, reveals the presence of
phase coherence across the sample [56].
Figure 2 exemplifies snapshots of the TOF distributions

for Er, measured at three different as values; see
Figs. 2(a)–2(c). Even if very close in scattering length,
the recorded nðkx; kyÞ shows a dramatic change in behavior.
For as ¼ 54.7ð2Þa0, we observe a nonmodulated distribu-
tion with a density profile characteristic of a dilute BEC.
When lowering as to 53.8ð2Þa0, we observe the appearance
of an interference pattern in the density distribution,
consisting of a high central peak and two almost symmetric
low-density side peaks [57]. Remarkably, the observed
pattern is very reproducible with a high shot-to-shot
stability, as shown in the repeated single snapshots and
in the average image [Figs. 2(b) and 2(e)]. This behavior
indicates a coexistence of density modulation and global
phase coherence in the in situ state, as expected in the
supersolid phase. This observation is consistent with
our previous quench experiments [18] and with the recent
162Dy experiments [35,36]. When further lowering as to
53.3ð2Þa0, complicated patterns develop with fringes
varying from shot to shot in number, position, and
amplitude, signaling the persistence of in situ density
modulation. However, the interference pattern is com-
pletely washed out in the averaged density profiles
[Fig. 2(f)], pointing to the absence of a global phase

coherence. We identify this behavior as the one of
ID states.
Toy model—To get an intuitive understanding of the

interplay between density modulation and phase coherence
and to estimate the role of the different sources of
fluctuations in our experiment, we here develop a simple
toy model, which is inspired by Ref. [56]; see also
Ref. [40]. In our model, the initial state is an array of
ND droplets containing in total N atoms. Each droplet is
described by a one-dimensional Gaussian wave function
ψ iðyÞ of amplitude αi, phase ϕi, width σi, and center yi. To
account for fluctuations in the experiments, we allow αi,
di ¼ yi − yi−1, and σi to vary by 10% around their expect-
ation values. The spread of the phases ϕi among the
droplets is treated specially as it controls the global phase
coherence of the array. By fixing ϕi ¼ 0 for each droplet or
by setting a random distribution of ϕi, we range from full
phase coherence to the incoherent cases. Therefore, the
degree of phase incoherence can be varied by changing the
standard deviation of the distribution of ϕi.
To mimic our experiment, we compute the free evolution

of each individual ψ i over 30 ms, and then compute the
axial distribution nðy; tÞ ¼ jPiψ iðy; tÞj2, from which we
extract the momentum distribution nðkyÞ, also accounting
for the finite imaging resolution [40]. For each computation
run, we randomly draw ND values for ϕi, as well as of σi,
di, and αi, and extract nðkyÞ. We then collect a set of nðkyÞ
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by drawing these values multiple times using the same
statistical parameters and compute the expectation value,
hnðkyÞi; see Figs. 2(j)–2(l). The angled brackets denote the
ensemble average.
The results of our toy model show large similarity with

the observed behavior in the experiment. In particular,
while for each single realization one can clearly distinguish
multipeak structures regardless of the degree of phase
coherence between the droplets, the visibility of the
interference pattern in the averaged nðkyÞ survives only
if the standard deviation of the phase fluctuations between
droplets is small (roughly, below 0.3π). In the incoherent
case, we note that the shape of the patterns strongly varies
from shot to shot. Interestingly, the toy model also shows
that the visibility of the coherent peaks in the average
images is robust against the typical shot-to-shot fluctua-
tions in droplet size, amplitude, and distance that occur in
the experiments; see Figs. 2(j) and 2(k).
Probing density modulation and phase coherence.—To

separate and quantify the information on the in situ density
modulation and its phase coherence,we analyze themeasured
interference patterns in Fourier space [36,58–60]. Here, we
extract two distinct averaged density profiles, nM and nΦ.
Their structures at finite y spatial frequency (i.e., in Fourier
space) quantify the two abovementioned properties.
More precisely, we perform a Fourier transform (FT) of

the integrated momentum distributions nðkyÞ denoted
F ½n�ðyÞ. Generally speaking, modulations in nðkyÞ induce
peaks at finite spatial frequency, y ¼ y�, in the FT norm,
jF ½n�ðyÞj; see Figs. 2(g)–2(i) and 2(m)–2(o). Following the
above discussion (see also Refs. [56,61]), such peaks in an
individual realization hence reveal a density modulation of
the corresponding in situ state, with a wavelength roughly
equal to y�. Consequently, we consider the average of the
FT norm of the individual images, nMðyÞ ¼ hjF ½n�ðyÞji, as
the first profile of interest. The peaks of nM at finite y then
indicate the mere existence of an in situ density modulation
of roughly constant spacing within the different realiza-
tions. As the second profile of interest, we use the FT
norm of the average profile hnðkyÞi, nΦðyÞ ¼ jF ½hni�ðyÞj.
Connecting to our previous discussion, the peaks of nΦ at
finite y point to the persistence of a modulation in the
average hnðkyÞi, which we identified as a hallmark for a
global phase coherence within the density-modulated state.
In particular, we point out that a perfect phase coherence,
implying identical interference patterns in all the individual
realizations, yields nM ¼ nΦ and, thus, identical peaks
at finite y in both profiles. We note that, by linearity, nΦ
also matches the norm of the average of the full FT
of the individual images, i.e., nΦðyÞ ¼ jhF ½n�ðyÞij; see
also Ref. [40].
Figures 2(g)–2(i) and 2(m)–2(o) demonstrate the sig-

nificance of our FT analysis scheme by applying it
to the momentum distributions from the experiment
[Figs. 2(d)–2(f)] and the momentum distributions from

the toy model [Figs. 2(j)–2(l)], respectively. As expected,
for the BEC case, both nM and nΦ show a single peak at
zero spatial frequency, y ¼ 0, characterizing the absence of
density modulation, Fig. 2(g). In the case of phase-coherent
droplets, Fig. 2(e), we observe that nM and nΦ are
superimposed and both show two symmetric side peaks
at finite y, in addition to a dominant peak at y ¼ 0; see
Fig. 2(h). In the incoherent droplet case, we find that, while
nM still shows side peaks at finite y, the ones in nΦ wash
out from the averaging, Figs. 2(f), 2(i), 2(l), and 2(o). For
both coherent and incoherent droplet arrays, the toy-model
results show behaviors matching the above description,
providing a further justification of our FT analysis scheme;
see Figs. 2(j)–2(o). Our toy model additionally proves two
interesting features. First, it shows that the equality
nM ¼ nΦ, revealing the global phase coherence of a
density-modulated state, is remarkably robust to noise in
the structure of the droplet arrays; see Figs. 2(j) and 2(m).
Second, our toy model, however, shows that phase fluc-
tuations across the droplet array on the order of 0.2π
standard deviation are already sufficient to make nΦ and
nM deviate from each other; see Figs. 2(k) and 2(n). The
incoherent behavior is also associated with strong varia-
tions in the side peak amplitude of the individual realiza-
tions of jF ½n�j, connecting, e.g., to the observations
of Ref. [36].
Finally, to quantify the density modulation and the

phase coherence, we fit a three-Gaussian function to both
nMðyÞ and nΦðyÞ and extract the amplitudes of the
finite-spatial-frequency peaks, AM and AΦ, for both dis-
tributions, respectively. Note that for a BEC, which is a
phase-coherent state, AΦ will be zero since it probes
only finite-spatial-frequency peaks; see Figs. 2(g)–2(i)
and 2(m)–2(o).

V. CHARACTERIZATION OF THE
SUPERSOLID STATE

We are now in the position to study two key aspects,
namely, (i) the evolution of the density modulation and
phase coherence across the BEC-supersolid-ID phases and
(ii) the lifetime of the coherent density-modulated state in
the supersolid regime.
Evolution of the supersolid properties across the phase

diagram.—The first type of investigation is conducted with
166Er since, contrary to 164Dy, its scattering length and
dependence on the magnetic field has been precisely
characterized [18,22]. After preparing the sample, we ramp
as to the desired value and study the density patterns as well
as their phase coherence by probing the amplitudes AM
and AΦ as a function of as after th ¼ 5 ms. As shown in
Fig. 3(a), in the BEC region (i.e., for large as), we observe
that both AM and AΦ are almost zero, evidencing the
expected absence of a density modulation in the system. As
soon as as reaches a critical value a�s , the system’s behavior
dramatically changes with a sharp and simultaneous
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increase of both AM and AΦ. While the strength of AM
and AΦ varies with decreasing as—first increasing then
decreasing—we observe that their ratio AΦ=AM remains
constant and close to unity over a narrow as range below a�s
of ≳1a0 width; see the inset of Fig. 3(a). This behavior
pinpoints the coexistence in the system of phase coherence
and density modulation, as predicted to occur in the
supersolid regime. For ðas − a�sÞ < −1a0, we observe that
the two amplitudes depart from each other. Here, while the
density modulation still survives with AM saturating to a
lower finite value, the global phase coherence is lost with
AΦ=AM < 1, as expected in the insulating droplet phase.
Note that we also study the evolution of AΦ and AM in
164Dy, but as a function of B, and find a qualitatively similar
behavior.
To get a deeper insight on how our observations compare

to the phase-diagram predictions (see Fig. 1), we study the
link strength S as a function of as; see Fig. 3(b). Since S
quantifies the density overlap between neighboring drop-
lets and is related to the tunneling rate of atoms across the
droplet array, it thus provides information on the ability of

the system to establish or maintain a global phase coher-
ence. In this plot, we set S ¼ 0 in the case where no
modulation is found in the ground state. At the BEC-to-
supersolid transition, i.e., at as ¼ a�s , a density modulation
abruptly appears in the system’s ground state with S taking
a finite value. Here, S is maximal, corresponding to a
density modulation of minimal amplitude. Below the
transition, we observe a progressive decrease of S with
lowering as, pointing to the gradual reduction of the
tunneling rate in the droplet arrays. Close to the transition,
we estimate a large tunneling compared to all other relevant
timescales. However, we expect this rate to become vanish-
ingly small, on the sub-Hertz level [40], when decreasing
as 1–2a0 below a�s. Our observation also hints at the smooth
character of the transition from a supersolid to an ID phase.
The general trend of S, including the extension in as

where it takes nonvanishing values, is similar to the as
behavior of AM and AΦ observed in the experiments [62].
We observe in the experiments that the as dependence at
the BEC-to-supersolid transition appears sharper than at
the supersolid-to-ID interface, potentially suggesting a
different nature of the two transitions. However, more
investigations are needed since atom losses, finite temper-
ature, and finite-size effects can affect, and in particular
smoothen, the observed behavior [64–66]. Moreover,
dynamical effects, induced by, e.g., excitations created at
the crossing of the phase transitions or atom losses during
the time evolution, can also play a substantial role in the
experimental observations, complicating a direct compari-
son with the ground-state calculations. The time dynamics
as well as a different scheme to achieve a state with
supersolid properties is the focus of the remainder of
the paper.
Lifetime of the supersolid properties.—Having identified

the as range in which our dipolar quantum gas exhibits
supersolid properties, the next central question concerns the
stability and lifetime of such a fascinating state. Recent
experiments on 162Dy have shown the transient character of
the supersolid properties, whose lifetime is limited by
three-body losses [35,36]. In these experiments, the phase
coherence is found to survive up to 20 ms after the density
modulation has formed. This time corresponds to about half
of the weak-trap period. Stability is a key issue in the
supersolid regime, especially since the tuning of as, used to
enter this regime, has a twofold consequence on the
inelastic loss rate. First, it gives rise to an increase in
the peak density [see Figs. 1(b)–1(d)] and, second, it may
lead to an enhancement of the three-body-loss coefficient.
We address this question by conducting comparative

studies on 166Er and 164Dy gases. These two species allow
us to tackle two substantially different scattering scenarios.
Indeed, the background value of as for 166Er (as well as for
162Dy) is larger than add. Thus, reaching the supersolid
regime, which occurs at add=as ≈ 1.2–1.4 in our geometry,
requires us to tune B close to the pole of a FR. This tuning
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FIG. 3. Supersolid behavior across the phase diagram. Mea-
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function of as − a�s for 166Er. For nonmodulated states, we set
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In the inset, open and closed symbols correspond to AΦ=AM >
0.8 and ≤ 0.8, respectively. In the experiments, we probe the
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from our experimental uncertainty in B, vertical error bars
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scattering lengths are a�s ¼ 54.9ð2Þa0 and 51.15a0, respectively
[62]. The numerical results are obtained for the experimental trap
frequencies and for a constant N ¼ 5 × 104 [63].
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also causes an increase of the three-body-loss rate. In
contrast, 164Dy realizes the opposite case with the back-
ground scattering length smaller than add. This feature
brings the important advantage of requiring tuning B away
from the FR pole to reach the supersolid regime. As we
describe below, this important difference in scattering
properties leads to a strikingly longer lifetime of the
164Dy supersolid properties with respect to 166Er and to
the recently observed behavior in 162Dy [35,36].
The measurements proceed as follows. For both 166Er

and 164Dy, we first prepare the quantum gas in the stable
BEC regime and then ramp as to a fixed value in the
supersolid regime for which the system exhibits a state of
coherent droplets (i.e., AΦ=AM ≈ 1); see previous discus-
sion. Finally, we record the TOF images after a variable th
and we extract the time evolution of both AΦ and AM.
The study of these two amplitudes will allow us to answer
the question of whether the droplet structure—i.e., the
density modulation in space—persists in time whereas
the coherence among droplets is lost (AM > AΦ → 0) or
if the density structures themselves vanish in time
(AM ≈ AΦ → 0).
As shown in Fig. 4, for both species, we observe that AΦ

and AM decay almost synchronously with a remarkably
longer lifetime for 164Dy [Fig. 4(b)] than 166Er [Fig. 4(a)].

Interestingly, AΦ and AM remain approximately equal
during the whole time dynamics; see insets of Figs. 4(a)
and 4(b). This behavior indicates that it is the strength of the
density modulation itself and not the phase coherence
among droplets that decays over time. Similar results have
been found theoretically in Ref. [67]. We connect this
decay mainly to three-body losses, especially detrimental
for 166Er, and possible excitations created while crossing
the BEC-to-supersolid phase transition [40]. For compari-
son, the inset of Fig. 4(a) shows also the behavior in the ID
regime for 166Er, where AΦ=AM < 1 already at short th and
remains so during the time evolution [40].
To get a quantitative estimate of the survival time of

the phase-coherent and density-modulated state, we fit a
simple exponential function to AΦ and extract tΦ, defined
as the 1=10 lifetime; see Fig. 4. For 166Er, we extract
tΦ ¼ 38ð6Þ ms. For th > tΦ, the interference patterns
become undetectable in our experiment and we recover
a signal similar to the one of a nonmodulated BEC state [as
in Figs. 2(a) and 2(d)]. These results are consistent with
recent observations of transient supersolid properties in
162Dy [35]. For 164Dy, we observe that the coherent density-
modulated state is remarkably long-lived. Here, we find
tΦ ¼ 152ð13Þ ms.
The striking difference in the lifetime and robustness of

the supersolid properties between 166Er and 164Dy becomes
even more visible when studying tΦ as a function of as
(B for Dy). As shown in Fig. 5, tΦ for Er remains
comparatively low in the investigated supersolid regime
and slightly varies between 20 and 40 ms. Similarly to the
recent studies with 162Dy, this finding reveals the transient
character of the state and opens the question of whether a
stationary supersolid state can be reached with these
species. On the contrary, for 164Dy we observe that tΦ
first increases with B in the range from 1.8 G to about
1.98 G. Then, for B > 1.98 G, tΦ acquires a remarkably
large and almost constant value of about 150 ms over a
wide B range. This shows the long-lived character of the
supersolid properties in our 164Dy quantum gas. We note
that over the investigated range, as is expected to monoto-
nously increase with B [40]. Such a large value of tΦ
exceeds not only the estimated tunneling time across
neighboring droplets but also the weak-axis trap period,
which together set the typical timescale to achieve global
equilibrium and to study collective excitations.

VI. CREATION OF STATES WITH SUPERSOLID
PROPERTIES BY EVAPORATIVE COOLING

The long-lived supersolid properties in 164Dy motivate us
to explore an alternative route to cross the supersolid phase
transition, namely, by evaporative cooling instead of
interaction tuning. For this set of experiments, we have
modified the waists of our trapping beams in order to
achieve quantum degeneracy in tighter traps with respect to
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the one used for condensation in the previous set of
measurements. In this way, the interference peaks in the
supersolid region are already visible without the need to
apply a further compression of the trap since the side-
to-central-peak distance in the momentum distribution
scales roughly as 1=lz [18]. Forced evaporative cooling
is performed by reducing the power of the trapping beams
piecewise linearly in subsequent evaporation steps until a
final trap with frequencies 2π × ð225; 37; 134Þ Hz is
achieved. During the whole evaporation process, which
has an overall duration of about 3 s, the magnetic field is
kept either at B ¼ 2.43 G, where we observe long-lived
interference patterns, or at B ¼ 2.55 G, where we produce
a stable nonmodulated BEC. We note that these two B
values are very close without any FR lying in between [40].
Figure 6 shows the phase transition from a thermal cloud

to a final state with supersolid properties by evaporative
cooling. In particular, we study the phase transition by
varying the duration of the last evaporation ramp, while
maintaining the initial and final trap-beam power fixed.
This procedure effectively changes the atom number and
temperature in the final trap while keeping the trap
parameters unchanged, which is important to not alter
the final ground-state phase diagram of the system. At the
end of the evaporation, we let the system equilibrate and
thermalize for th ¼ 100 ms, after which we switch off the
trap, let the atoms expand for 26.5 ms, and finally perform
absorption imaging. We record the TOF images for differ-
ent ramp durations, i.e., for different thermalization times.
For a short ramp, too many atoms are lost such that the
critical atom number for condensation is not reached, and
the atomic distribution remains thermal; see Fig. 6(a).

By increasing the ramp time, the evaporative cooling
becomes more efficient and we observe the appearance of a
bimodal density profile with a narrow and dense peak at the
center, which we identify as a regular BEC; see Fig. 6(b).
By further cooling, the BEC fraction increases and the
characteristic pattern of the supersolid state emerges; see
Figs. 6(c) and 6(d). The observed evaporation process
shows a strikingly different behavior in comparison
with the corresponding situation at B ¼ 2.55 G, where
the usual thermal-to-BEC phase transition is observed; see
Figs. 6(i)–6(l).
We finally probe the lifetime of the supersolid properties

by extracting the time evolution of both the amplitudes AΦ
and AM, as previously discussed. We use the same
experimental sequence as the one in Fig. 6(d)—i.e., 300-
ms duration of the last evaporation ramp and 100 ms of
equilibration time—and subsequently hold the sample in
the trap for a variable th. As shown in Fig. 7(a), we observe
a very long lifetime with both amplitudes staying large and
almost constant over more than 200 ms. At longer holding
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time, we observe a slow decay of AΦ and AM, following the
decay of the atom number. Moreover, during the dynamics,
the ratio AΦ=AM stays constant. The long lifetime of
the phase-coherent density modulation is also directly
visible in the persistence of the interference patterns in
the averaged momentum density profiles [similar to
Fig. 2(e)], both at intermediate and long times; see
Figs. 7(b) and 7(c), respectively. For even longer th, we
cannot resolve anymore interference patterns in the TOF
images. Here, we recover a signal consistent with a regular
BEC of low N.
Achieving the coherent droplet phase via evaporative

cooling is a very powerful alternative path to supersolidity.
We speculate that, for instance, excitations, which might be
important when crossing the phase transitions by inter-
action tuning, may be small or removed by evaporation
when reaching this state kinematically. Other interesting
questions, open to future investigations, are the nature of
the phase transition, the critical atom number, and the role
of noncondensed atoms.

VII. CONCLUSIONS

For both 166Er and 164Dy dipolar quantum gases, we have
identified and studied states showing hallmarks of super-
solidity, namely, global phase coherence and spontaneous
density modulations. These states exist in a narrow scatter-
ing-length region, lying between a regular BEC phase and a
phase of an insulating droplet array. While for 166Er,
similarly to the recently reported 162Dy case [35,36], the
observed supersolid properties fade out over a compara-
tively short time because of atom losses, we find that 164Dy
exhibits remarkably long-lived supersolid properties.
Moreover, we are able to directly create stationary states

with supersolid properties by evaporative cooling, demon-
strating a powerful alternative approach to interaction
tuning on a BEC. This novel technique provides prospects
of creating states with supersolid properties while avoiding
additional excitations and dynamics. The ability to produce
long-lived supersolid states paves the way for future
investigations on quantum fluctuations and many-body
correlations, as well as of collective excitations in such
an intriguing many-body quantum state. A central goal of
these future investigations lies in proving the superfluid
character of this phase, beyond its global phase coherence
[7,34,68–70].
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GROUND STATE CALCULATIONS

We perform numerical calculations of the ground state
following the procedure detailed in the supplementary
information of Ref. [1]. The calculations are based on
the conjugate-gradients technique to minimize the en-
ergy functional of an eGPE [2]. In particular, the eGPE
accounts for the effect of quantum fluctuations, by includ-
ing the LHY term ∆µ[n] = 32g(nas)

3/2(1+3ε2dd/2)/3
√
π

in the system’s Hamiltonian (here g = 4πh̄2as/m and
n = |ψ|2 is the spatial density of the macroscopic state
ψ). ∆µ[n] has been obtained under a local density
approximation in Refs. [3, 4]. The relevance of the
LHY correction has been demonstrated in various stud-
ies of dipolar Bose gases close to the mean-field instabil-
ity [1, 5–9] as it brings an additional repulsive potential,
stabilizing the gas against mean-field collapse at large
density. We note that the exact functional form of the
potential, originating from beyond mean-field effects, has
been questioned by several experimental results in finite-
size trapped systems [1, 9–11], calling for further theory
developments [12].

Our numerical calculations provide us with the three-
dimensional ground-state wavefunctions ψ(r). From this,
we compute the axial in-situ density profile along the
trap’s weak axis, n(y) =

∫
|ψ(r)|2dxdz and find den-

sity profiles, corresponding to the BEC, the supersolid
or the ID phase, that we plot in Fig. 1. From the
density profiles that exhibit a density modulation, we
evaluate S by performing Gaussian fits to each droplet,
i. e. to n(y) with y ranging between two neighboring lo-
cal density minima. From these Gaussian fits, we eval-

uate the sets of centers {y(0)
i }i and widths {σi}i cor-

responding to the macroscopic Gaussian wavefunctions
{ψi}i associated to the individual droplets in the ar-
ray. We then approximate the droplet wavefunction via

ψi(y) ≈
√
n(y ≈ y(0)

i ) = αi exp
(
−(y − y(0)

i )2/2σ2
i

)
with

αi a normalization coefficient such that
∫
|ψi(y)|2dy = 1.

We then evaluate the wavefunction overlap Si between

the neighboring droplets i− 1 and i via:

Si ≡
∫
ψ∗
i−1(y)ψi(y)dy (1)

=

√
2σiσi−1

σ2
i + σ2

i−1

exp

(
− (y

(0)
i − y

(0)
i−1)2

2(σ2
i + σ2

i−1)

)
. (2)

The latter equation is obtained via an analytical evalu-
ation of the Gaussian integral. The characteristic link
strength defined in the paper is then computed by aver-
aging Si over all droplet links in the array: S = 〈Si〉i. In
our calculation, we only consider as droplets all density
peaks of at least 5 % of the global density maximum.

LINK STRENGTH AND ESTIMATE OF
TUNNELING RATE

Generally speaking, the wavefunction overlap between
neighboring droplets relates to a tunneling term, which
sets a particle exchange term between two neighboring
droplets [13–16]. Following the work of Ref. [17], we per-
form a first estimate of the tunneling coefficient by sim-
ply considering the single-particle part of the Hamilto-
nian and evaluate it between two neighboring droplets.
We note that, in our particular setting where the density
modulation is not externally imposed but arises from the
mere interparticle interactions, the inter-droplet interac-
tion may also play a crucial role. To perform a more
precise estimation of the tunneling between droplets, one
would certainly need to properly account for this effect.
Here, we stress that our approach simply gives a rough
idea of the magnitude of tunneling while it does not aim
to be a quantitative description of it. This consideration
calls for further studies making a systematic analysis of
the full Hamiltonian and of the full phase diagram within
the Josephson junction formalism and beyond.

Generalizing the description of Ref. [17] to neighbor-
ing droplets of different sizes and amplitudes, which are
described by a three-dimensional wavefunction ψi(r) ap-
proximated to a three-dimensional Gaussian of widths
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(σi,x, σi,y, σi,z) with σi,y = σi, our estimate writes:

Ji =
h̄2Si
2m



∑

k=x,y,z

1 +
(
σi,kσi−1,k

`2k

)2

σ2
i,k + σ2

i−1,k

+
(y

(0)
i − y

(0)
i−1)2

2σiσi−1

(σiσi−1/`y)
4 − 1

σ2
i + σ2

i−1

]
, (3)

where `x,y,z =
√
h̄/mωx,y,z are the harmonic oscillator

lengths.
In general, the tunnelling coefficients set two typical

rates relevant for equilibration processes. The first one
is the bare single-particle tunneling rate, which is equal
to Ji/h, while the second accounts for the bosonic en-
hancement from the occupation of the droplet modes
and writes t̃i =

√
NiNi−1|Ji|/h where Ni is the num-

ber of atoms in droplet i. In our analysis, we then define
the average rates over the droplet arrays as characteristic
rates J/h = 〈Ji〉i/h, and t̃ = 〈t̃i〉i; see e.g. [18]. While
the ground state evolves from a BEC to a supersolid to
an ID, the relevant timescale for achieving (global) equi-
librium crosses from being set by the trap frequencies to
the above-mentioned tunneling rates.

Using our approximate model, we here give a first es-
timate of the rates J/h and t̃ as a function of as, for the
parameters of Fig. 1(b-d) of the main text (i.e. Er quan-
tum gas with N = 5 × 104 atoms). Here we find that,
for as = a∗s , J/h ∼ 400 Hz and t̃ ∼ 10 MHz while for
as = a∗s − 2.5 a0, J/h ∼ 10−7 Hz and t̃ ∼ 10−3 Hz.

TOY MODEL FOR THE INTERFERENCE
PATTERN

As described in the main text we use a simple toy
model, adapted from Ref. [18], to identify the main fea-
tures of the TOF interference patterns obtained from an
insitu density-modulated state. As a quick reminder, our
model considers a one-dimensional array of ND Gaus-
sian droplets, described by a single classical field, ψi,
thus neglecting quantum and thermal fluctuations. We
compute the TOF density distribution from the free-
expansion of the individual ψi during a time t via
n(y, t) = |∑i ψi(y, t)|2. In our calculations, we also ac-
count for the finite imaging resolution by convolving the
resulting n(y, t) with a gaussian function of width σim.
Here we allow the characteristics of the individual ψi to
fluctuate. In this aim, we introduce noise on the corre-
sponding parameter with a normal distribution around
its expectation value and with a variable standard devi-
ation (only φi can also have a uniform distribution). We
then perform a Monte-Carlo study and perform ensemble
averages, similar to our experimental analysis procedure.
We note that, in this simple implementation, the noise
on the different parameters – droplet amplitudes, widths
and distances – are uncorrelated.

In the main text, we present results for a single set of
parameters, namely ND = 4, d ≡ 〈di〉i = 2.8µm (mean
droplet distance), σy ≡ 〈σi〉i = 0.56µm (mean droplet
size), t = 30 ms, and σim = 3µm, typical for our exper-
imental Er setting and the corresponding theory expec-
tations in the supersolid regime. 〈·〉i denotes the average
over the droplets. In this section, we have a deeper look
at the impact of the different parameters on both the
TOF signal and our FT analysis. We study both the
fully phase coherent and fully incoherent case, and the
unchanged parameters are set as in Fig. 2(j,m) and (l,o).
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FIG. S1. Toy model realizations with varying number
of droplets ND. We use 100 independent draws, and expec-
tation values d = 2.85µm, σy = 0.56µm (with 10% noise) and
either φi = 0 (a,b,e,f,i,j), or φi uniformly distributed between
0 and 2π (c,d,g,h,k,l). (a–d) ND = 2, (e–h) ND = 3 and (i–l)
ND = 8. (a,c,e,g,i,k) TOF density profiles and (b,d,f,h,j,l)
corresponding FT analysis of the interference patterns, same
color code as Fig .2.

In Fig. S1, we first exemplify the TOF and FT pro-
files for a varying number of droplets, between 2 and 8,
which cover the range of relevant ND over the phase di-
agram of Fig. 1. The results remain remarkably similar
to the realization of Fig. 2 with only slight quantitative
changes. The main difference lies in the individual inter-
ference patterns obtained in the phase incoherent case.
With increasing ND, those profiles become more com-
plex and made of a larger number of peaks (see (c,g,k)).
Yet, in this incoherent case, a similar (non-modulated)
profile is recovered in the averaged n(ky) for all ND.
Additionally, we note that for the coherent case with
ND = 8, the side peaks in the FT analysis (see (j))
become less visible. By performing additional tests, we
attribute this behavior to the limited TOF duration, t,
used in our experiment yielding a typical length scale,√
h̄t/m (= 3.4µm), which becomes small compared to

the system size (≈ (ND − 1)d + σy) for large ND. This
intermediate regime in the TOF expansion leads to more
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complex features, including smaller-sized motifs, in the
interference patterns. Finally, when accounting for our
imaging resolution, it yields a broadening of the structure
observed in the TOF images and less visible peaks in the
FT (see (i)). We note that our experiments, because of
limited N and additional losses, should rather lie in the
regime 2 ≤ ND ≤ 5; see Fig. 1(b).
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FIG. S2. Toy model realizations with varying σy/d.
We use 100 independent draws, with ND = 4, d = 2.85µm
(with 10% noise) and either φi = 0 (a,b,e,f,i,j), or φi uni-
formly distributed between 0 and 2π (c,d,g,h,k,l). For each
realization we also compute the associated mean S. (a–d)
σy/d = 0.1, yielding S = 1.8×10−7 (e–h)σy/d = 0.15, match-
ing S = 1.7×10−4 and (i–l) σy/d = 0.25, matching S = 0.028.
(a,c,e,g,i,k) TOF density profiles and (b,d,f,h,j,l) Correspond-
ing FT analysis of the interference patterns, same color code
as Fig. 2.

We then investigate the evolution of the interference
patterns and their FT analysis for a varying mean droplet
size, σy, while keeping their mean distance, d, fixed. This
study is particularly relevant recalling that, within the
Josephson junction formalism (see main text and cor-
responding section of this Supplemental Material), the
key parameter controlling the tunneling rate between the
droplets is set by the ratio σy/d, and the link strength pa-
rameter that we use to characterize the supersolid regime
scales roughly as exp(−(d/2σy)2). Thus, in our experi-
ment, σy/d is intrinsically expected to decrease with the
scattering length (see Fig. 3). Performing a direct esti-
mate of the average droplet link from the initial state of
our toy model, we find S = 0.004 for the calculations
of Fig. 2(j-o), lying in an expected supersolid regime yet
rather close to the supersolid-to-ID transition. Figure
S2 investigates the effect of smaller and larger values of
σy/d (and consequently of S) on the TOF and FT profiles
while independently assuming phase coherence or inco-
herence. Qualitatively, the features remain similar as in
Fig. 2(j-o). In the coherent case, side peaks are visible in

the individual as well as in the mean n(ky) (see (a,e,i))
and yield side peaks in the FT profiles, with nM ≈ n (see
(b,f,j)). Increasing (decreasing) σ/d mainly results in a
stronger (weaker) signal both in the interference pattern
and their FT analysis. Within our toy model, we find
that, already for σ/d = 0.25, the signal nearly vanishes;
see (i,j). Even if, given the approximations used in our
toy model, this exact value may not fully hold for our
experimental conditions, we expect a similar trend. It is
interesting to keep in mind that this effect may limit our
capacity of detecting an underlying supersolid state via
matter-wave interference in experiments. In the incoher-
ent case, the effect of decreasing σy/d mainly results in
a broader shape of the mean density profile, while it re-
mains non-modulated; see (c,g,k). In the FT analysis nΦ

remains structure-less independently of σy/d while the
structures in nM becomes sharper with decreasing σy/d,
as in the coherent case; see (d,h,l).
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FIG. S3. Toy model realizations allowing noise in
the center position. We use 100 independent draws, with
ND = 4, d = 2.85µm (with 10% noise), σy/d = 0.15 (a–
d) or σy/d = 0.2 (e–h), and either φi = 0 (a,b,e,f,i,j), or φi

uniformly distributed between 0 and 2π (c,d,g,h,k,l). Cen-
ter fluctuation are introduced as normal noise around 0 with
standard deviation of 2µm−1 in situ (a,c,e,g,i,k) TOF den-
sity profiles and (b,d,f,h,j,l) corresponding FT analysis of the
interference patterns, same color code as Fig. 2.

Finally, we investigate how a possible shot-to-shot
noise on the position of the central interference peak
could affect our observables of the density modulation
and phase coherence. In the experiments, such fluctua-
tions may occur, for instance, because of beam-pointing
fluctuations or excitations of the gas. Although we com-
pensate for such effects by recentering the individual im-
ages (see Imaging Analysis section), residual effects may
remain, in particular due to center misestimation in the
mere presence of the interference patterns of interest. To
investigate this aspect, we repeat our toy model calcu-
lations now including noise in the global droplet array
position and using a standard deviation of 2µm for two
values of σy/d; see Fig.S3. Again, qualitatively the ob-
served features remains similar to our prediction in the
main text. The main effect lies in the appearance of a
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small discrepancy in the coherent case between nΦ and
nM , while the structure in the incoherent case remains
similar. As the center misestimation should be the most
severe in the latter case (due to the variability of the
interference patterns observed here), our test shows the
robustness of our analysis procedure against this issue.

IMAGING ANALYSIS: 164Dy AND 166Er

The density distributions in momentum space are ex-
tracted from the TOF images using the free-expansion
expectation. In the Dy case, the thermal component is
subtracted from the individual distribution by cutting
out the central region of the cloud and performing an
isotropic Gaussian fit on the outer region. This sub-
traction is beneficial because of the large thermal frac-
tion. In the 166Er case, such a subtraction is on the
contrary complicated because of the weak thermal com-
ponent and this pre-treatment may lead to improper es-
timation of AM and AΦ in the later analysis. The ob-
tained momentum density distributions are then recen-
tered and integrated numerically along kz(kx) between
[−2.0,+2.0]µm−1 ([−1.28,+1.28]µm−1) to obtain n(kY )
(n(ky)) for 164Dy (166Er). The recentering procedure
uses the result a single Gauss fit to the TOF images.
The fit is performed after convoluting each image with
a Gaussian function of width 0.5µm whose purpose is
to reduce the impact of the interference pattern on the
center estimation [19].

In order to characterise the system’s state, we use the
Fourier transform, F [n](y) of the single density profile,
n(ky). We then compute two average profiles, nM and
nΦ, relying on ensemble average over all measurements
under the same experimental conditions; see below for a
detailed discussion on nM and nΦ. In all the measure-
ments reported in this work we use averages over typically
15 to 100 realizations.

To quantify both the existence of a density modulation
and global phase coherence on top of this modulation, we
fit both nM (y) and nΦ(y) with a triple-Gaussian function,
where one Gaussian accounts for the central peak and the
other Gaussians are accounting for the symmetric side
peaks. The amplitudes of the latter give AM and AΦ,
respectively. The distance between the side peaks and
the central one is allowed to vary between [2.5, 2.7]µm
([2.3, 2.5]µm) in the case of 164Dy (166Er).

DETAILS ON THE FOURIER ANALYSIS

In our analysis we rely on two averaged profiles, named
nM or nΦ, to quantify both the density modulation and
its phase coherence. Here we detail the meaning of the
average performed.

The Fourier transform (FT) of the integrated mo-
mentum distributions, n(ky), which reads F [n](y) =
|F [n](y)| exp(i arg (F [n](y))) sets the ground for our
analysis. As stated in the main text, an in-situ density
modulation of wavelength y∗ yields patterns in n(ky) and
consequently induce peaks at y ≈ y∗, in the FT norm,
|F [n](y)|, see Fig. 2(g-i) and (m-o). Spatial variations of
the phase relation within the above-mentioned density
modulation translate into phase shifts of the interference
patterns, which are stored in the FT argument at y ≈ y∗,
arg (F [n](y∗)); see also Ref. [18, 20].

The first average that we use is nM (y) = 〈|F [n](y)|〉,
i. e. the average of the FT norm of the individual images.
As the phase information contained in arg (F [n](y)) is
discarded from nM when taking the norm, the peaks
in nM probe the mere existence of an insitu density
modulation of roughly constant spacing within the dif-
ferent realizations. The second average of interest is
nΦ(y) = |〈F [n](y)〉|, i. e. the average of the full FT of the
individual images. In contrast to nM , nΦ keeps the phase
information of the individual realizations contained in
arg (F [n](y∗)). Consequently, peaks in nΦ indicate that
the phase relation is maintained over the density modula-
tion, in a similar way for all realizations. Their presence
thus provides information on the global phase coherence
of a density-modulated state.

EXPERIMENTAL SEQUENCE: 164Dy AND 166Er

166Erbium - The BEC of 166Er is prepared similarly to
Refs. [1, 8, 21, 22]. We start from a magneto-optical trap
with 2.4 × 107 166Er atoms at a temperature of 10µK,
spin-polarized in the lowest Zeeman sub-level. In a next
step we load about 3 × 106 atoms into a crossed opti-
cal dipole trap (ODT) operated at 1064 nm. We evap-
oratively cool the atomic cloud by reducing the power
and then increasing the ellipticity of one of the ODT
beams. During the whole evaporation a constant mag-
netic field of B = 1.9 G (as = 80 a0) along z is applied.
We typically achieve BEC with 1.4 × 105 atoms and a
condensed fraction of 70%. In a next step the ODT
is reshaped in 300 ms into the final trapping frequencies
ωx,y,z = 2π×(227, 31.5, 151) Hz. Consecutively, we ramp
B linearly to 0.62 G (64.5 a0) in 50 ms and obtain a BEC
with 8.5× 104 atoms, which are surrounded by 3.5× 104

thermal atoms. This point marks the start of the ramp
to the final as.

164Dysprosium - For the production of a 164Dy BEC
we closely follow the scheme presented in [23]. Starting
from a 3 s loading phase of our 5-beam MOT in open-top
configuration [24], we overlap a 1064 nm single-beam
dipole trap with a 1/e2-waist of about 22µm, for 120 ms.
Eventually, we transfer typically 8×106 atoms utilizing a
time averaging potential technique to increase the spatial
overlap with the MOT. After an initial 1.1 s evaporative
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cooling phase by lowering the power of the beam, we
add a vertically propagating beam, derived from the
same laser, with a 1/e2-waist of about 130µm to form a
crossed optical dipole trap for additional confinement.
Subsequently, we proceed forced evaporative cooling
to reach quantum degeneracy by nearly exponentially
decreasing the laser powers in the two dipole-trap beams
over 3.6 s. We achieve BECs of 164Dy with typically 105

atoms and condensate fractions of about 40%. During
the entire evaporation sequence the magnetic field is
kept constant at 2.5 G pointing along the vertical (z-)
axis.

To be able to condense directly into the supersolid,
we modify the dipole trap to condense at a stronger
confinement of ωx,y,z = 2π × (225, 37, 134) Hz. After a
total evaporative cooling duration of 3.1 s, we achieve
Bose-Einstein condensation at 2.55 G and reach a state
with supersolid properties at 2.43 G, keeping the mag-
netic field constant throughout the entire evaporation
sequence for both cases.

Time of flight and imaging for 166Er and 164Dy - In
order to probe the momentum distribution of the Dy (Er)
gases, we switch off the confining laser beams and let the
atoms expand freely for 18 ms (15 ms), while keeping the
magnetic field constant. Consecutively the amplitude of
B is increased to a fixed amplitude of 5.4 G (0.6 G). In the
case of 164Dy, the magnetic field orientation is rotated
in order to point along the imaging axis. This ensures
constant imaging conditions for different as. After an
additional 9 ms (15 ms) we perform a standard absorption
imaging.

TUNING THE SCATTERING LENGTH IN 166Er
AND 164Dy

166Erbium - All measurements start with a BEC at
64.5 a0. In order to probe the BEC-supersolid-ID region,
we linearly ramp as to its target value in tr = 20 ms
by performing a corresponding ramp in B. Due to a
finite time delay of the magnetic field in our experimental
setup and the highly precise values of as needed for the
experiment, we let the magnetic field stabilize for another
15 ms before th = 0 starts. By this, we ensure that the
residual lowering of as during the entire hold time is <∼
0.3 a0. In the main text, we always give the as at th = 0 .
Furthermore, we estimate our magnetic field uncertainty
to be ±2.5 mG, leading to a ±0.2 a0 uncertainty of as in
our experiments.

To choose the best ramping scheme, we have performed
experiments varying tr from 0.5 ms to 60 ms, ramping to
a fixed as lying in the supersolid regime, and holding for
th = 5 ms after a fixed 15 ms waiting time. We record the
evolution of AΦ as a function of tr; see Fig. S4. When

increasing tr, we first observe that AΦ increases, up to
tr = 20 ms, and then AΦ gradually decreases. The initial
increase can be due to diabatic effects and larger exci-
tation when fast-crossing the phase transition. On the
other hand, the slow decrease at longer tr can be ex-
plained by larger atom loss during the ramp. We then
choose tr = 20 ms as an optimum value where a super-
solid behavior develops and maintains itself over a signif-
icant time while the losses are minimal.
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FIG. S4. Ramp time effect on the supersolid behavior
Measured AΦ for various durations of the scattering-length
ramp with 166Er and a final as = 54.1(2) a0. All measure-
ments include a 15 ms stabilization time after tr and are per-
formed with an additional hold of th = 5 ms.

164Dysprosium - As the value of the background scat-
tering, abg length for 164Dy is still under debate [9, 10,
25], we discuss the experimental settings in terms of mag-
netic field. Yet, to gain a better understanding of the
tunability of as in our experiment, we first perform a Fes-
hbach spectroscopy scan on a BEC at T = 60 nK. After
evaporative cooling at B = 2.5 G, we jump to B varying
from 1 G to 7.5 G and we hold the sample for 100 ms.
Finally, we switch off the trap, let the cloud expand for
26ms and record the total atom number as a function of
B. We then fit the observed loss features with a gaussian
fit to obtain the position B0,i and width ∆Bi of the FRs,
numbered i. We finally use the standard Feshbach res-
onance formula to estimate the as-to-B dependence via
as(B) = abg

∏
i (1−∆Bi/(B −B0,i)). Here we account

for 8 FRs located between 1.2 G and 7.2 G. Depending on
the background scattering length abg, the overall magni-
tude of as(B) changes. We can get an estimate of abg

from literature. In Fig. S5, we use the value of as from
Ref. [25] obtained at 1.58 G close to the B-region inves-
tigated in our experiment, as = 92(8) a0. By reverting
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the as(B) formula, we set abg = 87(8) a0. For the mea-
surements of Figs. 4-5, we ramp B linearly from 2.5 G in
20 ms to a final value ranging from 1.8 to 2.1 G, for which
we estimate as ranging from 97(9) a0 to 105(10) a0. We
calibrate our magnetic field using RF spectroscopy, with
a stability of about 2 mG. In the Dy case, we do not apply
an additional stabilization time. This is justified because
of the more mellow as-to-B dependence in the B-range
of interest as well as of the wider as-range of the super-
oslid regime (see Fig. 1) compared to the Er case. For the
measurements of Figs. 6–7, we use two B-values, namely
2.43 G and 2.55 G, at which we perform the evaporative
cooling scheme. Here we estimate as = 109(10) a0 and
as = 134(12) a0, respectively.
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FIG. S5. Estimated scattering length tuning in 164Dy
Estimated dependence of as on B for 164Dy. The FR po-
sitions and widths have been extracted from trap-loss spec-
troscopy measurements, the background scattering length is
estimated to abg = 87(8) a0, see text. The blue dashed line
gives an error-estimate considering only the errorbar on abg

from the mere as measurement of Ref. [25] and not account-
ing for uncertainty of the Feshhach scan. For Figs. 4-5, we
use B between 1.8 G and 2.1 G (red area); for Figs. 6–7, we
keep at two constant B-values, namely 2.43 G and 2.55 G (red
arrows).

ATOM LOSSES IN 166Er AND 164Dy

As pointed out in the main text, in the time evolu-
tion of the quantum gases in both the supersolid and the
ID regime, inelastic atom losses play a crucial role. The
atom losses are increased in the above mentioned regime
as (i) higher densities are required so that a stabiliza-
tion under quantum fluctuation effects becomes relevant
and (ii) the magnetic field may need to be tune close to
a FR pole to access the relevant regime of interaction
parameters. (i) is at play for all magnetic species but
more significant for 166Er due to the smaller value of add.
(ii) is relevant for both 166Er and 162Dy but conveniently
avoided for 164Dy thanks to the special short-range prop-

erties of this isotope.
To quantify the role of these losses, we report here

the evolution of the number of condensed atoms, N , as a
function of the hold time in parallel to the phase coherent
character of the density modulation observed. We count
N by fitting the thermal fraction of each individual image
with a two-dimensional Gaussian function. To ensure
that only the thermal atoms are fitted, we mask out the
central region of the cloud associated with the quantum
gas. Afterwards we subtract this fit from the image and
perform a numerical integration of the resulting image
(so called pixel count) to obtain N .
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FIG. S6. atom number and coherence decays in 166Er
Time evolution of N and AΦ for 166Er at different as, in-
cluding points before th = 0 ms in the experiment. The cor-
responding scattering lengths are 53.3(2) a0 (a,b), 54.0(2) a0

(c,d), 54.2(2) a0 (e,f).

166Erbium - In the Er case, a 15 ms stabilization time
is added to ensure that as is reached up to 0.3 a0. Dur-
ing this time, i. e. for th < 0, we suspect that the time-
evolution of the cloud properties is mainly dictated by
the mere evolution of the scattering length. Therefore,
in the main text, we report on the time evolution for
th ≥ 0. We note that because of the narrow as-range
for the supersolid regime, the long stabilization time for
as is crucial. However, because of the significant role of
the atom losses in our system, in particular for 166Er,
the early evolution of N and the cloud’s properties are
intimately connected. Therefore, the early time evolu-
tion at th < 0 is certainly of high importance for our
observations at th ≥ 0.

To fully report on this behavior, we show the evolution
of N and AΦ during both the stabilization and the hold-
ing time in Fig. S6 for three different as values – either in
the ID (a, b) or supersolid regime (c-f). The time evolu-
tion shows significant atom loss, prominent already dur-
ing the stabilization time, and levels off towards a remain-
ing atom number at longer holding times in which we re-
cover small BECs. Simultaneously, in each case reported
here, we observe that during the stabilization time AΦ

increases and a coherent density modulated state grows.
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TABLE I. Extracted 1/10-lifetime of 166Er atom number
decay for th ≥ 0 and remaining atom number at long holding
time for data in Fig. S6.

as(a0) tN (ms) Nr(104) tΦ (ms)

53.3(2) 32(5) 1.03(5) -

54.0(2) 51(9) 1.29(11) 25(6)

54.2(2) 46(12) 1.7(2) 32(9)

This density modulation starts to appear at a typical
atom number of N >∼ 6 × 104 and consecutively decays.
For the lower as = 53.3(2) a0 case, we observe that the
coherent state does not survive the as stabilization time,
and decays faster than the atoms loss; see Fig. S6 (a, b).
This behavior corresponds to the ID case discussed in
the main text. The central point of the present work is
to identify a parameter range where the coherence of the
density modulated state survives for th > 0 and its decay
time scale is similar to the one of the atom loss. In order
to quantify a timescale for the atom number decay, we
fit an exponential decay to th ≥ 0 ms. Here we allow an
offset Nr of the fit, accounting for the BEC recovered at
long holding times. In Table I, we report on the typical
1/10-decay times of the atom number, which are up to
50 ms. These values are of the order as the extracted tΦ,
see Table I and Fig. 5 of the main text. This reveals that
in 166Er the extracted lifetime of the coherent density
modulated states are mainly limited by atom loss.

Furthermore we note that the extracted Nr values for the
recovered BECs are smaller than 2 × 104, which is con-
sistent with the BEC region found in the phase diagram
of Fig. 1(f).

164Dysprosium - Differently from the 166Er case, for
164Dy, we operate in a magnetic-field range in which the
three-body collision coefficients are small and only mod-
erate atom losses occur. This enables the observation
of an unprecendented long-lived supersolid behavior. To
understand the effects limiting the supersolid lifetime, we
study the lifetime of the condensed-atom number for dif-
ferent B. We perform this detailed study for the data of
Fig. 5 of the main text, which are obtained after prepar-
ing a stable BEC and then ramping B to the target value.
Fig. S7 shows the parallel evolution of N and AΦ for three
different magnetic field values 1.8 G, 2.04 G and 2.1 G.
Here we observe that, for all B values, AΦ seems to de-
cay faster than the atom number. This suggests that the
lifetime of the density-modulated state in our 164Dy ex-
periment is not limited by atom losses. To confirm this
observation, we extract the 1/10 lifetimes of both N and
AΦ; see Table II. The values confirm our observation and
shows an atom number lifetime larger than tΦ at least by
a factor of ≈ 5. In addition, we find that the ratio tN/tΦ
varies, indicating that atom losses are not the only mech-

anism limiting the lifetime of the supersolid properties in
Dy.

0 50 100 0 50 100
t  (ms)h t  (ms)h

0 50 100
0

4
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12

t  (ms)h

A Ф
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b d f

0

1
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N
 (1

04 )

a c e

FIG. S7. atom number and coherence decays in 164Dy
Time evolution of N and AΦ for 164Dy at different B for the
data of Fig. 5. The corresponding magnetic fields are 1.8 G
(a,b), 2.04 G (c,d), 2.1 G (e,f).

TABLE II. Extracted 1/10-lifetime of 164Dy atom number
decay and AΦ decay for data in Fig. S7.

B (G) tN (ms) tΦ (ms)

1.8 300(12) 12(5)

2.04 728(34) 152(13)

2.1 926(36) 133(25)
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We present an experimental and theoretical study of the high-energy excitation spectra of a
dipolar supersolid. Using Bragg spectroscopy, we study the scattering response of the system to
a high-energy probe, enabling measurements of the dynamic structure factor. We experimentally
observe a continuous reduction of the response when tuning the contact interaction from an ordinary
Bose-Einstein condensate to a supersolid state. Yet the observed reduction is faster than the one
theoretically predicted by the Bogoliubov-de-Gennes theory. Based on an intuitive semi-analytic
model and real-time simulations, we primarily attribute such a discrepancy to the out-of-equilibrium
phase dynamics, which although not affecting the system global coherence, reduces its response.

The field of quantum gases has moved towards the
study and realization of novel quantum states of matter,
often showing exotic properties [1]. A recent example,
still challenging scientist’s intuition, is the long-sought
supersolid phase, recently observed in atom-light-coupled
systems [2, 3] and dipolar quantum gases [4–6]. A super-
solid state spontaneously develops a density modulation
in space, breaking the translation symmetry, and a global
phase coherence, breaking the gauge symmetry [7–10]. In
a dipolar gas, the supersolid phase (SSP) lives in a nar-
row interaction-parameter range, sandwiched between an
ordinary Bose-Einstein condensate (BEC) and an inco-
herent array of droplets (ID), showing extreme density-
modulation [5, 6, 11–16].

In a dipolar supersolid, fundamental properties related
to its quantum-fluid nature remain to be understood.
This includes the relation between condensation and su-
perfluidity, as well as their connection to density modu-
lation and phase fluctuations across the phase diagram
of a dipolar gas. In a seminal work [17], Leggett asks
how solid is a supersolid, deriving an upper bound for
the superfluid fraction of a stationary supersolid state,
which connects to the degree of localization, i. e. the den-
sity modulation. In the recently observed dipolar super-
solid [4–6], the situation might be more complex because
of many-body out-of equilibrium phenomena. Indeed,
the macroscopic phase of a supersolid might dynamically
develop variations in space, caused e. g. by the crossing
of the BEC-SSP phase transition, or by thermal and
quantum fluctuations [4, 5, 12, 18]. Such effects could
impact the superfluid properties of the system, going be-
yond Leggett’s original prediction.

Local phase variations are typically not readily acces-

sible in experiments. However, the study of the dynam-
ical response of a physical system to a high-energy scat-
tering probe has proven to contain key information on
the state properties. Such powerful scattering proto-
cols have been widely used across different physical dis-
ciplines, ranging from high-energy [19–22] to condensed-
matter physics [23, 24]. For instance, scattering of fast
neutrons from superfluid liquid helium has enabled the
first measurement of the condensate fraction in a strongly
interacting many-body system [25]. In the realm of ultra-
cold quantum gases, a similar concept has been employed
to reveal e. g. beyond-mean-field effects, to measure quan-
tum depletion and coherent fractions, or Tan’s universal
contact parameter [26–32].

In this Letter, we experimentally study the dynamical
response of a dipolar supersolid to a high-energy scat-
tering probe by performing two-photon Bragg excitation
in the free-particle-excitation regime (high energy and
high momentum). We observe that the system response
strongly reduces in the supersolid regime before vanish-
ing in the ID phase. By benchmarking our data with
theoretical models, we identify the role of the density-
modulation contrast and the phase variations in the ob-
served response. Our study reveals the importance of the
coherent phase dynamics induced by the crossing of the
BEC-to-supersolid phase transition.

The dynamical response of an interacting many-body
system to a weak scattering probe can be described
within the linear-response theory. An essential quantity
is the dynamic structure factor (DSF), S(k, ω), which
characterizes the density response of a system to a scat-
tering probe of momentum, h̄k, and energy, h̄ω [33]. For
weak interatomic interactions, the DSF can be directly
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related to the excitation spectrum via the Bogoliubov
amplitudes, uj and vj , describing the excitation mode j
of energy h̄ωj . It reads

S(k, ω) =
∑

j

∣∣∣∣
∫
dr
(
u∗j(r) + v∗j (r)

)
eikrψ0(r)

∣∣∣∣
2

×

× δ(h̄ω − h̄ωj), (1)

where we neglect the creation of multiple excitations.
Here, ψ0 is the system’s macroscopic ground-state wave
function and δ(·) is the Dirac delta function.

Equation (1) gives different information depending on
the momentum and energy ranges [33]: For low-k trans-
fer, S(k, ω) is sensitive to the system’s collective re-
sponse, whereas, in the high-k and high-energy regime,
the DSF informs about the momentum distribution of the
system, ñ(k). We explore the latter regime for our super-
solid state, focusing on the response along the density-
modulated direction, y, with k = (0, ky, 0). In the
regime of free-particle excitations (uj → eikjy, vj → 0,
ωj → h̄k2j/2m with m the atomic mass), the impulse
approximation becomes valid and we find [33–37]

S(ky, ω) =
∑

j

ñ(0, ky − kj , 0) δ(h̄ω − h̄ωj). (2)

On resonance, ω = ωj and ky = kj , the DSF be-
comes S(kj) ≡ S(kj , ωj) ∝ ñ(k = 0) and is uniquely de-
termined by the system’s momentum distribution at
k = 0.

To identify the free-particle regime in our system, we
briefly review the basic properties of the excitation spec-
trum of a supersolid, considering the simpler case of
an infinitely elongated cigar-shaped trap. A more ex-
tensive description, including calculations for the full
three-dimensional (3D) confined case, which we use here-
after for comparison with the experiments, can be found
in Refs. [18, 38–42]. As shown in Fig. 1 (a), the super-
solid spectrum exhibits a periodic structure in momen-
tum space with a period given by the reciprocal lat-
tice vector kc. The state develops a density modula-
tion along the axial direction with wavelength 2π/kc
(see inset in Fig. 1 (b)). The two lowest branches cor-
respond to the superfluid and crystal branches, respec-
tively [43]. They have been recently investigated in ex-
periments [18, 38, 39]. The upper branch, appearing at
high energy and showing a gapped parabolic dispersion,
is the one of interest here for its free-particle character.
In addition, the flat band at ω ≈ 1.25ωz corresponds to
a single-droplet excitation (mainly transverse breathing
modes), which couples to the parabolic branch, opening
small energy gaps. Figure 1 (b) shows the corresponding
DSF values. Interestingly, we observe that the DSF does
not reflect the periodicity of the energy spectrum, and
e. g. for the upper branch it shows large values at the
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FIG. 1. (a) Axial excitation spectrum of the transversely
symmetric modes and (b) corresponding DSF of an infinitely
elongated dipolar supersolid at as = 51 a0 in a harmonic trap
with ωx,y,z = 2π × (250, 0, 160) Hz. The color maps corre-
spond to ‖u‖ and S(k, ω), respectively. The inset shows the
integrated axial density profile n(y) of the ground state with
mean density 4.7 × 103µm−1. (c) S(k) for the 3D-trapped
system with ωx,y,z = 2π × (250, 31, 160) Hz. S(k) is calcu-
lated at k = 4.2µm−1 ≈ 1.8 kc (grey line) and normalized
by its value at the BEC-SSP phase transition, S∗. The atom
number is varied with as to match the experimental condi-
tions [42]. The red (blue) line shows the result from the SIA
(DAA). (upper inset) Integrated density profile of the ground
state at as = 54.49 a0 and N = 5 × 104 atoms. (lower inset)
Evolution of the ground state’s central contrast C. For the
infinite (3D-trapped) case, kc = 2.3(2.4)µm−1.

momenta that continuously connect to the free-particle
excitations in the ordinary BEC [42].

In a contact-interacting BEC, the inverse healing
length provides the scale of the crossover from the collec-
tive to the free-particle character of the excitations [33].
This notion can not be simply exported to the case of
dipolar gases because of the momentum dependence of
the dipole-dipole interaction. We thus follow the def-
inition based on the Bogoliubov-de-Gennes (BdG) the-
ory. A free-particle excitation is an elementary ex-
citation whose wave function is well approximated by
a plane wave. This is typically justified for excita-
tions of high enough energy and single-particle character
(‖uj‖ =

∫
|uj(r)|2dr = 1 and ‖vj‖ = 0, see color map

Fig. 1 (a)) [33, 44]. For our parameters, we find that the
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density profile of the mode, |uj(r)|2, shows a plane-wave
character for h̄ω >∼ 0.6 h̄ωz.

To quantitatively compare theory with experiments,
we perform similar ground-state and BdG-spectrum cal-
culations for the 3D-trapped case [38], and extract
S(k) [42]. As shown in Fig. 1 (c), in the free particle
regime (k ≈ 1.8kc), S(k) starts to decrease when en-
tering the SSP and further reduces by lowering as. Si-
multaneously, the ground-state density develops a spatial
modulation (upper inset), whose contrast C rapidly in-
creases (lower inset). Note that C evolves faster with
as than S(k). For instance, at as = 53 a0, C ≈
1, whereas S(k) reduces only by about 35 %. Here,
C = (nmax − nmin)/(nmax + nmin) with nmax (nmin) be-
ing the central maximum (minimum) of the integrated
density [42].

To gain an intuitive understanding of the density-
response reduction, we develop a 1D model [37]. Us-
ing two different wavefunction ansatzes, we evaluate S(k)
in the weak and strong density-modulation regimes. As
discussed in Refs. [11, 16, 45], for weakly modulated su-
persolids, with C � 1, the ground-state wave function
can be approximated by a fully coherent sine-modulated
function on top of a uniform background. At leading or-
der in C, it reads ψ(y) =

√
n (1 + C sin(kcy)/2), with

n the mean density. Applying this sine ansatz (SIA)
in Eq. (2), we find S(k) ∝ n(1 − C2/8). This result
shows that an increasing contrast directly causes a sup-
pression of the DSF. We find a similar C-dependence
for the superfluid fraction derived from Leggett’s for-
mula [17], fSF = 1 − C2/2. Therefore, in the weakly
modulated regime, the reduction of the high-energy scat-
tering response connects to the reduction of the super-
fluid fraction. We benchmark our SIA results with the
BdG calculations by evaluating C from the full GPE so-
lution [42]. As shown in Fig. 1 (c), despite its simplicity,
the SIA scaling reproduces very well the full numerics
up to C <∼ 40 %. For larger C, as expected, the model
breaks down.

For large C, we employ a droplet-array ansatz (DAA),
describing the system as an array of ND droplets, ψ(y) =∑ND

j=1 χ(y − jd)eiθj [6, 12]. Each droplet is described
by a Gaussian function, χ(y), of size σ, separated by
a distance d > σ from its neighbours. Each droplet
is allowed to have an independent, yet uniform, phase
θj . Within the DAA, the DSF shows the proportional-

ity S(k) ∝ n
∣∣∣ 1
ND

∑ND

j=1 e
iθj

∣∣∣
2

σ/d. It decreases with both

the density overlap between droplets, set by σ/d, and the
phase variance along the array. The latter effect is not
included in the BdG theory, which describes a state pos-
sessing a uniform phase. To benchmark the DAA results
with the BdG calculations, we thus set θj = 0 for all
j [42]. We find a very good agreement for C > 80 %.

In the experiments, we access the density response
of a supersolid by performing high-energy Bragg scat-
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FIG. 2. Fraction of Bragg-excited atoms as a function of ω for
various as across the BEC-SSP-ID regimes (see labels). The
spectra are vertically offset for visibility. Here and throughout
the Letter, the error bars correspond to one standard error.
Solid lines show the Gaussian fits to the data.

tering on a 166Er dipolar quantum gas, confined in an
axially elongated harmonic trap. A transverse homoge-
neous magnetic field orientates the atomic dipoles and
sets as [6]. We initially prepare the system in the or-
dinary BEC phase, and enter the SSP via interaction
tuning by linearly lowering as below a critical value, a∗s ,
for which the BEC-SSP phase transition occurs. Similar
to previous experiments [6, 38], a∗s is extracted with an
interferometric technique. For the present trap and atom
numbers, N , we measure a∗s = 54.94+28

−13 a0; see [42].

For the Bragg excitation, we project on the atoms an
optical lattice potential of constant depth V for a du-
ration τ = 7 ms. The lattice has a constant wave vec-
tor k = 4.2(3)µm−1 along y and moves with a variable
frequency ω. After the Bragg excitation, we measure
the integrated momentum distribution, ñ(kx, ky), using a
time-of-flight expansion of 30 ms. The number of excited
atoms Nexc is extracted in a narrow region of interest
around k [42]. For a fixed as, we find a clear resonance
in Nexc/N as we vary ω. From a Gaussian fit we extract
the resonance peak’s amplitude, F . From linear response
theory, we expect F ∝ V 2τS(k) [46]. For the relevant as
range, we have checked the scaling with τ and V [42].
Figure 2 shows examples of the Bragg-excitation spec-
trum for various as. In the BEC regime until the onset
of the SSP, we observe a downward shift of the resonance
frequency without a significant change in F [42]. In con-
trast, as we enter into the SSP regime, F undergoes a
stark reduction. In the ID regime, the resonance peak
completely vanishes.

Figure 3 shows the evolution of F across the BEC-SSP-
ID phase diagram. The as-extension of the three phases
(see background colors), has been determined from inde-
pendent measurements of the phase coherence and den-
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FIG. 3. Experimental F (circles) versus as across the BEC-
SSP-ID phases (white, red, blue shadings). For the lowest
three as, we do not observe a resonance and plot the standard
deviation of the data as an error estimate. Horizontal error
bars correspond to uncertainties of the magnetic field [42].
We show the excited fraction expected from the BdG calcula-
tions on the corresponding ground states (gray line) and from
the RTE simulations (connected dots, one RTE simulation
run). In the RTE we cannot extract clear resonances for the
lowest as. We furthermore show the rescaled BdG calcula-
tions, which include ∆Θ obtained from the RTE (blue line).
The gray shading corresponds to the uncertainty in as of the
experimental phase transition (vertical line).

sity modulation of the states [6, 42]. When reducing as
in the BEC phase, we find a slight increase of F . On
both sides of the BEC-SSP phase transition, we observe
similar F values, indicating a continuous behavior across
the transition. Remarkably, as soon as we lower as fur-
ther by ∼0.5 a0, F drastically reduces to <∼ 1 %, which is
close to our detection level. Finally, for as < 54 a0, we
do not observe any resonant response.

We compare the experimental results with our BdG
theory for the 3D-trapped gas. While in the BEC regime,
experiment and theory show a good agreement, in the
SSP they start to substantially deviate from each other.
The data shows a much faster reduction of the system’s
response than the one predicted from the BdG theory.
This result suggests that an important ingredient is miss-
ing in the theory. Our DAA model provides a first intu-
itive explanation: It suggests that the presence of phase
variations across the system can yield a reduction of the
DSF. We envision two sources of phase variations. First,
quantum and thermal fluctuations, which are expected to
dominate in the ID regime, yield phase patterns varying
from shot to shot. Second, coherent dynamics, as e. g. in-
duced by the crossing of the BEC-SSP phase transition,
leading to reproducible phase patterns. Neither phenom-
ena are accounted for in the BdG calculations.

To investigate these effects, we simulate the system
real-time evolution (RTE) [47]. Our calculations repro-
duce the experimental sequence and include the linear

ramp in as, the Bragg excitation, the three-body losses,
and an initial population of BdG modes from quantum
and thermal noises [42]. From the simulated momentum
distributions, we extract the excited fractions, following
the same procedure as for the experimental ones. As
shown in Fig. 3, contrary to the BdG results, the RTE
simulations describe remarkably well the data both in
the BEC and SSP phase.
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FIG. 4. RTE simulations without Bragg excitation. (a) Time
evolution of the integrated in-situ density of the wave func-
tion for as = 54.04 a0. (b) 〈C〉τ (triangles) and ∆Θ (squares)
versus as. The grey line corresponds to the central contrast
obtained from the ground-state theory. The solid blue line
is a smooth interpolation of ∆Θ, fixed to unity at the phase
transition point. The shadings give the standard deviation ob-
tained from 5 simulation runs. The vertical line corresponds
to the phase transition point. (c) Phase-cuts corresponding
to the simulation shown in (a).

To highlight the role of the contrast and phase varia-
tions, we perform RTE simulations without the Bragg
excitation for different holding times. As shown in
Fig. 4 (a), the density profiles n(y) exhibit only a slight
reduction of the contrast with time due to atom loss. As
expected, the calculated 〈C〉τ , time-averaged over the
Bragg scattering duration, increase with decreasing as.
However, for each as, we observe a 10-30 % lower con-
trast than the one extracted from the ground-state cal-
culations. Since a reduced contrast would mean an in-
crease in F , we deduce that the varying contrast can not
explain the mismatch between the BdG theory and both
the experimental and RTE results; see Fig. 3.

We now study the phase variations and its dynamics.
The RTE calculations reveals that the phase of the wave
function, θ(y), develops a non-uniform profile. For in-
stance at as = 54.04 a0, θ(y) exhibits a stair-like profile
with fairly constant values within the density peaks and
discrete phase steps in between them; see Fig. 4 (c). This
behaviour suggests that each density peak acquires an
independent phase, despite their density links. We also
observe that the phase patterns is fairly reproducible be-
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tween simulation runs and mainly induced by the coher-
ent dynamics arising by the crossing of the phase transi-
tion [42].

Following the DAA model, phase variations are
expected to reduce S(k) by a factor ∆Θ ≈
| 1
ND

∑ND

j=1〈eiθj 〉τ |2 [33, 42]. As shown in Fig. 4 (b), ∆Θ
is almost unity close to the BEC-SSP phase transition
and significantly drops when lowering as towards the ID
regime, where starts to flatten. The standard deviation
of ∆Θ relates to the shot-to-shot reproducibility of the
phase pattern. In the SSP, the deviation remains small,
confirming that the phase variations originate from co-
herent dynamics. In contrast, the deviation increases
when reaching the ID regime, highlighting the increasing
effects of fluctuations. We empirically account for the ef-
fect of phase variations in the BdG theory by scaling the
DSF with ∆Θ over the whole SSP-ID regimes. As shown
in Fig. 3, this simple inclusion of ∆Θ demonstrates the
pronounced impact of the coherent phase variations for
the experimentally observed response.

In conclusion, we demonstrate that the supersolid
states, when created via a dynamical tuning of the in-
teractions, develop important phase variations across the
system, which have to be taken into account to under-
stand the system behavior. Those phase variations occur
even in presence of sufficiently strong density links be-
tween the droplets. Our work provides first steps to a
more complete vision of the dipolar supersolid, including
out-of-equilibrium phenomena, and opens the door for
future exploration of critical phenomena induced by the
dynamical crossing of the BEC-SSP phase transition [48–
50].
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C. Gabbanini, R. N. Bisset, L. Santos, and G. Modugno,
Phys. Rev. Lett. 122, 130405 (2019).
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tos, and F. Ferlaino, Nat. Phys. 14, 442 (2018).

[48] T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
[49] W. H. Zurek, Nature (London) 317, 505 (1985).
[50] J. Eisert, M. Friesdorf, and C. Gogolin, Nat. Phys. 11,

124 (2015).
[51] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler,
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Supplemental Material

A. Preparation of the BECs

We prepare a BEC of 166Er by loading about 3 × 106

thermal atoms into a crossed optical dipole trap (ODT)
and subsequent evaporative cooling, see Ref. [6, 51]. Dur-
ing the evaporative cooling, a homogeneous magnetic
field of 1.9 G is present to ensure high enough rethermal-
ization rates to obtain ultracold temperatures. After the
evaporation, we adiabatically modify the corresponding
ODTs laser powers and beam waists, to shape the con-
fining potential Vtrap(r) = m(ω2

xx
2 +ω2

yy
2 +ω2

zz
2)/2 to a

cigar-shaped geometry with harmonic trapping frequen-
cies ωx,y,z = 2π × [250(1), 31.7(13), 156(2)] Hz. Consec-
utively, the magnetic field is lowered to a value corre-
sponding to 64.9 a0. After this preparation procedure,
we obtain a BEC with a total atom number of 1.2× 105

atoms and a condensed fraction of 70 %. The temper-
ature of 95(5) nK is obtained from time-of-flight (ToF)
expansion measurements.

To enter the BEC-SSP-ID regimes, we lower down as
linearly in 20 ms to the corresponding values given in the
main manuscript. We then let the system equilibrate for
10 ms and consecutively apply a Bragg pulse of 7 ms du-
ration. In order to access the momentum distribution
of our atomic cloud, we perform a ToF expansion, by
abruptly switching off all trapping potentials directly af-
ter the Bragg excitation. After 30 ms of free expansion,
we take an absorption image of the cloud along the dipole
direction. We note that, due to residual magnetic field
drifts in the experiment (estimated to be ±2 mG), the un-
certainty on as, during the Bragg pulse, ranges between
±0.1 a0 and ±0.2 a0, increasing for lower as. This uncer-
tainty is represented by the corresponding error bars on
our data in the main manuscript.

B. Determination of experimental BEC-SSP phase
transition

In order to determine a∗s for our experimental param-
eters, we perform a time-of-flight expansion of the sys-
tem in the BEC or SSP regime after the equilibration
time. Here, no Bragg pulse is applied. We find either
an expanded ordinary BEC or an interference pattern
of the expanded supersolid, where a part of the atoms
appear in two side peaks around ky ≈ ±kc. The atom
number in these two side peaks is directly related to the
modulation contrast of the in-situ cloud [4–6]. We mea-
sure the fraction of atoms in a single side peak, fside,
and monitor its evolution versus as; see Fig. S1. In the
BEC regime, where no density modulation is present, we
find fside = 0 down to as,1 = 55.00 a0. After crossing
the BEC-SSP phase transition, we observe fside > 0 for
as ≤ 54.88 a0 = as,2, which increases with lower as. Tak-

ing the mean, (as,1−as,2)/2, we find a∗s = 54.94 a0 with an
uncertainty of ∆a∗s,P = 0.05 a0, coming from our resolu-
tion in as; see shadings in Fig. S1. We include a magnetic
field uncertainty corresponding to 2 mG (±0.12 a0 at a∗s ),
which increases the uncertainty to ∆a∗s,B = ±0.13 a0.
Furthermore, we take a finite resolution of fside ≈ 0.2 %
into account and obtain the final estimate of the critical
point of the BEC-SSP phase transition a∗s = 54.94+28

−13 a0.
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FIG. S1. Fraction of atoms in one side peak of the atomic
cloud’s interference pattern across the BEC-SSP phase tran-
sition. Error bars denote one standard error obtained from
about 30 measurements. The vertical line shows the obtained
phase transition point. The different grey shadings corre-
spond to the different uncertainties that are taken into ac-
count to obtain the total uncertainty, ∆a∗s , of a∗s (see text).

C. Transition from SSP to ID
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FIG. S2. Amplitudes Aφ (red circles) AM (blue squares)
versus as. Error bars denote the standard error from about 30
experimental realizations [6]. Non-zero values of AM enable
us to identify modulated states and confirms the BEC-SSP
transition point (vertical line, gray shaded area). The SSP is
identified by AM ≈ Aφ > 0 and extends down to as = 53.9 a0.
For lower as an ID state is observed (Aφ < AM > 0).

We use the same analysis of Aφ and AM as in Ref. [6]
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to distinguish in the experiment the SSP and the ID
regime. In brief, Aφ relates to a reproducible interfer-
ence pattern in time of flight and thus reveals a coherent
and modulated state. AM relates only to the presence
of an in-situ density modulation (structures in the ToF
images). By combining both observables, one can dis-
tinguish the SSP (Aφ ≈ AM > 0), the ID (Aφ < AM)
and the ordinary BEC regimes (Aφ = AM = 0) in the
experiment, see Fig. S2. We find that for as < 53.9 a0
the system is in the ID regime. The measurements are
performed directly after the equilibration time and with-
out a Bragg excitation (same timings as in Sec. B). We
note that the ratio Aφ/AM is mostly sensitive to phase
fluctuations, which lead to different interference patterns
in different experimental runs and is insensitive to repro-
ducible phase variations in the system. The latter could
affect the structure of the interference patterns, yet in
a reproducible way. Therefore, Aφ/AM is an observable
that is adapted to describe the coherence of the system
but does not measure the phase variations, investigated
in the main manuscript, which are induced by diabatic
dynamics.

D. Calibration of atom loss and atom number for
BdG theory

Due to three-body recombination losses, the atom
number, N , in the condensed part is decreasing during
the 7 ms of the Bragg pulse by typically 10-30 %. There-
fore, the atom number in the experiment varies with
as, which we include in our BdG theory of the three-
dimensionally trapped system. We note that we do not
observe additional atom loss due to the presence of the
Bragg excitation, as the wavelength of the used laser light
is far enough detuned from any atomic resonance (see
Sec. E).

To extract N we perform an additional set of measure-
ments in which we do not apply a Bragg pulse and, after a
given hold time in trap, take absorption images after a 30
ms ToF expansion. From these images, the thermal com-
ponent is fitted by an isotropic 2D Gaussian function and
subtracted. A final numerical integration over the image
yields N without the need of an additional fitting of the
condensed part itself. In Fig. S3, we show N across the
phase diagram for different timings in the experiment,
corresponding to the beginning, the middle and the end
of the Bragg pulse. Each timing is interpolated with a
spline fit. The fitted values of the intermediate timing
(orange line in Fig. S3) is used as the atom number in
our BdG theory.

53 54 55 56 57

2

3

4
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6
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N
 

x104

SSP BEC

as (a0)

FIG. S3. Atom number in the BEC versus as for different
times in the experiment, corresponding to the beginning (cir-
cles), middle (triangles) and end (squares) of the Bragg pulse.
Error bars denote the standard error from 5 measurements.
The lines are spline interpolations to the corresponding data.
The measurements were obtained without applying a Bragg
pulse. The vertical line indicates the measured phase transi-
tion point.

E. Bragg spectroscopy

The Bragg excitation beams are realized holographi-
cally with a digital-micromirror device (DMD), as de-
tailed in Ref. [56]. In short, the setup uses a near-
resonant laser light, red-detuned by 71(1) GHz from the
401 nm transition of 166Er. These two Bragg beams in-
terfere under an angle on the atoms’ position, giving
rise to an interference pattern. In our setup this an-
gle can be tuned, but for this current work we keep it
fixed to obtain an interference pattern with a wave vec-
tor k = 4.2(3)µm−1 along y. The value and uncertainty
on k is deduced from offline measurements of the angle
between the two Bragg beams. To excite the system, the
Bragg scattering needs to supply energy, h̄ω, which is in-
troduced with a frequency difference, ω, between the two
Bragg beams. Here, we use a sequence of holographic
gratings that is uploaded on the DMD and continuously
shifts the phase of one beam in 9 steps from 0 to 2π.
Depending on the frame-rate of the uploaded sequence,
we can vary ω from 0 Hz to 1000 Hz.

To calibrate the depth V of our Bragg potential,
we perform Kapitza-Dirac-diffraction measurements [52].
For these measurements, we tune the laser light
closer to the atomic transition (20.6 GHz) and use
the maximally available power for our Bragg beams.
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By doing so, we achieve a maximum optical depth
of Vmax/h = 430(50) Hz, corresponding to 3.2(4)Erec,
where the recoil energy Erec = h̄2(k/2)2/(2m) = 135 Hz.
In order to extract the potential depth V of our Bragg
scattering probe, we rescale this calibrated value ac-
cording to the corresponding laser light detuning and
power used for the Bragg scattering [1]. We obtain
V = 42(5) Hz, which is well inside the linear scatter-
ing regime (see Sec. F and Fig. S6). The exact calibra-
tion of the potential depth does not include systematic
effects, as for example inhomogeneities of V cross the
atomic cloud or in-trap dynamics of the atoms during
the Kapitza-Dirac-diffraction measurement. Neverthe-
less, we note that the estimation of the linear response
regime is insensitive to the exact calibration of V . We
furthermore note, that a direct comparison of F from the
experiment with the one from the RTE suggests that V
needs to be rescaled by about 1.7.

Figure S4 gives examples of our images for a resonant
and an off-resonant Bragg scattering frequency. For the
resonant case (Fig. S4, left panel) we find scattered atoms
at a high momentum around ky ≈ k. As they appear out-
side of the interference patterns, observed from the un-
perturbed system, they constitute a clean signal for the
analysis of the excited fraction. We count the number
of atoms, Nexc, in a region of interest (ROI), indicated
by the black boxes in Fig. S4. We note that we carefully
checked that neither F , nor ωk, changes within the un-
certainties when increasing the ROI size by 30%.. We
measure the total atom number, N , for each measure-
ment individually, by performing a similar count on a
rectangle of 12µm−1 by 14µm−1, covering all condensed
and scattered atoms. By measuring Nexc/N for different
excitation frequencies, we obtain a spectroscopy of the
Bragg scattering. We note that due to thermal atoms,
present in the analyzed region of interest, all Bragg res-
onances show a small offset, which is extracted from the
offset of the Gaussian fit to the resonance and then sub-
tracted.

From the Bragg excitation spectra, we extract the
resonance peak’s amplitude, as discussed in the main
manuscript, and a resonance frequency, ωk. The latter
is shown in Fig. S5 as a function of as. We observe that
ωk decreases monotonically from high to low as, across
the BEC-SSP phase transition. This beheviour is consis-
tent with the extracted ωk from the RTE theory. Fur-
thermore, we calculate the expected resonance frequency
from the BdG calculations, in which the resonance fre-
quency is increasing again after crossing the BEC-SSP
phase transition with lowering as. Therefore, the BdG
theory predicts a hardening of the measured excitation
modes, which is not observed neither in the experiment,
nor in the RTE simulations. This qualitative difference
might stem from the increased phase variations that de-
velop in the system, but further studies are needed to
elucidate this point.
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FIG. S4. Examples of momentum distributions of a super-
solid at as = 54.59(13) a0 after an applied Bragg excitation
(a) on resonance at 1.7 h̄ωz and (b) off resonance at 3.7 h̄ωz.
The two side peaks appearing around ky ≈ ±2.4µm−1 con-
stitute, together with the central peak at k ≈ 0µm−1, the
interference pattern obtained when expanding a supersolid
state. The black box indicates the region of interest from
which Nexc is extracted. Each image is an average of 15 ex-
perimental realizations.
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FIG. S5. Extracted resonance frequencies, ωk, versus as (cir-
cles) and their comparison with the expected resonance posi-
tion from the BdG theory (gray line) and ωk from the RTE
(connected dots). The vertical line indicates the BEC-SSP
phase transition point and its shading the uncertainty on a∗s .

F. Variations of the excited fraction with the Bragg
pulse duration

In Figure S6, we present the measured evolution of F
with the Bragg pulse duration from 0 to 7 ms for a fixed ω.
Across the BEC-SSP-ID regimes, we find a linear scaling
of F with τ , which is consistent with the expected scaling
from BdG theory, F ∝ V 2τS(k) [46]. Furthermore, we
probe the quadratic scaling of F with V in the SSP and
find also here an agreement up to V = 80 Hz (see inset).
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FIG. S6. Evolution of F during the Bragg pulse for three ex-
emplary as = [55.5(1), 54.0(1), 53.3(1)] a0 (black, red, blue),
corresponding to the BEC, SSP, ID regimes, respectively.
Each data point corresponds to an average of 5 to 15 mea-
surements and its uncertainty to the standard error. The
solid lines correspond to a linear fit and its shading to the
fit’s 68 %-confidence bound. The inset shows the evolution
of F with the applied potential depth, V , of the Bragg pulse
for τ = 7 ms for a supersolid state at as = 54.28(14) a0. The
solid line corresponds to a quadratic fit up to V = 80 Hz, the
dashed line is the extension of the fitting.

G. Evolution of the excitation spectrum with as for
the infinite cigar-shaped gas

We calculate the excitation spectrum and the dynamic
structure factor (DSF) of an infinitely elongated, cigar-
shaped dipolar supersolid in Fig. 1(a, b) of the main
manuscript. In Figure S7 we present the evolution of
the excitation spectrum across the BEC-SSP-ID regimes.
Figure S7 (a1-a5) shows the integrated density profiles of
the ground state along the unconfined direction for dif-
ferent values of as and a fixed mean axial density of
4.7× 103 µm−1. Figure S7 (b1-b5) shows the correspond-
ing excitation spectrum. At large enough as, the ground
state has a uniform density along the unconfined direc-
tion (a1, a2 - BEC phase) and its excitation spectrum
shows the typical phonon-maxon-roton spectrum, first
predicted in [53, 54]. When decreasing as below a crit-
ical value, the ground state becomes density modulated
(a3, b3 - SSP phase) with a modulation wave number
kc = 2.3µm−1 close to the BEC’s roton momentum (b2),
underlying the connection between roton softening and
crystallization. The density modulation has a finite con-
trast and its value increases when lowering as further
down (a4, a5).

When crossing the BEC-SSP phase transition, the ex-
citation spectrum changes dramatically, becoming pe-
riodic, with the appearance of two gapless Goldstone
branches associated with phase (lower energy branch)
and density (higher energy branch) excitations, respec-
tively [38, 43, 55]. In addition to these gapless branches,
one observes gapped parabolic branches of excitations

with energetic minima at integer multiples of kc. The
one branch at ky = kc is the one investigated in the main
manuscript. For decreasing as, the energy minimum of
this parabolic branch increases towards the ID regime
[Fig. S7 (b3-b5)].

As described in the main paper, we use the norm of
the calculated Bogoliubov amplitude ‖uj‖ =

∫
|uj(r)|2dr

to distinguish whether a mode j is a collective excitation
or has a single-particle character [33, 44]. Collective ex-
citations feature ‖uj‖ � 1 whereas single-particle excita-
tions have ‖uj‖ ' 1. In Figure S7 (b1-b5), we color each
excitation mode according to ‖u‖. We find that lower
energy modes, such as the roton mode in the BEC and
the Goldstone modes in the SSP have a clear collective
nature. The energetically higher modes (h̄ω >∼ 0.5 h̄ωz),
of the parabolic branch in the SSP and the ky > kc-
branch in the BEC, have ‖uj‖ ' 1 across the BEC-SSP
phase transition. We note that the condition ‖uj‖ ' 1
does not directly identify an excitation mode as a free-
particle. To obtain a free-particle excitation, the mode
needs to be of single particle character and additionally
its energy needs to be mainly given by the kinetic energy.
Therefore, free-particle excitations have a wave function
that is a plane wave [33]. We note that for our exper-
imentally relevant energy regime, the probed excitation
modes are described well by a plane wave, as shown in
Sec. I. and Fig. S9 (b).

From our simulations, we also calculate the DSF. In
the BEC phase [Fig. S7 (c1, c2)] the DSF is dominated
by the roton mode at ky = kc. Moreover, the deeper
the roton minimum, the stronger is its response to small
density perturbations. We note that, in the BEC phase,
this affects also the density response even for momenta
higher then the roton momentum. After crossing the
phase transition into the SSP, we find that the DSF of
the parabolic branch [Fig. S7 (c3)] smoothly connects to
the free-particle branch of the BEC phase. For decreasing
as, the DSF of the free particle branch becomes smaller
[Fig. S7 (c4, c5)].

H. BdG theory for the three-dimensional trapped
gas

For the current manuscript, we employ similar BdG
and ground state calculations as already described in
Refs. [38, 47, 56]. In this theory the gas is trapped in
all three dimensions. For calculating the ground states,
we use the experimentally extracted atom number at
the intermediate timing of the Bragg pulse (presented in
Fig. S3, triangles). The radially integrated density pro-
files of the ground states in the SSP regime are presented
in Fig. S8. We note that in this theory, the BEC-SSP
phase transition lies at 3.79 a0 below the experimentally
determined one. This shift in as between theory and ex-
periment has also been found in Refs. [6, 56, 57]. There-
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FIG. S7. Axial excitation spectra of the infinitely, extended gas across the BEC-SSP-ID regimes in a ωx,y,z = 2π(250, 0, 160) Hz
trap with fixed axial density n0 = 4.7 × 103µm−1. (a1-a5) Integrated density profiles along the unconfined direction, for
as = (52.00, 51.40, 51.25, 51.00, 49.75) a0. (b1-b5) Transverse symmetric modes of the corresponding excitation spectrum
colored according to ‖u‖. (c1-c5) The corresponding S(k, ω). For visibility, the DSF is broadened with a Gaussian function.

fore, throughout the manuscript, the BdG theory and the
ground state calculations are presented with an up-shift
of 3.79 a0 for as.

The presence of an axial trapping potential, leads to
discrete excitation modes in the spectrum (typical energy
spacing ∼ h× 20 Hz). Furthermore, each mode is broad-
ened in ky. The finite duration of the Bragg pulse gives
an energy broadening of each excitation mode (Fourier
broadening ∼ h × 130 Hz full width at half maximum)
which is much bigger than the energy spacing between
the modes in the spectrum. Therefore, in the Bragg
spectroscopy only a single resonance is visible, which is
constituted of multiple excitation modes. To account for
this, we calculate S(k, ω) while broadening each mode
in energy according to the Fourier-broadening, expected
from a 7 ms Bragg pulse. After calculating the broad-
ened S(k, ω) and evaluating it at the experimental k, we
also find in the BdG theory a single resonance in energy.
To compare with the experiment, we extract S(k) from
a Gaussian fit to this resonance; see also [56].

I. Free particle regime in the BdG theory for a
trapped gas

To transfer the insights from the BdG calculations of
an infinitely extended system (see Sec. G) to the experi-
mentally trapped case, we also analyze ‖u‖ and ‖v‖ of the
excitation modes obtained from the BdG calculations of
a three-dimensional trapped gas. Similar to the infinitely
extended system, we find that modes with h̄ω >∼ 0.5 h̄ωz
have ‖u‖ ≈ 1 and therefore a single-particle character
across the BEC-SSP-ID regimes. This is exemplified in
Fig. S9 (a) where we show, for an exemplary state in the
SSP, the norm of the obtained Bogoliubov amplitudes
versus the energy of the corresponding mode.

As mentioned already in Sec. G, to further identify a
single particle excitation as a free particle one, the ex-
citation’s wave function needs to be a plane wave. To
investigate this aspect, we study the excitation modes’
density profiles and find for modes in the experimentally
relevant energy regime a clear plane wave character. Fig-
ure S9 (b) shows the radially integrated density profile of
an exemplary excitation mode of a supersolid and com-
pares it to the integrated density of the ground state.
The plane wave character is clearly visible as a modu-
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use the atom number measured in the experiment (see Fig. S3,
triangles).

lation with k ≈ 4.1µm−1 across the whole system. We
only find a mild reduction of the plane wave’s amplitude
towards the outer region of the system. As a comparison,
we show in Figure S9 (c) the integrated density profile of
an excitation mode at lower energy, 0.55 h̄ωz, which also
has ‖u‖ ≈ 1, but is clearly not a plane wave.

J. Comparison of the finite-size BdG theory to the
self-consistent SIA and DAA model

From the ground state profiles of the three-dimensional
trapped BdG theory in Fig. S8, we numerically evaluate
our SIA and DAA model on the corresponding ground
states. To self-consistently evaluate the SIA result from
the ground state, we need to estimate the contrast of the
density modulation, C = (nmax − nmin)/(nmax + nmin).
We determine nmin from the minimum density at y = 0
and nmax from the density of one of the two most-central
density peaks. To evaluate the DAA model, we numeri-
cally extract the 1/e-size, σ, of the two central droplets
and the distance d between them. To estimate the den-
sity, we calculate the mean density in the central region
between the two central droplets. Therefore, our model
comparison takes only the central part of the system into
account and neglects the outer density regions. Further-
more, as our models extract only the scalings of the DSF
with the ground state properties and not its absolute
value, we renormalize the SIA and the DAA. For the
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FIG. S9. (a) Bogoluibov amplitudes, ‖v‖ (crosses) and ‖u‖
(circles), for the excitation modes of a trapped supersolid at
as = 54.49 a0. (b) Integrated density profile, nexc, of an exem-
plary excitation mode with an energy of 1.7 h̄ωz (red line) and
k ≈ 4.1µm−1 and a comparison with the integrated ground
state density, nGS, (grey line). (c) The same as in (b) but for
an excitation mode at 0.55 h̄ωz.

comparison in Fig. 1 of the main manuscript we show the
finite BdG and the SIA rescaled to unity for the point at
the phase transition. The DAA is rescaled directly on the
BdG theory to match its values in the lower as regime.
Over the investigated as range, we find that both, the
SIA and the DAA, describe the BdG theory well for low
and large C, respectively (see main text), and for mo-
menta k ≥ 4.0µm−1. This gives an estimate for which
momenta the impulse approximation becomes valid.
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K. Real time evolution of the Bragg scattering

Our theory for the RTE simulations was already pre-
sented in Ref. [47]. For the current manuscript, the sim-
ulations start with the ground state wave function with
N = 8.5 × 104 atoms at as = 60.9 a0. We add a ther-
mal population, corresponding to a randomly drawn oc-
cupation of the system’s excited states (incl. a ran-
dom phase) with a Poisson distribution, whose mean is
given by the Bose distribution (+1/2 to simulate quan-
tum fluctuations) for the mode’s energy at a temperature
of 100 nK [58]. This increases the total atom number to
about 1×105 (similar to the experimental situation) and
simulates thermal and quantum fluctuations in the sys-
tem.

In the time evolution, we reproduce the experimental
sequence, including a 20 ms long linear as ramp, followed
by a 10 ms holding at the final as and a consecutive 7 ms
Bragg excitation along y. In order to obtain the system’s
momentum distribution, we perform a Fourier-transform
of its wave function. On this momentum distribution, we
perform the same analysis as on the experimental data,
i. e. we analyse the fraction of excited atoms in a region
of interest around k ≈ 4.2µm−1 for various ω. The res-
onances are fitted with a Gaussian function to obtain F
from the RTE simulations. For the same reasons as men-
tioned for the BdG calculations (Sec. H.), the crossing
of the BEC-SSP phase transition in the RTE happens
3.34 a0 below the experimental phase transition. There-
fore, throughout the manuscript, the RTE theory is up-
shifted in as by 3.34 a0. We note that, when perform-
ing the RTE directly on the corresponding ground states
from the BdG theory, i. e. we do not include thermal
noise, the as-ramp and atom loss, we recover an excited
fraction that is well described by the BdG theory. This
indicates that the chosen analysis in ToF gives a reliable
measurement of S(k) and in particular a consistent result
with the 3D-trapped BdG calculations.

L. Real-time evolution and characteristics of the
state’s wave function

To study the time evolution of the contrast and the
phase of the dynamically created supersolid states, we
perform RTE simulations without applying a Bragg ex-
citation and monitor the axial density and the phase pro-
files from the calculated wave functions [see Fig. 4 (a, c)
in main manuscript]. Typically, in the RTE we observe
ND = 4 − 6 droplets, containing a variable atom num-
ber across the system. We evaluate the time-dependent
central contrast, C, between the two central density
peaks numerically. The phase-variation factor ∆Θ =
| 1
ND

∑ND

j=1〈eiθj 〉τ |2 is calculated by extracting the mean
phase, θj , of each single density peak over its full-width

at half maximum.
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FIG. S10. RTE simulations with V = 0 (no Bragg excita-
tion applied). (a) The time evolution of the extracted central
contrast of the integrated in-situ density distributions for dif-
ferent as (see legend). (b) The extracted phase incoherence
of a central cut through the wave function (see text). The
shadings represent the standard deviation from 5 simulation
runs with different statistical draws of the thermal popula-
tion. The data presented in Fig. 4 (a, b) corresponds to the
time window of [0, 7] ms.

Figure S10 (a) shows C(t) over the whole simulation
time. For early times, we observe a small, but finite C
due to density noise in the simulations, which is com-
ing from the included thermal fluctuations. During the
holding time ([−10, 7] ms), for as < a∗s , we observe that
C first increases and consecutively slightly decreases due
to atom loss. Only for as < 54.2 a0 we find an oscillating
behaviour of the contrast in time. We note that there
is a time delay between the development of the density
modulation in the system and the timing of the as ramp
(which occurs during [−30, −10] ms).

To give another insight into the time evolution of the
system’s phase profile, we extract the global phase vari-
ation, α = 1

L

∫
L
|φ(0, y, 0) − 〈φ〉L |dy, of the wave func-

tion, which is extracted along a cut of φ along y. Here,
〈φ〉L denotes the averaged phase over the central region
L = [−7, 7]µm, see also [4]. In Figure S10 (b), we show
the time evolution of α for the whole simulation time.
For all as one sees a first local maximum in α (around
−20 ms), coming from an axial breathing mode which is
excited due to the as ramp. At longer times, we find for
54.5 a0 <∼ as ≤ a∗s , that α remains small while the density
contrast is finite. For as < 54.5 a0, we find that α seems
to approach a constant value, which increases with lower
as.
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Conclusion

This thesis reports on our experimental works with gaseous dipolar Bose-Einstein conden-
sates, made of highly magnetic 166Er atoms. The main emphasis lies on a parameter regime,
where standard mean-field theory predicts a collapse of the quantum gas. Our experiments
reveal the importance of quantum fluctuations, which lead to a surprising stabilisation of
the quantum gas and enrich tremendously the phase diagram of the dipolar BEC. This sta-
bilisation mechanism introduces new types of ground states such as a macrodroplet, droplet
crystals and even a supersolid phase.

In our first experiment, we identified a crossover region from a dipolar Bose-Einstein conden-
sate to a dense macrodroplet. With this investigations, we could prove that, indeed, quantum
fluctuations stabilise the dipolar BECs against collapse. Furthermore, our findings showed
that an extended Gross-Pitaevskii theory, including the Lee-Huang-Yang energy correction,
can accurately describe the macrodroplet state.

A second set of experiments focussed on the theoretically predicted roton minimum in the
excitation spectrum of a dipolar BEC. Here, standard mean-field theory predicts that a
fully softened roton minimum leads to a modulational instability under which the system
collapses. We were in the fortunate position to prove the existence of this roton minimum
for the first time and could probe some of its peculiar properties, such as the increase of
density fluctuations that appear in the quantum gas, as the roton minimum forms in the
spectrum.

These two observations – the stabilising role of quantum fluctuations and the existence of
a roton minimum – constitute the main building blocks for our third series of experiments.
We could show that quantum fluctuations also stabilise the roton’s modulational instability
and establish a phase transition to a density modulated state, that can exhibit global phase
coherence. This new state shows properties of supersolidity in dipolar Bose-Einstein con-
densates, where the translational and the gauge symmetry are spontaneously broken at the
same time.

Our studies helped paving the way for an interesting, new research direction of dipolar
quantum gases that are stabilised by quantum fluctuations. They contributed to, but also
benefited strongly from the works of others. From the experimental side, the group of
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Tilman Pfau in Stuttgart made the first observation of dipolar droplets, which set our stage
to investigate quantum fluctuations in dipolar BECs. The Stuttgart group and also the
group of Giovanni Modugno in Pisa observed, at a similar time as us, the aforementioned
supersolid states [Tan19a, Bö19a, Cho18b] and our three groups continue to investigate the
properties of this exciting new state of matter up to today. From the theoretical side, we
received ideas and strong support from the groups of Luis Santos in Hannover, Blair Blakie
in Otago, Alessio Recati in Trento and also from Rick van Bijnen and Misha Baranov in
Innsbruck. The numerous collaborations I was involved in and the investigated topics, made
the last years an exciting time. I feel privileged to provide a humble contribution to the
flourishing research direction of dipolar quantum gases and hope it will be beneficial also
for other research groups and the next generation of experiments of highly magnetic atoms,
which are being currently build up all over the world.
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We realize a two-component dipolar Fermi gas with tunable interactions, using erbium atoms.
Employing a lattice-protection technique, we selectively prepare deeply degenerate mixtures of the
two lowest spin states and perform high-resolution Feshbach spectroscopy in an optical dipole trap. We
identify a comparatively broad Feshbach resonance and map the interspin scattering length in its vicinity.
The Fermi mixture shows a remarkable collisional stability in the strongly interacting regime, providing a
first step towards studies of superfluid pairing, crossing from Cooper pairs to bound molecules, in presence
of dipole-dipole interactions.

DOI: 10.1103/PhysRevLett.121.093602

The ability to prepare dipolar quantum gases of magnetic
atoms [1–6] has enabled fascinating, yet unexpected, obser-
vations, emerging from the long-range and anisotropic
character of the dipole-dipole interaction (DDI) among
particles. In bosonic systems with dominant DDI, this
includes d-wave-patterned collapse [7], droplet stabilization
[8–10], and roton quasiparticles [11]. With fermions, many-
bodydipolar phenomena have been investigated only in spin-
polarized systems. Here, the DDI competes with the Pauli
pressure, rendering dipolar effectsmuchmore subtle, as, e.g.,
their influence on the shape of the Fermi surface [12].
Magnetic atoms further realize high-spin systems; e.g.,

fermionic Er has 20 available spin states in the lowest
hyperfine manifold. In particular, bosonic dipolar spinor
gases have been investigated in remarkable experiments
with magnetic Cr atoms [13–16], whereas the fermionic
counterpart remains rather unexplored in the quantum
regime. Scattering experiments with fermionic Dy mixtures
slightly above quantum degeneracy showed a large colli-
sional stability against inelastic dipolar relaxation [17],
enabling, e.g., the production of long-lived spin-orbit-
coupled gases via Raman excitations [18].
As yet, the realization of a two-component dipolar Fermi

mixturewith tunable interactions has remained elusive. Such
a system can disclose fascinating phenomena, from aniso-
tropic quantum phases of matter, e.g., anisotropic Fermi
liquids and superfluid pairing [19,20], to dipolar magnetism
[21], but also extended Fermi-Hubbard models with off-site
interactions [22]. Fermionic Er and Dy are very promising
candidates for such studies, given their large magnetic
moment. However, the large density of Feshbach resonances
(FRs) even in spin-polarized gases [23–25] raises the
question of whether stable fermionic quantummixtures with
tunable interactions can be realized with lanthanides.
We here report on a powerful platform to produce a

two-component dipolar Fermi gas of pseudospin 1=2 and

demonstrate tunability of the interspin interactions. By
using highly magnetic 167Er atoms and a three-dimensional
(3D) optical lattice as a tool for spin preparation, we
perform high-resolution Feshbach spectroscopy and unam-
biguously identify the spin nature of the different FRs.
Among the resonances, we find a well-isolated and com-
paratively broad interspin FR and precisely measure the
interspin scattering length. Our Fermi mixture reveals a
remarkable collisional stability in the strongly interacting
regime.
Achieving a deterministic preparation of a spin-1=2

mixture and a precise control over the interspin interactions
in highly magnetic lanthanide atoms challenges experi-
mental schemes. Indeed, the enormous density of FRs can
cause collisional losses and severe heating, limiting the
production and preparation of deeply degenerate mixtures
at arbitrary magnetic fields (B), where hundreds of FRs
might need to be crossed (see, e.g., [18]). Moreover, state-
selective preparation of a spin-1=2 system typically
requires large B values for which the quadratic Zeeman
effect lifts the degeneracy on the Zeeman splitting among
consecutive sublevels [17,26].
For these reasons, we establish a technique for colli-

sional protection during the spin preparation (see Fig. 1). In
a nutshell, the key production steps are as follows. We
produce a spin-polarized degenerate Fermi gas (DFG) in an
optical dipole trap (ODT) at low B [1 in Fig. 1(a)] and load
the atoms into the lowest band of a deep 3D optical lattice,
which acts as a collisional shield [2 in Fig. 1(a)] [27,28].
We then sweep to high B for spin preparation and perform
radio-frequency (rf) transfer [3 in Fig. 1(a)], sweep to the
desired B, and eventually melt the lattice [4 in Fig. 1(a)].
Experimentally, we prepare a spin-polarized DFG of

167Er atoms in a crossed-beam ODT [5,29] [1 in Fig. 1(a)].
All fermions occupy the lowest Zeeman state j↓i≡ jF ¼
19=2; mF ¼ −19=2i of the ground-state manifold. Here,
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F is the total spin quantum number and mF its projection
along the quantization axis. A homogeneous magnetic field
of B ¼ 0.6 G is applied along the vertical z direction to
define the quantization axis and to maintain spin polariza-
tion. The sample typically contains N ¼ 2.4 × 104 atoms at
about T ¼ 0.25TF. Note that the ODT is shaped to optimize
single-band loading of the optical lattice and yields EF ¼
kB × TF ¼ kB × 170 nK ¼ h × 3.6 kHz (see Supplemental
Material [29]). Here, TF is the Fermi temperature, h is the
Planck constant, and kB is the Boltzmann constant.
In the next step, we transfer the spin-polarized DFG into

a 3D optical lattice [2 in Fig. 1(a)]. Our lattice has a cuboid
geometry with lattice spacings ðdx; dy; dzÞ ¼ ð266; 266;
532Þ nm along the three orthogonal directions [29,37].
In order to pin the atoms in a one-fermion-per-lattice-site
configuration (unit filling), we use large lattice depths of
about ðsx; sy; szÞ ¼ ð20; 20; 80Þ, where si with i ∈ fx; y; zg
is given in units of the respective recoil energies, ER;x;y ¼
h × 4.2 kHz and ER;z ¼ h × 1.05 kHz. After lattice load-
ing, we obtain a single-component fermionic band insulator
(BI) of about 2.2 × 104 j↓i atoms. By melting the lattice
and reloading the fermions into the ODT, we measure T ≲
0.3TF with N ¼ 2.1 × 104 (TF ≈ 160 nK) and extract a
heating rate in the lattice as low as _T ¼ 0.03 TF=s.
Our system is well described by a single-band extended

Fermi-Hubbard model [22] with residual tunneling rates of
Jx;y ¼ h × 10.5 Hz and Jz ¼ h × 0.001 Hz and nearest-
neighbor interactions on the order of h × 50 Hz [37]. We
confirm the single-band population by performing standard

band-mapping measurements [38]. In the horizontal (xy)
plane, we do not resolve higher-band occupation [see
Fig. 1(b) and Supplemental Material [29]). Along the z
axis, we detect a residual < 5% population in the first
excited band, resulting from the fact that EF > ER;z [39].
Because of the Pauli exclusion principle, doubly occupied
sites (doublons) in a single band are strictly forbidden for
identical particles (j↓i).
In the BI regime, the lattice is expected to provide a strong

collisional protection to the particles. As a first application,
we use the lattice-protection technique to realize a spinor
Fermi gas with pseudospin 1=2 (j↓i–j↑i), with j↑i≡ jF ¼
19=2; mF ¼ −17=2i [3 in Fig. 1(a)]. Experimentally, we
start with a j↓i BI atB ¼ 0.6 G and then rampB in 40 ms to
a value of about 40 G, for which the quadratic Zeeman effect
in 167Er is large enough to lift the degenerate coupling of the
individual spin levels [29]. After letting the field stabilize for
120ms, we use a standard rf-sweep technique to transfer part
of the atoms into the j↑i state. By tuning the rf power, we can
precisely control the population imbalance, δ ¼ ðN↓ − N↑Þ=
N, in the mixture, with N↓ (N↑) the number of atoms in j↓i
(j↑i). Figure 1(c) shows exemplary spin-resolved absorption
images of j↓i–j↑i mixtures for various δ after B is swept
back to low values. We typically record N ¼ N↓ þ N↑ ¼
1.8 × 104 and T ≈ 50 nK after melting the lattice down [4 in
Fig. 1(a)]. For comparison, similar measurements in absence
of the lattice clearly show a much lower atom number of
N ¼ 0.6 × 104, proving the strength of our lattice-protection
scheme to circumvent losses when cruising through the
ultradense Feshbach spectrum [18,23].
Figure 2 shows the high collisional stability of the lattice-

confined spin mixture. In particular, we probe N↓;↑ as a
function of the holding time in the lattice [see Fig. 2(a)].
From an exponential fit to the data, we extract long
lifetimes of τ↓ ¼ 31ð3Þ s and τ↑ ¼ 12.2ð7Þ s. The mea-
surements are carried out at B ¼ 3.99 G, where no FRs

y

x

(b) (c) z

J

rf

(a)
1

2

3

4

FIG. 1. Spin-1=2 dipolar fermions in a 3D optical lattice.
(a) Sketch of the four key stages of our preparation scheme;
see text. (b) Band population in the horizontal xy plane, obtained
by averaging 50 absorption images for a 12 ms time of flight
(TOF). The red arrows indicate the first Brillouin zone of the
lattice. (c) Spin-resolved band-mapping images after 9 ms of TOF
in the vertical zx̃ plane, where x̃ accounts for the angle between
the imaging beam and the y axis of the lattice, for population
imbalances δ ¼ 1 (left), 0.02 (middle), and −0.94 (right). The
images are averages of about 20 absorption pictures. The spin
states are separated along the z direction by a Stern-Gerlach
technique.
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FIG. 2. Spin mixture of dipolar 167Er in a 3D lattice. (a) Lifetime
measurements for spin-polarized samples of j↓i (squares) with
δ ¼ 1 and of j↑i (circles) with δ ¼ −0.92 at B ¼ 3.99 G and their
respective exponential decay (solid lines). (b) Lifetimes as a
function of δ. Constant fits extract mean lifetimes across δ of
τ̄↓ ¼ 29.9ð3Þ s and τ̄↑ ¼ 11.8ð7Þ s. All error bars indicate the
statistical uncertainty.
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occur (see Supplemental Material [29]). Interestingly,
within our error bars, we find no dependence of the lifetime
of each spin state on the population in the other state; they
remain long regardless of δ [see Fig. 2(b)].
We note that, although very long for our purpose, we

always record shorter lifetimes for a j↑i BI with respect to
the ones measured for a j↓i BI. Differently from the j↓i
case, two-body relaxation processes for j↑i are allowed. At
our magnetic fields, this process converts Zeeman energy
into a large enough kinetic energy to let the atoms escape
from the lattice [13,40] and requires the particles to collide
at short distance (on site) [17,41]. In the spin-polarized
cases (e.g., δ ¼ −1; j↑i), double occupancy necessarily
involves population in higher bands since the Pauli exclu-
sion principle forbids doublons in the lowest band. In our
system, a continuous transfer of a small fraction of atoms
into higher bands might be driven by intensity and
frequency noise of the lattice beams [28]. In the case of
j↑i, this would lead to subsequent fast relaxation and
justify the observed difference in the lifetimes.
With our spin-preparation method, we are now able to

conduct high-precision Feshbach spectroscopy in an ODT
[4 in Fig. 1(a)] in search of interspin loss features. For this,
we first prepare the spin-1=2 mixture in a deep lattice at
the desired B value. We then transfer the mixture back into
the ODT, hold the atoms for 500 ms, and finally measure
the spin populations. Figure 3 exemplifies the high-
precision Feshbach spectroscopy for three values of δwithin
a narrowmagnetic field range fromB ¼ 550 to 750mGwith
a resolution of 1 mG. A lower-resolution and larger-range
scan is shown in the Supplemental Material [29].
As expected [23,24], the atom-number trace as a function

of B shows a high density of resonant loss features on top of
a constant background. By controlling δ, we are able to
distinguish the spin nature of each of the observed FRs.
In the excerpt shown in Fig. 3, we identify three narrow
homospin FRs in a pure j↓i sample [Fig. 3(a)] and four in a
quasipure j↑i sample [Fig. 3(b)]. In the spin-polarized

cases, all FRs exhibit widths of the order of our magnetic
field stability of ≈1 mG. Thanks to our lattice-preparation
technique, the shape and thewidth of the FRs are not affected
by the magnetic field ramps, namely, we do not observe
neither broadening nor fictitious asymmetry in the loss
peaks. For the 50%–50% spin mixture (δ ¼ 0), we observe
five additional interspin FRs [Fig. 3(c)], where atoms in the
two spin states are simultaneously lost. Because of the
complicated scattering behavior of Er, standard coupled-
channel methods to assign the leading partial-wave character
of the FRs are currently not available [42]. However, the
width of the FRs can give indications on the strength of
the coupling between open and closed channels [43].
Among the observed interspin FRs, the one at about

0.68 G stands out from the forest of narrow FRs. This FR is
almost 2 orders of magnitude broader, making it a promising
candidate for Fermi-gas experiments in the strongly interact-
ing regime. We further investigate this FR by performing
modulation spectroscopy on the lattice-confined spin-1=2
mixture [3 in Fig. 1(a)] to extract the interspin on-site
interaction energy, U↓↑ ¼ Uc þUdd, given by the sum of
the interspin contact interaction Uc and the DDI Udd [37].
Thanks to the precise knowledge of Udd and to its angle
dependence, we are able to directly extract the interspin
scattering length,a↓↑ ∝ Uc ¼ U↓↑ −Udd, both in amplitude
and in sign (for details, see Supplemental Material [29]).
Figure 4(a) summarizes our results, showing the tunability

of a↓↑ from positive to negative values across the interspin
FR. As a first estimate of the B-to-a↓↑ conversion, we use
the simple single-channel formula, leading to a↓↑ðBÞ ¼
abgð1 − Δ=ðB − B0Þ − Δ0=ðB − B0

0ÞÞ [43]. From the fit to
the data, we extract the background scattering length
abg ¼ 91ð8Þa0, the position of the comparatively broad
FR B0 ¼ 687ð1Þ mG, and its width Δ ¼ 58ð6Þ mG. Note
that our fitting function also accounts for a nearby interspin
FR at B0

0 ¼ 480 mG (out of range of Figs. 3 and 4) of
width Δ0 ¼ 29ð4Þ mG, whereas narrower interspin FRs are
neglected. Based on the extracted values, we can estimate an
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FIG. 3. High-resolution Feshbach spectroscopy for three different population imbalances in an ODT (illustrations): atoms in j↓i
(squares) and j↑i (circles) for δ ¼ 1 (a), −0.6 (b), and 0 (c) as a function of B. The determined width and spin nature of the FRs are
indicated by the blue (j↓i), orange (j↑i), and green (j↓i–j↑i) shaded regions. Each data point is the mean of 2–4 repetitions.
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order of magnitude for the effective range of the FR, R� ¼
ℏ2=ðmErΔabgδμ) [43]. Here, mEr is the mass of 167Er. The
differential magnetic moment between the open and closed
channel δμ is not known for the considered FR. However,
taking δμ ¼ 3μB, which is the typical value measured on
bosonic Er2 [42], we estimate R� on the order of 1000a0.
With this order of magnitude, our typical two-component
Fermi gases verify 1=kFR� ≳ 1, with kF being the Fermi
wave vector [29]. This identifies the intermediate strength of
the FR [44], for which the gas is expected to remain strongly
interacting at unitarity [45,46].
For strongly interacting alkali Fermi gases, the large

collisional stability in two-component mixtures has been
essential for observing the crossover from a superfluid of
delocalized pairs along the Bardeen-Cooper-Schrieffer
(BCS) mechanism to a Bose-Einstein condensate (BEC)

of bound molecules [47]. As a direct consequence of the
Pauli principle, three-body recombination occurs primarily
on the repulsive (BEC) side of broad s-wave FRs, where a
weakly bound molecular level exists [48], whereas on the
attractive (BCS) side, large scattering lengths coexist with a
remarkable collisional stability [49–52]. Such an asymme-
try in the scattering behavior is identified as an essential
attribute of BEC-BCS physics.
We investigate this aspect in a second set of experiments.

We prepare an equally populated spin mixture (δ ¼ 0) in an
ODT [4 in Fig. 1(a)] and probe the time evolution of the
spin population as a function of the holding time in the
trap for various B across the FR. Exemplary decay curves
are shown in Figs. 4(b) and 4(c). On the BEC side, at
a↓↑ ¼ 880ð140Þ a0, we observe a fast decay of both j↑i
and j↓i atoms [Fig. 4(b)]. A simple exponential fit to the
data gives lifetimes of τ1=e ≈ 150 ms. In contrast, on the
BCS side at a↓↑ ¼ −1500ð500Þ a0 [Fig. 4(d)], the spin
mixture shows a large collisional stability with lifetimes
exceeding τ1=e ¼ 1200 ms [Fig. 4(c)].
To get deeper insights, we systematically study the initial

decay rate _N=N0 as a function of B. We determine the rates
by using a linear fit to the data for the initial time evolution.
Figure 4(d) summarizes our results, plotted in terms of the
dimensionless coupling constant 1=ðkFa↓↑Þ. We observe
an asymmetry of the loss rate curve, indicating that the
Fermi mixture is remarkably stable in the unitary and
strongly attractive regime. We note that both the qualitative
shape and the quantitative values of the loss rates in 167Er
show strong similarities to the ones measured in 40K [51].
The existence of a comparatively broad interspin FR and

our demonstration of the interaction tuning across this
resonance make fermionic Er gases a promising system
for accessing BEC-BCS crossover physics within a distinct
scattering scenario. Indeed, our mixture adds both the DDI
and an intermediate effective range in the short-range
scattering compared to the alkali cases [46,47], paving the
way for studying exotic Cooper pairs and molecular BECs
[19,44,53] and calling for new theory developments [54].
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Spin-polarized degenerate Fermi gases

Our experimental protocol for the preparation of
deeply degenerate Fermi gases (dFgs) of 167Er follows
the one described in ref. [1]. The experiment starts with
a narrow-line magneto-optical trap operated at 583 nm to
prepare spin-polarized 167Er atoms with N = 1.2 × 107

atoms and T ≈ 10µK in the lowest hyperfine sublevel
|F = 19/2,mF = –19/2〉, where F is the total angu-
lar momentum quantum number and mF is its projec-
tion along the quantization axis. The atoms are then
transferred to a horizontal optical dipole trap (ODT)
formed by a laser beam at 1064 nm. The aspect ratio
AR = w⊥/wz between the horizontal, w⊥, and verti-
cal, wz, waists of this beam can be tuned from 1.6 to
15 via a time-averaging potential technique [2], which al-
lows to reach a good spatial mode overlap between the
atomic cloud and the ODT. Subsequentially the atomic
cloud is compressed by reducing the AR and transferred
to a tight ODT created by a laser beam at 1570 nm with
a waist of about 15µm, and counterpropagating to the
1064 nm-beam such that their focii overlap. At this stage
we typically have 1× 106 atoms. During the evaporation
procedure the atoms are further confined by an addi-
tionnal ODT at 1570 nm, formed by a beam propagating
vertically with a waist of about 32µm. The crossed ODT
at 1570 nm is later denoted ODT1570.

Following our previous work of ref. [1], we perform
evaporative cooling based on elastic dipolar scattering
among identical fermions. Such a cooling scheme has
been proven to be very efficient to produce samples in
the deeply quantum degenerate regime [1, 3]. At the
end of the evaporation, the trap frequencies in ODT1570

are (ν⊥, ν‖, νz) = (286(3), 85(1), 255(3)) Hz with ‖ (⊥)
corresponding to the axis along (perpendicular to) the
horizontal ODT beam and z indicating the axis of grav-
ity. We typically obtain spin-polarized dFgs with up to
N = 6×104 atoms and temperatures of T ≤ 0.15TF, with
TF being the Fermi temperature corresponding to the
Fermi energy EF = kBTF = hν̄(6N)1/3, where h is the

Planck constant, ν̄ =
(
ν⊥ν‖νz

)1/3
the geometric mean

of the trap frequencies and N the atom number. At this
stage the Fermi energy is EF = kB×630 nK = h×13 kHz.

During the whole evaporation, the magnetic field has a
value of B = 0.6 G and is oriented along z, which sets
the quantization axis of the atomic dipoles. Here and in
the following, N and T/TF are estimated from polylog-
arithmic fits to the absorption images of the dFGs after
12 ms of time-of-flight (ToF) using the horizontal imaging
setup.

Preparation for lattice loading

In deeply dFgs, the atoms fill the Fermi sea up to
the Fermi energy, EF . Hence, the number of populated
bands, when the atoms are loaded to an optical lattice,
crucially depends on the initial value of EF . In first ap-
proximation, EF can be compared to the lattice recoil
energy Erec = h2/(2mErλ

2), with mEr being the mass of
167Er and λ the lattice wavelength. In particular, during
the initial increase of the lattice potential higher bands
become populated if EF > Erec [4].

To minimize the occupation of higher bands due to
the loading procedure we reduce the Fermi energy of
our sample. To this aim, we transfer the atoms back to
a crossed ODT operated at 1064 nm (ODT1064), within
510 ms. Here, the dynamically adjustable AR of the hori-
zontal beam allows a convenient control on ν̄ (see section
above). We optimize the ODT parameters by lowering
ν̄ and N while keeping a low temperature of the sample.
The best conditions for subsequent lattice loading are
reached for (ν⊥, ν‖, νz) = (63(1), 36(2), 137(1)) Hz and
N = 2.4 × 104 atoms with T ≤ 0.3TF, corresponding to
a Fermi energy EF = kB × 170 nK = h × 3.6 kHz. We
note that for lower νz atoms get lost due to gravity.

Three-dimensional optical lattice and its loading

The three-dimensional (3D) optical lattice in our ex-
periment is created by two retro-reflected 532 nm laser
beams along the x- and y-axis and one retro-reflected
1064 nm vertical laser beam along the z axis; see Fig. S1.
The lattice spacings are dx,y = 266 nm along the hor-
izontal xy-plane and dz = 532 nm along the vertical
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z-axis [5]. With the available power, we reach maxi-
mum lattice depths of (sx, sy, sz) = (25, 25, 120), where
si with i ∈ {x, y, z} is given in units of the respec-
tive recoil energies, ER;x,y = h × 4.2 kHz and ER;z =
h × 1.05 kHz. Typical lattice depths used in the ex-
periment are (sx, sy, sz) = (20, 20, 80) corresponding to
band gaps of h× 32.8 kHz along x and y and h× 17.7 kHz
along z.

After preparation and transfer to the ODT1064, we adi-
abatically load the spin-polarized dFg into the 3D lattice
by increasing the lattice-beam intensities exponentially
in 150 ms to the final values. Subsequently, the ODT
beams are switched off in 10 ms and we additionally hold
the atoms for 500 ms before applying our spin prepara-
tion scheme. This holdtime enables to remove most of the
residual atoms that have been pushed to higher bands of
the optical lattice by the Fermi pressure, through their
natural faster decay. We note that when the atoms are
loaded directly from ODT1570 we find up to 25 % of popu-
lation in higher bands, which in this case get strongly de-
populated within 500 ms. Despite our most careful load-
ing procedure and our holdtime, we measure that up to
5 % of the atoms can still populate the higher band of
the vertical lattice; see main manuscript (Note that the
higher bands along z are the most tightly trapped within
our lattice geometry).

Higher-band populations

To access the band population we perform band-
mapping measurements. Here, we decrease all lattice
potential to zero within 1 ms, thus mapping the quasi-
momentum of the band to real momentum. We then
perform ToF absorption imaging, which thus probes the
population of the different bands in directions transverse
to the imaging axis. We note that, the edges of the low-
est band can be smeared out because of the finite width
of the in-situ cloud and due to an imperfect adiabatic
switch-off of the lattice potentials [6], limiting the ac-
curacy of our determination. In our setup, we obtain
our best estimate of the remaining higher band popu-
lations by comparing the absorption images to the ex-
pected profiles computed from the first Brillouin zone.
In the z-direction, we observe a very small population
in higher bands, which we quantitatively estimate using
the horizontal imaging setup. Here, we additionally take
advantage of the observed structure of the higher band
population, which systematically appears below the low-
est band (along the gravity axis). This might be due to a
combined effect of residual magnetic gradient and grav-
ity. We use this behavior to our advantage and extract
the population of the higher band in z from the top-
bottom asymmetry of the band-mapping images. In the
xy-directions, the estimate of the higher band population
is more subtle in particular because of the non-orthogonal

yx

z

d
y dx

d z

FIG. S1. Sketch of our lattice geometry. The coordinate
system {x, y, z} and the lattice constants dx, dy, and dz are
indicated.

configuration between the imaging and horizontal lattice
axes. To the best of our detection sensitivity, we do not
observe any population in higher-bands along these axes.
Based on the higher recoil energies in these directions,
we physically expect a lower initial population of those
bands than along z, as discussed above. In addition, be-
cause of the lower lattice depths, we expect a faster loss
of their population.

Zeeman energy for fermionic Er

Fermionic Er exhibits a hyperfine structure resulting
from the coupling of its nuclear spin I, whose quantum
number is I = 7/2, with the total electronic angular
momentum J, which in the ground state of Er has for
quantum number J = 6. The total angular momen-
tum reads F = J + I. In the lowest hyperfine mani-
fold (F = 19/2) there are 2F + 1 = 20 sublevels which
can be differentiated by the eigenvalues of the projec-
tion of F on the quantization axis, corresponding to the
quantum number mF . Because, in our experiment, an
external magnetic field B is always applied, the degen-
eracy of the sublevels is lifted by the interaction of B
with the different angular momenta. In our description,
the quantization axis is chosen to be parallel to B, and
the mF sublevels are then denoted magnetic states. In
the low B limit, the magnetic states are simply shifted
in energy along EmF

= mF gFµBB, corresponding to
a state dependent magnetic moment, µ = mF gFµB .
In Erbium, the absolute ground state has a magnetic
moment of µ = −6.982804µB , giving the Landé factor
gF = 0.735032 [7]. Here µB is the Bohr magneton.

In a more general way, the atomic energy levels in a
uniform B-field can be calculated via an exact diagonal-
ization of the atomic Hamiltonian [8]. In Fig. S2 we plot
the energy levels of the lowest hyperfine manifold as a
function of the magnetic field computed in such a way.
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FIG. S2. Zeeman energy for the magnetic substates in the
|F = 19/2〉 hyperfine manifold. For this work the energy
splitting of the lowest three spin states |–19/2〉 ≡ |↓ 〉 (blue
line), |–17/2〉 ≡ |↑ 〉 (orange line) and |–15/2〉 (red line) is of
most relevance. Higher spin states are visualized by grey lines.
The linear Zeeman effect dominates the energy evolution such
that ∆1 ≈ ∆2 ≈ qli while the quadratic Zeeman effect is
evident in the differential splitting ∆1−∆2 (inset).

The dominant trend evidences the linear dependence dis-
cussed above in the low B regime. However, at large
enough B, deviations from this simple picture appear due
to the Paschen-Back effect, as J and I start to decouple.
In a perturbative description, this can be accounted via a
quadratic correction to the Zeeman energies which writes
EmF

− qlimF = qqu(m2
F − F 2) with qli = gFµBB and

qqu ∝ B2. The deviation from the linear Zeeman energy
becomes evident when considering the differential split-
ting ∆EZ(mF ) = (EmF

−EmF+1)− (EmF+1 −EmF+2),
as the linear Zeeman effect qlimF cancels out; see inset
of Fig. S2. In the folowing we define ∆EZ = ∆EZ(mF =
−19/2), which is the most relevant quantity for the cur-
rent study, as restricted to mF = −19/2 and −17/2.

Preparation of a spin mixture in the lattice

To achieve a deterministic spin preparation of the two
lowest spin states we typically use a large enough mag-
netic field of B = 40.51 G for which the differential Zee-
man splitting ∆EZ = 42.6 kHz is larger than the fluctu-
ations of the Zeeman energies coming from the magnetic
field noise, corresponding to≈ 20 kHz at this field. In this
way, the spin-spin coupling induced by a small amplitude
modulation of the magnetic field in the radio-frequency
(rf) domain can be restricted to the subspace formed by
the lowest two spin states mF = −19/2 and −17/2. To
couple the two hyperfine sub-states we apply a rf-sweep
by chirping the rf-frequency continuously from a value of

(ν? +30 kHz) to (ν?−30 kHz) within about 10 ms, where
hν? matches the energy difference E−19/2 − E−17/2 (∆1
in Fig. S2). We can prepare a well-reproducible mixture
of |↓ 〉 and |↑ 〉 without populating the next higher spin
state. The population imbalance δ between the two spin
states can be freely controlled by varying the power of the
rf signal. In particular, also almost all the atoms can be
transferred to |↑ 〉 reaching up to δ = −0.94 (see Fig. 1(c)
of the main manuscript). We note that, while our prepa-
ration technique in the lattice initially leads to a coherent
superposition of the two spin states, additional measure-
ments suggest a fast decoherence, leading to a projection
of pure states on the individual lattice sites for the ex-
perimental relevant time scales. In particular, we observe
that coherently driven Rabi oscillations between the two
spin states quickly damp within a few ms.

To image the spin mixture, we perform spin-resolved
TOF absorption imaging using a Stern-Gerlach technique
with a 1-ms pulsed magnetic field gradient at the begin-
ning of the TOF. After an additional 7.2 ms of TOF,
the populations of each spin state are spatially separated
and we measure them by using the horizontal imaging
setup (Fig. 1(c)). N↓.↑ are then counted by integrating
the measured density distribution over well-defined re-
gions of interest.

Lifetime of the spin mixture in a deep lattice

To conduct a clean measurement of the collisional
properties of a spin mixture in the deep optical lattice
it is important to fulfill the following requirements: (i)
The spin mixture is in an insulating regime where the
formation of doublons is suppressed via sufficiently large
ratios of the onsite interspin interaction energy U↑↓ to the
tunneling rate J . This requires not only to use a deep lat-
tice potential but also to sit away from any Feshbach res-
onance (FR) so that U↑↓ is not resonantly modified and
has a value close to its background one. (ii) The Zeeman
energies are large and do not have an equidistant spacing
so that both magnetization changing and magnetization
conserving spin-exchange processes induced by the DDI
are energetically supressed [9–12].

Due to the high density of FRs (see next section and
Ref. [13]), the requirement (i) is not so straightforwardly
achieved in our fermionic erbium mixture. In this sys-
tem, to find a magnetic field value for which we sit stably
away from any FR is eased by a low technical magnetic-
field noise. Because of the different sets of coils used in
our experiment, the magnetic field noise is found to be
≈ 1 mG up to B = 5 G while it increases to ≈ 20 mG
when we go to higher B values. Hence, working at
B ≤ 5 G turns out to be more favorable in our setup.
On the other hand, the requirement (ii) is matched for
a sufficiently large magnetic field, where the quadratic
Zeeman effect (see Fig. S2) is strong enough to not be
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canceled by quadratic light shifts [14]. The best condi-
tions for meeting the requirements (i) and (ii) are found
at B = 3.99 G, which is used for the lifetime measure-
ments of Fig. 2. At this field, we have measured the on-
site interaction energy using a similar technique as for
Fig. 4(a) of the main text; see also below. The extracted
value of U↑↓ = h×2.43(2) kHz exceeds by far the relevant
tunneling rates Jx,y = h × 10.5 Hz so that it lies deeply
in the insulating regime. In addition, we note that no
spin-changing dynamics are observed from the measured
spin population.

We finally note that, for technical reasons, our setup
allows holding in the lattice up to 20 seconds. For longer
times, thermal effects in the high-power fiber start to pre-
vent us from properly stabilizing the output power for our
lattice. We avoid observation in this regime where the
lattice potential would not be properly controlled (which
may also lead to additional losses), as the allowed obser-
vation time is already very long for our purposes. This
restriction however limits the precision of our lifetime
measurements for the long lifetimes observed in our setup
and in particular for the longest-lived |↓ 〉 state.

State-resolved Feshbach spectroscopy

To identify the magnetic field regions where promising
interspin FRs occur, we first perform a rough Feshbach
scan in the 0 − 2 G region for different population im-
balances δ (Fig. S3). For this set of data we do not use
our lattice-protection technique. Instead, the spin prepa-
ration, the magnetic-field ramps, and the Feshbach spec-
troscopy are directly performed in the ODT. As expected,
without the lattice, the loss features present broadening
and asymmetric shapes due to the mere magnetic-field
sweeps (e. g. via losses occuring during the sweeps). Yet,
the most prominent features of the scattering physics can
be identified.

Using this technique, we perform three sets of mea-
surements, varying the composition of the mixture δ.
In a first set, we perform a Feshbach scan in a spin
polarized gas in ODT1570 (Fig. S3, upper panel). We
jump to the final magnetic field and hold for thold =
70 ms before TOF imaging. The trap frequencies are
(ν⊥, ν‖, νz) = (324(1), 147(5), 259(4)) Hz. The system
has an initial temperature of T = 0.18(1)TF. Simi-
lar to Ref. [13], we observe a high density of loss fea-
tures, which correspond to single-component (|↓ 〉) FRs
of high partial-wave character. In a second set of mea-
surements, we repeat the magnetic-field scan in an al-
most pure |↑ 〉 sample (Fig. S3, middle panel). Here, we
use a resonant rf-pulse at 0.99 G to prepare a mixture
with mainly |↑ 〉 atoms. Then we jump on a purely |↓ 〉
homo-spin FR located at 1.034 G to remove remaining
|↓ 〉 atoms. The measurement is performed in the more
shallow ODT1064 to prevent too strong interspecies losses

and thold = 500 ms. For this trap, the trap frequencies
are (ν⊥, ν‖, νz) = (39(1), 37(1), 145(3)) Hz and the initial
temperature is T = 0.35(1)TF. We find new FRs, which
mainly correspond to single-component |↑ 〉 FRs. In a
third set of measurements, we observe the loss features
for a spin mixture prepared at 0.58 G in the same trap as
for the pure |↓ 〉measurement with thold = 50 ms (Fig. S3,
lower panel). Here, the initial temperature is slightly in-
creased to T = 0.24(1)TF due to the spin mixing. The
individual homo-spin FRs are still visible while we also
find new interspin |↓ 〉–|↑ 〉 FRs.

We analyze the three sets of data to extract the spin
nature of the individual FRs. For several FRs, the en-
trance spin channel can be easily identified. In addition,
we also observe overlapping FRs. Here, an exact assign-
ment requires a high-resolution magnetic-field scan and
our lattice-protection technique; see main text. Among
the forest of FRs recorded in the two-component mixture,
we observe a promising interspin FR at about 700 mG,
which remains rather isolated from other homo-spin FRs;
see green shading in Fig. S3.

As a second step, we focus on the magnetic-field region
around 700 mG in which the promising interspin Fesh-
bach resonance has been identified and perform high-
resolution Feshbach spectroscopy, taking advantage of
the lattice-preparation scheme, as described in the main
text. The lattice-protection technique is very powerful in
removing technical broadening and artificial asymmetry
of the loss peaks, as it clearly appears from a comparison
between the atom-number traces recorded with ODT-
preparation (Fig. S3) and lattice-preparation schemes
(Fig. 3). We perform the measurements for Fig. 3 as fol-
lows. We prepare a spin mixture in the lattice at high
B as described above and sub-sequentially ramp the field
to the desired value within 10 ms. After letting the B-
field stabilize for about 100 ms, the dipole trap beams
are ramped up within 10 ms and we unload the atoms
from the lattice back into the ODT1064 within 150 ms.
At this stage, the sample contains N ≈ 1.6 × 104 atoms
at T ≈ 0.3TF, almost independent of δ, and the trap fre-
quencies are (ν⊥, ν‖, νz) = (111.6(2), 35(1), 169.4(6)) Hz.
We then record the spin population after a holding time
of 500 ms. For each magnetic field value, the measure-
ment is repeated between two to four times and the av-
erage is reported in Fig. 3.

For all the above described measurements, we note that
the observed atom losses can be mainly attributed to res-
onant three-body recombination collisions in the short-
range potential. Inelastic two-body losses driven by the
spin-non-conserving dipolar interactions are, in principle,
also energetically allowed since |↑ 〉 atoms are in an ex-
cited Zeeman state [15]. However, we do not expect this
process to be enhanced at resonance.
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with ν̄ = 59(1) Hz. Due to the finite resolution of the scans of 10 mG it is possible that narrower FRs are not resolved. The grey
shading shows the magnetic field region studied in the main manuscript with the green shading indicating the comparatively
broad interspin FR. Each data point is the mean of two repetitions. The shading around the data points indicates statistical
uncertainties, which are often smaller than the data points.

Modulation spectroscopy with a fermionic spin
mixture in the lattice

To measure the scattering length between two spin
states of 167Er, we rely on a method similar to the
one that we have already successfully implemented with
168Er [5] and 166Er [2]. It is based on the measurement of
the onsite interaction energy of two atoms in a deep op-
tical lattice. Here, after preparing a spin mixture of |↓ 〉
and |↑ 〉 in the lattice we drive particle-hole excitations
of neighboring atoms by a resonant modulation of the
horizontal lattice depths sx,y. Note that for neighbor-
ing identical particles no single-band excitation will be
observed due to the Pauli exclusion principle and only
neighboring atoms in different spin states can be excited,
allowing to effectively only probe the interspin onsite in-
teraction U↓↑. In our experiment, we probe the doublon
creation via the resulting increase in atom loss. We spec-
ulate that onsite dipolar relaxation is responsible for the
observed loss [16]. We note that a distinct and convenient
method to measure double occupancies has been demon-
strated using the coupling to a third spin state [17]. Close
to a molecular state of the original doublon components,
the third spin state features a smaller interspin onsite
energy and can thus be used to detect an initial double
occupancy. Yet, such a method remains to be explored
in our system.

In our experiment, we typically modulate the lattice
depth for 1 s with a sine function with a peak-to-peak
amplitude of 30% and a frequency νmod. Maximum loss
occurs when νmod reaches the resonance condition νres =
U↓↑/h (see Fig. S4). Following our previous work [5], the
onsite energy U↓↑ consists out of two contributions: the
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FIG. S4. Exemplary modulation spectroscopy measurement
with a spin mixture of |↓ 〉 and |↑ 〉 in the deep lattice at
B = 650 mG. The resonance condition determines νres, which
is related to the onsite energy U↓↑ (cartoon).

contact interaction Uc

Uc =
4πh̄a↓↑
mEr

∫
dr |φ(r)|4 ,

and the DDI Udd

Udd =
µ0µ↓µ↑

4π

∫
dr

∫
dr′ |φ(r)|2 1− 3 cos2 θr−r′

|r− r′|3 |φ(r′)|2 .

Here, φ(r) denotes the onsite Wannier function, |r− r′| is
the interatomic distance and θr−r′ corresponds to the an-
gle between the polarization axis of the two dipoles with
respect to their interparticle axis. The contact part de-
pends on the interspin scattering length a↓↑, the reduced
Plank constant h̄, and the mass mEr of a 167Er atom,
while the DDI part is proportional to the vacuum perme-
ability µ0 and to the magnetic moments of the two spin
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states µ↓ and µ↑. The contributions of nearest-neighbor
interactions are minor and therefore neglected.

Both, the strength and the sign of Udd strongly depend
on the dipole orientation and the anisotropy of the onsite
Wannier function. As specified in our earlier work [5], we
define the aspect ratio, AR, associated to the Wannier
function by the ratio of the onsite harmonic oscillator
lengths perpendicular and in the xy-plane, AR = lz/lx,y.
Note that, in a deep lattice, the onsite harmonic oscillator

lengths match li = di/(πs
1/4
i ) for i ∈ {x, y, z}. For our

typical lattice parameters we find AR > 1 and hence Udd

can be tuned by rotating the atomic dipole. In particular,
Udd is negative (positive) for a dipole orientation out of
(in) the xy-plane.

In the experiment, we use both our precise control and
our exact knowledge of Udd to determine not only the am-
plitude but also the sign of the scattering length a↓↑. For
a given magnetic field and a given lattice configuration,
we repeat our modulation spectroscopy measurements for
two different dipole orientations: (i) when oriented along
z, we extract the total onsite energy |Uz

↓↑| while know-
ing the dipolar contribution Uz

dd, (ii) when oriented in
the xy-plane, we extract |Uxy

↓↑ | while knowing the dipo-

lar contribution Uxy
dd . This yields the two indepedent

and incommensurate relations: |Uz
↓↑| = |Uc + Uz

dd| and

|Uxy
↓↑ | = |Uc + Uxy

dd |. Their combination gives access to
both the magnitude and the sign of Uc, and thus of a↓↑
as reported in Fig. 4(a).

As a final test of our method we study the dependence
of the onsite energy as a function of the lattice depth sz
(Fig. S5). Here, we fix the magnetic field, oriented along
z, to 650 mG and vary the depth of the z lattice. We
repeat the modulation spectroscopy for different values
of sz and extract νres for each measurement. A compari-
son to our theoretical model with a↓↑ being the only free
parameter shows a good agreement, confirming the valid-
ity of our modulation spectroscopy technique. Here, the
fit gives a value for a↓↑ of 225(2) a0 matching the value
extracted from an independent analysis of the individual
lattice configurations as reported in Fig. 4(a) and giving
a↓↑ = 225(4) a0.

The data presented in Fig. 4(a) shows the mean of the
different experimental datasets, taken with different lat-
tice parameters, for a given magnetic field B. Table 1
summarizes all lattice parameters used in the experiment
as well as the expected values of Uc for a↓↑ = 100 a0,

denoted U
(100)
c , and of Uz

dd from our theoretical model.
Uc being proportional to a↓↑ and Udd depending only
on the lattice parameters, the interspin scattering length
can be evaluated from a given measurement of U↓↑ via

a↓↑/a0 = (U↓↑ − Uz
dd)× 100/U

(100)
c .
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FIG. S5. Modulation resonance νres as a function of the
vertical lattice power sz for sx,y = 20 at B = 650 mG. The
solid line shows a fit with our theory to extract the scattering
length a↓↑. The shaded region accounts for the systematic
uncertainty of the scattering length of ±4 a0 at 0.65 G, which
results from our magnetic field fluctuations of ±1 mG.

(sx, sy, sz) AR U
(100)
c /h (Hz) Uz

dd/h (Hz)

(20, 20, 40) 1.68 2029 −441

(20, 20, 60) 1.52 2263 −396

(20, 20, 80) 1.41 2443 −350

(20, 20, 100) 1.34 2590 −307

(20, 20, 120) 1.28 2717 −265

(15, 15, 80) 1.32 2068 −223

(22, 22, 80) 1.45 2578 −399

TABLE I. Lattice parameters for the determination of a↓↑
(Fig. 4(a)). The lattice depths (sx, sy, sz) define the onsite
Wannier function AR. From our theoretical model we eval-
uate the onsite energy contributions U

(100)
c and Uz

dd for an
interspin scattering length of a↓↑ = 100 a0. Here, the dipoles
are oriented along z. This values are used to extract the inter-
spin scattering length from the measured total onsite energy
U↓↑.

Scattering-length tunability and magnetic-field
stability.

A precise control of the magnetic-field value is crucial
for tuning the interaction strength in the spin mixture.
For the FR of Fig. 4(a), a width of ∆ = 58(6) mG and rel-
ative strength abg/R

∗ = 0.1 have been estimated. Hence,
reaching a↓↑(B) = R∗ requires to sit ≈ 6 mG away from
the resonance pole. Based on an rf-spectroscopy calibra-
tion scheme, an accuracy of the order of 100µG and a
stability of ≈ 1mG on the magnetic-field value are esti-
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mated, corresponding to a relative stability of 10−3 at
the resonance position B0 = 687 mG. Note that in alkali
Fermi experiments, for which B0 is typically 3 orders of
magnitude larger, a much larger relative stability of 10−5

is usually required even if the FR is effectively broader.

Loss spectroscopy in the ODT at the interspin FR

For the measurements of the collisional properties of
the fermionic spin mixture in the vicinity of the com-
paratively broad interspin FR (see Fig. 4(b-d)), we ap-
ply the following experimental procedure. We prepare
a spin mixture with δ = 0 in the deep 3D lattice fol-
lowing the scheme detailed above, that is applying a
RF-sweep at large B. After the application of the RF-
sweep, we ramp the magnetic-field value to an inter-
mediate lower value B = 3.99 G in 100 ms. We then
jump with the magnetic field from the later intermedi-
ate value to the desired final value and let it stabilize
for 10 ms. Finally, we ramp up the ODT1064 beams
in 10 ms, melt the lattice down in 20 ms. This shorter
timescale for the lattice rampdown (compared, e. g. , to
the Feshbach spectroscopy measurements, see above) is
chosen to avoid significant losses to happen already at
this stage. The final trap frequencies in the ODT1064

are (ν⊥, ν‖, νz) = (111.6(2), 35(1), 169.4(6)) Hz. For this
trap, the typical atom numbers recorded (see Fig. 4(b-
c)) correspond to the Fermi energy EF ≈ kB × 150 nK
for each spin component, which in turn gives a Fermi
wave vector kF ≈

√
2mErEF/h̄ = 1 × 107 m−1. We then

hold the two-component mixture in the ODT1064 for a
variable holding time, t, at the selected B-field and ul-
timately record the spin populations via Stern-Gerlach
imaging.

We record the atom number decay with t for various
magnetic fields B across the FR. For each B and each
spin component, we extract an initial decay rate Ṅ/N0

by fitting a linear-decay function to the recorded atom
number N , normalized to its initial value N0, as a func-
tion of t. We fit all data for which the atom number stays
above a threshold of 75% of N0. We checked that the ex-
tracted values of Ṅ/N0 do not change significantly when

varying this threshold between 65 − 85%. An analysis
of the full data using exponential fits also yields similar
decay rate values.
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Dipolar interactions are ubiquitous in nature and rule the behavior of a broad range of systems spanning from
energy transfer in biological systems to quantum magnetism. Here we study magnetization-conserving dipolar
induced spin-exchange dynamics in dense arrays of fermionic erbium atoms confined in a deep three-dimensional
lattice. Harnessing the special atomic properties of erbium, we demonstrate control over the spin dynamics by
tuning the dipole orientation and changing the initial spin state within the large 20-spin hyperfine manifold.
Furthermore, we demonstrate the capability to quickly turn on and off the dipolar exchange dynamics via optical
control. The experimental observations are in excellent quantitative agreement with numerical calculations based
on discrete phase-space methods, which capture entanglement and beyond-mean-field effects. Our experiment
sets the stage for future explorations of rich magnetic behaviors in long-range interacting dipoles, including
exotic phases of matter and applications for quantum information processing.

DOI: 10.1103/PhysRevResearch.2.023050

I. INTRODUCTION

Spin lattice models of localized magnetic moments (spins),
which interact with one another via exchange interactions,
are paradigmatic examples of strongly correlated many-body
quantum systems. Their implementation in clean, isolated,
and fully controllable lattice confined ultracold atoms opens
a path for a new generation of synthetic quantum magnets,
featuring highly entangled states, especially when driven out
of equilibrium, with broad applications ranging from preci-
sion sensing and navigation to quantum simulation and quan-
tum information processing [1,2]. However, the extremely
small energy scales associated with the nearest-neighbor spin
interactions in lattice-confined atoms with dominant contact
interactions have made the observation of quantum magnetic
behaviors extremely challenging [3,4]. On the contrary, even
under frozen motional conditions, dipolar gases, featuring
long-range and anisotropic interactions, offer the opportunity
to bring ultracold systems several steps ahead toward the
ambitious attempt of modeling and understanding quantum
magnetism. Great advances in studying quantum magnetism
have been achieved using arrays of Rydberg atoms [5–8],
trapped ions [9–11], polar molecules [12,13], and spin-3

*Corresponding author: manfred.mark@uibk.ac.at

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

bosonic chromium atoms [14,15]. Most of these studies so
far have been limited to spin-1/2 mesoscopic arrays of at
most a few hundred particles or to macroscopic but dilute
(<0.1 filling fractions) samples of molecules in lattices or
were contaminated by the effects of double occupancies in
the system. Only very recently, experiments using bosonic
chromium gas have revealed the power of magnetic atoms
toward the understanding of quantum magnetism [16].

Here we report on a substantial leap forward in the control
and understanding of atomic dipolar platforms for simulating
quantum magnetism. Relying on the atomic properties of
erbium, we realize a quantum simulator of the long-range
XXZ Heisenberg model in a dense array of fermionic mag-
netic atoms with unique control knobs. Our platform roots
on the special atomic properties of 167Er. The erbium ground
state bears large angular momentum quantum numbers with
I = 7/2 for the nuclear spin and J = 6 for the electronic an-
gular momentum, resulting in a F = 19/2 hyperfine manifold.
These large numbers bring in several important consequences
and provide novel control capabilities. First, they give access
to a fully addressable landscape of 2F + 1 = 20 internal
levels, as depicted in Fig. 1(a). Second, they are responsible
for the large magnetic moment in erbium, leading to a strong
dipolar coupling between atoms in neighboring lattice sites.
Such coupling can be up to 49 times larger than the ones
felt by F = 1/2 alkali atoms and about 40% larger than the
one in chromium [17]. Finally, the non-S character of the
ground state leads to comparatively large tensorial light shifts
[18], which enables spin-dependent optical manipulation in
addition to the quadratic Zeeman effect [19].

In our work, any of the 20 internal spin states available in
erbium can be selected to initialize our simulator in a quantum

2643-1564/2020/2(2)/023050(16) 023050-1 Published by the American Physical Society



A. PATSCHEIDER et al. PHYSICAL REVIEW RESEARCH 2, 023050 (2020)

(b)(a)

|+19/2>

|+17/2>

|+15/2>

|+13/2>

|+11/2>

|+9/2>

|+7/2>

|+5/2>

|+3/2>

|+1/2>

|-1/2>

|-3/2>

|-5/2>

|-7/2>

|-9/2>

|-11/2>

|-13/2>

|-15/2>

|-17/2>

|-19/2>

B

Θ

Φ
x

y

z

B

Activation

Time evolution

early time long time

Initialization

(c)

Δ1

Δ2

FIG. 1. (a) Illustration of the total spin space of a single 167Er atom in the lowest hyperfine level |F = 19/2〉 with all 20 mF states. The angle
of the symbols indicates the orientation of the total spin |F| = √

F (F + 1) in relation to the quantization axis. (b) Sketch of the experimental
system, an anisotropic three-dimensional lattice structure filled with fermionic 167Er with a quantization axis tunable by the angles (�, φ)
of the external magnetic field B. (c) Illustration of the experimental sequence (from left to right): The system is initialized by preparing all
atoms in one starting state, here |–17/2〉. We activate the spin dynamics by changing the magnetic field to set δ̄ = 0. Early-time dynamics are
happening mainly among nearest-neighbor atoms. Subsequently, interactions between atoms at larger distances are involved in the dynamics.

spin Fock state. After activating spin-exchange processes,
arising from the large magnetic dipole interaction of erbium,
we study the spreading of the spin population, characterize
the effective strength of the dipolar coupling, and observe ev-
idence of beyond-nearest-neighbor couplings. We benchmark
our simulator with an advanced theoretical approach, which
takes quantum entanglement and spatial inhomogeneities into
account [20]; see Appendix H. Moreover, we show that the
spin-exchange dynamics can be fully controlled via optical
light fields on timescales much faster than typical interaction
times. The reported demonstration of these new control knobs,
some without equivalence in alkali and chromium atoms,
constitutes an important step toward a fully controllable quan-
tum simulator, e.g., for the realization of synthetic dimension
[21–23] or as qudits for quantum computation [24–26].

II. THEORETICAL DESCRIPTION

The XXZ Heisenberg model that rules the magnetization-
conserving spin dynamics of our system can be conveniently

written using spin-19/2 dimensionless angular momentum
operators F̂i = {F̂ x

i , F̂ y
i , F̂ z

i }, acting on site i and satisfying
the commutation relation [F̂ x

i , F̂ y
i ] = iF̂ z

i . We use the eigen-
basis of F̂ z denoted as |mF 〉 with 0 � |mF | � F [27,28]
(see Appendix F):

Ĥ = 1

2

∑
i, j �=i

Vi, j

[
F̂ z

i F̂ z
j − 1

4
(F̂+

i F̂−
j + F̂−

i F̂+
j )

]

+
∑

i

δi
(
F̂ z

i

)2
. (1)

The coupling constants Vi, j = Vdd
1−3 cos2(θi, j )

r3
i j

describe the

direct dipole-dipole interactions (DDI), which have long-
range character and thus couple beyond nearest neighbors.
The dipolar coupling strength between two dipoles located
at �ri and �r j depends on their relative distance ri j = |�ri − �r j |
and on their orientation, described by the angle θi, j between
the dipolar axis, set by the external magnetic field, and the
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FIG. 2. (a) Measured spin populations in states mF = |–17/2〉 (circles) and mF ± 1 (diamonds and squares) after 50 ms hold time as a
function of the magnetic field with � = 0◦. A Gaussian fit (not shown) to the data provides a resonant magnetic field value of ≈1.67 G. The
top axis shows the mean total detuning δ̄ from the resonance condition. (b) Measured spin population in states mF = |–13/2〉 (circles) and
mF ± 1 (diamonds and squares) as a function of the hold time after quenching onto the spin-exchange resonance with � = 0◦. The dashed line
shows the simple mean-field result, the dashed-dotted line gives the NNI-GDTWA result, the solid lines represent the full-GDTWA result, and
the dotted line shows the full-GDTWA for the ideal case of a lattice with unit filling. The inset shows the total magnetization M(t ). [(c) and
(d)] Spin diffusion with initial state m0

F = |–13/2〉 plotting the population of states from mF − 3 to mF + 3 as a function of the hold time, for
the experiment (c) and the full-GDTWA model (d), with the same initial conditions as (b). Data points consist of a minimum of four individual
realizations and error bars denote the standard error of the mean.

interparticle axis; see Fig. 1(b). Here Vdd ≈ μ0g2
F μ2

B
4π

denotes the
dipolar coupling strength, with gF ≈ 0.735 for 167Er, μ0 the
magnetic permeability of vacuum, and μB the Bohr magneton.
The F̂ z

i F̂ z
j terms in the Hamiltonian account for the diagonal

part of the interactions while the F̂+
i F̂−

j + F̂−
i F̂+

j terms de-
scribe dipolar exchange processes. The second sum denotes
the single-particle quadratic term δi(F̂ z

i )2 with δi = δZ
i + δT

i ,
accounting for the quadratic Zeeman effect ∝ δZ

i and tensorial
light shifts ∝ δT

i . These two contributions can be indepen-
dently controlled in our experiment.

The quadratic Zeeman shift allows us to selectively pre-
pare all atoms in one target state of the spin manifold; see
Appendix B. The tensorial light shift can compete or cooper-
ate with the quadratic Zeeman shift and can be used as an
additional control knob to activate/deactivate the exchange
processes. Note that, for all measurements, a large linear
Zeeman shift is always present, but since it does not influence
the spin-conserving dynamics, it is omitted in Eq. (1).

III. EXPERIMENTAL SEQUENCE

In the experiment, we first load a spin-polarized quantum
degenerate Fermi gas of ≈104 Er atoms into a deep three-
dimensional (3D) optical lattice, following the scheme of
Ref. [29]. The cuboid lattice geometry with lattice constants
(dx, dy, dz ) = (271(2), 266(1), 542(4)) nm results in weakly
coupled 2D planes, with typical tunneling rates of ∼10 Hz
inside the planes and ∼mHz between them; see Appendix E.
The external magnetic field orientation, setting the quantiza-
tion axis as well as the dipolar coupling strengths, is defined
by the polar angles � and φ in the laboratory frame; see
Fig. 1(b). The fermionic statistics of the atoms enables us
to prepare a dense band insulator with at most one atom per

lattice site. Additionally, Pauli exclusion blocks tunneling as
well as superexchange processes on the initial timescales,
helping in realizing a frozen condition, as required for a
clean implementation of the XXZ Heisenberg model; see
Appendix J. This is an advantage of fermionic atoms as
compared to bosonic systems, which typically require filtering
protocols to remove doublons and higher lattice depths to
avoid tunneling [16].

Our experimental sequence to study the spin dynamics is il-
lustrated in Fig. 1(c). In particular, we prepare the system into
the targeted spin Fock state, with a near-unity population of
the m0

F level, by using the lattice-protection protocol demon-
strated in Ref. [29]. At the end of the preparation, the majority
of atoms are in the desired m0

F (>80%) at B ≈ 4 G. We note
that atom losses during the spin preparation stage reduces the
filling factor to about 60% of the initial one; see Appendix D.
We then activate the spin dynamics by quenching the mag-
netic field to a value for which δ̄ = ∑

i δi = 0, providing a
resonance condition for the magnetization-conserving spin-
exchange processes; see Fig. 2(a) with m0

F = |–17/2〉. After
a desired time of evolution, we stop the dynamics by rapidly
increasing the magnetic field, leaving the resonance condition.
We finally extract the atom number in each spin state via a
spin-resolved band-mapping technique and derive the relative
state populations by normalization to the initial total atom
number. Note that, throughout all our experiments, within
our detection resolution, we do not observe any population
in higher bands.

We now probe the evolution of the spin-state population
as a function of the hold time on resonance. We observe
a redistribution of the population from the initial state to
multiple neighboring states in mF space, as for exemple shown
for an initial state of |–13/2〉 in Figs. 2(b) and 2(c). The
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dynamics preserves the total magnetization; see the inset of
Fig. 2(b). We observe similar behavior independently of the
initialized m0

F states. The spin transfer happens sequentially.
At short times it is dominated by the transfer to states directly
coupled by the dipolar exchange Hamiltonian, i.e., those ones
which differ by plus/minus one unit of angular momentum
(�mF = ±1). At longer times, subsequent processes transfer
atoms to states with |�mF | � 2; see Figs. 2(c) and 2(d).

IV. COMPARISON TO GDTWA

To benchmark our quantum simulator, we use a semi-
classical phase-space sampling method, the so-called gener-
alized discrete truncated Wigner approximation (GDTWA)
[16,20,30–32]; see Appendix G. The method accounts for
quantum correlation in the many-body dynamics and is
adapted to tackle the complex dynamics of a large-spin system
in a regime where exact diagonalization techniques are im-
possible to implement with current computers. The GDTWA
calculations take into account actual experimental parameters
such as spatial inhomogeneites, density distribution after the
lattice loading, initial spin distribution, and effective lattice
filling, including the loss during the spin preparation protocol;
see Appendices D and H. Figure 2(b) shows the experimental
dynamics together with the GDTWA simulations. Although
the model does not include corrections due to losses and
tunneling during the dynamics, it successfully captures the
behavior of our dense system not only at short time but also
at long time, where the population dynamics slows down and
starts to reach an equilibrium. A similar level of agreement
between experiment and theory is shown in Figs. 2(c) and
2(d) where we directly compare the spreading of the spin
population as a function of time.

Our choice of using a quantum Fock state instead of a
spin coherent state [16] as initial state combined with our
possibility to cancel the quadratic energy shift (i.e., set δ̄ = 0)
allows us to directly reveal the important role of quantum
effects in the observed spin dynamics. This can be shown
both at the quantitative and qualitative levels by contrasting
the GDTWA simulation with a mean-field calculation. Indeed,
the mean-field calculation fails in capturing the system be-
havior. It predicts a too-slow population dynamics for nonper-
fect spin-state initialization, as in the experiments shown in
Fig. 2(b), and no dynamics for the ideal case where all atoms
are prepared in the same internal state. To emphasize the
beyond-nearest-neighbor effects, we also compare the experi-
ment with a numerical simulation that only includes nearest-
neighbor interactions (NNI-GDTWA). Here we again observe
a very slow spin evolution, which largely deviates from the
measurements. The agreement of the full GDTWA predictions
with our experimental observations points to the long-range
many-body nature of the underlying time evolution. Our
theory calculations also support the build-up of entanglement
during the observed time evolution. To illustrate the quantum
spin dynamics under ideal conditions, in Fig. 2(b), we also
show the results for a system with unity filling and perfect
initialization in state m0

F = |–13/2〉. In this case a speedup
of the dynamics due to the increased effective interaction
strength is visible, quickly approaching an equilibrium state.

V. CONTROL OF THE INTERACTION STRENGTH

Different spin configurations feature distinct effective in-
teraction strengths, which also depend on the orientation of
the dipoles with respect to the lattice. We demonstrate our
ability to control this interaction, which governs the rate
of population exchange, by the choice of the initial m0

F
state and the orientation of the external magnetic field. This
capability provides us with two tuning knobs to manipu-
late dipolar exchange interactions in our quantum simulator.
Figures 3(a)–3(f) plot the dynamics of the populations for
three neighboring spin states after the quench, starting from
different initial spin states. Solid lines show the results of
the full-GDTWA calculations. For each initial m0

F , we find
a remarkable agreement between theory and experiment. We
observe a strong speedup for states with large spin projections
perpendicular to the quantization axis, as is expected from the
expectation value of F̂+

i F̂−
j , which gives a prefactor γ (m0

F ) =√
F (F + 1) − m0

F (m0
F + 1)

√
F (F + 1) − m0

F (m0
F − 1). The

initial dynamics can be well described by a perturbative
expansion up to the second order (see Appendix I), resulting in
the analytic expression for the normalized population nmF (t )
of the initial state:

nm0
F
(t ) = nm0

F
(0)

[
1 − nm0

F
(0)

V 2
eff

h̄2 t2

]
. (2)

Here V 2
eff ≡ γ 2(m0

F )
8N

∑
i, j �=i V 2

i j is the overall effective interac-
tion strength summed over N atoms and nm0

F
(0) denotes

the purity of the initial state preparation. For a quantitative
analysis of the early-time spin evolution, we compare the
theoretically calculated Veff from the initial atomic distribution
used in the GDTWA model with the one extracted from a fit of
Eq. (2) to the experimental data. Here we consider the data up
to t < 0.5 h̄

Veff
estimated using the theoretically calculated Veff

[33]. Figure 3(g) plots both the theoretical and experimental
Veff as a function of the initial m0

F and highlights once more
their quantitative agreement. The interaction parameter Veff

can also be used to rescale the time axis. As shown in
Fig. 3(h), all data sets now collapse onto each other for
tVeff

h̄ < 0.5, revealing the invariant character of the short-time
dynamics under the internal state initialization. At longer
timescales, the theory shows that the timetraces start to deviate
from each others and saturate to different values, indicating
that thermal-like states are on reach. In the experiment, we
observe a similar behavior but here the saturation value might
also be affected by losses and residual tunneling.

Because of the anisotropic character of the DDI, the
strength of the dipolar exchange interaction can be controlled
by changing the angle �; see Fig. 1(b). As shown in Fig. 4(a)
for |–17/2〉, the observed evolution speed of the spin popu-
lations strongly depends on �, changing by about a factor
of 2 between � = 40◦ and 80◦. The GDTWA results show
a very good quantitative agreement with the experiment. We
repeat the above measurements for different values of � and
we extract Veff; Fig. 4(b). It is worthwhile to mention that,
while the dipolar interactions can be completely switched off
at a given angle in a 1D chain, in a 3D system the situation
is more complicated. However, as expected by geometrical
arguments, we observe that the overall exchange strength
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FIG. 3. [(a)–(f)] Dynamic evolution of the initial states |–17/2〉 (a), |–9/2〉 (b), |–5/2〉 (c), |1/2〉 (d), |9/2〉 (e), and |13/2〉 (f) and of the
corresponding neighboring states mF ± 1 together with the full-GDTWA results (solid lines) for � = 0◦. (g) Extracted Veff as a function of the
initial state m0

F from a fit to the experimental data (cyan triangles) and numerically computed from the initial spin distribution (black circles).
Error bars denote the 68% confidence interval of the fits. (h) All datasets with m0

F < 0 used in (g) together with the corresponding full-GDTWA
results (solid lines) plotted in units of the rescaled time τ = Veff/h̄ · t . Note that all experiment and theory data are plotted for times t � 100 ms
of (a)–(f). To account for the different preparation fidelity, the populations of the initial states are shifted to 1 by adding a constant offset. For
clarity error bars are omitted here.

becomes minimal for a specific dipole orientation (�c ≈ 35◦,
φc = 45◦). We compare our measured Veff with the ones
calculated from the initial spin distribution, which is a good
quantity to describe the early-time dynamics. Theory and
experiment show a similar trend, in particular reaching a
minimum at about �c. Note that the simple analytic formula
[Eq. (2)], used for fitting the data, deviates from the actual
evolution at longer times. This leads to a small down-shift of
the experimental values; see Appendix I. Our study ultimately
demonstrates the ability to tune the lattice spin model through
the magnetic field orientation. This paves the way to the
simulation of various spin-lattice models [34].

VI. OPTICAL CONTROL

Finally, we demonstrate fast optical control of the spin
dynamics relying on the remarkably large tensorial light shift
of erbium compared to alkali atoms. As shown in Fig. 4(c),
we can almost fully suppress the spin-exchange dynamics
by suddenly switching on a homogeneous light field after an
initial evolution time on resonance. Therefore, the tensorial
light shift, inducing a detuning from the resonance condition
(see inset), allows a full spatial and temporal control over
the exchange processes as light fields can be easily shaped
in space and time, in stark contrast to magnetic fields. For
example, the light power can be changed orders of magni-
tude faster than the typical interaction times and can address
even single lattice sites in quantum gas microscopes [35–37].

By exploiting the rich energy spectrum of lanthanides like
erbium, narrow optical transitions [38] allow an even more
refined manipulation of the spin manifold like, e.g., blocking
specific spin-exchange channels or additional Floquet engi-
neering. This capabilities can be an excellent resource for
quantum information processing, e.g., we could use dipolar
exchange processes to efficiently prepare highly entangled
states between different parts of a quantum system and then
store the quantum information at longer times by turning the
interactions off.

VII. CONCLUSION AND OUTLOOK

In our work, we explore the dipolar exchange dynamics
and benchmark our simulator with an advanced theoretical
model, which takes quantum entanglement and spatial in-
homogeneities into account. In particular, we initialize the
system into a desired spin Fock state and activate the spin
dynamics, while the motional degree of freedom mainly re-
mains frozen. We study the spreading of the spin population
with different choices of the macroscopically populated initial
Zeeman level as a function of both the specific initial spin
state and the dipole orientation. We demonstrate that the
spin dynamics at short evolution time follows a scaling that
is invariant under internal state initialization and that is set
by the effective strength of the dipolar coupling. On the
contrary, at longer times, the many-body dynamics is affected
by the accessible spin space and the long-range character
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FIG. 4. (a) Exemplary measurements of the time evolution for
the starting spin state |–17/2〉 for � = 40◦, 80◦. Solid lines show the
full-GDTWA results. (b) Extracted Veff as a function of � from a fit
to the experimental data (orange circles) and numerically computed
from the initial spin distribution (black circles). Error bars denote the
68% confidence interval of the fits. (c) Time evolution of the initial
state |–9/2〉 at δ̄ = 0 and � = 0◦ without (filled circles) and with
(open circles) switching on an additional light field after 20 ms of
evolution. Solid (dashed) lines are the corresponding full-GDTWA
calculations. The inset shows the population of the initial spin state
after 50 ms evolution time as a function of the quadratic Zeeman shift
without (filled circles) and with (open circles) the additional light
field. Determining the centers of the resonances via a fit yields an
absolute shift of the resonance condition by h × 27(1) Hz between
both conditions.

of dipolar interactions beyond nearest neighbors. We further
demonstrate temporal control of the exchange dynamics using
off resonant laser light.

The excellent agreement between the experiment and the
theory not only verifies our quantum simulator but also sets
the stage toward its use for the study of new regimes in-
tractable to theory. For example, by operating in a shallow
lattice where motion is involved, the dynamics is no longer
described by a spin model but by a high spin Fermi-Hubbard
model with long-range interactions. Alternatively by treating
the internal hyperfine levels as a synthetic dimension [21,22]
while adding Raman transitions to couple them, one could
engineer nontrivial synthetic gauge field models even when

tunneling is only allowed in one direction. Moreover, the
demonstrated control over the initial state population of ar-
bitrary hyperfine levels, our capability to tune the strength
of the direct dipolar exchange coupling via the magnetic
field angle, and the possibility of the dynamical and spatial
control of the hyperfine manifold via tensorial light shifts
make our system a potential resource for quantum information
processing with a qudit-type multilevel encoding using the 20
different interconnected hyperfine levels [24–26].
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APPENDIX A: EXPERIMENTAL SETUP
AND LATTICE LOADING

In our experiment we start with a degenerate Fermi gas
of about 2.4 × 104 167Er atoms in the lowest spin state
|F = 19/2, mF = –19/2〉 = |–19/2〉 and a temperature of
T ≈ 0.3 TF [29,39]. The atoms are confined in a crossed
optical dipole trap (ODT) and the trap frequencies are
(ν⊥, ν‖, νz ) = (63(1), 36(2), 137(1)) Hz, where ν⊥ (ν‖) are
the trap frequencies perpendicular to (along) the horizontal
ODT and νz is measured along the vertical direction defined
by gravity. We load the atomic sample adiabatically into a
3D lattice that is created by two retroreflected laser beams at
532 nm in the x-y plane and one retroreflected laser beam at
1064 nm nearly along the z direction, defined by gravity and
orthogonal to the x-y plane. Note that due to a small angle of
about 11(2)◦ between the vertical lattice beam and the z axis
we obtain a 3D lattice, slightly deviating from an ideal situa-
tion of a rectangular unit cell and our parallelepipedic cell has
the unit lattice distances of dx = 271(2) nm, dy = 266(1) nm,
and dz = 542(2) nm. The lattice geometry is similar to the
one used in our previous works [29,40]. We ramp up the
lattice beams in 150 ms to their final power and switch off
the ODT subsequently in 10 ms and wait for 500 ms to
eliminate residual atoms in higher bands [29]. For our typical
lattice depths used in the measurements reported here of
(sx, sy, sz ) = (20, 20, 80), where si with i ∈ x, y, z is given in
the respective recoil energy ER,i with ER;x,y = h × 4.2 kHz and
ER;z = h × 1.05 kHz, the atoms can be considered pinned on
single lattice sites with low tunneling rates Jx,y = h × 10.5 Hz
and Jz = h × 1 mHz.
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APPENDIX B: STATE PREPARATION
AND DETECTION EFFICIENCY

To prepare the atoms in the desired spin state, after load-
ing them into the lattice, we use a technique based on a
rapid-adiabatic passage (RAP). During the full preparation
procedure, the optical lattice operates as a protection shield
to avoid atom loss and heating due to the large density of
Feshbach resonances [29]. To reach a reliable preparation
with high fidelity it is necessary that the change in the en-
ergy difference between subsequent neighboring spin states is
sufficiently large. Therefore, we ramp the magnetic field in
40 ms to 40.6 G to get a large-enough differential quadratic
Zeeman shift, which is on the order of ≈h × 40 kHz. After
the magnetic field ramp we wait for 80 ms to allow the latter
to stabilize before performing the RAP procedure. The follow
up RAP protocol depends on the target state. For example, to
transfer the atoms from |–19/2〉 into the |–7/2〉 state, we apply
a radio-frequency (RF) pulse at 41.31 MHz and reduce the
magnetic field with a linear ramp, e.g., by 500 mG in 42 ms.
The variation of the magnetic field is analogous to the more
conventional scheme where the frequency of the RF is varied
[see Fig. 5(a)]. For the preparation of higher (lower) spin
states we perform a larger (smaller) reduction of the magnetic
field on a longer (shorter) timescale. After the RAP ramp we
switch off the RF field and ramp the magnetic field in 10 ms
to B = 3.99 G. Here we wait again for 100 ms to allow the
magnetic field to stabilize. During the ramp up and down to
40 G of the magnetic field we loose 25(2)% of the atoms. We
attribute this loss mainly to the dense Feshbach spectra that we
are crossing when ramping the magnetic field. The exact loss
mechanism has not been yet identified, constituting a topic of
interest for latter investigation. At 3.99 G, before switching
on the spin dynamics, about 1.7 × 104 atoms remain in the
lattice. The losses affect the lattice filling at which the spin
dynamics occur. Our simulations account for this initially
reduced filling; see Appendix H.

Additionally to the losses due to the magnetic field ramps,
we also observe losses caused by the RAP itself. To quantify
the preparation efficiency, i.e., the loss of atoms due to the
spin preparation via RAP as a function of the target mF

state, we perform additional measurements where we either
do not perform a RAP or where we add an inverse RAP to
transfer all atoms back into the |–19/2〉 state. By comparing
the atom numbers from measurements without RAP and with
double-RAP and assuming that the loss process is symmetric,
we derive the preparation efficiency as plotted in Fig. 5(b).
We also account for the difference in the counting efficiency
of the individual spin states, which arises from different
effective scattering cross sections for the imaging light. Here
we compare the measured atom number in a target mF state to
the expected atom number taking into account the previously
determined preparation efficiency as discussed above and the
atom number without RAP; see Fig. 5(c).

The counting and preparation efficiencies are determined
for the |–17/2〉, |–15/2〉, |–9/2〉, and |9/2〉 states and in-
terpolated assuming a linear dependency of these efficien-
cies on mF [see Figs. 5(b) and 5(c)]. We estimate the
preparation efficiency of the respective mF state to be
0.86(1) − 0.008(1) × mF . We attribute the lower preparation
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FIG. 5. (a) Energy levels of the ground-state hyperfine manifold
in the dressed-state picture in dependence of the detuning between
the applied just RF and the atomic resonance condition for the |–1/2〉
to the |1/2〉 hyperfine levels. The solid red arrow exemplary shows
the RAP for preparation of atoms into the m0

F = |–7/2〉 state. The
insets show a zoom of one avoided crossing. [(b) and (c)] Spin-
preparation and atom-counting efficiency measured for |–17/2〉,
|–15/2〉, |–9/2〉, and |9/2〉. The obtained values are interpolated
linearly assuming a linear dependence on the m0

F state.

efficiency for higher spin states to the larger number of
avoided crossing between spin states that come into play
during the RAP procedure. Overall, we expect that the lattice
filling over the whole sample, taking into account the losses
due to magnetic field ramping and spin state preparation,
reduces from close to unity down to a value between 0.6 and
0.7; see also Tables I and II.

APPENDIX C: QUENCH PROTOCOL AND
DETECTION SEQUENCE

In our experiment we exploit both the light and the
magnetic shifts of the energies of each spin state to reach
a resonant condition where the energy difference between
neighboring spin states is canceled and therefore spin chang-
ing dynamics preserving the total magnetization become en-
ergetically allowed. In particular, we exploit the tensorial light
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TABLE I. Percentage of lost atoms and extracted, effective filling fraction ν for different |mF 〉 states at t = tfit and t = 100 ms.

m0
F tfit (ms) Nloss(tfit ) (%) ν (0) ν (tfit ) Nloss(100 ms) (%) ν (100 ms)

− 17
2 34.2 1.8 0.7 0.68 5.3 0.66

− 13
2 15.7 7.2 0.69 0.64 19.6 0.55

− 9
2 11.3 8.7 0.67 0.62 25.1 0.51

− 5
2 9.6 13.7 0.66 0.58 27.7 0.48

− 1
2 9.0 12.2 0.65 0.57 36.1 0.42

1
2 9.0 13.5 0.65 0.56 36.7 0.41
3
2 9.2 9.2 0.64 0.58 34.0 0.43
9
2 11.3 6.7 0.63 0.59 23.1 0.49
13
2 15.7 4.9 0.62 0.59 21.9 0.48

shift of the spin states energies [18]

Ut = 3m2
F − F (F + 1)

F (2F − 1)

3 cos2 θp − 1

2
αt (ω),

present in atomic erbium to initialize the dynamic evolution
of the spin population. The tensorial light shift depends
quadratically on the mF state as well as on the angle θp

between the magnetic field axis and the axis of polarization
of the light. Here αt refers to the tensorial polarizability
coefficient and ω to the light frequency. After the preparation
of the respective spin state we start all our measurements at
B = 3.99 G, pointing in the z direction. However, to reach
the resonance condition we use two slightly different quench
protocols for the measurement sets with fixed � = 0◦ for the
different initial spin state and for the sets of measurements
where |mF 〉 = |–17/2〉 and � ∈ (0◦, 80◦). The measurement
sequences differ on the one hand by the way we jump on
resonance to initialize the spin dynamics and on the other
hand by shining in an additional laser beam of wavelength
1064 nm and power of 7 W. This additional light is necessary
because changing � reduces simultaneously θp, resulting in
a smaller tensorial light shift and therefore in a shift of the
resonance position to lower magnetic field values. For large
� the light shift of the lattice beams is smaller and therefore
the resonance is very close to 0 G which we want to avoid
to prevent spin relaxation processes. For the sets of measure-
ments where we keep � = 0◦ but vary the initial m0

F state we
quench the magnetic field directly after the preparation, from
3.99 G to resonance. In contrast we use a different approach

for the measurements where � is varied. After the preparation
we ramp in 10 ms the additional laser beam to 7 W. Due to
the reduced speed of our magnetic field coils in the x and
y directions we first rotate the magnetic field such that the
transverse components Bx and By are already at their target
values while keeping an additional offset of 2 G in the z
direction. The quench to resonance is then done using only the
coils for the magnetic field in the z direction. The additional
offset field of 2 G is large enough to suppress dynamics. We
measure the evolution of the magnetic field by performing
RF spectroscopy and find that for both quench procedures
the magnetic field evolves exponentially toward its quench
value with 1/e decay times of 1.4 and 1.2 ms, respectively.
After holding on resonance for a certain time we quench
the magnetic field back to 3.99 G and we rotate the latter
back to � = 0◦. After a waiting time of 50 ms we perform a
band-mapping measurement combined with a Stern-Gerlach
technique, i.e., we ramp the lattice down in 1 ms and apply
a magnetic field gradient that is large enough to separate
the individual spin states after a time of flight (TOF) of
15 ms. This allows us to image the first Brillouin zone for the
different spin states. During TOF the magnetic field is rotated
toward the imaging axis. We typically record the population
of the initially prepared |mF 〉, of its four neighbors, and of
|–19/2〉 by summing the 2D atomic density over a region of
interest. Figure 6 shows examples of the imaging of different
spin states for the cases of a nonadjusted RAP as well as for
the preparation of the atoms in |–9/2〉, |3/2〉, and |5/2〉. In the
case of |3/2〉 residual atoms in |–19/2〉, |–17/2〉, and |5/2〉
are visible due to a nonperfect preparation.

TABLE II. Percentage of lost atoms and extracted effective filling fraction ν for different � at t = tfit and t = 100 ms.

� (deg) tfit (ms) Nloss(tfit ) (%) ν (0) ν (tfit ) Nloss(100 ms) (%) ν (100 ms)

0 26.8 13.8 0.7 0.60 30.1 0.49
10 30.1 11.9 0.7 0.61 25.6 0.52
20 36.7 6.9 0.7 0.65 18.2 0.57
30 47.0 8.6 0.7 0.64 17.8 0.57
35 52.0 6.7 0.7 0.65 11.4 0.62
40 53.2 7.2 0.7 0.65 13.2 0.60
50 46.1 12 0.7 0.61 17.2 0.58
60 37.0 8.9 0.7 0.63 19.2 0.56
80 30.0 10.4 0.7 0.62 19.3 0.56
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FIG. 6. Absorption images for a nonadjusted RAP and for the
preparation of |–9/2〉, |3/2〉, and |5/2〉. Whereas for the |–9/2〉 and
|5/2〉 case no residual atoms in other spin states are visible, for the
|3/2〉 case we observe a small amount of residual atoms in other spin
states due to a nonperfect preparation.

APPENDIX D: LIFETIME AND LOSSES IN THE LATTICE

Off-resonance, i.e., at a magnetic field of B = 3.99 G,
we measure the lifetime of the prepared spin state to be on
the order of a few seconds, being slightly shorter for higher
spin states. Note that here we do not observe any population
growing in the neighboring spin states. Differently, for the
measurements on resonance, we observe a faster loss happen-
ing on the timescale of the first 20–30 ms followed by loss at
lower speed for the remaining atoms. We fit an exponential
decay to extract the atoms loss and change in filling over the
timescale that we use to extract Veff , tfit, (see Appendix I) as
well as over the full 100 ms of the dynamics reported in the
main text (Figs. 2 and 3). Table I gives the corresponding
numbers for the sets of data for the different initial m0

F states.
During the fitting timescale we observe atoms loss on the
order of 5–10%. This atom loss can be converted into a change
of the effective filling of the lattice compared to the state
obtained after the lattice loading giving a minimum filling
of ν = 0.56 for the m0

F = |1/2〉 case. For longer timescales
larger losses in the range between 10 and 35% are observed.
In general, we note that the amount of loss depends on the
initial m0

F state, resulting larger for the central |mF 〉0 states.
Similar numbers are obtained for the sets of measurement
where we vary � (see Table II). The exact mechanism leading
to these losses is not yet understood and will be the topic of
future studies. Thanks to their limited importance over the
early-time dynamics, we here compare our results to theoreti-

cal prediction without losses; see Incorporating Experimental
Conditions in Numerical Simulation. A proper description of
the long-time dynamics will certainly require to account and
understand such effects.

APPENDIX E: EXPERIMENTAL UNCERTAINTIES
AND INHOMOGENEITIES

Ideally, all atoms in the sample experience the same linear
and quadratic Zeeman shift and the same quadratic light shift.
However, in the experiment inhomogeneities from the mag-
netic field and light intensities lead to a spatial dependence of
those shifts. An upper bound of the variation of Zeeman shifts
can be deduced from RF-spectroscopy measurements done
with bosonic erbium. From the width of the RF resonance
(≈500 Hz) and the size of the cloud (≈15 μm) we esti-
mate a maximum magnetic field gradient of �230 mG/cm,
assuming the gradient as main broadening mechanism for
the resonance width, neglecting magnetic field noise and
Fourier broadening. This translates into a differential linear
Zeeman shift of �h × 6 Hz between adjacent lattice sites in
the horizontal x-y plane and �h × 12 Hz between adjacent
planes along the z direction. Together with the magnetic field
values used in the spin dynamic experiments, the variation
of the quadratic Zeeman shift is negligible compared to
other inhomogeneities (�h × 0.1 Hz). The inhomogeneity of
the quadratic light shifts can be estimated by considering
the shape of the lattice light beams [Gaussian beams with
waists of about (wx,wy,wz ) = (160, 160, 300) μm] and the
resonance condition of the magnetic field, translated into a
quadratic Zeeman shift of h × 71(1) Hz. These considerations
can be used to obtain an estimation for a site-dependent light
shift compared to the center of the atomic sample. If we
take a possible displacement of the atoms by �10 μm in all
directions, from the center of the lattice to the center of the
beams, into account, then we can estimate an upper bound for
the light shift of δT

i � h × 2 Hz at 20 lattice sites away from
the center along the y direction.

APPENDIX F: SPIN HAMILTONIAN

The experiment operates in a deep lattice regime, where
tunneling is suppressed. At the achieved initial conditions,
the 167Er atoms are restricted to occupy the lowest lattice
band, and Fermi statistics prevents more than one atom per
lattice site. In the presence of a magnetic field strong enough
to generate Zeeman splittings larger than nearest-neighbor
dipolar interactions, only those processes that conserve the to-
tal magnetization are energetically allowed [15]. Under these
considerations, the dynamics is described by the following
secular Hamiltonian:

Ĥ =
∑

i

δi
(
F̂ z

i

)2 +
∑

i

BiF̂
z

i

+ 1

2

∑
i, j �=i

Vi, j

[
F̂ z

i F̂ z
j − 1

4
(F̂+

i F̂−
j + H.c.)

]
. (F1)

Here the operators F z,±
i are spin 19/2 angular momentum

operators acting on lattice site i. The first two terms account
for the site-dependent quadratic and linear shifts, respectively,
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where δi includes both Zeeman terms and tensorial light
shifts as discussed in the main text. Bi = B + �Bi denotes
the linear Zeeman shift at site i. While the constant and
uniform contribution, B, commutes with all other terms, thus
can be rotated out, the spatially varying contribution, �Bi, is
relatively small in the experiment but still is accounted for in
the theory calculations. The last term is the long-range dipolar
interaction between atoms in different sites, with

Vi,j ≡ Vdd d3
y

1 − 3 cos2 θi, j

|ri − r j |3 , (F2)

where θi j is the angle between the dipolar orientation set by an
external magnetic field and the interparticle spacing ri − r j .

Vdd ≈ μ0g2
F μ2

B
4πd3

y
corresponds to the interaction strength between

two atoms, i and j, separated by the smallest lattice constant
|ri − r j | = dy = 266 nm and forming an angle θi, j = π/2
with the quantization axis. Here gF ≈ 0.735 is the Lande
g factor for Er atoms, μ0 is the magnetic permeability of
vacuum, and μB is the Bohr magneton. We compute Vdd from

Vdd = μ0(μBgF )2

4π

∫
d3rd3r′ 1 − 3 cos2 θrr′

|r − r′|3 |φi(r)|2|φ j (r′)|2,
(F3)

where φi(r) denotes the lowest band Wannier function cen-
tered at lattice site i. For the experimental lattice depths
(sx, sy, sz ) = (20, 20, 80) in units of the corresponding recoil
energies, Vdd is estimated to be h × 0.336 Hz.

APPENDIX G: THE GDTWA METHOD

To account for quantum many-body effects during the dy-
namics generated by long-range dipolar interactions in these
complex macroscopic spin F = 19/2 3D lattice array, we
apply the so-called GDTWA, first introduced in Ref. [16].
The underlying idea of the method is to supplement the
mean-field dynamics of a spin F system with appropriate
sampling over the initial conditions in order to quantitatively
account for the build-up of quantum correlations. For a spin-F
atom i with N = 2F + 1 spin states, its density matrix ρ̂i

consists of D = N × N elements. Correspondingly, we can
define D Hermitian operators, �i

μ, with μ = 1, . . . , D, using
the generalized Gell-Mann matrices (GGM) and the identity
matrix [41]:

�i
μ=1,...,N (N−1)/2 = 1√

2
(|β〉 〈α| + H.c.), (G1)

for α > β, 1 � α, β � N ,

�i
μ=N (N−1)/2+1,...,N (N−1) = 1√

2i
(|β〉 〈α| − H.c.), (G2)

for α > β, 1 � α, β � N ,

�i
μ=N (N−1)+1,...,N 2−1

= 1√
α(α + 1)

⎛
⎝ α∑

β=1

|β〉 〈β| − α |α + 1〉 〈α + 1|
⎞
⎠, (G3)

for 1 � α < N ,

�i
D =

√
1

N I. (G4)

With these operators, the local density matrix ρ̂i, as well as
any operator Ôi of local observables can be represented as

Ôi =
∑

μ

ci
μ�i

μ, with (G5)

ci
μ = Tr

[
�i

μÔi
]
, (G6)

and μ = 1, 2, . . . ,D. This allows expressing both one-body
and two-body Hamiltonians in the form Ĥi = ∑

μ ci
μ�i

μ and

Ĥi j = ∑
μ,ν ci j

μν�
i
μ�

j
ν . The Heisenberg equations of motion

for �i
μ can be written as

ih̄
d�i

μ

dt
= [

�i
μ, Ĥ

]

=
∑

μ

ci
ν

[
�i

μ,�i
ν

] +
∑
σ, j,ν

ci j
σ,ν

[
�i

μ,�i
σ

]
� j

ν . (G7)

In the experiment, the initial state is a product state of single-
atom density matrices ρ̂(t = 0) = ∏

ρ̂ i(t = 0). If we adopt
a factorization 〈�i

μ�
j
ν · · · �k

σ 〉 = 〈�i
μ〉〈� j

ν〉 · · · 〈�k
σ 〉 for any

nonequal i, j, . . . , k (i.e., each operator acts on a differ-
ent atom) and arbitrary μ, ν, σ , then Eq. (G7) becomes a
closed set of nonlinear equations for λi

μ = 〈�i
μ〉. Within

a mean-field treatment, the initial condition is fixed by
λi

μ(t = 0) = Tr[�i
μρ̂(t = 0)], which determines the ensuing

dynamics from Eq. (G7). This treatment neglects any correla-
tions between atoms. In the GDTWA method, the initial value
of λi

μ is instead sampled from a probability distribution in

phase space, with statistical average λi
μ(0) = Tr[�i

μρ̂(t = 0)].
Specifically, each �i

μ can be decomposed via its eigenval-
ues and eigenvectors as �i

μ = ∑
ai

μ
ai

μ |ai
μ〉 〈ai

μ|. We take

ai
μ as the allowed values of �i

μ in phase space, and
then for an initial state ρ̂ i(t = 0), the probability distri-
bution is p(ai

μ) = Tr[ρ̂ i(t = 0) |ai
μ〉 〈ai

μ|]. From Eq. (G7),
each sampled initial configuration for the N atom array,
{aμ} = {ai1

μ1
, ai2

μ2
, . . . , aiN

μN
}, leads to a trajectory of �i

μ, which
we denote as λi

μ,{aμ}(t ). The quantum dynamics can be ob-
tained by averaging over sufficient number of trajectories

λi
μ(t ) ≈ λi

μ(t ) =
∑
{aμ}

p({aμ})λi
μ,{aμ}(t ). (G8)
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FIG. 7. Spin dynamics for m0
F = |–9/2〉 as shown in Fig. 3 of

the main text. The solid line represents the spin population and the
shaded area denotes the standard deviation of individual trajectories
which shows that the spread of the GDTWA trajectories does not
grow large with time. The inset visualizes 10 typical trajectories
obtained from the GDTWA simulation. Note that the different trajec-
tories include both the quantum noise, which is essential to account
for beyond-mean-field effects, and statistical noise, which averages
out when sampling over enough trajectories.

This approach has been shown capable of capturing the build-
up of quantum correlations [16,31]. In Fig. 7, we illustrate
the typical trajectories and their spread in the spin dynamics
obtained with GDWTA for m0

F = |–9/2〉.

APPENDIX H: INCORPORATING EXPERIMENTAL
CONDITIONS IN NUMERICAL SIMULATION

In our experiment, the lattice filling fraction is not unity
when the spin dynamics takes place. The reduced filling frac-
tion is due to two effects: the finite temperature and atom loss
during the initial state preparation. To account for the effect
of a finite temperature, we first obtain the density distribution
before ramping up the lattice from a Fermi-Dirac distribution
n0(ri ) = 1

1+exp{β[ε(ri )−μ]} , with parameters β = 1/kBT and μ

matching the inferred experiment temperature T and the total
atom number N0 = 2.4 × 104. The function ε(ri ) accounts
for the weak external harmonic confinement. We compute
the density distribution function after loading the atoms in
the lattice, nF (ri ), by simulating the lattice ramp which is
possible since to an excellent approximation we can treat
the system as noninteracting. Indeed, we neglect the dipolar
interaction in the loading given that their magnitude is much
lower than the Fermi energy of the gas. In the numerical
simulation, we then sample the position of atoms ri in the
lattice according to a distribution p(ri ) = nF (ri )/N0. In prac-
tice, to reduce computation cost we need to reduce the total
atom number in our calculations and use a smaller lattice
with fewer populated lattice sites. In this case, we reduce
the number of lattice sites by a factor ξ = (Nsim/Nexp)1/3,
where Nsim(exp) are the number of atoms in the simulation
(experiment), while keeping the lattice spacings the same
as in experiment, (dx, dy, dz ) = (272, 266, 544) nm. That is,
for an initial lattice with Lx sites along x direction, in our
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FIG. 8. Histogram showing the average number of atoms in
distances normalized to the lattice direction along y for random
removal of atoms and for removal depending on the number of
nearest neighbors (NN-dependent removal).

simulations there are ξLx sites while the separation between
two adjacent lattice sites is still dx. We then sample the initial
distribution of atoms in the lattice with p̃(r̃i ) = ξ 3 p(ξ r̃i ),
which preserves the local density and is similar to sampling
in a coarse-grained lattice. In our simulations, we chose
Nsim � 350 and checked that the convergence in Nsim has been
reached.

As discussed in Appendix B, a fraction of atoms is lost
during the ramp up and down of the magnetic field before
initializing the spin dynamics over the sample. While a rig-
orous treatment on how these losses modify the distribution is
not currently accessible with our current experimental setup,
we try to account for it in the simulation by preferentially
removing those atoms with a probablity ∝ p(ri )Nnn, where
Nnn is the number of nearest neighbors (separation �dy),
until N = ν(0)N0 atoms are left. According to experiment
estimates, the filling fractions before the initialization of
the spin dynamics are ν(0) = 0.6–0.7 (see Tables I and II).
Figure 8 shows the histogram of neighbors in the resulting
atom distribution. Such distribution effectively reduces the
nearest-neighbor interactions and is found to give a better
agreement with experiment.

Both the quadratic and linear shifts in the experiment
are inhomogeneous across the lattice as discussed in Ap-
pendix E, and we include them in our numerical sim-
ulation as site-dependent terms δi(F̂ z

i )2 and BiF̂
z

i , with
δi = a|ri|2 and Bi = b(xi + yi + zi ). Based on experimental
estimation, we have chosen the values of a and b such that
δi = h × 1.6 Hz (h × 0.7 Hz) at 20 sites along y away from
the lattice center, and Bi differs by h × 6 Hz (h × 1.8 Hz)
between adjacent sites, for Fig. 2 and 3 (Fig. 4) in the
simulation.

To illustrate the quantum spin dynamics under ideal condi-
tions, in Fig. 2(b), we also show the results for atoms frozen in
the lattice with unity filling fraction and zero temperature and
all initialized in a single m0

F state. In the numerical simulation
for this ideal case, a lattice size of 9 × 9 × 3 is used, which
accounts for the fact that the lattice spacing along z is larger
and thus the dipolar coupling decreases significantly within a
few lattice sites. Even though numerical simulations cannot be
performed for a lattice as large as that one in experiment, as
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shown in Ref. [16], for such a lattice configuration finite-size
effects are negligible.

APPENDIX I: SHORT-TIME POPULATION DYNAMICS

Considering a fixed initial atomic distribution over the
lattice, the population dynamics at early times can be derived
via a perturbative short-time expansion

nmF (t ) ≡ 〈n̂mF (t )〉 = 〈n̂mF 〉 + i〈[Ĥ, n̂mF ]〉t/h̄

−〈[Ĥ , [Ĥ , n̂mF ]]〉t2/2h̄2

−i〈[Ĥ , [Ĥ , [Ĥ , n̂mF ]]]〉t3/3!h̄3

+〈[Ĥ , [Ĥ , [Ĥ , [Ĥ , n̂mF ]]]〉t4/4!h̄4 + O(t5). (I1)

Here the average 〈·〉 is over the initial state, which is
assumed to be a pure state, n̂mF = (

∑
i PmF

i )/N , where
PmF

i = |mF 〉i i〈mF | is the onsite projector for an atom at site
i in state |mF 〉 and N denotes the total number of atoms. Note
that here the sums are always carried out over the populated
lattice sites in the initial lattice configuration. We obtain

V 2
eff = γ 2

(
m0

F

)
8N

∑
i, j �=i

V 2
i, j, (I2)

γ
(
m0

F

) =
√

F (F + 1) − m0
F

(
m0

F + 1
)

×
√

F (F + 1) − m0
F

(
m0

F − 1
)
, (I3)

where nm0
F

denotes the population on the selected target state.
To obtain Eq. (I2), we have assumed that initially most of the
population is in this target state, i.e., nm0

F
(0) ∼ 1. In the experi-

ment, this assumption is always satisfied and therefore Eq. (I4)
is expected to reproduce well the short-time dynamics.

The dependence of γ (m0
F ) on the initial state

m0
F is a consequence of the dependence of dipolar

exchange processes on the spin coherences, i.e.,
|〈i : m0

F +1, j : m0
F −1|F̂+

i F̂−
j |i : m0

F , j : m0
F 〉|. Therefore the

smaller the value |m0
F | of the initial populated states, the

faster the early-time dynamics. Notably, to order t2 the
initial dynamics is independent of quadratic shifts and
external magnetic field gradients. This is because both of
their corresponding Hamiltonians commute with the spin
population operator n̂mF . From this simple perturbative
treatment one learns that by preparing different initial
states with different m0

F , the decay rates of the short-time
population dynamics provide information of Veff and thus of
the underlying dipolar couplings. As discussed in Appendices
B and H, the lattice filling fraction is not unity and the initial
atomic density distribution in the lattice may vary from shot
to shot. To account for this effect, we perform a statistical
average of Eq. (I3) calculated for each lattice configuration
generated with the procedure in Appendix H to obtain the
theoretical values in Fig. 3(g) and Fig. 4(b).

It is important here to compare the predictions obtained
from a simple mean-field analysis. In contrast to Eq. (I4),
neglecting quantum correlations yields

nMean−Field
m0

F
(t )

= nm0
F
(0)

{
1 − nm0

F
(0)

[
1 − nm0

F
(0)

]V 2
eff

h̄2 t2 + O(t4)

}
. (I4)
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FIG. 9. The dotted-dashed line exemplary shows the fit of
Eq. (I2) to the experimental data to extract Veff for m0

F = |–9/2〉. The
solid green line indicates the time tfit up to which the fit is performed.

At the mean-field level, therefore, if initially the atoms are
prepared such that nm0

F
(0) = 1, then there is no population dy-

namics. This is in stark contrast to the quantum systems where
dynamics is enabled by quantum fluctuations. To extract Veff

from our experimental data and to compare it to the theoretical
simulations we fit the initial dynamics with Eq. (I4). We
define the timescale for the fitting via tfit < 0.5 h̄

Veff
, which

corresponds to the timescale on which each atom did on
average half a spin flip. We note that on this timescale the
time evolution starts already to deviate from the short-time
expansion [Eq. (2)], leading to a systematic downshift of the
experimentally fitted Veff; see Fig. 4(b). However, a minimum
timescale has to be chosen to ensure that the fit is performed
using a large-enough number of data points. Figure 9 shows
exemplary the fit to the experimental data for m0

F = |–9/2〉.
In Fig. 10 we show for completeness the experimental data
as well as the theory calculations for all spin states with the
rescaled time axis [see Fig. 3(h)].

APPENDIX J: EFFECT FROM TUNNELING PROCESSES

In our experiment, the tunneling rate is small but finite.
To understand its possible effect on the measured spin dy-
namics, we recall that our system can be described by a
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FIG. 10. Expansion of Fig. 3(h) showing all measured spin states
and the corresponding theory predictions.
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Fermi-Hubbard Hamiltonian:

ĤFH = Ĥtun + Ĥinho + ĤVdd + ĤUdd + Ĥs (J1)

with

Ĥtun = −
∑

〈i,j〉,m
(Ji,j f̂ †

im f̂jm + H.c.), (J2)

Ĥinho =
∑

i

∑
m,n

δi f̂ †
im

(
F z

mn

)2
f̂in +

∑
i

∑
m,n

Bi f̂ †
imF̂ z

mn f̂in, (J3)

ĤVdd = 1

2

∑
i �=j

∑
m,n,k,l

Vi,j

[
F z

mnF z
kl − 1

4
(F+

mnF−
kl + F−

mnF+
kl )

]

× f̂ †
im f̂ †

ik f̂jl f̂jn, (J4)

ĤUdd = 1

2
Udd

∑
i

∑
m,n,k,l

[
F z

mnF z
kl − 1

4
(F+

mnF−
kl + F−

mnF+
kl )

]

× f̂ †
im f̂ †

ik f̂il f̂in, (J5)

Ĥs = 1

2

∑
i

∑
m,n,k,l

Umnkl f̂ †
im f̂ †

ik f̂il f̂in, (J6)

where f̂im ( f̂ †
im) annihilates (creates) a fermion of spin state

m on site i = {ix, iy, iz}, and F z,+,−
mn are the matrix elements

of the corresponding spin-19/2 angular momentum operators.
The first term describes the single-particle tunneling between
adjacent sites, with the tunneling rate J calculated from the
integral over the lowest band Wannier functions:

Ji,j = −
∫

d3rφ∗
i (r)

[
− h̄2∇2

2M
+ Vlatt (r)

]
φj(r), (J7)
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FIG. 11. Comparison between spin dynamics obtained with the
reduced spin model Eq. (F1) (solid lines) and the Hamiltonian
Eq. (J12) accounting for superexchange interactions (circles) for ini-
tial state m0

F = |−17/2〉 and typical experimental conditions. Results
are shown for the three most populated spin states, m0

F , m0
F ± 1. For

the on-site interaction strengths, we adopt for a18 the value measured
in Ref. [29] and assume the rest aS’s are randomly distributed within
±40% with respect to a18. For identical aS and absent of Udd the
superexchange Hamiltonian has a SU(2F + 1) symmetry that does
not change spin population. We expect that the reasonable variation
between aS’s of 167Er atoms does not exceed ±40 %.

where M denotes the atomic mass and Vlatt is the external
lattice potential. The second term Ĥinho includes the site-
dependent quadratic and linear shifts, respectively. In the
experiment, initially all atoms are prepared in the same spin
state. At the achieved initial temperature at which atoms are
restricted to occupy the lowest lattice band, Fermi statistics
prevents more than one atom per lattice site. Dipolar exchange
processes can change the atomic internal spin states, allowing
tunneling to happen. When two Er atoms occupy the same
lattice site they interact with each other via both a contact
interaction governed by the Hamiltonian Ĥs and an on-site
dipolar interaction governed by ĤUdd , which are the last two
terms in Eq. (J1). The strength of on-site dipolar interaction
can be obtained from

Udd = μ0(μBgF )2

4π

∫
d3rd3r′ 1 − 3 cos2 θ

|r − r′|3 |φ(r)|2|φ(r′)|2,
(J8)

with the integral over Wannier functions at the same lattice
site, φ(r). For dipoles oriented along z, (i.e., � = 0, see
Fig. 1), the experimental lattice geometry leads to an attractive
net Udd . For s-wave scattering, the interaction kernel in Ĥs can
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FIG. 12. Spin dynamics from the Fermi-Hubbard model with
F = 3/2 (symbols). A one-dimensional system with eight sites is
used, with uniform nearest-neighbor tunneling rate Ji,j = J . To re-
duce finite-size effect, a periodic boundary condition is adopted. We
assume an on-site contact interaction Us with SU(2F + 1) symmetry
and strength Us/J = 200, approximately corresponding to the value
measured in Ref. [29] and J/h̄ = 10 Hz. Since Us is much stronger
than the on-site dipolar interaction for the erbium experiment [29],
we do not include Udd in these calculations. We have also neglected
external inhomogeneous fields [Eq. (J3)] in the model. Initially five
sites are occupied with atoms all prepared in the m0

F = 1/2 state. The
spin dynamics is calculated using exact diagonalization and averaged
over all possible initial distribution of empty sites. To provide a
reference for the F = 19/2 erbium case, we have focused on a
timescale similar to the one probed in experiment, with Veff defined
as in the main text and setting F = 3/2 in the expression for γ (m0

F ).
As a comparison, the spin dynamics obtained with the frozen spin
model [Eq. (F1)] with the same lattice configuration is also plotted
with solid lines.
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be generally rewritten in terms of

Umnkl =
2F−1∑

S=0,2,...

cS (aS )
S∑

mS=−S

(〈F, m; F, k|S, MS〉

× 〈S, MS|F, n; F, l〉), (J9)

where S is the total angular momentum of the colliding
particles and MS its projection along the quantization axis.
The subscripts m, n, k, l run from −19/2 to 19/2. Odd values
of F are forbidden for s-wave collision. Here

cS (aS ) = 4π h̄2aS

M

∫
d3r|φ(r)|4, (J10)

characterizing the scattering in the total spin S channel and aS

is the corresponding background scattering length. For 167Er,
with F = 19/2 there are in principle 10 different scattering
lengths. Most of the aS remain unknown, except the one
between m = −19/2 and n = −17/2, which was measured to
be ∼91(8) a0 with a0 the Bohr radius [29]. Given the complex
molecular potential of Er atoms we expect not significant
variations between them.

In the deep lattice regime, the on-site interactions are of
the order of kHz [29] and therefore much stronger than the
tunneling rate ∼10 Hz. As a consequence, tunneling processes
between two adjacent occupied lattice sites are energetically

forbidden and they contribute only as second-order virtual
processes also known as superexchange interactions. They
take the form

Ĥ 〈i,j〉
ex = −

∑
γ

〈α| Ĥtun |γ 〉 〈γ | Ĥtun |β〉
〈γ | Ĥs |γ 〉 + 〈γ | ĤUdd |γ 〉 |α〉 〈β|, (J11)

where α, β denote a basis set spanned by states where two
adjacent sites i, j are each occupied by one atom and γ denotes
the set of states where two atoms occupy the same site and
are diagonal in both the s-wave and on-site dipolar interaction
Hamiltonians, Ĥs, ĤUdd . The superscript 〈i, j〉 emphasizes that
the superexchange interaction only occurs between nearest-
neighbor sites.

After accounting for all these interactions, we can obtain
an effective spin Hamiltonian by projecting to the physical
subspace with at most one atom per site and also neglecting
tunneling processes to empty sites, which anyway do not
modify the magnetic character of the system:

Ĥ ′ = Ĥ +
∑
〈i,j〉

Ĥ 〈i,j〉
ex , (J12)

where Ĥ is the spin Hamiltonian given in Appendix F.
To get a basic idea of the resulting superexchange interac-

tions, we first provide as an example the case of F = 3/2, for
which the Hamiltonian obtained using the above procedure for
two adjacent sites is

Ĥ 〈i,j〉
ex =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −a 0 0 a 0 0 0 0 0 0 0 0 0 0 0
0 0 b 0 0 0 0 0 −b 0 0 0 0 0 0 0
0 0 0 c 0 0 d 0 0 −d 0 0 −c 0 0 0
0 a 0 0 −a 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 d 0 0 e 0 0 −e 0 0 −d 0 0 0
0 0 0 0 0 0 0 b 0 0 0 0 0 −b 0 0
0 0 −b 0 0 0 0 0 b 0 0 0 0 0 0 0
0 0 0 −d 0 0 −e 0 0 e 0 0 d 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −a 0 0 a 0
0 0 0 −c 0 0 −d 0 0 d 0 0 c 0 0 0
0 0 0 0 0 0 0 −b 0 0 0 0 0 b 0 0
0 0 0 0 0 0 0 0 0 0 0 a 0 0 −a 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (J13)

where

a = 4J2

3Udd + 2Us
, (J14)

b = 8J2

3Udd − 4Us
, (J15)

c = 2J2[3Udd + 2Us(2 + x0)]

9U 2
dd + 6UddUs(1 + x0) − 4U 2

s (1 + x0)
, (J16)

d = 2J2(3Udd + 2Usx0)

9U 2
dd + 6UddUs(1 + x0) − 4U 2

s (1 + x0)
, (J17)

e = 2J2[−9Udd + 2Us(2 + x0)]

9U 2
dd + 6UddUs(1 + x0) − 4U 2

s (1 + x0)
, (J18)

J is the nearest-neighbor tunneling rate,

Us = 4π h̄2a2

M

∫
dr|φ(r)|4, (J19)
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and x0 = a0/a2 − 1 denotes the fractional difference between
the scattering lengths of the two channels with total spin 0 and
2. With this explicit form of the superexchange Hamiltonian,
we can find the short-time dynamics for atoms initialized in
the same state m0

F = |–1/2〉:

n−1/2 = 1 − 3t2

4

∑
i, j �=i

V 2
i, j + O(t4), (J20)

which indicates that superexchange interactions do not
affect the initial dynamics, as one would expect from Fermi
statistics.

Although for the case of Er atoms with F = 19/2 we do
not have a simple analytical expression for the final Hamilto-
nian Eq. (J12) we can obtain it numerically. Moreover, since
for Er most aS are unknown we assume random values for aS

and solve the ensuing dynamics with the GDTWA approach.

In Fig. 11, we plot the result for a typical initial state m0
F =

|−17/2〉, which shows that the addition of superexchange
interactions hardly affects the measured spin dynamics during
the relevant timescale.

To further analyze the role of tunneling during the dy-
namics and account for the presence of initially unoccu-
pied sites, we calculate the spin dynamics from the Fermi-
Hubbard model Eq. (J1). In Fig. 12, we plot the results
obtained for a small-size system using exact diagonaliza-
tion and assuming ∼40% holes at t = 0. At short times
J/h̄ · t ∼ 1, tunneling effect is negligible. At longer times,
tunneling interplays with interaction and Fermi statistics and
modifies the quantum dynamics. Nevertheless, these results
suggest that such modification is not significant for the most
relevant timescales probed in this work. Therefore, for the
comparison with experimental observations in this work, we
use the reduced spin model Eq. (F1) and neglect tunneling
altogether.
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Spin-polarized degenerate Fermi gases

Our experimental protocol for the preparation of
deeply degenerate Fermi gases (dFgs) of 167Er follows
the one described in ref. [1]. The experiment starts with
a narrow-line magneto-optical trap operated at 583 nm to
prepare spin-polarized 167Er atoms with N = 1.2 × 107

atoms and T ≈ 10µK in the lowest hyperfine sublevel
|F = 19/2,mF = –19/2〉, where F is the total angu-
lar momentum quantum number and mF is its projec-
tion along the quantization axis. The atoms are then
transferred to a horizontal optical dipole trap (ODT)
formed by a laser beam at 1064 nm. The aspect ratio
AR = w⊥/wz between the horizontal, w⊥, and verti-
cal, wz, waists of this beam can be tuned from 1.6 to
15 via a time-averaging potential technique [2], which al-
lows to reach a good spatial mode overlap between the
atomic cloud and the ODT. Subsequentially the atomic
cloud is compressed by reducing the AR and transferred
to a tight ODT created by a laser beam at 1570 nm with
a waist of about 15µm, and counterpropagating to the
1064 nm-beam such that their focii overlap. At this stage
we typically have 1× 106 atoms. During the evaporation
procedure the atoms are further confined by an addi-
tionnal ODT at 1570 nm, formed by a beam propagating
vertically with a waist of about 32µm. The crossed ODT
at 1570 nm is later denoted ODT1570.

Following our previous work of ref. [1], we perform
evaporative cooling based on elastic dipolar scattering
among identical fermions. Such a cooling scheme has
been proven to be very efficient to produce samples in
the deeply quantum degenerate regime [1, 3]. At the
end of the evaporation, the trap frequencies in ODT1570

are (ν⊥, ν‖, νz) = (286(3), 85(1), 255(3)) Hz with ‖ (⊥)
corresponding to the axis along (perpendicular to) the
horizontal ODT beam and z indicating the axis of grav-
ity. We typically obtain spin-polarized dFgs with up to
N = 6×104 atoms and temperatures of T ≤ 0.15TF, with
TF being the Fermi temperature corresponding to the
Fermi energy EF = kBTF = hν̄(6N)1/3, where h is the

Planck constant, ν̄ =
(
ν⊥ν‖νz

)1/3
the geometric mean

of the trap frequencies and N the atom number. At this
stage the Fermi energy is EF = kB×630 nK = h×13 kHz.

During the whole evaporation, the magnetic field has a
value of B = 0.6 G and is oriented along z, which sets
the quantization axis of the atomic dipoles. Here and in
the following, N and T/TF are estimated from polylog-
arithmic fits to the absorption images of the dFGs after
12 ms of time-of-flight (ToF) using the horizontal imaging
setup.

Preparation for lattice loading

In deeply dFgs, the atoms fill the Fermi sea up to
the Fermi energy, EF . Hence, the number of populated
bands, when the atoms are loaded to an optical lattice,
crucially depends on the initial value of EF . In first ap-
proximation, EF can be compared to the lattice recoil
energy Erec = h2/(2mErλ

2), with mEr being the mass of
167Er and λ the lattice wavelength. In particular, during
the initial increase of the lattice potential higher bands
become populated if EF > Erec [4].

To minimize the occupation of higher bands due to
the loading procedure we reduce the Fermi energy of
our sample. To this aim, we transfer the atoms back to
a crossed ODT operated at 1064 nm (ODT1064), within
510 ms. Here, the dynamically adjustable AR of the hori-
zontal beam allows a convenient control on ν̄ (see section
above). We optimize the ODT parameters by lowering
ν̄ and N while keeping a low temperature of the sample.
The best conditions for subsequent lattice loading are
reached for (ν⊥, ν‖, νz) = (63(1), 36(2), 137(1)) Hz and
N = 2.4 × 104 atoms with T ≤ 0.3TF, corresponding to
a Fermi energy EF = kB × 170 nK = h × 3.6 kHz. We
note that for lower νz atoms get lost due to gravity.

Three-dimensional optical lattice and its loading

The three-dimensional (3D) optical lattice in our ex-
periment is created by two retro-reflected 532 nm laser
beams along the x- and y-axis and one retro-reflected
1064 nm vertical laser beam along the z axis; see Fig. S1.
The lattice spacings are dx,y = 266 nm along the hor-
izontal xy-plane and dz = 532 nm along the vertical
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z-axis [5]. With the available power, we reach maxi-
mum lattice depths of (sx, sy, sz) = (25, 25, 120), where
si with i ∈ {x, y, z} is given in units of the respec-
tive recoil energies, ER;x,y = h × 4.2 kHz and ER;z =
h × 1.05 kHz. Typical lattice depths used in the ex-
periment are (sx, sy, sz) = (20, 20, 80) corresponding to
band gaps of h× 32.8 kHz along x and y and h× 17.7 kHz
along z.

After preparation and transfer to the ODT1064, we adi-
abatically load the spin-polarized dFg into the 3D lattice
by increasing the lattice-beam intensities exponentially
in 150 ms to the final values. Subsequently, the ODT
beams are switched off in 10 ms and we additionally hold
the atoms for 500 ms before applying our spin prepara-
tion scheme. This holdtime enables to remove most of the
residual atoms that have been pushed to higher bands of
the optical lattice by the Fermi pressure, through their
natural faster decay. We note that when the atoms are
loaded directly from ODT1570 we find up to 25 % of popu-
lation in higher bands, which in this case get strongly de-
populated within 500 ms. Despite our most careful load-
ing procedure and our holdtime, we measure that up to
5 % of the atoms can still populate the higher band of
the vertical lattice; see main manuscript (Note that the
higher bands along z are the most tightly trapped within
our lattice geometry).

Higher-band populations

To access the band population we perform band-
mapping measurements. Here, we decrease all lattice
potential to zero within 1 ms, thus mapping the quasi-
momentum of the band to real momentum. We then
perform ToF absorption imaging, which thus probes the
population of the different bands in directions transverse
to the imaging axis. We note that, the edges of the low-
est band can be smeared out because of the finite width
of the in-situ cloud and due to an imperfect adiabatic
switch-off of the lattice potentials [6], limiting the ac-
curacy of our determination. In our setup, we obtain
our best estimate of the remaining higher band popu-
lations by comparing the absorption images to the ex-
pected profiles computed from the first Brillouin zone.
In the z-direction, we observe a very small population
in higher bands, which we quantitatively estimate using
the horizontal imaging setup. Here, we additionally take
advantage of the observed structure of the higher band
population, which systematically appears below the low-
est band (along the gravity axis). This might be due to a
combined effect of residual magnetic gradient and grav-
ity. We use this behavior to our advantage and extract
the population of the higher band in z from the top-
bottom asymmetry of the band-mapping images. In the
xy-directions, the estimate of the higher band population
is more subtle in particular because of the non-orthogonal

yx

z

d
y dx

d z

FIG. S1. Sketch of our lattice geometry. The coordinate
system {x, y, z} and the lattice constants dx, dy, and dz are
indicated.

configuration between the imaging and horizontal lattice
axes. To the best of our detection sensitivity, we do not
observe any population in higher-bands along these axes.
Based on the higher recoil energies in these directions,
we physically expect a lower initial population of those
bands than along z, as discussed above. In addition, be-
cause of the lower lattice depths, we expect a faster loss
of their population.

Zeeman energy for fermionic Er

Fermionic Er exhibits a hyperfine structure resulting
from the coupling of its nuclear spin I, whose quantum
number is I = 7/2, with the total electronic angular
momentum J, which in the ground state of Er has for
quantum number J = 6. The total angular momen-
tum reads F = J + I. In the lowest hyperfine mani-
fold (F = 19/2) there are 2F + 1 = 20 sublevels which
can be differentiated by the eigenvalues of the projec-
tion of F on the quantization axis, corresponding to the
quantum number mF . Because, in our experiment, an
external magnetic field B is always applied, the degen-
eracy of the sublevels is lifted by the interaction of B
with the different angular momenta. In our description,
the quantization axis is chosen to be parallel to B, and
the mF sublevels are then denoted magnetic states. In
the low B limit, the magnetic states are simply shifted
in energy along EmF

= mF gFµBB, corresponding to
a state dependent magnetic moment, µ = mF gFµB .
In Erbium, the absolute ground state has a magnetic
moment of µ = −6.982804µB , giving the Landé factor
gF = 0.735032 [7]. Here µB is the Bohr magneton.

In a more general way, the atomic energy levels in a
uniform B-field can be calculated via an exact diagonal-
ization of the atomic Hamiltonian [8]. In Fig. S2 we plot
the energy levels of the lowest hyperfine manifold as a
function of the magnetic field computed in such a way.
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FIG. S2. Zeeman energy for the magnetic substates in the
|F = 19/2〉 hyperfine manifold. For this work the energy
splitting of the lowest three spin states |–19/2〉 ≡ |↓ 〉 (blue
line), |–17/2〉 ≡ |↑ 〉 (orange line) and |–15/2〉 (red line) is of
most relevance. Higher spin states are visualized by grey lines.
The linear Zeeman effect dominates the energy evolution such
that ∆1 ≈ ∆2 ≈ qli while the quadratic Zeeman effect is
evident in the differential splitting ∆1−∆2 (inset).

The dominant trend evidences the linear dependence dis-
cussed above in the low B regime. However, at large
enough B, deviations from this simple picture appear due
to the Paschen-Back effect, as J and I start to decouple.
In a perturbative description, this can be accounted via a
quadratic correction to the Zeeman energies which writes
EmF

− qlimF = qqu(m2
F − F 2) with qli = gFµBB and

qqu ∝ B2. The deviation from the linear Zeeman energy
becomes evident when considering the differential split-
ting ∆EZ(mF ) = (EmF

−EmF+1)− (EmF+1 −EmF+2),
as the linear Zeeman effect qlimF cancels out; see inset
of Fig. S2. In the folowing we define ∆EZ = ∆EZ(mF =
−19/2), which is the most relevant quantity for the cur-
rent study, as restricted to mF = −19/2 and −17/2.

Preparation of a spin mixture in the lattice

To achieve a deterministic spin preparation of the two
lowest spin states we typically use a large enough mag-
netic field of B = 40.51 G for which the differential Zee-
man splitting ∆EZ = 42.6 kHz is larger than the fluctu-
ations of the Zeeman energies coming from the magnetic
field noise, corresponding to≈ 20 kHz at this field. In this
way, the spin-spin coupling induced by a small amplitude
modulation of the magnetic field in the radio-frequency
(rf) domain can be restricted to the subspace formed by
the lowest two spin states mF = −19/2 and −17/2. To
couple the two hyperfine sub-states we apply a rf-sweep
by chirping the rf-frequency continuously from a value of

(ν? +30 kHz) to (ν?−30 kHz) within about 10 ms, where
hν? matches the energy difference E−19/2 − E−17/2 (∆1
in Fig. S2). We can prepare a well-reproducible mixture
of |↓ 〉 and |↑ 〉 without populating the next higher spin
state. The population imbalance δ between the two spin
states can be freely controlled by varying the power of the
rf signal. In particular, also almost all the atoms can be
transferred to |↑ 〉 reaching up to δ = −0.94 (see Fig. 1(c)
of the main manuscript). We note that, while our prepa-
ration technique in the lattice initially leads to a coherent
superposition of the two spin states, additional measure-
ments suggest a fast decoherence, leading to a projection
of pure states on the individual lattice sites for the ex-
perimental relevant time scales. In particular, we observe
that coherently driven Rabi oscillations between the two
spin states quickly damp within a few ms.

To image the spin mixture, we perform spin-resolved
TOF absorption imaging using a Stern-Gerlach technique
with a 1-ms pulsed magnetic field gradient at the begin-
ning of the TOF. After an additional 7.2 ms of TOF,
the populations of each spin state are spatially separated
and we measure them by using the horizontal imaging
setup (Fig. 1(c)). N↓.↑ are then counted by integrating
the measured density distribution over well-defined re-
gions of interest.

Lifetime of the spin mixture in a deep lattice

To conduct a clean measurement of the collisional
properties of a spin mixture in the deep optical lattice
it is important to fulfill the following requirements: (i)
The spin mixture is in an insulating regime where the
formation of doublons is suppressed via sufficiently large
ratios of the onsite interspin interaction energy U↑↓ to the
tunneling rate J . This requires not only to use a deep lat-
tice potential but also to sit away from any Feshbach res-
onance (FR) so that U↑↓ is not resonantly modified and
has a value close to its background one. (ii) The Zeeman
energies are large and do not have an equidistant spacing
so that both magnetization changing and magnetization
conserving spin-exchange processes induced by the DDI
are energetically supressed [9–12].

Due to the high density of FRs (see next section and
Ref. [13]), the requirement (i) is not so straightforwardly
achieved in our fermionic erbium mixture. In this sys-
tem, to find a magnetic field value for which we sit stably
away from any FR is eased by a low technical magnetic-
field noise. Because of the different sets of coils used in
our experiment, the magnetic field noise is found to be
≈ 1 mG up to B = 5 G while it increases to ≈ 20 mG
when we go to higher B values. Hence, working at
B ≤ 5 G turns out to be more favorable in our setup.
On the other hand, the requirement (ii) is matched for
a sufficiently large magnetic field, where the quadratic
Zeeman effect (see Fig. S2) is strong enough to not be
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canceled by quadratic light shifts [14]. The best condi-
tions for meeting the requirements (i) and (ii) are found
at B = 3.99 G, which is used for the lifetime measure-
ments of Fig. 2. At this field, we have measured the on-
site interaction energy using a similar technique as for
Fig. 4(a) of the main text; see also below. The extracted
value of U↑↓ = h×2.43(2) kHz exceeds by far the relevant
tunneling rates Jx,y = h × 10.5 Hz so that it lies deeply
in the insulating regime. In addition, we note that no
spin-changing dynamics are observed from the measured
spin population.

We finally note that, for technical reasons, our setup
allows holding in the lattice up to 20 seconds. For longer
times, thermal effects in the high-power fiber start to pre-
vent us from properly stabilizing the output power for our
lattice. We avoid observation in this regime where the
lattice potential would not be properly controlled (which
may also lead to additional losses), as the allowed obser-
vation time is already very long for our purposes. This
restriction however limits the precision of our lifetime
measurements for the long lifetimes observed in our setup
and in particular for the longest-lived |↓ 〉 state.

State-resolved Feshbach spectroscopy

To identify the magnetic field regions where promising
interspin FRs occur, we first perform a rough Feshbach
scan in the 0 − 2 G region for different population im-
balances δ (Fig. S3). For this set of data we do not use
our lattice-protection technique. Instead, the spin prepa-
ration, the magnetic-field ramps, and the Feshbach spec-
troscopy are directly performed in the ODT. As expected,
without the lattice, the loss features present broadening
and asymmetric shapes due to the mere magnetic-field
sweeps (e. g. via losses occuring during the sweeps). Yet,
the most prominent features of the scattering physics can
be identified.

Using this technique, we perform three sets of mea-
surements, varying the composition of the mixture δ.
In a first set, we perform a Feshbach scan in a spin
polarized gas in ODT1570 (Fig. S3, upper panel). We
jump to the final magnetic field and hold for thold =
70 ms before TOF imaging. The trap frequencies are
(ν⊥, ν‖, νz) = (324(1), 147(5), 259(4)) Hz. The system
has an initial temperature of T = 0.18(1)TF. Simi-
lar to Ref. [13], we observe a high density of loss fea-
tures, which correspond to single-component (|↓ 〉) FRs
of high partial-wave character. In a second set of mea-
surements, we repeat the magnetic-field scan in an al-
most pure |↑ 〉 sample (Fig. S3, middle panel). Here, we
use a resonant rf-pulse at 0.99 G to prepare a mixture
with mainly |↑ 〉 atoms. Then we jump on a purely |↓ 〉
homo-spin FR located at 1.034 G to remove remaining
|↓ 〉 atoms. The measurement is performed in the more
shallow ODT1064 to prevent too strong interspecies losses

and thold = 500 ms. For this trap, the trap frequencies
are (ν⊥, ν‖, νz) = (39(1), 37(1), 145(3)) Hz and the initial
temperature is T = 0.35(1)TF. We find new FRs, which
mainly correspond to single-component |↑ 〉 FRs. In a
third set of measurements, we observe the loss features
for a spin mixture prepared at 0.58 G in the same trap as
for the pure |↓ 〉measurement with thold = 50 ms (Fig. S3,
lower panel). Here, the initial temperature is slightly in-
creased to T = 0.24(1)TF due to the spin mixing. The
individual homo-spin FRs are still visible while we also
find new interspin |↓ 〉–|↑ 〉 FRs.

We analyze the three sets of data to extract the spin
nature of the individual FRs. For several FRs, the en-
trance spin channel can be easily identified. In addition,
we also observe overlapping FRs. Here, an exact assign-
ment requires a high-resolution magnetic-field scan and
our lattice-protection technique; see main text. Among
the forest of FRs recorded in the two-component mixture,
we observe a promising interspin FR at about 700 mG,
which remains rather isolated from other homo-spin FRs;
see green shading in Fig. S3.

As a second step, we focus on the magnetic-field region
around 700 mG in which the promising interspin Fesh-
bach resonance has been identified and perform high-
resolution Feshbach spectroscopy, taking advantage of
the lattice-preparation scheme, as described in the main
text. The lattice-protection technique is very powerful in
removing technical broadening and artificial asymmetry
of the loss peaks, as it clearly appears from a comparison
between the atom-number traces recorded with ODT-
preparation (Fig. S3) and lattice-preparation schemes
(Fig. 3). We perform the measurements for Fig. 3 as fol-
lows. We prepare a spin mixture in the lattice at high
B as described above and sub-sequentially ramp the field
to the desired value within 10 ms. After letting the B-
field stabilize for about 100 ms, the dipole trap beams
are ramped up within 10 ms and we unload the atoms
from the lattice back into the ODT1064 within 150 ms.
At this stage, the sample contains N ≈ 1.6 × 104 atoms
at T ≈ 0.3TF, almost independent of δ, and the trap fre-
quencies are (ν⊥, ν‖, νz) = (111.6(2), 35(1), 169.4(6)) Hz.
We then record the spin population after a holding time
of 500 ms. For each magnetic field value, the measure-
ment is repeated between two to four times and the av-
erage is reported in Fig. 3.

For all the above described measurements, we note that
the observed atom losses can be mainly attributed to res-
onant three-body recombination collisions in the short-
range potential. Inelastic two-body losses driven by the
spin-non-conserving dipolar interactions are, in principle,
also energetically allowed since |↑ 〉 atoms are in an ex-
cited Zeeman state [15]. However, we do not expect this
process to be enhanced at resonance.
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FIG. S3. Feshbach spectroscopy of a two-component spin mixture in an ODT (without the lattice-protection technique) for
different population imbalances δ: δ = 1 (upper panel), −0.54 (middle panel), 0.4 (lower panel). While the measurements for
the upper and lower panel are performed in ODT1570 with ν̄ = 231(3) Hz, the data of the middle panel is measured in ODT1064

with ν̄ = 59(1) Hz. Due to the finite resolution of the scans of 10 mG it is possible that narrower FRs are not resolved. The grey
shading shows the magnetic field region studied in the main manuscript with the green shading indicating the comparatively
broad interspin FR. Each data point is the mean of two repetitions. The shading around the data points indicates statistical
uncertainties, which are often smaller than the data points.

Modulation spectroscopy with a fermionic spin
mixture in the lattice

To measure the scattering length between two spin
states of 167Er, we rely on a method similar to the
one that we have already successfully implemented with
168Er [5] and 166Er [2]. It is based on the measurement of
the onsite interaction energy of two atoms in a deep op-
tical lattice. Here, after preparing a spin mixture of |↓ 〉
and |↑ 〉 in the lattice we drive particle-hole excitations
of neighboring atoms by a resonant modulation of the
horizontal lattice depths sx,y. Note that for neighbor-
ing identical particles no single-band excitation will be
observed due to the Pauli exclusion principle and only
neighboring atoms in different spin states can be excited,
allowing to effectively only probe the interspin onsite in-
teraction U↓↑. In our experiment, we probe the doublon
creation via the resulting increase in atom loss. We spec-
ulate that onsite dipolar relaxation is responsible for the
observed loss [16]. We note that a distinct and convenient
method to measure double occupancies has been demon-
strated using the coupling to a third spin state [17]. Close
to a molecular state of the original doublon components,
the third spin state features a smaller interspin onsite
energy and can thus be used to detect an initial double
occupancy. Yet, such a method remains to be explored
in our system.

In our experiment, we typically modulate the lattice
depth for 1 s with a sine function with a peak-to-peak
amplitude of 30% and a frequency νmod. Maximum loss
occurs when νmod reaches the resonance condition νres =
U↓↑/h (see Fig. S4). Following our previous work [5], the
onsite energy U↓↑ consists out of two contributions: the
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FIG. S4. Exemplary modulation spectroscopy measurement
with a spin mixture of |↓ 〉 and |↑ 〉 in the deep lattice at
B = 650 mG. The resonance condition determines νres, which
is related to the onsite energy U↓↑ (cartoon).

contact interaction Uc

Uc =
4πh̄a↓↑
mEr

∫
dr |φ(r)|4 ,

and the DDI Udd

Udd =
µ0µ↓µ↑

4π

∫
dr

∫
dr′ |φ(r)|2 1− 3 cos2 θr−r′

|r− r′|3 |φ(r′)|2 .

Here, φ(r) denotes the onsite Wannier function, |r− r′| is
the interatomic distance and θr−r′ corresponds to the an-
gle between the polarization axis of the two dipoles with
respect to their interparticle axis. The contact part de-
pends on the interspin scattering length a↓↑, the reduced
Plank constant h̄, and the mass mEr of a 167Er atom,
while the DDI part is proportional to the vacuum perme-
ability µ0 and to the magnetic moments of the two spin
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states µ↓ and µ↑. The contributions of nearest-neighbor
interactions are minor and therefore neglected.

Both, the strength and the sign of Udd strongly depend
on the dipole orientation and the anisotropy of the onsite
Wannier function. As specified in our earlier work [5], we
define the aspect ratio, AR, associated to the Wannier
function by the ratio of the onsite harmonic oscillator
lengths perpendicular and in the xy-plane, AR = lz/lx,y.
Note that, in a deep lattice, the onsite harmonic oscillator

lengths match li = di/(πs
1/4
i ) for i ∈ {x, y, z}. For our

typical lattice parameters we find AR > 1 and hence Udd

can be tuned by rotating the atomic dipole. In particular,
Udd is negative (positive) for a dipole orientation out of
(in) the xy-plane.

In the experiment, we use both our precise control and
our exact knowledge of Udd to determine not only the am-
plitude but also the sign of the scattering length a↓↑. For
a given magnetic field and a given lattice configuration,
we repeat our modulation spectroscopy measurements for
two different dipole orientations: (i) when oriented along
z, we extract the total onsite energy |Uz

↓↑| while know-
ing the dipolar contribution Uz

dd, (ii) when oriented in
the xy-plane, we extract |Uxy

↓↑ | while knowing the dipo-

lar contribution Uxy
dd . This yields the two indepedent

and incommensurate relations: |Uz
↓↑| = |Uc + Uz

dd| and

|Uxy
↓↑ | = |Uc + Uxy

dd |. Their combination gives access to
both the magnitude and the sign of Uc, and thus of a↓↑
as reported in Fig. 4(a).

As a final test of our method we study the dependence
of the onsite energy as a function of the lattice depth sz
(Fig. S5). Here, we fix the magnetic field, oriented along
z, to 650 mG and vary the depth of the z lattice. We
repeat the modulation spectroscopy for different values
of sz and extract νres for each measurement. A compari-
son to our theoretical model with a↓↑ being the only free
parameter shows a good agreement, confirming the valid-
ity of our modulation spectroscopy technique. Here, the
fit gives a value for a↓↑ of 225(2) a0 matching the value
extracted from an independent analysis of the individual
lattice configurations as reported in Fig. 4(a) and giving
a↓↑ = 225(4) a0.

The data presented in Fig. 4(a) shows the mean of the
different experimental datasets, taken with different lat-
tice parameters, for a given magnetic field B. Table 1
summarizes all lattice parameters used in the experiment
as well as the expected values of Uc for a↓↑ = 100 a0,

denoted U
(100)
c , and of Uz

dd from our theoretical model.
Uc being proportional to a↓↑ and Udd depending only
on the lattice parameters, the interspin scattering length
can be evaluated from a given measurement of U↓↑ via

a↓↑/a0 = (U↓↑ − Uz
dd)× 100/U

(100)
c .
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FIG. S5. Modulation resonance νres as a function of the
vertical lattice power sz for sx,y = 20 at B = 650 mG. The
solid line shows a fit with our theory to extract the scattering
length a↓↑. The shaded region accounts for the systematic
uncertainty of the scattering length of ±4 a0 at 0.65 G, which
results from our magnetic field fluctuations of ±1 mG.

(sx, sy, sz) AR U
(100)
c /h (Hz) Uz

dd/h (Hz)

(20, 20, 40) 1.68 2029 −441

(20, 20, 60) 1.52 2263 −396

(20, 20, 80) 1.41 2443 −350

(20, 20, 100) 1.34 2590 −307

(20, 20, 120) 1.28 2717 −265

(15, 15, 80) 1.32 2068 −223

(22, 22, 80) 1.45 2578 −399

TABLE I. Lattice parameters for the determination of a↓↑
(Fig. 4(a)). The lattice depths (sx, sy, sz) define the onsite
Wannier function AR. From our theoretical model we eval-
uate the onsite energy contributions U

(100)
c and Uz

dd for an
interspin scattering length of a↓↑ = 100 a0. Here, the dipoles
are oriented along z. This values are used to extract the inter-
spin scattering length from the measured total onsite energy
U↓↑.

Scattering-length tunability and magnetic-field
stability.

A precise control of the magnetic-field value is crucial
for tuning the interaction strength in the spin mixture.
For the FR of Fig. 4(a), a width of ∆ = 58(6) mG and rel-
ative strength abg/R

∗ = 0.1 have been estimated. Hence,
reaching a↓↑(B) = R∗ requires to sit ≈ 6 mG away from
the resonance pole. Based on an rf-spectroscopy calibra-
tion scheme, an accuracy of the order of 100µG and a
stability of ≈ 1mG on the magnetic-field value are esti-
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mated, corresponding to a relative stability of 10−3 at
the resonance position B0 = 687 mG. Note that in alkali
Fermi experiments, for which B0 is typically 3 orders of
magnitude larger, a much larger relative stability of 10−5

is usually required even if the FR is effectively broader.

Loss spectroscopy in the ODT at the interspin FR

For the measurements of the collisional properties of
the fermionic spin mixture in the vicinity of the com-
paratively broad interspin FR (see Fig. 4(b-d)), we ap-
ply the following experimental procedure. We prepare
a spin mixture with δ = 0 in the deep 3D lattice fol-
lowing the scheme detailed above, that is applying a
RF-sweep at large B. After the application of the RF-
sweep, we ramp the magnetic-field value to an inter-
mediate lower value B = 3.99 G in 100 ms. We then
jump with the magnetic field from the later intermedi-
ate value to the desired final value and let it stabilize
for 10 ms. Finally, we ramp up the ODT1064 beams
in 10 ms, melt the lattice down in 20 ms. This shorter
timescale for the lattice rampdown (compared, e. g. , to
the Feshbach spectroscopy measurements, see above) is
chosen to avoid significant losses to happen already at
this stage. The final trap frequencies in the ODT1064

are (ν⊥, ν‖, νz) = (111.6(2), 35(1), 169.4(6)) Hz. For this
trap, the typical atom numbers recorded (see Fig. 4(b-
c)) correspond to the Fermi energy EF ≈ kB × 150 nK
for each spin component, which in turn gives a Fermi
wave vector kF ≈

√
2mErEF/h̄ = 1 × 107 m−1. We then

hold the two-component mixture in the ODT1064 for a
variable holding time, t, at the selected B-field and ul-
timately record the spin populations via Stern-Gerlach
imaging.

We record the atom number decay with t for various
magnetic fields B across the FR. For each B and each
spin component, we extract an initial decay rate Ṅ/N0

by fitting a linear-decay function to the recorded atom
number N , normalized to its initial value N0, as a func-
tion of t. We fit all data for which the atom number stays
above a threshold of 75% of N0. We checked that the ex-
tracted values of Ṅ/N0 do not change significantly when

varying this threshold between 65 − 85%. An analysis
of the full data using exponential fits also yields similar
decay rate values.
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We study the spectrum of elementary excitations of a dipolar Bose gas in a three-dimensional anisotropic
trap across the superfluid-supersolid phase transition. Theoretically, we show that, when entering the
supersolid phase, two distinct excitation branches appear, respectively associated with dominantly crystal
and superfluid excitations. These results confirm infinite-system predictions, showing that finite-size
effects play only a small qualitative role, and connect the two branches to the simultaneous occurrence of
crystal and superfluid orders. Experimentally, we probe compressional excitations in an Er quantum gas
across the phase diagram. While in the Bose-Einstein condensate regime the system exhibits an ordinary
quadrupole oscillation, in the supersolid regime we observe a striking two-frequency response of the
system, related to the two spontaneously broken symmetries.

DOI: 10.1103/PhysRevLett.123.050402

Supersolidity—a paradoxical quantum phase of matter
that combines crystal rigidity and superfluid flow—was
suggested more than half a century ago as a paradigmatic
manifestation of a state in which two continuous sym-
metries are simultaneously broken [1]. In a supersolid, the
spontaneously broken symmetries are the gauge symmetry,
associated with the phase coherence in a superfluid, and the
translational invariance, signalizing crystalline order. The
striking aspect is that, in a supersolid of indistinguishable
bosons, the same particles are participating in developing
such two apparently antithetical, yet coexisting, orders.
Originally predicted in quantum solids with mobile bosonic
vacancies [2–4], the search for supersolidity has fueled
research across different areas of quantum matter from
condensed matter to atomic physics, including quantum
gases with nonlocal interparticle interactions [5–19].
Recent experiments have revealed that axially elongated

dipolar quantum gases can undergo a phase transition from
a regular Bose-Einstein condensate (BEC), possessing a
homogeneous density in the local-density-approximation
sense, to a state with supersolid properties, where density
modulation and global phase coherence coexist [15–17].
Such experiments, complementing the ones with BECs
coupled to light [20–22], have opened a whole set of
fundamental questions, covering the very real meaning of
superfluidity in a supersolid state, its shear transport, and
phase rigidity.
Of particular relevance is the study of the spectrum of

elementary excitations, which governs the system response
to perturbations [23–25]. Typically, phase transitions occur
in concomitance with drastic modifications of the excitation
spectra—as in the case of the emergence of roton excita-
tions in He II or the phononic dispersion for BECs—and

similar dramatic changes are expected when crossing the
superfluid-supersolid transition. Theoretical studies of uni-
form (infinite) gases with periodic boundary conditions and
soft-core [26–28] or dipolar interactions [14,29,30] have
shown two distinct branches appearing in the excitation
spectrum of a supersolid state—one for each broken
symmetry. Their coexistence has been identified as an
unambiguous proof of supersolidity, being the direct
consequence of the simultaneous presence of superfluid
and crystalline orders [2,26,27,31].
An important issue is to understand if these trademarks

survive—and can be measured—in the experimentally
relevant regimes of a finite-size quantum gas, confined
in all three spatial dimensions. In this Letter, we address
these points by performing full spectrum calculations and
by experimentally exciting collective modes in an erbium
quantum gas. Both the theory and experiment show the
existence of two distinct classes of excitations, one con-
nected to crystal modes and the other to phase modes,
providing the finite-size equivalent of the two-branches
spectrum for infinite systems.
In our study, we consider a three-dimensional dipolar

quantum gas confined in an axially elongated (y) harmonic
trap with transverse orientation (z) of the atomic dipoles.
These systems are well described by an extended Gross-
Pitaevskii equation (EGPE), including nonlinear terms,
accounting for contact interactions depending on the scatter-
ing length as, the anisotropic long-range dipole-dipole
interaction (DDI), and quantum fluctuations in the form of
a Lee-Huang-Yang type of correction [12,14–17,19,32–36];
see also Ref. [37]. We calculate ground-state wave functions
ψ0ðrÞ by minimizing the energy functional resulting from
the EGPE using the conjugate-gradients technique [46].
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As shown in Fig. 1 (insets), the ground state evolves with
decreasing as from a regular BEC (a), (b) to a supersolid
state with axial density-wave modulation (c)–(f) and finally
to an insulating array of independent droplets (ID) (g), (h)
[7,14,15,17,27].
The spectrum of elementary excitations is calculated by

numerically solving the Bogoliubov–de Gennes equations,
which are obtained from an expansion of the macro-
scopic wave function as ψðr;tÞ¼½ψ0ðrÞþηðule−iϵlt=ℏþ
v�l e

iϵlt=ℏÞ�e−iμt with η ≪ 1 and linearizing the EGPE around
ψ0 [13,25,46,47]. Here, μ is the ground state’s chemical
potential. By solving the resulting eigenvalue problem,
we find a set of discrete modes, numbered by l, of energy
ϵl ¼ ℏωl and amplitudes ul and vl. We calculate the
dynamic structure factor (DSF) Sðk;ωÞ, which informs
on the system’s response when its density is perturbed at a
given modulation momentum k and with an energy
ℏω [25,48,49]. Whereas in the absence of an external trap
the spectrum is continuous and the DSF is a δ-peak
resonance at the Bogoliubov mode ðωl; klÞ, the confining
potential yields instead a discretization of the excitation
spectrum and a k broadening in Sðk;ωÞ. For a given energy
(i.e., a single mode), finite-size effects may even yield
several peaks in k; see, e.g., three-peak structures at large
energy in Figs. 1(a) and 1(b). For the considered param-
eters, these finite-size effects are more pronounced in Er
than Dy, since the latter exhibits a larger number of maxima
in the density-modulated phases, rendering its excitation
spectrum more reminiscent of the infinite-system case;
see Fig. 1.

Figure 1 shows the calculated excitation spectrum for
ground states in the regular BEC, the supersolid, and the ID
phases for a Dy (upper row) and Er (lower row) quantum
gas. In the BEC regime close to the supersolid transition
[Figs. 1(a) and 1(b)], the spectrum of excitations shows a
single excitation branch with the characteristic phonon-
maxon-roton dispersion of a BEC [50–54], as recently
measured [55]. When the roton fully softens (at as ¼ as�),
the ground state becomes density modulated with a wave
number close to the roton one, krot. Here, the excitation
spectrum develops additional structures, marked by the
appearance of nearly degenerate modes [Figs. 1(c) and
1(d)]. When lowering as, we find that these modes start to
separate in energy, where some harden and the others
soften, and two excitation branches become visible
[Figs. 1(e) and 1(f)]. This result resembles that of infinite
systems, where the broken translational and gauge sym-
metry are each associated with the appearance of one
excitation branch [14,26,27]. Additionally, we observe that
the spectrum acquires a periodic structure, reminiscent of
Brillouin zones in a crystal, with reciprocal lattice constant
k ≃ krot. Modes with an energy higher than the maxon
(energy maximum at k < krot) seem to have a single-
droplet-excitation character, and they will be the subject
of future investigations. When further decreasing as < as�,
the lower-lying branch decreases both in energy and in DSF
values, whereas the opposite occurs for the higher branch.
Eventually, when reaching the ID regime, the lower branch
progressively vanishes, underlying the disappearance of
global superfluidity [Figs. 1(g) and 1(h)].

(a) (c) (e) (g)

(b) (d) (f) (h)

FIG. 1. Axial excitation spectra of a trapped dipolar quantum gas across the BEC-supersolid-ID phase transition. The trap frequencies
are 2π × ð260; 29.6; 171Þ Hz. The upper (lower) row shows calculations for a 164Dy (166Er) quantum gas of 4 × 104 (5 × 104) atoms in
the BEC (a),(b), supersolid (c)–(f), and ID (g),(h) regimes, together with the corresponding ground-state density profiles (insets). (a), (c),
(e), and (g) correspond to as ¼ ð92; 91; 90; 81Þa0, and (b), (d), (f), and (h) to as ¼ ð50.8; 50.5; 50; 48Þa0, respectively. In (e) and (f), the
dashed and dash-dotted lines are guides to the eyes, indicating the two excitation branches. The color map indicates the calculated DSF,
and lz is the harmonic oscillator length along the dipoles’ direction.
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We focus on the properties of the excitation spectrum
in the supersolid regime. The interesting question is
how the two branches relate to the two orders in the
systems, crystal and superfluid. To gain insight, we
study the system’s dynamics when a single mode l is
excited with amplitude η ≪ 1 by writing ψðtÞeiμt ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jψ0j2 þ 2ηδρl cosωlt
p

e−iηδφl sinωlt, in terms of density per-
turbations δρl ¼ ðul þ v�l Þjψ0j and phase perturbations
δφl ¼ ðul − v�l Þ=jψ0j. The subsequent time evolution of
the axial density profile is shown in Figs. 2(a)–2(c) for three
relevant cases. For simplicity, only the two extremes of the
mode oscillation are shown. The mode character can be
understood by noting that phase gradients correspond to
mass currents. Large gradients inside a density peak imply
motion of the density peak [e.g., Fig. 2(a)] and relate to
crystal modes. Large phase gradients between density peaks
signify a superfluid current of particles tunneling from one
density peak to another [e.g., Fig. 2(b)] and are associated
with phase modes. However, in our system, the phase or
crystal mode classification is not strict, andwe find that these
two characters mix; see Figs. 2(a)–2(c). Particularly, we
observe both behaviors simultaneously in Fig. 2(c). Such a
mixing is expected from the long-range nature of the DDI,
coupling density, and position of the peaks [26,27]. Note that
the character of the mode can change with as. For instance,
the mode in Fig. 2(c) develops an almost pure crystal
character for decreasing as. To quantify a mode’s character,
we plot in Fig. 2(d) the DSF spectrum at a fixed as, colored

according to the ratio C of phase variances inside, and
between thedensity peaks [37]. This allows us to differentiate
the dominant character of the two branches, being phase type
for the lower branch and crystal type for the upper one.
To test our predictions, we experimentally study the

collective excitations in an erbium quantum gas across the
BEC-supersolid-ID phases.We prepare a BEC at as ¼ 64a0.
The atoms are confined in an axially elongated optical-
dipole trap of harmonic frequencies 2π × ðνx; νy; νzÞ ¼
2π × (259ð2Þ; 30ð1Þ; 170ð1Þ) Hz and polarized along z by
an external magnetic field; see Refs. [13,17]. To probe our
system, we perform standard absorption imaging after 30ms
of time-of-flight expansion, yielding measurements of the
momentum space density nðkx; kyÞ [37]. Using the tunability
of the contact interaction via magnetic Feshbach resonances
[56], we can prepare the system at desired locations in the
phase diagram in theBEC, supersolid, or IDphaseby linearly
ramping down as in 20 ms to the target value. We then allow
the system to stabilize for 10 ms. At this point, we record an
atom number of typically 5 × 104 for the supersolid regime.
We confirmed the relevant as ranges by repeating the matter-
wave interferometric analysis of Ref. [17].While in the BEC
region the momentum distribution shows a regular, nearly
Gaussian single peak, in the supersolid regime the in-trap
density modulation gives rise to coherent interference
patterns along ky, consisting of a central peak with two
lower-amplitude side peaks; see Fig. 3(a).
After preparing the system in the desired phase, we

excite collective modes in the gas by suddenly reducing the
axial harmonic confinement to 10% of its initial value (i.e.,
νy ≈ 3 Hz) for 1 ms, before restoring it again. The atomic
cloud is subsequently held for a variable time th, before
releasing it from the trap and recording the time evolution
of nðkx; kyÞ. As the lifetime of the supersolid state is limited
to around 40 ms [17], we focus on th ≤ 30 ms. As
expected, in the BEC phase, we predominantly observe
an oscillation of the axial width, connected to the lowest-
lying quadrupole mode [25]. In the supersolid regime, the
situation is more complex; see Figs. 1(c)–1(f). Here,
multiple modes, of both crystal and phase character, can
be simultaneously populated, resulting in a convoluted
dynamics of the interference pattern.
We therefore employ a model-free statistical approach,

known as principal component analysis (PCA) [57], to
study the time evolution of the measured interference
patterns at a fixed as. This method has been successfully
used to study e.g., matter-wave interference [58] and
collective excitations [59] in ultracold-gas experiments.
The PCA analyzes the correlations between pixels in a set
of images, decomposes them into statistically independent
components, and orders these principal components (PCs)
according to their contributions to the overall fluctuations
in the dataset.
In a dataset probing the system dynamics after an

excitation, the PCA can identify the elementary modes

(d)(c)

(a) (b)

FIG. 2. Evolution of three different even modes of the system
calculated for 5 × 104 Er atoms at as ¼ 49.8a0: (a) fourth-,
(b) second-, and (c) third-lowest-lying even modes in energy with
frequencies (67.4, 40.3, 49.8) Hz, corresponding to crystal,
phase, and mixed modes, respectively. Each panel shows n ¼
jψð0; y; 0; tÞj2 for t ¼ π=2ωl and t ¼ 3π=2ωl with η ¼ 0.15 and
the corresponding δφð0; y; 0Þ. (d) DSF for the same setting as in
(a)–(c), where the modes are colored according to their associated
phase (red) or crystal (blue) character via C [37].
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with the PC weights in the individual images exhibiting
oscillations at the mode frequencies [37,59]. We apply the
PCA to the time evolution of the interference patterns after
the trap excitation. Figure 3(b) shows the PCA results in the
supersolid regime at as ¼ 49.8a0. We identify two leading
PCs, which we label as PC1 and PC2. Their weights
oscillate with different amplitudes and at distinct frequen-
cies, namely, 41(1) Hz for PC1 and 52(5) Hz for PC2. The
comparison between the measured frequencies and the
theoretically calculated mode energies indicates that, fol-
lowing our trap excitation, the second- and third-lowest-
lying even modes are simultaneously populated. As shown
in Figs. 2(b) and 2(c), these modes possess a phase and a
mixed character, respectively. Note that we apply an overall
shift of −4.3a0 to the as value for the experimental data; for
more details, see the discussion in Refs. [55,60].
To visualize the role of each PC on the interference-

pattern dynamics, we apply a partial recomposition of the
images, accounting only for the PC of interest; see
Ref. [37]. The effect of PC1 on the axial dynamics is
shown in Fig. 3(c), mainly being an axial breathing of the
central peak, accompanied by weaker in-phase breathing of
the side peaks. Instead, PC2 exhibits a dominant variation

of the side-peak amplitude; see Fig. 3(d). These results
show a good agreement with the calculated time evolutions
of the interference patterns for the second and third even
modes, shown in Figs. 3(e) and 3(f).
Finally, we study the evolution of the modes across the

BEC to supersolid and ID phases. We repeat the collective
excitation measurements for various as, and, using the
PCA, we extract the oscillation frequencies of all the
leading PCs. Figure 4 shows our experimental results
together with the mode tracking from the spectrum calcu-
lations. For a give elementary mode l, we plot ωl as well as
the response amplitude Rl ¼ mω2

yhljŷ2j0i=2ℏωl, which
indicates the probability to be excited by our trap-excitation
scheme. For completeness, the figure shows both even and
odd modes, although only even modes are coupled to our
trap-excitation scheme. Here, j0i and jli denote, respec-
tively, the ground and excited states of interest, and ŷ is the
axial position operator.
In the BEC regime, besides the roton mode that

progressively softens with decreasing as, the other modes
show a regular spacing in energy and are nearly constant
with as. In both the theory and experiment, we observe that
just one mode couples to the trap-excitation scheme. This
mode has a compressional, axial breathing character.
Experimentally, we observe that all the leading PCs
oscillate at the same frequency, suggesting that they
account for the same mode [37]. In this regime, both the
PC frequencies ωl and Rl remain rather constant. At the
supersolid phase transition, reached around as ¼ 50.6a0,
the numerical calculations reveal that different modes
undergo an abrupt change and can mix with each other.

(b)(a)

(d)(c)

(e) (f)

FIG. 3. (a) Example of a measured mean interference pattern in
the renormalized central cut of the density distribution nðkyÞ for
th ¼ 5 ms in the supersolid regime at as ¼ 49.8a0 (filled circles)
and in the BEC regime at as ¼ 51.7a0 (open circles). (b)–(d)
PCA results at as ¼ 49.8a0. (b) Time evolution of the weights of
PC1 (filled circles) and PC2 (open circles) together with their sine
fit. Error bars denote the standard error of the mean. (c),(d)
Evolution of the partially recomposed nðkyÞ accounting for the
population of PC1 (c) and PC2 (d) only. (e),(f) Calculated time
evolution of nðkyÞ from excitation of the mode shown in
Figs. 2(b) and 2(c), respectively, and using η ¼ 0.15.

FIG. 4. Comparison between the mode energy obtained from
the theory calculations and the energies extracted from the PCs
(circles). The gradual color code of the theory lines represents the
relative strength of Rl going from strong (red) to no (gray)
coupling. Error bars denote one standard deviation from the fit.
The background color indicates the BEC, supersolid, and ID
regions (see upper labels), identified using a matter-wave
interferometric analysis of the experimental data [17].
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Their energy and phase or crystal character exhibits a
strong dependence on as. Here, several modes respond to
the trap-excitation scheme, as shown by the value of Rl.
In the PCA, we observe that the leading PCs now oscillate
at distinct frequencies and have different characters (see
also Fig. 3). One set of PCs reduces their frequency when
lowering as, indicating (at least) one phase mode that
softens strongly in the supersolid regime, even below the
trap frequency νy. Another set of PCs shows a frequency
that remains hard when decreasing as. Calculations of C
show that this mode changes character along the phase
diagram and eventually becomes crystal type.
In conclusion, the overall agreement between the experi-

ment and theory confirms the calculations in the supersolid
regime, revealing two distinct branches with respective
crystal and superfluid characters. The trademarks of super-
solidity expected in infinite systems thus carry over to
the finite-size ones currently available in laboratories. The
knowledge of the excitation spectrum will provide the base
for future investigations related to the superfluid properties
and phase rigidity in a supersolid state.
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Calculation of the Bogoliubov Spectrum

Our theory is based on an extended version of the
Gross-Pitaevskii equation (eGPE)

ih̄
∂ψ(r, t)

∂t
=
(
− h̄2∇2

2m
+ V (r) +

∫
dr′U(r− r′)n(r′)

+ ∆µ[n]
)
ψ(r, t), (1)

where ψ(r, t) is the dipolar quantum-gas’ wave function
ψ(r, t). The eGPE includes the kinetic energy, exter-
nal trap potential and the mean-field effect of the inter-
actions [1, 2]. The first three terms of Eq. (1) account
for the kinetic energy, the external harmonic trapping
potential, and the mean-field interactions, respectively.
The latter includes the contact and the dipolar inter-
actions. In order to study the supersolid phase, it is
fundamental to also include a beyond-mean-field correc-
tions in order to stabilize the supersolid state against the
roton instability. This is done by adding a term in the
form of the Lee-Huang-Yang correction, ∆µ[n] [3–13]; see
also [14–17]. This is typically included as a correction to
the chemical potential obtained under the assumption of
local density approximation [18, 19]. However, recent
experimental results have raised the questions about the
range of validity of such a treatment since quantitative
disagreements at a level of few % have been observed
when comparing the theory results with the experimen-
tal findings [6, 20–24]. To the best of our knowledge, this
is still an open question, which will need future addi-
tional theoretical investigations. To compensate for this
effect, throughout this letter, we shift as by −4.3a0. To
calculate the ground-state (GS) wave-function, ψ0(r), we
then minimize the energy functional resulting from the
eGPE using the conjugate-gradients technique [25].

In a next step, we study the Bogoliubov de Gennes
(BdG) excitation spectrum of a dipolar Bose-Einstein
condensate trapped in a harmonic cigar shaped poten-
tial [1, 25]. Our calculations are obtained by expanding
the wavefunction ψ(r, t) around ψ0(r). Here, we write:

ψ(r, t) = (ψ0(r) + ηδψ(r, t)) e−iµt,

where η � 1, µ is the chemical potential of the ground
state and

δψ(r, t) = ule
−iεlt/h̄ + v∗l e

iεlt/h̄.

The spatial modes ul and vl are oscillating in time with
the corresponding frequency ωl = εl/h̄. We then linearize
the eGPE around ψ0 at first order in η. By solving the
set of coupled linear equations, we obtained the discrete
modes, numbered by l, of energy εl and amplitudes ul
and vl. We define the (odd) even parity of the mode
from their amplitude ul and vl being (anti-)symmetric in
y.

In order to illustrate the spectrum, we compute the
dynamic structure factor (DSF), since it directly gives in-
formation about the density response of the system when
perturbed at specific energies and momenta. At T = 0
the DSF is defined as [20, 26]:

S(k, ω′) =
∑

l

∣∣∣∣
∫

dr [u∗l (r) + v∗l (r)] eik·rψ0(r)

∣∣∣∣
2

×

× δ(ω′ − ω), (2)

where the sum is over the different spatial modes and k
is the wave vector. In Fig. 1 and Fig. 2 we plot the DSF
of Eq. (2). For better visualization, we use an energy
broadening of 0.09hνy and 0.12hνy for Fig. 1 and Fig. 2,
respectively, similar to what was done in Ref. [26].

Defining the mode character

Within the Bogoliubov theory and in the linear regime,
the effect of the population of the mode l on the global
state dynamics can be studied using the following expres-
sion [1]

ψ(r, t)eiµt ≈
√
|ψ0(r)|2 + 2ηδρl(r) cosωlte

−iηδϕl(r) sinωlt,

where the density fluctuations δρl = (ul + v∗l ) |ψ0| and
phase fluctuations δϕl = (ul − v∗l )/ |ψ0| have been sepa-
rated.

In order to evaluate the dominant character of each
mode l, we introduce the quantity C. As discussed in
the main text, the crystal and phase mode differentiate
from each other by the spatial region where δϕl varies
the most. For crystal modes, this is inside the density
peaks, resulting e. g. in a center-of-mass motion of one
individual peak, which leads to a change of the crystal
structure. Differently, for phase modes, δϕl changes the



2

most between neighboring peaks, signalizing a particle
exchange between peaks and thus a modification of the
atom numbers in the peaks. We quantify these two types
of character by computing the spatial variance of δϕl(r)
inside the density peaks, Vin, and in between them, Vout.
The quantities Vin and Vout are defined as follow.

For a given axial density cut of the GS wave function
|ψ0(0, y, 0)|2, we first define the region inside (between)
the density peaks by identifying the different density
maxima (minima) and number them by j ∈ [1, Nin(out)].
In a next step, we compute the mean distance d between
all density minima to their neighbouring maxima. Fi-
nally, we isolate the region Rj = [−d/3,+d/3] of space
centered around each maxima (minima) and calculate:

Vin(out) =
1

Nin(out)
×

×
Nin(out)∑

j=1

〈|δϕ(0, y, 0)− 〈δϕ(0, y, 0)〉Rj
|2〉Rj

.

The mean 〈· · ·〉Rj is defined for a generic function f as

〈f(y)〉Rj
=

∫

y∈Rj

f(y) dy

/∫

y∈Rj

dy.

The mode character is then evaluated by considering the
ratio C = Vin/Vout. C is large for modes with prevalent
crystal and small for the ones with dominant phase char-
acter. In Fig. 2 (d) we encode the information on C as a
color scale on the DSF spectrum. The same color map is
used to illustrate the modes of the panels (a-c) in Fig. 2,
confirming their correct assignment. For completeness,
we also illustrate in Fig. S1 the modes’ character on the
spectrum of a 164Dy supersolid, using the parameters of
Fig. 1 (e) of the main text.

Applying the principal component analysis to our
data

Dataset for applying the PCA

To identify the excited modes from our experimental
data, we apply a general statistical method called prin-
cipal component analysis (PCA) [27–29] to a set of mea-
sured density distributions after a time-of-flight expan-
sion. For our trap-excitation measurement, a dataset for
the PCA is composed as follow. For each target value
of as, we record the time evolution of the density distri-
bution for holding time, th, between 0 and 30 ms. For
each th, we record between 15 and 30 repeated images,
all together yielding a dataset of Nm >∼ 200 images. Each
experimental run i yields a two-dimensional density dis-
tribution ni(kx, ky). By performing a simple two dimen-
sional Gaussian fit, we extract 71 × 71 pixels region-of-
interest (ROI) centered on the atomic cloud (the pixel’s

0 1 2 3
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FIG. S1. Characterisation of the excitation modes for
N = 4 × 104 atoms of 164Dy at as = 90 a0 in a trap of fre-
quencies 2π×(260, 29.6, 171) Hz. As in the Er case (Fig. 2 (d)
of the main text), the blue color reveals the dominant crystal
character for the upper branch, whereas the red color shows
the dominant phase character for the lower branch.

width in kx,y is 0.32µm−1). In addition, we post-select
the shots in which the atom number, the axial cloud size
and the transverse cloud size vary by less than 20%, 30%
and 15% than their mean values, respectively.

PCA’s working principle

To apply the PCA, we represent each ROI of a dataset
as a vector ρi(s) where s represent the index of the pixel
(s ∈ [1, Np], Np is the number of pixels in one image). We

compute the mean vector image ρ̄(s) =
∑Nm

i=1 ρi(s)/Nm
and consider the variations of the pixel values in each
vector image compared to ρ̄, δρi(s) = ρi(s) − ρ̄(s). Fi-
nally, we consider the covariance matrix of these varia-
tions Cov(p, s) =

∑Nm

i=1 ρi(s)ρi(p)/(Nm−1), which is real
symmetric. By simply diagonalizing the covariance ma-
trix, the PCA constructs a new basis ofNp vector-images,
called principal components (PCs) and written Cp(s) (p ∈
[1, Np]) in the original pixel basis, that are uncorrelated
one from an other. The PCs satisfy CovCp = λpCp where
λp is the eigenvalue of the covariance matrix associated to
the PC p. The original vector images can be all rewritten
in this new basis as ρi(s) = ρ̄(s)+

∑Ns

p=1 wp,iCp(s), where

wp,i =
∑Np

s=1 Cp(s)ρi(s) is the weight of the component
p. We note that, by converting back the pixel represen-
tation to the original two-dimensional momentum space,
the above decomposition means

ni(kx, ky) = n̄(kx, ky) +

Ns∑

p=1

wp,iCp(kx, ky), (3)
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FIG. S2. Examples of the two leading PCs for our dataset
at as = 50 a0. (a) PC1 reveals a dominant fluctuation of
the interference patterns in the central peak at ky ≈ 0µm−1

(central blue region) with a slighter change of the sidepeaks
at ky ≈ ±2µm−1 (red regions) . (b) PC2 shows fluctuations
in the interference patterns’ sidepeaks around ky ≈ 2µm−1

and no significant change of the central peak.

where Cp(kx, ky) encompasses now the density-
distribution change induced by the PC p. The fact
that the covariance matrix is diagonal in the PC basis
indicates that the PCs correspond to uncorrelated
sources of variations in the dataset. More explicitly, the
coefficients wp,i show no correlations in between different
p. This feature makes the PCA a powerful tool, e. g. to
identify and discriminate between elementary modes
of different frequencies when applied to time-evolution
data, as used in Ref. [29]. An example of the obtained
two leading PCs in the supersolid region is given in
Fig. S2.

Identifying the elementary modes of a quantum gas via the
PCA

We quickly remind the working principle, of the iden-
tification of modes via the PCA. In the linear regime,
the contribution of each mode to density oscillations is
expected to decouple and separate temporal and spatial
variations as:

n(r, t) ≈ n0(r, t) + 2
∑

l

ηδρl(r) cos (ωlt+ φl) , (4)

with φl an arbitrary phase for the mode l. This rela-
tion should also hold for the density distribution after
the gas’s free-expansion. If one considers that the im-
age index i encloses a time dependence (ti), the equa-
tions (3) and (4) have a very similar structure, associ-
ating Cp(kx, ky) and wp,i to ρl(r) and cos (ωlti), respec-
tively. Thus the PCA-based identification of uncorre-
lated components in the time-evolution of the density
profiles should enable to identify the elementary modes
of the system. The corresponding PCs’ weights are then

expected to oscillate in time at the frequency ωl of the
modes. In particular, the PCA should separate the
modes oscillating at different frequencies and differenti-
ate them from other sources of fluctuations or of dynam-
ics (e.g. dissipation). Following Ref. [29], we note that
modes can be properly distinguished if the period asso-
ciated to their beating is smaller than the total time for
which the time-evolution is recorded, or, even for shorter
probe time, if they have different enough amplitudes of
oscillations (i.e. excitation probability).

From our dataset with repeated realizations of
each hold time th, we thus consider, for each
PC p, the mean weights at time th, Wp(th) =∑
i/ti=th

wp,i/
∑
i/ti=th

1. We then fit Wp(th) to a sine

function A0 +As cos (ωth + φ) and extract the PC’s fre-
quency (ω) and amplitude As of oscillation. We then
consider as relevant the PCs that show oscillation of am-
plitude As > 8 × 10−4, frequency ν > 20 Hz, and where
the oscillation frequency can be extracted with a preci-
sion < 10%. Examples of the time evolution of Wp and
of their fits are shown in Fig. 3 (b).

We note that the PCA does not always assemble in a
unique PC all the correlations in the pixel values that
follow the same time dependence, and a single mode
can be artificially split into several components in the
analysis process. To better understand this behavior, we
performed tests on theoretical calculations and compare
them to the experiments. Theoretically, we specifically
populate a single Bogoliubov mode on top of the ground-
state, we then compute the interference patterns as a
function of the hold time th, similar to what is done in
Fig. 3 (e-f), and finally we apply the PCA. For each mode
considered, both for regular (BEC) or density-modulated
ground-states, several leading PCs are found to oscil-
late. Their frequencies match the mode frequency while
their oscillation amplitude decreases with the PC’s index.
Typically the ratio in the oscillation amplitudes between
the first and the second PC is about 10, and the ampli-
tude of the larger-index PCs are negligible. Therefore, in
the cases where the modes are the most strongly excited,
i.e. mainly in the BEC regime (see Rl scaling in Fig. 4
for the excitation amplitude), one can indeed expect that
several PCs are sensitive to a single mode in experiment,
matching our observation.

From those theory tests, we can also better understand
the origin of this artificial splitting of one mode in sev-
eral PCs. Indeed, the oscillations of the different PCs are
found to have the same frequencies but different phases,
typically shifted by about π/2. As it treats the pixels in-
dependently, the PCA gets confused by such π/2 phase
shifts in the oscillations occurring in different regions of
space, i.e. pixels’ values that distinctly oscillate, starting
from their extremal or medial values. The PCA then ar-
tificially splits the oscillations occurring in these different
regions into several components while they correspond to
the same mode. Finally, this effect can be further favored
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in typically imperfect experimental settings, by the ad-
dition of experimental noise as well as other technical
(e.g. imaging artifacts) or physical (e.g. dissipation) ef-
fects, which yield differences in the pixel values. Our
theory tests, however, show that those additions are not
the main reasons for the observed splitting.

Based on the conclusions of those tests, in the exper-
iment (see discussion of Fig. 4 of the main text), we in-
terpret as probing distinct modes only the PCs showing
different frequencies, while PCs whose frequencies match
within their error bars are interpreted as probing a single
elementary excitation of the system.

Partial recomposition

To isolate the effect of each PC on the complex time-
evolution of the interference patterns, we use partial re-
composition of the images inspired from Eq. (3). In par-
ticular we define

n(p)(kx, ky, t) = n̄(kx, ky) +Wp(t)Cp(kx, ky). (5)

This is equivalent to consider that a single PC is ”ex-
cited”, similarly to what can be done in theory for the in-
dividual excited modes of the BdG spectrum (see Fig. 2)
and its description in the main text and Supp. Mat.).
In Fig. 3 (c-d), we show examples of the axial cuts of
n(p)(kx, ky, t) for two of the leading PCs. We note that
here, as well as for all experimental data shown in this
manuscript, the axial cuts correspond to the average of
the density distributions for |kx| < 1.6µm−1.
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Optical setup for Bragg
spectroscopy

One major upgrade of the experimental apparatus was the implementation of a setup to
perform Bragg spectroscopy with a digital micro mirror device (DMD). Our group used this
technique to perform measurements of the excitation spectrum of dipolar BECs which led
to the two publications, discussed in Sec. 4.5 and Sec. 5.5, where the working principle and
more details of the setup are discussed.
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Figure B.1.: The laser setup that provides stabilised light at 401 nm for the Bragg spectroscopy.
The light is transferred via an optical fiber (labelled ’DMD’) to the Bragg spectroscopy setup; see
Fig. B.2. The setup includes mirrors, lenses, polarising beam splitter cubes, half-wave plates (λ/2),
an acousto-optical modulator (AOM) and a 50:50 beam splitter to combine the laser light with a
possible reference laser beam, obtained from the Zeeman slower from the experiment (ZS reference
light).

Figure B.1 shows the setup which provides the laser light for the Bragg spectroscopy. As a
laser source we use a diode laser which provides 802 nm, which is amplified and frequency
doubled. The obtained 401 nm light is typically 71(1) GHz red-detuned from the strongest
atomic resonance in erbium and allows us to achieve suitable potential depths for the Bragg
spectroscopy, while having negligible photon scattering of the atoms in the BEC. Due to
the passive stability of the laser system, for this detuning, the diode laser does not need to

189
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be frequency locked to a reference. However, the laser can be also locked on the ZS light
of the experimental setup with an offset beat-note lock. Here, a fast gigahertz-photodiode
(GHz-PD) allows a lock detuning of up to 2.6 GHz from the ZS frequency. This beat-note
lock is currently not used in our experiment, but it allows to also lock this laser to a variable
frequency around the atomic line of erbium.

Figure B.2 shows the Bragg spectroscopy setup, which is situated on top of the main chamber.
The setup was initially designed and calibrated for two wavelengths, 401 nm and also 532 nm.
However, for the experiment, only 401 nm is used currently. A photodiode (PD) after the
fiber allows to stabilise the laser light via a feedback-loop on the AOM of the laser setup
in Fig. B.1. A cylindrical telescope expands the beam in the vertical axis (out of plane in
Fig. B.2) to an aspect ratio of 1:10 mm, which is used to illuminate the DMD. By means
of different uploaded holograms, the DMD creates the two Bragg beams for the experiment
(both beams are on top of each other in the top view in Fig. B.2). These two beams pass
another telescope which includes a filtering iris in its focal point. Afterwards the Bragg laser
beams are directed down to the main chamber of the experiment. For further details on the
setup after the DMD, see also supplemental material of the publication in Sec. 4.5.
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Figure B.2.: Laser schematics for the Bragg spectroscopy setup. The laser light is transferred via an
optical fiber (labelled ’DMD’) from the laser setup in Fig. B.1. For details see text and Sec. 4.5. The
solid outline of the image represents the used breadboard, which is cutted out in the region where
the Bragg beams are reflected down to the main chamber.
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