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Abstract

In recent decades, great progress has been made in the realization of various atomic, molecu-
lar, and optical physics (AMO) platforms to study quantum mechanical many-body phenom-
ena, e. g. atomic and molecular quantum gases [Blo12, Gro17], trapped ions [Bla12, Hem18],
and Rydberg atoms in optical tweezers [Ber17, Bro20]. Atomic quantum gases offer a pow-
erful collection of desirable properties: tunability of interactions, geometry, and statistics
(bosonic/fermionic), the manipulation of the internal degree of freedom (spin), and an in-
trinsic scalability of the system size. Additionally, their high environmental isolation makes
them attractive for fundamental research as well as promising candidates for various tech-
nological applications.

As progress has advanced, new ideas have emerged about the possibility of quantum simu-
lating a variety of phases of matter, or even creating some that have no counterpart in other
systems. Some of these exciting proposals required a radical change in the nature of the
interaction that governs the many-body behavior. From the traditional

”
short-range“ inter-

action, whose strength is appealing because of its tunability, the proposals started to focus on
platforms in which the atoms interact via a long-range potential that activates a connection
between atoms over a long distance. Platforms such as ultracold molecules, Rydberg atoms,
cavity-mediated systems, and magnetic atoms started to appear on the experiment map.

This thesis focuses on a new class of magnetic quantum gases consisting of magnetic lan-
thanides, which are gaining a remarkable momentum in the scientific community due to
their extraordinarily large magnetic dipole moment. In erbium and dysprosium, the mag-
netic interaction is a factor > 100 larger than in alkali atoms and several times larger than in
transition metals. Our group has pioneered this field with the first Bose-Einstein condensate
of erbium [Aik12], now celebrating its 10th anniversary, and with the observation of novel
phenomena such as roton modes [Cho18, Pet19] and supersolidity [Böt19b, Tan19, Cho19].

Within this thesis, we present our progress in increasing the level of control over these new
systems, based on the special properties of lanthanides. We realize a quantum simulator for
the XXZ-Heisenberg model with large spins in a three-dimensional optical lattice and study
magnetization conserving spin-exchange dynamics. The large spin manifold is encoded in
the 20 Zeeman levels associated with the atomic ground state of fermionic erbium. We
demonstrate experimental control over the rate at which the dynamics occur by changing
the initial spin state, by tuning the dipole orientation, or by exploiting ac-Stark shifts to
alter the resonance condition.

To obtain enhanced control over the internal atomic states, we extend our experimental
toolbox with a narrow optical transition at 1299 nm, with a spectral linewidth on the order of
only 1Hz. We perform a detailed characterization of the fundamental transition parameters,
such as lifetime, isotope shifts, and Landé gJ -factor. Studies of the dynamic polarizability
of the excited state with respect to the ground state open up interesting opportunities for
magic-wavelength lattices and other exciting applications.

Finally, we expand our understanding on the collision properties of dipolar atoms and study
thermalization dynamics of cold, non-degenerate quantum gases. Within this work, we apply
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the cross-dimensional thermalization technique to gain knowledge on the contact scattering
length for four bosonic isotopes over a broad magnetic field range. This also allows us to
extract a background scattering length for each isotope and analyze its scaling with the
isotope mass. Since theoretical calculations of the scattering length for complex magnetic
atoms are very challenging, our results represent a valuable contribution for the development
of advanced theoretical models.
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Zusammenfassung

In den letzten Jahrzehnten wurden große Fortschritte bei der Realisierung verschiedener
Plattformen der atomaren, molekularen und optischen Physik (AMO) gemacht, um quan-
tenmechanische Vielteilchenphänomene zu untersuchen, z. B. atomare und molekulare Quan-
tengase [Blo12, Gro17], gefangene Ionen [Bla12, Hem18] und Rydbergatome in optischen
Pinzetten [Ber17, Bro20]. Atomare Quantengase bieten eine leistungsstarke Sammlung
wünschenswerter Eigenschaften: Abstimmbarkeit von Wechselwirkungen, Geometrie und
Statistik (bosonisch/fermionisch), die Manipulation des internen Freiheitsgrades (Spin) und
eine intrinsische Skalierbarkeit der Systemgröße. Darüber hinaus sind sie aufgrund ihrer ho-
hen Isolation von der Umgebung attraktiv für die Grundlagenforschung und vielversprechende
Kandidaten für verschiedene technologische Anwendungen.

Im Zuge des Fortschritts sind neue Ideen über die Möglichkeit der Quantensimulation einer
Vielzahl von Materiephasen oder sogar der Erzeugung von Phasen, die in anderen Syste-
men kein Pendant haben, entstanden. Einige dieser aufregenden Vorschläge erforderten eine
radikale Änderung der Art der Wechselwirkung, die das Vielteilchenverhalten bestimmt. Von
der traditionellen kurzreichweitigen Wechselwirkung, deren Stärke aufgrund ihrer Abstimm-
barkeit so verlockend war, konzentrierten sich die Vorschläge auf Plattformen, bei denen die
Atome über ein langreichweitiges Potenzial wechselwirken, das eine Verbindung zwischen
den Atomen über eine große Entfernung aktiviert. Plattformen wie ultrakalte Moleküle,
Rydberg-Atome, resonatorbasierte Systeme und magnetische Atome tauchten auf der Ex-
perimentkarte auf.

Diese Arbeit konzentriert sich auf eine neue Klasse magnetischer Quantengase, die aus mag-
netischen Lanthaniden bestehen, die aufgrund ihres außerordentlich großen magnetischen
Dipolmoments in der wissenschaftlichen Gemeinschaft eine bemerkenswerte Dynamik en-
twickeln. Bei Erbium und Dysprosium ist die magnetische Wechselwirkung um einen Faktor
> 100 größer als bei Alkaliatomen und um ein Vielfaches größer als bei Übergangsmetallen.
Unsere Gruppe hat auf diesem Gebiet mit dem ersten Bose-Einstein-Kondensat von Er-
bium [Aik12], das jetzt sein 10-jähriges Jubiläum feiert, und mit der Beobachtung neuartiger
Phänomene wie Roton-Moden [Cho18, Pet19] und Supersolidität [Böt19b, Tan19, Cho19] Pi-
onierarbeit geleistet.

Im Rahmen dieser Arbeit stellen wir unsere Fortschritte bei der Verbesserung der Kon-
trolle über diese neuen Systeme vor, die auf den besonderen Eigenschaften der Lanthaniden
basieren. Wir realisieren einen Quantensimulator für ein XXZ-Heisenberg-Modell mit großen
Spins in einem dreidimensionalen optischen Gitter und untersuchen die magnetisierungser-
haltende Spin-Austausch-Dynamik. Die große Spin-Mannigfaltigkeit ist in den 20 Zeeman-
Niveaus kodiert, die mit dem atomaren Grundzustand von fermionischem Erbium verbunden
sind. Wir demonstrieren die experimentelle Kontrolle über die Geschwindigkeit, mit der die
Dynamik auftritt, indem wir den anfänglichen Spin-Zustand, die Orientierung des magnetis-
chen Dipolmoments oder die ac-Stark-Verschiebungen ändern, um die Resonanzbedingung
zu verschieben.

Um eine fortgeschrittene Kontrolle über die internen Atomzustände zu erhalten, erweit-
ern wir unser experimentelles Instrumentarium um einen schmalen optischen Übergang
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bei 1299 nm, mit einer spektralen Linienbreite in der Größenordnung von nur 1Hz. Wir
führen eine detaillierte Charakterisierung der grundlegenden Übergangsparameter durch,
wie Lebensdauer, Isotopenverschiebungen und Landé gJ -Faktor. Untersuchungen der dy-
namischen Polarisierbarkeit des angeregten Zustands in Bezug auf den Grundzustand zeigen
interessante Möglichkeiten für magische Gitterwellenlängen und andere Anwendungen auf.

Schließlich erweitern wir unser Verständnis der Kollisionseigenschaften von dipolaren Atomen
und untersuchen die Thermalisierungsdynamik von kalten, nicht entarteten Quantengasen.
Im Rahmen dieser Arbeit wenden wir die Technik der kreuzdimensionalen Thermalisierung
an, um die Kontaktstreulänge für vier bosonische Isotope über einen breiten Magnetfeld-
bereich zu ermitteln. Dies erlaubt uns auch, eine Hintergrundstreulänge für jedes Isotop zu
extrahieren und ihre Skalierung mit der Isotopenmasse zu analysieren. Da Berechnungen der
Streulänge für komplexe magnetische Atome sehr anspruchsvoll sind, stellen unsere Ergeb-
nisse einen wertvollen Beitrag für die Entwicklung fortgeschrittener theoretischer Modelle
dar.

Zusammenfassend lässt sich sagen, dass unsere Ergebnisse einen wichtigen Baustein für das
Verständnis dipolarer Quantengase bilden, wobei der schmale Übergang bei 1299 nm einen
bedeutenden Fortschritt für die Kontrolle und Manipulation von Erbiumatomen darstellt.
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Introduction

1.1. Motivation

Throughout history, mankind has witnessed a number of technological developments that
have had a fundamental impact on daily life. Many of these are directly related to the
understanding and application of new physical processes. Examples are the development of
the steam engine by J.Watt, based on the laws of thermodynamics, that led to the industrial
revolution [Dea79], or the development of microprocessors enabled by solid-state physics,
which resulted in the so-called digital revolution in which we currently find ourselves [Arn10].
A very exciting research area that promises another major step in technological advancement
is represented by quantum mechanics [Jae19].

First steps to explore the quantum world have been taken at the beginning of the 20th cen-
tury, e. g. by M.Planck, which observed black-body radiation and found the relation of the
lights energy E to its frequency ν and the Planck constant h, given by E = hν [Pla48], or
A. Einstein, which applied the quantization of light to explain the photoelectric effect [Ein05].
Such type of discoveries gave rise to the concept of wave-particle duality, postulated by
L. de Broglie in 1924 [Kub70]. Noteworthy, the quantum mechanical description of particles
leads to two distinct classes of statistical behavior, represented by bosons and fermions. As
a consequence, atoms at ultra low temperatures can form two fundamentally different quan-
tum phases: the Bose-Einstein condensate, proposed by A.Einstein in 1925 [Ein25], and
the degenerate Fermi gas, whose theoretical framework was pioneered by E. Fermi [Fer26]
and P.Dirac [Dir26]. After their theoretical predictions, it took about 70 years, until the
first realization of a Bose-Einstein condensate in rubidium [And95], lithium [Bra95], and
sodium [Dav95] as well as the first degenerate Fermi gas in potassium [DeM99b] were demon-
strated.

The creation of degenerate quantum gases constitutes a milestone in the field of ultracold
atoms. In the spirit of R. Feynman, who proposed the use of quantum simulators to solve
complex quantum mechanical questions that are too demanding to be answered with clas-
sical computers1 [Fey82], ultracold atoms combine several requirements that make them a

1 For a complete description of a system with N spin-1/2 particles, 2N coefficients are necessary, which
becomes impossible for N > 50.
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2 1. Introduction

promising platform: (i) they are environmentally well isolated, (ii) they have a high degree
of controllability, (iii) they provide access to a large physical parameter space, and (iv) they
come along with efficient probing techniques [Blo12]. A prominent example that goes to-
wards a quantum simulator is the investigation of superfluid behavior in Fermi gases, which
is based on the formation of Cooper pairs [Bar57]. Over the last two decades, numerous
experiments have investigated the BEC-BCS crossover regime by tuning the inter-particle
interaction with the help of a Feshbach resonances [Bar04, Bou04, Alt07, Ing07].

While the above mentioned example of quantum simulation involves a spatially continuous
system, an alternative approach goes back to a proposal from 1998 [Jak98] and is based
on ultracold atoms loaded into a so-called optical lattice that is created by a laser-light
field in standing-wave configuration. Atoms in the periodic potential formed by an optical
lattice can mimic the physics of a broad class of condensed-matter systems [Gro17, Sch20a].
The hopping of particles between lattice sites is characterized by the tunneling rate, which
depends on the potential depth and thus can be controlled by the light intensity of the
laser beam. In combination with the tunability of interactions, optical lattices therefore
provide for example a natural setting for the simulation of Hubbard models, which describe
correlated many-body lattice systems [Hub63, Jak05, Aro21]. One of the first demonstrations
of the outstanding capabilities was the observation of the transition from a superfluid to a
Mott insulator state [Gre02], which was predicted in 1989 [Fis89]. In recent years, a further
step in the development has been taken, which includes the implementation of quantum gas
microscopes [Bak09, She10, Che16] enabling manipulation and detection of individual atoms
and giving access to local observables.

An important role in such quantum systems is taken on by interactions. In optical lattice
systems, which typically contain hundreds to thousands of atoms, they are for example es-
sential for the establishment of correlations and entanglement among the atoms [Blo08a].
While, most experiments involving optical lattices so far have been performed with domi-
nantly contact-interacting particles, exciting prospects arise from dipole-dipole interactions,
which occur for example in magnetic atoms [Cho22], hetero-nuclear molecules [Car09], or
Rydberg atoms [Lim13]. The long-range and anisotropic character of dipolar interactions can
lead to entirely new quantum phases [Dut15], such as checkerboard and stripe Mott crystals
which feature a spontaneously broken spatial symmetry [CS10]. An extended Bose-Hubbard
model has been experimentally realized for the first time within our group in 2016 [Bai16].

The main focus for Hubbard models lies on the competition between tunneling and inter-
particle interactions. On the other hand, atoms in deep optical lattices featuring a spin degree
of freedom enable also the realization of spin lattice models and the study of quantum mag-
netism [Aue94]. A prominent example is the Heisenberg model [Hei28], which has proven to
successfully describe inter-spin interactions. For atoms interacting only at short range, such
as alkali atoms, spin-exchange interactions are limited to neighboring lattice sites and rely on
a second-order tunneling process called super-exchange. The strength of the super-exchange
interaction depends on both, the on-site interaction and the tunneling rate. Due to the deep
lattice depth in spin lattice models, typically the super-exchange rates are relatively small
compared to other energy scales in the system, thus making the experimental observation
challenging [Tro08, Gre13]. In contrast, thanks to the long-range character, dipole-dipole
interactions induce a direct coupling of spins which goes beyond nearest neighbors and ex-
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ceeds super-exchange interaction strengths significantly [Lep19, Cho22]. This enables the
study of spin lattice models even in the regime of very deep optical lattices, where atoms
are pinned to individual lattice sites and tunneling is absent. To date, dipolar spin lattice
systems have been realized based on fermionic KRb molecules [Yan13] or bosonic chromium
atoms [dP13b, Lep19]. While in case of molecules the spin is encode in two rotational states
of the ground state, in the case of magnetic atoms the spin can be included via the population
of different Zeeman sublevels.

Fermionic erbium atoms are advantageous for the preparation of atoms in different Zee-
man states, because they possess a quadratic Zeeman shift which arises from the additional
hyperfine interaction. As the Zeeman shift depends quadratically on the specific magnetic
quantum number, this intrinsically introduces a difference in the energy splitting between
subsequent spin states and enables therefore deterministic preparation using radio-frequency
pulses [Bai18a]. Bosonic erbium isotopes do not have a nuclear spin and therefore a quadratic
Zeeman shift is absent, making deterministic preparation schemes challenging. A promising
tool to circumvent this issue are narrow and ultranarrow optical transitions that were origi-
nally used for the implementation of atomic clocks [Lud15]. On the one hand, atomic clocks
have paved the way for an incredible improvement of time keeping, that has reached an ac-
curacy good enough to realize advanced global navigation satellite systems [Guo21]. On the
other hand, the high precision and high accuracy of atomic clocks allows them to function as
an accurate measurement and preparation tool in ultracold quantum gas systems [Zha16].

To drive the progress of fundamental research, it is promising to combine technical advances
that have been successfully implemented in different systems. Magnetic atoms have a very
dense energy spectrum and it is predicted that they also contain narrow and ultranarrow
transitions [Ban05]. Transferring the extended knowledge on these types of transitions to
magnetic atoms brings them a number of new experimental possibilities, such as efficient
preparation of spin states for bosonic isotopes, the possibility to coherently control the
atomic population, or the potential application of spin-resolved imaging techniques [Fra21].
Prior to this thesis, a first survey on a narrow transition in magnetic atoms has been done
using a thermal cloud of dysprosium atoms [Pet20a].

In addition to the precise control on the atomic spin state, accurate knowledge on the inter-
particle contact scattering length is of fundamental importance as it contributes to the
governing the many-body state. Thanks to the tunability of the contact interaction by
means of a Feshbach resonance [Chi10], its strength relative to the dipole-dipole interaction
can be controlled carefully. Remarkably, this control has led to the recent realization of
quantum droplets [Kad16, Cho16a, Sch16] and the related demonstration of the appearance
of a roton minimum in the bosonic excitation spectrum [Cho18, Pet19, Sch21]. Building up
on these results, recently, dipolar supersolids were realized in one- [Cho19, Böt19b, Tan19]
and two-dimensions [Nor21]. The latter are particularly fascinating, because they feature a
periodic density modulation while simultaneously the atoms maintain phase coherence.
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1.2. Thesis overview

This thesis covers experimental work of fundamental research based on dipolar erbium atoms.
The results obtained represent an important contribution to the understanding, the control,
and the manipulation of dipolar atoms and bring us closer to the goal of realizing a quantum
simulator. The main achievements of this work are organized along three sections:

(I) The control of dipolar spin-exchange dynamics of fermionic erbium atoms loaded into
a three-dimensional optical lattice.

(II) The experimental observation and extensive characterization of the narrow inner-shell
orbital transition at 1299 nm.

(III) The determination of the contact scattering length for four bosonic erbium isotopes
based on cross-dimensional thermalization measurements.

Chapter 2 provides a general overview of atomic erbium and specifically defines the prop-
erties that will be of importance throughout this thesis. In addition, the chapter contains a
brief description of the experimental apparatus that was used for the realization of bosonic
and fermionic quantum gases. This covers in particular the cooling steps starting from hot
erbium vapor to the attainment of a degenerate quantum state. This chapter concludes with
a short introduction to optical lattices and a description of our lattice setup including a
summary of the sources of inhomogeneities in the experimental realization.

Chapter 3 describes the scenario of fermionic erbium atoms loaded into a three-dimensional
lattice. First, the dipole-dipole interaction is introduced and its special role in spin-exchange
dynamics is described. Second, the spin lattice Hamiltonion is discussed and it becomes clear
that our system represents a quantum simulator for the large spin XXZ-Heisenberg model.

Chapter 4 presents the observation of a narrow inner-shell orbital transition at 1299 nm.
First a general overview on the transition parameters is given. Then, following the publica-
tion in which the transition has been identified and carefully characterized, further results
are presented, including: the determination of the A and B hyperfine coefficients and the
density dependence of the excited-state lifetime. Finally, we demonstrated first experimental
results in which we use the transition for the preparation of bosonic atoms in higher magnetic
sublevels.

Chapter 5 is devoted to the scattering properties of dipolar quantum gases. The first focus
lies on the impact of dipolar interactions on the scattering amplitude, which depends on both,
the orientation of the atomic dipole moment and on the relative momenta of the scattering
constituents. Furthermore, the influence of this anisotropy on the thermalization process of
a thermal gas brought out of equilibrium is shown.

To conclude, Chapter 6 provides a summary of this thesis and gives a short outlook on
possible future realizations.
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Chapter 7 contains a list of all additional publications that have emerged over the course
of this thesis and in which the author has been involved.

1.3. List of publications

The following list contains the publications that form the main part of this thesis. They are
given in chronological order, which also reflects the thematic framework of the chapters. In
addition to the main publications, the author has contributed extensively to a number of
other projects within the course of this work. However, a detailed discussion of all results
would go beyond the scope of this thesis. These further publications are each presented with
a brief summary in Chapter 7.

� Controlling dipolar exchange interactions in a dense three-dimensional ar-
ray of large-spin fermions.
A.Patscheider, B. Zhu, L.Chomaz, D. Petter, S. Baier, A.-M.Rey, F. Ferlaino, M. J.Mark,
Physical Review Research, 2, 023050 (2020).

� Observation of a narrow inner-shell orbital transition in atomic erbium at
1299 nm.
A.Patscheider, B.Yang, G.Natale, D. Petter, L. Chomaz, M. J.Mark, G.Hovannesyan,
M. Lepers, and F. Ferlaino
Physical Review Research 3, 033256 (2021).

� Accurate determination of the scattering length of erbium atoms.
A.Patscheider, L. Chomaz, G.Natale, D. Petter, M. J.Mark, S. Baier, B.Yang,
R.R.W.Wang, J. L. Bohn, F. Ferlaino
Submitted to Physical Review A (2021).

Additional publications

� A two-species five-beam magneto-optical trap for highly magnetic Er and
Dy atoms.
P. Ilzhöfer, G.Durastante, A. Patscheider, A.Trautmann, M. J.Mark, F. Ferlaino,
Physical Review A 97, 023633 (2018).

� Realization of a Strongly Interacting Fermi Gas of Dipolar Atoms.
S.Baier, D. Petter, J. H.Becher, A. Patscheider, G.Natale, L. Chomaz, M. J.Mark,
F. Ferlaino,
Physical Review Letters 121, 093602 (2018).
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� Probing the roton excitation spectrum of a stable dipolar Bose gas.
D.Petter, G.Natale, R.M.W. van Bijnen, A. Patscheider, M. J.Mark, L.Chomaz,
F. Ferlaino,
Physical Review Letters, 122, 183401 (2019).

� Long-lived and transient supersolid behaviors in dipolar quantum gases.
L.Chomaz, D.Petter, P. Ilzhöfer, G.Natale, A.Trautmann, C. Politi, G.Durastante,
R.M.W. van Bijnen, A. Patscheider, M. Sohmen, M. J.Mark, F. Ferlaino,
Physical Review X, 9, 021012 (2019).

� Excitation spectrum of a trapped dipolar supersolid and its experimental
evidence.
G.Natale, R.M.W. van Bijnen, A. Patscheider, D. Petter, M. J.Mark, L.Chomaz,
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Erbium: From the basic
properties to atoms in an optical
lattice

Atomic erbium belongs to the lanthanide series of the periodic table, which includes elements
with atomic numbers from 57-71. The successful story of the lanthanides started back in 1789,
when the mineral gadolinite was discovered by Carl Axel Arrhenius in a quarry in Ytterby,
near Stockholm [Din16]. It took more than 50 years, until Carl Gustaf Mosander, in 1843,
identified three constituents of gadolinite: yttrium, erbium, and terbium [Mos43]. Over
the years further elements have been identified, and today we know that the mineral found
by Arrhenius, contains additional six elements, all of which are assigned to the lanthanide
series.

The application of lanthanides in modern world covers a wide spectrum, ranging from the
production of permanent magnets [Rol16, Mü17], which form a key component, e. g. in wind
turbines and hybrid cars, to applications in medical diagnostics [Cot12]. In laser technol-
ogy, triply ionized erbium is of key importance for the production of erbium doped fiber
amplifiers (EDFA). The emission of EDFA lies within the telecommunication C-band and
L-band1, which exhibit the lowest optical loss in current optical fibers of the telecommuni-
cation wavelength range. Therefore, this makes erbium an advantageous dopant [Bou11]. In
the near future, EDFA might play a key role in the realization of photon-based quantum
networks [Sag15].

In addition to its various industrial applications, atomic erbium (and magnetic lanthandides
in general) has many attractive properties that make it appealing for fundamental research.
This is especially true in the field of ultracold quantum gases. It was in 2012, when the
first Bose-Einstein condensate of erbium was realized by our group [Aik14b] in Innsbruck.
Since then, the interest in the use of erbium for ultracold experiments has been growing
steadily. This can be recognized in the rising number of erbium experiments that have either
been built or are in the planning and construction phase. Examples of new experiments
that are currently realized are in Bonn [Uli17], Cambridge (UK) [Hof21], Cambridge (U. S.,

1 The telecommunication C-band and L-band correspond to the wavelength ranges of 1530 nm - 1565 nm
and 1565 nm - 1625 nm.

7
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Table 2.1.: Atomic mass number of all stable erbium isotopes, their relative abundance, and their
associated quantum statistics [Ber11].

Atomic mass number natural abundance quantum statistics

162 0.14% bosonic
164 1.6% bosonic
166 33.5% bosonic
167 22.9% fermionic
168 27.0% bosonic
170 14.9% bosonic

Harvard) [Phe20], and Hong Kong [Seo20].

In this Chapter, Sec. 2.1 introduces the key properties of atomic erbium that are relevant in
the context of this thesis, such as the special electron configuration and the large magnetic
dipole moment. Furthermore, Sec. 2.2 contains a description of the experimental apparatus
and the experimental sequence to create degenerate quantum gases of erbium for both,
fermionic and bosonic isotopes. Finally, Sec. 2.3 gives a brief introduction to optical lattices
and presents our setup including a discussion on experimental inhomogeneities.

2.1. Basic properties of erbium

Erbium has an atomic mass number of 68 and can be found in the periodic table between
holmium and thulium. Naturally, erbium contains six stable isotopes whose natural abun-
dances range from only 0.14% for 162Er to 33.5% for 166Er [Ber11, Hol18]. The relative
atomic mass, calculated from the atomic mass of the individual isotopes and their relative
isotopic abundances, corresponds to 167.259(3) u2. Table 2.1 gives an overview on the natu-
ral abundance of the various isotopes and the corresponding quantum statistic they follow.
While five isotopes follow bosonic statistics, only 167Er possesses fermionic character. Beside
the 162Er isotope, whose natural abundance is too low to realize efficient cooling and trap-
ping to obtain sufficiently high atom numbers, all isotopes have been brought to quantum
degeneracy [Aik12, Aik14b, Cho16b, Tra18]. Note that the first Bose-Einstein condensate
(BEC) of 164Er has been realized within the work of this thesis.

2.1.1. Historical overview on spectroscopy measurements and ground-state
electron configuration

The 68 electrons of erbium arrange in a special configuration around the atomic core. The
largest number of electrons, i. e. 54, form a closed electronic core, which resembles the electron
configuration of xenon and is denoted as [Xe]. The remaining 14 valence electrons form a
so-called submerged-shell electron configuration, where the 4f -orbital is only partially filled

2 1 unified atomic mass unit = 1 u = 1 Da = 1.660 539 066 60(50) × 10−27 kg
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Figure 2.1.: Energy level spectrum of erbium containing all energy levels up to 2.6× 104 cm−1 and
showing all relevant cooling transitions as well as the narrow transition at 1299 nm. In addition laser
wavelengths used for optical trapping are shown. Even (odd) parity states are shown in red (blue).
Energy levels are taken from Ref. [Kra20].

while the 6s-orbital is complete. Thus, out of 14 possible electrons, only 12 effectively locate
in the 4f -orbital. The ground state electron configuration is written as

[Xe]4f12(3H6)6s
2.

As we will see in the following, the electron structure, containing 14 valence electrons, leads
to a rich and somehow complex energy level structure.

In addition to the obvious interest in atomic transitions for applications in the field of
ultracold quantum gases, spectroscopic measurements represent an important contribution,
e. g. , to the understanding of complex electronic structures of atoms or the determination
of material compositions due to their unique spectral signatures [Lag04]. Originally, in the
1960’s, the latter was the driving force behind an increased interest in atomic spectra. For the
specific case of erbium, the first reported energy levels originate from the analysis of emission
and absorption spectra that have been recorded by L.C.Marquet and S. P.Davies [Mar65b]
as well as V.G.Mossotti and V.A. Fassel [Mos64].

The experiments of L.C.Marquet and S. P.Davies were based on emission spectra of Er2I3
(erbium iodide) placed in a discharge tube and excited by microwave radiation. The atomic
source was heated up to 750 °C in an electric furnace to enhance the spectroscopic signal. The
wavelength selective recording was realized with a Czerny-Turner type spectrometer [Neu14],
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Table 2.2.: Summary of the important atomic transitions used with this thesis. Data for the 401 nm
and 583 nm transitions is taken from Ref. [Har10]. The wavelength as well as the characteristic pa-
rameters for the transition at 1299 nm were determined within the work of this thesis (see Chapter 4).

wavelength (nm) linewidth (Hz) lifetime (ms)

401 29.7(6)× 106 5.4(1)× 10−6

583 186(10)× 103 0.86(5)× 10−3

1299 0.9(1) 178(19)

which contains a diffraction grating that acts as a dispersive element. In this experimental
configuration, the diffracted light and thus the emission spectra of the source material was
photographed and recorded by a spectrograph camera [Rea63]. Due to technical limitations,
the wavelength range accessible in their work was limited from 280 nm to 630 nm [Mar65b].

While the work of L.C.Marquet and S. P.Davies was based on the optical emission spectra,
V.G.Mossotti and V.A. Fassel [Mos64] investigated the absorption spectra of erbium. To
record the latter, sample material was fed into fuel-rich oxyacetylene flames and illuminated
with a light source extending over a broad wavelength range. In their case, the background
light was created by a xenon discharge arc and a tungsten filament, resulting in an observ-
able wavelength range from 250 nm to 650 nm [Mos64]. A specific arrangement of mirrors
in the spectroscopy setup ensured that the light passed multiple times through the oxy-
acetylene flames before being photographed in a spectrometer, amplifying the spectroscopic
signal [Fas63].

However, although a large number of self-reversed lines3 was observed, in their early works
only a low number of lines, including the ground state, could be classified. The large num-
ber of unclassified self-reversed lines suggested the existence of another low lying electron
configuration, which, however, could not be directly resolved due to the limited measure-
ment ranges. In various additional works, the interpretation of the observed energy levels
was advanced [Mar65a, Spe66, Rac66, Spe67]. In particular, N. Spector extended the list of
observed absorption lines in the range from 270 nm to 470 nm [Spe65]. By combining the
available sets of data and by calculating the energy difference from a selection of strong lines
with the whole energy spectra, N. Spector was able to identify a low-lying manifold of energy
levels with odd parity corresponding to the electron configuration 4f115d6s2. In contrast to
the ground state, one of the 12 electrons in the 4f -orbital is excited to the 5d-orbital. A
detailed discussion of this electron configuration and of one specific level of this manifold is
given in Chapter 4.

Today, the NIST database consists of 674 energy levels and is based on the collection of
energy levels in Ref. [Mar78]. The majority of lines originates from unpublished data of van
Kleef and Koot from 1975, which performed extensive measurements on the atomic spectra of
erbium. Figure 2.1 shows all energy levels for a total angular momentum quantum number
J ranging from 2 to 12 and up to an energy of 2.6× 104 cm−1, which corresponds to a
wavelength of about 384 nm. Since the lowest energy level can be found at a wavelength of

3 Self-reversed lines result from a reduction of the emission signal due to re-absorption of the emitted light
by surrounding atoms.
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1986 nm, in principle, all shown energy levels are within reach with standard laser techniques.
The linewidths of the transitions range from µHz to MHz and a selection of energy levels
have transition parameters that make them appealing for the various cooling techniques (see
Sec. 2.2.2) as well as for the optical manipulation of erbium atoms (see Chapter 4). Table 2.2
summarizes the important atomic transitions used within this thesis and gives the respective
linewidths and corresponding excited state lifetime.

2.1.2. Large permanent magnetic dipole moment

A property of the erbium ground state that results from the special electron configuration
is the large angular momentum quantum number, which again leads to a large permanent
magnetic dipole moment µ. The 12 electrons located in the 4f -orbital arrange following
Hund’s rule and tend to maximize both, the multiplicity 2S+1 and the angular momentum
quantum number L [Ste20]. This gives the quantum numbers S = 1, L = 5, and, following
the LS-coupling scheme, the angular momentum quantum number J = L + S = 5 + 1 = 6.
For the bosonic erbium isotopes the nuclear spin I = 0, and therefore the magnetic moment
µJ is given by

µJ = −gSµB
S

ℏ
− gLµB

L

ℏ
, 2.1

with gS ≈ 2.0023 and gL = 1 being the electrons spin and angular momentum g-factor and
µB being the Bohr magneton4.

In contrast to the bosonic counterpart, the fermionic 167Er isotope possesses an additional
nuclear spin of I = 7/2. The coupling of J with I leads to the hyperfine interaction and
F = I + J. As a consequence, for the magnetic moment the additional nuclear spin and
g-factor gI need to be considered and [Foo05]

µF = −gJµB
J

ℏ
+ gIµN

I

ℏ
, 2.2

with gJ being the Landé g-factor and µN being the nuclear magneton5. Since µB >> µN
(me/mp = 1/1836), the magnetic moment can be approximated for most experimental situations
by

µF ≈ −gJµB
J

ℏ
. 2.3

The projection of µJ (µF ), first, along the corresponding basis vectors J and F and second,
along the quantization axis given by an external magnetic field leads to the magnetic moments
of

µ = −mJgJµB (bosons) 2.4

and

µ = −mF gFµB (fermions). 2.5

4 µB = eℏ
2me

, with e the elementary charge and me the electron mass. For our experimental regime it is
convenient to use µB/h = 1.3996 MHz/G

5 µN = eℏ
2mp

, with e the elementary charge and mp the proton mass.
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Here, the magnetic quantum number mJ (mF ) defines the projection of J (F) along the
quantization axis and ranges from mJ = −J to mJ = +J (mF = −F to mF = +F ). For
the respective ground states with mJ = −6 (mF = −19/2) and gJ = 1.163 801(1) [Con63]
(gF = 0.735 032 0(7)), the magnetic moments are

µ = 6.982 806(6)µB (bosons) 2.6

and
µ = 6.982 80(1)µB (fermions). 2.7

The large µ, which is one of the largest of all lanthanides in the periodic table of chemical
elements6, leads to the fascinating dipole-dipole interaction. Note also that the strength
of the dipole moment depends on the specific magnetic sublevel and can be tuned by the
preparation of atoms in different states. Both the dipole-dipole interaction as well as the
preparation in different Zeeman states will be of relevance in Chapter 3.

2.1.3. Zeeman effect

Placed in an external magnetic field, the coupling of µ to B is described by

HB = −µ ·B, 2.8

and in the bosonic (fermionic) case the 2J + 1 (2F + 1) magnetic sublevels, labeled by mJ

(mF ) are no longer degenerate. In the following, the energy shift experienced by an atom
placed in a magnetic field is discussed. For simplicity, B is assumed to be pointing along
z.

Fine-structure Zeeman splitting

To derive a description for the fine-structure, we consider an atom in the internal state |JmJ⟩.
Using Eq. 2.1, the interaction of the electron spin and the orbital angular momentum with
B is described by the Hamiltonian [Ste20]

HB = −µS ·B− µL ·B =
µB
ℏ
(gSSz + gLLz) ·B. 2.9

If the magnetic field is weak compared to the fine-structure energy, B can be considered
as a small perturbation and the energy shift can be calculated using Jz = Sz + Lz and
Jz |JmJ⟩ = ℏmJ |JmJ⟩ via

∆EZ(J,mJ) = ⟨JmJ |HB |JmJ⟩

=
µBB

ℏ
⟨JmJ | (gSSz + gLLz) |JmJ⟩

= µBBgLmJ +
µBB(gS − gL)

ℏ
⟨JmJ |Sz |JmJ⟩ .

2.10

6 Only the elements dysprosium (µ = 9.93µB), terbium (µ = 9.94µB), holmium (µ = 8.96µB), and europium
(µ = 6.98µB) have a comparably large magnetic moment [Fri14a].
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By applying the projection theorem and the relation

S · J =
1

2
(J2 + S2 − L2) 2.11

to the second term of Eq. 2.10, leads to

⟨JmJ |Sz |JmJ⟩ =
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
mJℏ. 2.12

Inserting Eq. 2.12 into Eq. 2.10 results in the familiar Zeeman energy shift

∆EZ(J,mJ) = µBgJmJB, 2.13

where the Landé g-factor is identified as

gJ = gL + (gS − gL)
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. 2.14

Hyperfine-structure Zeeman splitting

We now consider the case of hyperfine interaction, where I ̸= 0. As long as the magnetic
field is small compared to the fine-structure splitting, J is a good quantum number and the
magnetic dipole interaction of the nucleus simply adds to the interaction Hamiltonian [Ste20].
Therefore, for a weak magnetic field the solution of the Hamiltonian follows the previously
discussed fine-structure case and the substitutions J → F , S → I, and L → J can be
performed. The result is consistent with Eq. 2.13, however, the Landé g-factor needs to be
replace by the g-factor gF and mJ with mF . The g-factor is commonly written as

gF ≈ gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
, 2.15

which includes again the approximation, that µB is much larger than µN (see Eq. 2.2).

Paschen-Back effect

When the fine-structure or hyperfine splitting become comparable to the interaction with B,
the angular momentum quantum number J or total angular momentum quantum number
F are no longer good quantum numbers. This is called the Paschen-Back effect and as
a consequence the Zeeman splitting starts to deviate from a linear behavior. For bosonic
erbium the fine-structure splitting isO(1THz) and thus much larger than the interaction with
B (∆EZ = O(10MHz/G)) for reasonable magnetic fields. In contrast, this effect becomes
more important for the fermionic 167Er isotope. The hyperfine splitting in the ground state
is O(GHz) and therefore comparable to the Zeeman energy at experimentally realistic B
fields. On magnetic field scales that are relevant for our experiment, i. e. in the range from
0G to about 50G, the deviation from a purely linear behavior can be corrected by adding a
quadratic term such that Eq. 2.13 turns into

∆EZ(F,mF ) = µBgFmFB +∆Eq(F
2 −m2

F )B
2. 2.16
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In Ref. [Bai18b], the correction factor ∆Eq was extracted from a fit to results obtained via
exact diagonalization and determined to

∆Eq = −h× 12.76(1)Hz/G2. 2.17

We will exploit the quadratic energy shift in Chapter 3 for the preparation of fermionic atoms
in higher magnetic sublevels. At B = 40G, the energy difference between the transitions
|mF = −19/2⟩ → |mF = −17/2⟩ and |mF = −17/2⟩ → |mF = −15/2⟩ is about 41 kHz. This
difference is large enough to prevent populating of the |mF = −15/2⟩ state when driving the
|mF = −19/2⟩ → |mF = −17/2⟩ transition using radio-frequency. This enables a deterministic
preparation of atoms in higher magnetic sublevels.

2.2. The experimental apparatus and cooling sequence

Many individual steps and an advanced technical scheme are necessary to convert a solid
piece of erbium into an atomic cloud that forms a degenerate quantum gas. More than
10 years ago from today, in 2009, the planning, designing, and building of the experimental
apparatus has started and was followed by the first degenerate quantum gas of bosonic erbium
in early 2012 [Aik12]. Since then, the apparatus and the technical components have been
continuously developed and upgraded. A detailed description of the experimental system can
be found in Ref. [Fri14a] and various upgrades are discussed in Ref. [Bai18b] and [Pet20b].
In this Section, a brief introduction to the vacuum setup and the most important steps for
cooling and trapping erbium atoms is given.

2.2.1. Vacuum chamber and first cooling and trapping stage

Figure 2.2 shows a drawing of the complete vacuum chamber. The erbium granules are heated
in a high-temperature oven consisting of two segments at slightly different temperatures. The
so-called effusion cell, in which the atomic sample is placed, runs at a temperature of 1100 °C
and generates an atomic vapor. The second segment, the hot lip, runs at 1200 °C and creates
a temperature gradient to ensure that the atoms move towards the oven aperture. Atoms that
leave the oven have an average atomic velocity distribution at about 430m/s. Naturally, the
atomic beam that leaves the high temperature oven has a certain divergence, which reduces
the number of atoms reaching the main chamber. To increase the atomic flux, the atoms
are cooled radially by a 2D-optical molasses, also referred to as transversal cooling, which
effectively collimates the atomic beam.

Following the transveral cooling stage, the atoms reach the Zeeman slower, whose entrance
marks the end of the first vaccum section. Here, the pressure is on the order of 1× 10−9mbar
and this part is therefore referred to as high-vacuum (HV) section. The Zeeman slower itself
represents a differential pumping stage and connects the HV section to the main chamber in
the ultra-high-vacuum region (UHV) with a pressure on the order of 1× 10−11mbar. The
atoms that leave the Zeeman slower are slowed down to a mean velocity of 5-10m/s. For
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Figure 2.2.: Drawing of the vacuum chamber used for the creation of degenerate quantum gases.
Solid pieces of erbium are heated up in a high temperature oven (red). The atomic beam is collimated
in the transversal cooling section (blue) and the atoms are longitudinally slowed down by the Zeeman
slower (green). After leaving the Zeeman slower the atoms enter the main chamber where they are
first trapped and cooled in the MOT (yellow) and finally also evaporatively cooled. Figure adapted
from Ref. [Fri14a].

both, the transversal cooling as well as for the Zeeman slower we use the atomic transition
at 401 nm, because of its broad linewidth. This has the advantage of a large capture range
and allows for a high photon scattering rate due to the relatively small lifetime of the excited
state (see Tab. 2.2).

In the main chamber, the atoms are cooled and trapped in a three-dimensional magneto-
optical trap (MOT) that operates on the narrow transition at 583 nm. The transition has
a linewidth of about 190 kHz resulting in a low Doppler limited temperature of several µK.
This low temperature is advantageous for subsequent loading of atoms into an optical dipole
trap (ODT). An additional aspect associated with the narrow line MOT and the large mass
of erbium is that it can be realized with only five laser beams, omitting the vertical back
reflection [Ilz18]. This is in contrast to the textbook six-beam configuration and brings the
advantage of additional space for optical access, e. g. the implementation of high-resolution
imaging.

Originally, the light at 583 nm for the MOT was generated with a dye laser system. In the
course of this thesis, the dye laser was replaced by a combined laser system consisting of a
diode laser7 at 1166 nm and a single-frequency Raman-Fiber Amplifier (RFA) including a
second-harmonic generator8 to convert the laser wavelength to 583 nm. Further, the looking
scheme for the laser frequency has been upgraded to a fiber-coupled electro-optical modu-
lator, similar to Ref. [Pat17]. This brings the advantage, that switching between isotopes is

7 Tuneable Diode Laser DLPro, TOPTICA Photonics AG, www.toptica.com.
8 Single Frequency Raman Fiber Amplifier, MPB Communications Inc, www.mpbcommunications.com.

www.toptica.com
www.mpbcommunications.com
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possible without any realigning of laser beams since no additional frequency shifting setup
is necessary. Compared to the previous laser setup based on the dye laser, the new system
improved the overall experimental stability during daily operation. For the bosonic 166Er
isotope, with a MOT loading time of 3 s, we are able to trap about 2.5× 107 atoms at a
temperature of about 10 µK.

2.2.2. Evaporative cooling

The figure of merit to realize a quantum degenerate gas is the phase space denstiy (PSD),
which in an harmonic trap is given by [Pit16]

PSD = Nω̄3

(
ℏ
kBT

)3

. 2.18

Here, N is the atom number, ω̄ is the geometric mean trap frequency, T is the atomic tem-
perature, and kB is the Boltzmann constant. The transition to Bose-Einstein condensation
occurs when PSD ≥ 2.6.

The PSD of the atoms in the MOT at about 10 µK is on the order of 4× 10−6 [Fri12].
To reach the value of 2.6, an additional cooling step, called evaporative cooling, must be
performed. For this purpose, the atoms are loaded into a crossed ODT generated by two
orthogonally intersecting laser beams at a wavelength of 1064 nm and with a power of about
7W. An additional scanning technique implemented for one of the trapping beams (see
Ref. [Bai12] for details) allows us to transfer about 10% of the atoms from the MOT into
the ODT.

To increase the PSD, the optical potential is then gradually reduced by decreasing the power
of the trapping beams. Due to the lower potential depth, the hottest atoms can no longer
be held in the trap and are lost. Consequently, this leads to a truncation of the Boltzmann
velocity distribution. During and after each step of laser power reduction, the atoms re-
thermalize via elastic collisions, which finally results in an effectively lower temperature (the
scattering of dipolar atoms is discussed in more detail in Chapter 5). For example, for the
bosonic 166Er isotope, we obtain a BEC of about 1.2× 105 atoms and a condensate fraction
of 80% after the evaporative cooling sequence.

The overall similarity of the bosonic isotopes allows for an easy switching between them.
The only two parameters that need to be considered for the evaporative cooling are the
magnetic field to set the desired scattering length and the duration of the ramps for the laser
powers. The latter is necessary due to a different value of the scattering length and therefore
different thermalization rates. Within this thesis, BECs of the four bosonic isotopes 164Er,
166Er, 168Er, and 170Er were used.

Thanks to the dipole-dipole interaction, elastic collisions between identical fermions are not
suppressed. Therefore, direct evaporative cooling can also be used for the fermionic 167Er
isotope [Aik14b] to approach the Fermi temperature

TF =
ℏω̄3(6N)1/3

kB
. 2.19
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The major difference compared to the bosonic counterpart is a reduced atomic lifetime in
an optical trap at 1064 nm. Therefore, an additional step in which the atoms are transferred
into a crossed ODT operating at 1570 nm is introduced. At the end of the evaporation, we
end up with a degenerate Fermi gas of about 4× 104 atoms with T/TF ≈ 0.1. The fermionic
isotope is used in Chapter 3.

2.3. The optical lattice: A platform for quantum simulation

2.3.1. A brief introduction to optical lattices

Optical lattices represent a versatile platform which allows to study various quantum many-
body phenomena. These cover for example the realization of Hubbard models [Jak98, Jak05,
Dut15] or the investigation of spin lattice models, e. g. the Heisenberg model [Sac08, Blo08b,
Tro08, Gre13]. In contrast to the study of complex crystal configurations in condensed
matter systems, the experimental implementation of optical lattices is relatively simple.
As already for moderate system sizes, theoretical simulations of the underlying models are
very challenging, following the famous approach by R. Feynman, ultracold atoms loaded into
optical lattices can serve as platform for quantum simulation [Fey82].

The easiest configuration for an optical lattice consists of three orthogonal pairs of counter-
propagating Gaussian laser beams leading to a cubic lattice geometry. The potential expe-
rienced by a particle of mass m can be described via [Gre08, Gro17]

Vlatt(x, y, z) ≈ Vx sin
2(kxx) + Vy sin

2(kyy) + Vz sin
2(kzz)︸ ︷︷ ︸

periodic potential

+
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)

︸ ︷︷ ︸
harmonic confinement

. 2.20

Here, the first part describes the periodic potential landscape with lattice depths of Vx,
Vy, and Vz along the corresponding lattice directions with wave vectors kx, ky, and kz.
This periodic term arises from the interference of counter-propagating laser beams forming
a standing wave. The second part describes the residual harmonic confinement given by
the Gaussian intensity distribution of the laser beams and characterized by the harmonic
trapping frequencies ωx, ωy, and ωz.

A particle placed in such a periodic potential can be described by Bloch wave functions, which

have the form of a plane wave eiqx/ℏ that is modulated by a periodic function u
(n)
q (x) [Jak98].

As an example, in one-dimension, the Bloch wave function can be written as [Blo29, Ash76]

ϕ(n)q (x) = eiqx/ℏu(n)q (x), 2.21

with q being the quasi-momentum and n indicating the nth energy band. Note that the

periodicity of u
(n)
q (x) is congruent with the potential period.

From Eq. 2.21 is becomes clearly visible, that the Bloch wave functions are completely de-
localized over the whole crystalline structure. An alternative, localized description for a
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Figure 2.3.: Schematic illustration of (a) atoms (red circles) in an optical lattice and (b) electrons
(green circles) in a periodic potential created by the ionic cores (blue circles). The red solid line
represents the atom (electron) wavefunction, which is similar for both systems.

particle in band n is provided by the so-called Wannier functions [Koh59], which are given
by the Fourier transform of the Bloch wave functions [Tre11]

wi
n(x− xi) =

1√
M

∑

q

e−iqxi/ℏϕ(n)q (x). 2.22

The index i of the position xi describes the i
th lattice site andM is a normalization constant.

For an orthogonal optical lattice, the three-dimensional Wannier function w(r) is formed
by the product of the one-dimensional functions w(r) = w(x)w(y)w(z). Note that the
Wannier function in Eq. 2.22 is not uniquely defined. To obtain the maximally localized

Wannier function the complex phase of ϕ
(n)
q (x) needs to be chosen such that wi

n(x − xi)
is real, falls off exponentially, and is symmetric or anti-symmetric about either x = 0 or
x = q/2 [Koh59, Dal05]. The usage of Wannier functions is particularly useful in the tight-
binding approximation for deep optical lattices, where populations in higher bands are highly
suppressed, and for the description of local interactions.

Figure 2.3 shows a schematic comparison of a one-dimensional optical lattice and a basic
crystalline structure. Electrons that move in the periodic potential created by the positively
charged ions forming the crystal are represented by atoms trapped in the optical potential.
Importantly, the atoms in the optical lattice are described by a similar wavefunction as the
electrons in the crystal array, underlying once more the potential to utilize ultracold atoms
in an optical lattice as a quantum simulator [Geo14, Sch20a, Alt21].

2.3.2. The lattice setup

In our experiment, we use a three-dimensional optical lattice setup created by three retro-
reflected laser beams that are perpendicular to each other. Along the vertical direction, de-
fined by gravity, we use laser light at 1064 nm, leading to a lattice spacing of dz = 1064 nm/2 =
532 nm. In the orthogonal, horizontal plane, the lattice is created by two retro-reflected laser
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Figure 2.4.: Overview over the optical lattice setup. The alignment of the laser beams on the main
chamber is shown in a side-view (left) and a top-view (right). The box on top shows the distribution
of the light at 532 nm based on a diode-pumped solid-state laser reaching an output power of 10W.
The light at 532 nm is transported to the experiment using 8m long optical fibers. The lower box
shows the last stage of the optical setup before reflection onto the atoms for the vertical lattice beam
at 1064 nm with the light generated from a Mephisto MOPA. For reference, also the beams of the
horizontal optical dipole trap at 1064 nm and the 401-nm light for absorption imaging are shown.
Figure adapted from Ref. [Bai18b]
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beams at 532 nm, resulting in half the vertical lattice spacing, i. e. dx,y = dz/2 = 266 nm. The
lattice potential formed at these wavelengths is attractive for erbium atoms, which means
that the atoms will locate at the intensity maxima. Note that, due to alignment purposes,
our vertical lattice beam has a small angle of about 11(2)° with respect to the vertical axis.
This translates into a slight deviation from a perfect cuboid lattice geometry leading to
lattice spacing of (dx, dy, dz) = (271(2), 266(1), 542(2)) nm.

We use two different laser systems to generate the light for three lattice beams. For the
light at 1064 nm for the vertical lattice, we use part of the power from our horizontal ODT.
This special configuration is possible, because both trapping beams are never switched on
simultaneously at maximum power. The lattice beams are ramped-up only at the end of the
evaporative cooling stage, when the power in the horizontal trap is at low level. The laser
system used here is based on a Mephisto MOPA. The beam waist is 300 µm which results in
a radial harmonic trapping frequency of about 2π × 25Hz at 6W. For the light at 532 nm,
we utilize a diode-pumped solid-state laser system9. The beam waist for the lattice beams
is 160 µm, leading to a radial trapping frequency of about 2π × 40Hz at a power of 1.2W.
Figure 2.4 shows a schematic illustration of the optical lattice setup as implemented in the
experiment.

In addition to the optical lattice, the light at 532 nm is used at the same time as for optical
pumping of the dye laser for the generation of light at 583 nm. In combination with the 8m
long optical fibers our maximal available power at the experiment table is limited to about
1.2W. Since this also limits the maximum achievable lattice depth and because the dye laser
was replaced which provides more power, an upgraded light distribution was implemented
during the time of this thesis; see Appendix A.

Inhomogeneities over the atomic cloud

For the experimental realization of (spin) lattice models, it is important to have a homoge-
neous potential and energy landscape over the entire atomic sample. Any deviation from an
ideal configuration can have implications on the observed quantum phases or dynamics in the
system. Inhomogeneities can be caused by various technical sources, such as the Gaussian
shape of the laser beams or external magnetic field gradients. In the following, we briefly
review the different sources of inhomogeneities with respect to our lattice system.

Let us look at the potential generated by two orthogonal lattice beams along the propagation
direction of one beam; see Fig. 2.5(a). For simplicity, we consider two sections, one through
the maximum intensity and a second one slightly displaced from the center of one beam.
Figure 2.5(b) shows an amplified schematic illustration of the lattice inhomogeneity along
these lines. Note that the lattice potential is created by one of the two considered beams,
while the strong Gaussian confinement is generated by the second lattice beam in orthogonal
direction.

One consequence of the non-uniform intensity distribution is a spatial variation of the lattice

9 Coherent Verdi V10, 10W at 532 nm.
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Figure 2.5.: Schematic illustration of the optical lattice potential along one dimension. (a) Illustra-
tion of the two intersecting Gaussian beams (black solid lines). (b) The solid blue (red) line represents
the lattice potential V (x) along the dashed lines in (a). The black dashed line indicates the Gaussian
envelope of the intensity distribution of the laser beam. The horizontal green lines illustrate the lowest
energy level on the corresponding lattice site and ∆Eij indicates the energy difference between two
neighboring lattice sites. Note that this represents the energy shift in a strongly amplified manner
since in experiments atoms occupy dominantly the high lattice depth region.

depth, which follows the Gaussian envelope of the laser beam intensity. This results for
example in a variation of the tunneling rate t, defined by the overlap of the Wannier function
of two lattice sites i and j as

t = −
∫
d3r w∗

i (r)

[
−ℏ2∇2

2m
+ Vlatt(r)

]
wj(r). 2.23

Here, w∗
i (r) corresponds to the Wannier function in the first lattice band as defined in

Eq. 2.22. Importantly, the change in potential depth leads to a modification of the local
Wannier functions and thus to a spatially non-uniform t. Figure 2.6(a) shows the spatial
variation of t along one horizontal dimension of our experimental system, considering a
maximum lattice depth of V0 = 20Erec

10 and a lattice size of about 40-80 sites. Assuming
that the atoms are located exactly in the center of the laser beams, the tunneling rate
increases by about 4% towards the edge of the lattice. Note that in most experimental
realizations, the atoms dominantly occupy the lattice sites at the center of the intensity
distribution and therefore the variation of t is strongly reduced for larger beam waists.

Depending on the underlying physics, the energy offset ∆Eij between two adjacent lattice
sites (see Fig. 2.5(b)) takes on an important role. The origin of ∆Eij can be manifold. In our
system, on the one hand, energy differences arise from the Gaussian intensity distribution
which leads to spatial dependent light shifts and a residual harmonic trapping confinement.
On the other hand, uncontrolled magnetic field gradients lead to a spatially varying Zeeman
shift. Therefore, for our experimental configuration, ∆Eij can be decomposed in three
dominant contributions as

∆Eij = ∆Eij
harm +∆Eij

quad +∆Eij
lin. 2.24

Here, ∆Eij
harm and ∆Eij

quad account for energy differences that arise due to the residual

harmonic trapping confinement and tensorial light shifts, and ∆Eij
lin accounts for the linear

10 Erec = ℏ2k2
lat/2m is the photon recoil energy with klat being the lattice wavevector.



22 2. Erbium: From the basic properties to atoms in an optical lattice

-40 -20 0 20 40

10.6

10.7

10.8

10.9

11

-40 -20 0 20 40

0

10

20

30

40

50

-40 -20 0 20 40

-300

-150

0

150

300

-19/2 -11/2 -3/2 3/2 11/2 19/2

-20

-10

0

10
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distribution. (d) ∆EmF

quad as a function the mF states at lattice site i = 0.

Zeeman shift due to a magnetic field gradient. Despite all energy shifts are contributing to
∆Eij , their impact depends on the underlying physical system. In the following, these three
contributions are discussed individually.

The energy difference ∆Eij
harm between neighboring lattice sites i and i+1 can be calculated

considering the second part of Eq. 2.20 as

∆Eij
harm =

mω2
xd

2
x

2
(i2 − (i+ 1)2). 2.25

Figure 2.6(b) shows the variation of ∆Eij
harm as function of the distance to the central lattice

site for our experimental configuration. The energy difference increases linearly towards the
edge of the lattice. For deep optical lattices, where tunneling is strongly reduced, the role of
∆Eij

harm is negligible for many experimental aspects. The role of ∆Eij
harm becomes important

for processes that rely on the contribution of t. A prominent example are super-exchange
interactions, where strength of the exchange process is ∝ t2 [Tro08, Bro15]. Moreover, when
∆Eij

harm > 4t, particle tunneling is suppressed and thus it can lead to a spatially reduced
tunneling rate.

In contrast, ∆Eij
lin and ∆Eij

quad can become important at large lattice depths, when atoms
are pinned to local sites. As we will see in Chapter 3, these contributions are particularly
relevant to the observation of spin-exchange dynamics, where atoms change their internal
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magnetic sublevel. If the energy shift between lattice sites of involved atoms is too large,
these dynamics are strongly affected.

A magnetic field gradient translates into an energy shift at lattice site i with respect to the
center of

∆Elin = gFmFµBidx∆B. 2.26

Figure 2.6(c) shows the resulting energy shift across the lattice array for atoms inmF = −19/2
due to a magnetic field gradient of ∆B = 0.023mG/µm11. Moreover, between adjacent
lattice sites this leads to ∆Eij

lin ≈ 6Hz.

What makes the quadratic light shift special is that, in addition to the intensity of the
trapping light, it depends quadratically on the magnetic sublevel. The light shift has its
origin in the tensorial polarizability and is given by [LK13, Lep14]

∆EmF
quad = Iαt

F (F + 1)− 3m2
F )

F (2F − 1)

1− 3 cos2 θp
2

. 2.27

Here, θp denotes the angle between the light polarization and the quantization axis and αt is
the tensorial polarizability coefficient. In Ref. [Bec18], αt was experimentally determined to
be −15 a.u.12. While ∆Eij

quad is estimated to be < 0.2Hz across our atomic sample, ∆EmF
quad

is changing significantly on a single lattice site for different mF states. Figure 2.6(d) shows
∆EmF

quad for an atom sitting at the center at lattice site i = 0. The difference of ∆EmF
quad is

the largest for the edge mF -states being about 10Hz. Note that due to the dependence on
θp, the magnitude of the light shift also depends on the orientation of the external magnetic
field and can therefore potentially be tuned by the light polarization.

11 ∆B was estimated for our system using radio-frequency spectroscopy measurements of the mJ = −6 to
mJ = −5 transition in bosonic erbium.

12 1 a.u. = 4πϵ0a
3
0 = 1.6488 × 10−35/2hϵ0cHz/Wmm−2.
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Dipolar spin-exchange dynamics
in a three-dimensional optical
lattice

One of the most ambitious goals for experimental physicists is the realization of a quantum
simulator that allows for the understanding of complex many body quantum systems as
well as physical processes occurring in chemistry and biology [Geo14, Blo12, Gro17]. The
classical computational resources that are necessary for an efficient prediction of quantum
phenomena scale exponentially with the system size and reach therefore quickly fundamental
limitations. To date, a large number of different approaches to realize such a simulator are
based on various platforms and subject to ongoing investigations [Alt21]. Some of the most
promising ideas include, e. g. trapped ions [Bla12, Hem18], superconducting circuits [Aru19,
Kja20], Rydberg atoms in optical tweezers [Ber17, Bro20], and neutral atoms in optical
lattices [Jak05, Str11, Geo14].

Platforms based on neutral atoms bring along a number of advantages. On the one hand,
they are well isolated from the environment, for instance, the atoms do not couple to any
external thermal bath [Gro17]. On the other hand, these platforms have various tuning knobs
for both, internal degrees of freedom, for example the preparation of atoms in spin states, and
external degrees of freedom, such as shaping of the corresponding trapping potential. Thanks
to the great technical development over the decades various possibilities have emerged to
exploit these degrees of freedom, including lasers featuring a narrow linewidth to address the
atomic spin [Zha14, Sca14], spatial light modulators (SLM) [Gau13, Nog14] and digital micro
mirror devices (DMD) [Maz17, Nic19] for the creation of almost arbitrary optical potentials,
or quantum gas microscopes which enable single atom detection [Bak09, She10, Che16].

Putting all together, it has been proposed and successfully demonstrated that this repre-
sents powerful platforms to simulate relevant condensed matter phenomena [Alt21]. For
example, an approach to describe the electronic behavior in solid state systems is based
on the Hubbard model, whose central idea is the competition of inter particle interactions
and hopping between lattice sites [Aue94]. Over the last two decades, great progress on the
realization of predictions made by the Hubbard model has been made using alkali atoms
loaded into optical lattices [Gro17], which includes, e. g. , the observation of the superfluid
to Mott insulator transition [Gre02], the confirmation of the existence of the Higgs mode
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26 3. Dipolar spin-exchange dynamics in a three-dimensional optical lattice

in two dimensional systems [End12], and the engineering of topological phases and artificial
gauge fields [Aid13, Aid15].

In common Hubbard models, including the experiments based on alkali atoms mentioned
above, the inter-particle interaction is dominantly short-ranged. As a consequence only
interactions that occur between particles sitting on the same lattice site, the so-called on-
site interactions, are considered. Although the electrostatic interaction scales as ∝ 1/r and
is therefore long-ranged, due to the electric field screening effect it represents is a good
approximation for many experimental situations. However, there exists a large class of
models, which include long-range interactions and are therefore hardly accessible with alkali
atoms [Dut15]. An important example are spin-spin interactions between atoms located in
different lattice sites and the related realization of spin lattice models such as the Heisenberg
Hamiltonian [Hei28]. Partially, this problem has been circumvented by the implementation
of super-exchange interactions, which involves a virtual tunneling process. As this process
scales with the tunneling rate, these interactions are weak in deep optical lattices. They
are further limited to nearest neighbors and therefore a large class of Hubbard models are
hardly accessible with alkali atoms. This makes the observation of quantum magnetism and
long-range ordering in these systems challenging due to the small energy scales related and
the required low temperatures. Nevertheless, they enable the observation of new ordered
ground states such as the anti-ferromagnetic ordering [Maz17].

First experimental realizations of optical lattice systems with long-range interactions have
been demonstrated with polar molecules featuring an electric dipole moment [Yan13, Haz14]
and with magnetic atoms such as chromium [dP13b, Lep19] and erbium [Bai16] featuring
a magnetic dipole moment. While the magnetic dipole moment is permanent, the electric
dipole moment needs to be induced by an external electric field. Typically, the strength of
the electric dipole moment is about one to two orders of magnitude larger than for magnetic
dipoles. However, molecules suffer from a more complex and less controlled preparation
protocols blocking these systems to very low filling factor. Recently, the field of ultracold
molecules has experienced a substantial improvement by the creation of the first molecular
degenerate quantum gases [Mar19, Dud21].

In this work, we have realized the first simulator for quantum magnetism based on fermionic
dipolar erbium atoms. The basis for the simulator is the dipole-dipole interaction, which
is described in Sec. 3.1. In the next step, in Sec. 3.2 we consider atoms which are loaded
into an optical lattice. We introduce the Hamiltonian describing our system and discuss
the XXZ-Heisenberg model. Finally, Sec. 3.3 presents our publication on the observation of
dipolar exchange interactions for large-spin fermions.
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3.1. Dipole-dipole interaction

3.1.1. General description of two interacting dipoles

The dipole-dipole interaction (DDI) has led to the discovery of many fascinating phenom-
ena [Cho22], such as the Fermi-surface deformation [Aik14a] or the recent realization of
supersolid states in erbium [Cho19] and dysprosium [Böt19b, Tan19, Cho19, Nor21]. The
potential that describes the interaction between two non-polarized magnetic dipoles, µ1 and
µ2, can be written in a general form as [Lah09]

UDDI(r) =
µ0
4πr3

(
µ1µ2 −

3

r2
(µ1r) (µ2r)

)
. 3.1

Here, µ0 is the vacuum permeability1 and r = r1 − r2 denotes the distance between the two
dipoles. Note that for electric dipoles, the equivalent formula is valid with the substitutions
µ0 → 1/ϵ0 and µi → di, with ϵ0 being the vacuum permittivity and di being the electric dipole
moment. However, while for magnetic atoms the dipole moment is permanent, the strength
of the electric dipole moment, for example of polar molecules, depends on the amplitude of
an external polarizing electric field.

In most experimental situations, the atoms are polarized by an external magnetic field B
and Eq. 3.1 can be simplified to

UDDI(r, θ) =
µ0µ

2

4π

1− 3 cos2 θ

r3
. 3.2

The strength of the DDI depends on both, the orientation of B with respect to the inter-
particle axis r, given by θ, and on the distance r = |r| between the interacting particles; see
Fig. 3.1(a).

Equation 3.2 reflects two important characteristics of the DDI:

� From a thermodynamic point of view, the DDI has long-range character in three-
dimensions, meaning that the energy is intensive in the thermodynamic limit and
depends on the total atom number and the atomic density [Ast08]. This manifests
by the 1/r3 dependence of the interaction energy, that leads to the divergence of the
integral of the interaction potential [Lah09, Cho22].

� The DDI is anisotropic and exhibits d-wave symmetry (characterized by four lobes with
alternating phase), which is reflected in the dependence on 1− 3 cos2 θ. Depending on
θ, the corresponding factor can vary from −2 to +1 and thus UDDI(r, θ) is attractive for
dipoles in head-to-tail configuration and repulsive for dipoles in side-by-side configura-
tion; see Fig. 3.1(b)-(c). For the so-called magic-angle of θ = 54.7° the term 1−3 cos2 θ
and in consequence the DDI vanishes.

1 µ0 = 1.256 637 062 12 × 10−6 N/A2
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Figure 3.1.: (a) The interaction between two dipoles µ1 and µ2 polarized by an external magnetic
field depends on the orientation of B with respect to the inter-particle axis r. (b) Three-dimensional
representation of Eq. 3.2 for two interacting magnetic dipoles. Red (blue) color represent repulsive
(attractive) interaction. (c) UDDI for two magnetic dipoles separated by 266 nm (see our lattice
configuration in Sec. 2.3.2 and 3.2.3) as a function of the dipole orientation θ.

A further important consequence that arises directly from the DDI and has not been consid-
ered in Eq. 3.2 are spin-exchange interactions and spin-relaxation dynamics [Hen03, Pas10],
which will be introduced in the upcoming section.

3.1.2. Spin-exchange and dipolar relaxation due to DDI

For simplicity, in the following the interaction potential between two atoms, labeled by the
numbers 1 and 2, where the magnetic interaction arises only from the electronic spin is
considered (L = 0 and I = 0). The spin changing property becomes clear by rewriting the
tensorial part (µ1µ2 − 3 (µ1er) (µ2er)) of Eq. 3.1, with er = r/|r| and µi = gsµBSi, in terms
of the quantum mechanical operators as

(S1 · S2)− 3(S1 · er)(S2 · er) = Sz
1S

z
2 +

1

2
(S+

1 S
−
2 + S−

1 S
+
2 )

− 3

4
(2rzS

z
1 + r−S

+
1 + r+S

−
1 )× (2rzS

z
2 + r−S

+
2 + r+S

−
2 )

= (1− 3r2z)

(
Sz
1S

z
2 − 1

4
(S+

1 S
−
2 + S−

1 S
+
2 )

)

− 3

4
r2−S

+
1 S

+
2 − 3

4
r2+S

−
1 S

−
2

− 3

2
rzr−(S

z
1S

+
2 + S+

1 S
z
2)−

3

2
rzr+(S

z
1S

−
2 + S−

1 S
z
2)

3.3

with r± = rx ± iry and S± = Sx ± iSy [Hen03, Dut15]. The coefficients rx,y,z correspond to
the vector elements of er. A more intuitive picture can be obtained by including the trans-
formation from the Cartesian into a spherical coordinate system, leading to rx = sin θ cosϕ,
ry = sin θ sinϕ, and rz = cos θ. Here, θ and ϕ are the polar and azimuth angle of r with re-
spect to the Cartesian coordinate system. Inserting the coordinate transformation in Eq. 3.3
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results in

(S1 · S2)− 3(S1 · er)(S2 · er) = (1− 3 cos2 θ)

(
Sz
1S

z
2 − 1

4
(S+

1 S
−
2 + S−

1 S
+
2 )

)

− 3 sin2 θ

4

(
e−2iϕS+

1 S
+
2 + h.c.

)

− 3 sin 2θ

4

(
e−iϕ

(
Sz
1S

+
2 + S+

1 S
z
2

)
+ h.c.

)
,

3.4

where h.c. denotes the Hermitian conjugate. Equation 3.4 reveals once more the special
tunability of dipolar interactions, since each individual term has a significant dependence on
θ.

To understand the impact of Eq. 3.4 we need to consider the eigenvalues of the individual
operators acting on the respective eigenstate. Acting on the state |S,ms⟩, the operators Sz

i

and S±
i result in

Sz
i |S,ms⟩ = ms |S,ms⟩ 3.5

and

S±
i |S,ms⟩ =

√
S(S + 1)−ms(ms ± 1) |S,ms ± 1⟩ . 3.6

While Sz
i leaves the magnetic sublevel unchanged, the ladder operators increment or decre-

ment the magnetic quantum number ms.

Knowing the results of Sz
i and S±

i acting on a quantum state |S,mS⟩, the terms in Eq. 3.4
allow for an intuitive physical interpretation. In the first line, the interaction terms are
magnetization conserving, meaning that the total magnetization M2 remains unchanged.
While, as shown in Eq. 3.5, Sz

1S
z
2 does not change the magnetic quantum number for any

of the two atoms, the term S+
1 S

−
2 (S−

1 S
+
2 ) increases and decreases the magnetic quantum

numbers symmetrically. While ms increments for particle 1, it decrements for particle 2 and
vice versa. This term is of particular interest for the aim of this thesis, because it allows for
the investigation of magnetization conserving spin-exchange dynamics in an optical lattice.
We will encounter this interaction term again in the following Secs. 3.2.1 and 3.2.2. Note
that the first term, (1 − 3 cos2 θ)Sz

1S
z
2 corresponds to Eq. 3.2 and describes elastic dipolar

interactions.

In contrast to the first line, the terms in the second and third line of Eq. 3.4 do not preserve
the total magnetization. The term S+

1 S
+
2 (S−

1 S
−
2 ) increments (decrements) ms for both

atoms simultaneously and leads therefore to a change of M by ∆M = ±2. Finally, in the
last line of Eq. 3.4, ms of one atom remains unchanged, while the second atom changes its
projection by ±1.

Although all spin exchange and spin relaxation terms are present at any time, they are often
suppressed due to arguments based on energy conservation. In the following, we will consider
the case of fermionic erbium atoms confined in an optical lattice.

2 The total magnetization is defined as the sum of the magnetic quantum numbers as M =
∑

i m
i
s, where

the superscript i denotes the particle index.
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3.2. Dipolar Fermions in an optical lattice

For dipolar atoms confined in an optical lattice, based on the decomposition of the DDI
given in Eq. 3.4, the Hamiltonian governing the dipolar interactions can be written as

HDDI =
∑

i,j ̸=i

Vi,j{(1− 3 cos2 θ)

(
F z
i F

z
j − 1

4
(F+

i F
−
j + F−

i F
+
j )

)

− 3 sin2 θ

4

(
e−2iϕF+

i F
+
j + h.c.

)
− 3 sin 2θ

4

(
e−iϕ

(
F z
i F

+
j + F+

i F
z
j

)
+ h.c.

)
}.

3.7

This contains also the substitution of S → F to account for the total angular moment
quantum number. Moreover, Vi,j denotes the coupling strength between two atoms sitting
on lattice sites i and j. It can be calculated using the definition of Wannier functions in
Eq. 2.22 by

Vi,j =
µ0µ

2
Bg

2
F

4π

∫
d3rd3r′

1− 3 cos2 θ

|r− r′|3 |wi(r)|2|wj(r
′)|2. 3.8

Note that the Hamiltonian in Eq. 3.7 accounts for the fact that each lattice site is occupied
by maximally one atom.

It is further important to mention, that for atoms in the lowest energy band, the non-
magnetization conserving terms in Eq. 3.7 are allowed only if the released Zeeman energy
is compensated by the change in the F z

i F
z
j energy contribution. As this is only the case

for very low magnetic fields (B << 1mG), for our experimental configuration only the
magnetization conserving term needs to be considered. Note that demagnetization processes
involving higher energy bands have been nicely demonstrated in Ref. [dP13a] using bosonic
chromium atoms.

3.2.1. Hamiltonian for spin lattice models

Depending on the underlying system properties, e. g. the fermionic or bosonic nature of the
atoms or spin degree of freedom, different lattice models fit best to describe the system’s
behavior. As mentioned above, the system discussed withing this thesis consists of dipolar
fermionic erbium atoms loaded into a three-dimensional optical lattice. Considering both,
spin dynamics (internal degree of freedom) and particle hopping (external degree of freedom),
the system is well described by a general spin-lattice model given by [Dut15]

H = −t
∑

⟨i,j⟩,σ

(f †i,σfj,σ + h.c.)

+ U
∑

i,σ ̸=σ′
ni,σni,σ′

+
1

2

∑

i ̸=j

Vi,j

[
F z
i F

z
j − 1

4
(F+

i F
−
j + F−

i F
+
j )

]
.

3.9

The first line in Eq. 3.9 describes the tunneling between neighboring lattice sites i and j
denoted by ⟨i, j⟩. The operators f †i,σ and fi,σ are the creation and annihilation operator for
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an atom on lattice site i with spin state σ. The tunneling rate t depends on the overlap
between two neighboring Wannier functions and was defined previously in Eq. 2.23.

The second line includes the on-site interaction U = Uc+UDDI, i. e. the interaction between
atoms sitting on the same lattice site, accounting for both [Bai16], contact

Uc =
4πℏ2as
m

∫
d3r|w(r)|2, 3.10

and dipolar

UDDI =
µ0µ

2
Bg

2
F

4π

∫
d3rd3r′

1− 3 cos2 θ

|r− r′|3 |w(r)|2|w(r′)|2. 3.11

interactions. The parameter as denotes the s-wave scattering length.

Ultimately, the last line of Eq. 3.9, describes the off-site contribution due to the DDI. While
the symmetric term F z

i F
z
j accounts for the diagonal part of the interactions, the off-diagonal

part is given by F+
i F

−
j + F−

i F
+
j , describing the dipolar-exchange interactions. The non-

magnetization conserving terms in Eq. 3.7 have been omitted here since they are highly
suppressed in our experimental parameter regime.

Importantly, the full Hamiltonian of Eq. 3.9 has never been realized under the aspect of
competing t and U . Up to today, only limited situations with very low tunneling have been
explored experimentally [Yan13, Lep19] (see also Sec. 3.2.3) and the experiments focused on
spin-spin interactions.

3.2.2. The Heisenberg Model

From a classical point of view, the Bohr -Van Leuween theorem, demonstrated by N.Bohr
and J.H.Van Leuween in their respective doctoral theses [Boh11, Van21], says that accord-
ing to classical mechanics the net magnetization of a particle ensemble vanishes in thermal
equilibrium. This argumentation roots in the fact that following statistical mechanics, the
occupation probability for any state of motion depends on the kinetic energy. An external
magnetic field exhibits a force orthogonal to the particle velocity and has therefore no influ-
ence on the kinetic energy. This means that the motion of the particle is the same whether a
magnetic field is applied or not, and therefore no effects such as para- or diamagnetism can
be explained. Moreover, this underlines, that magnetism is a purely quantum mechanical
phenomenon [Fey11].

A model, which in the past has proven to successfully describe magnetic interactions, is the
Heisenberg model, developed by W.Heisenberg in 1928 [Hei28]. Among the most famous
magnetic orders are the ferro- and antiferromagnetic ground states, in which the microscopic
spins are parallel or anti-parallel aligned [Aue94, Maz17]. For two fermionic erbium atoms,
the Hamiltonian can be written as [Bru04]

HH = −
∑

i,j ̸=i

JijFi · Fj . 3.12
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Here, Jij describes the spin interaction between particles sitting at site i and at site j and Fi

is the spin vector. From Eq. 3.12 it follows directly that the spins energetically prefer parallel
(anti-parallel) ordering for Jij > 0 (Jij < 0) [Aue94]. Note again that in our case the spin
is encoded in the Zeeman sublevels of the hyperfine manifold and we therefore substitute S
with F.

By carrying out the vector multiplication, Eq. 3.12 becomes

HH = −
∑

i,j ̸=i

JxF
x
i F

x
j + JyF

y
i F

y
j + JzF

z
i F

z
j . 3.13

Four special cases result from this description:

� In one dimension, where Jx = Jy = 0, the Heisenberg Hamiltonian simplifies to the
Ising model in which the number of spin components is reduced to one being parallel
or anti-parallel to the quantization axis.

� The XYZ-Heisenberg model for which Jx ̸= Jy ̸= Jz. For dipolar interactions the real-
ization of the XYZ-Heisenberg model is directly associated with the non-magnetization
conserving terms in Eq. 3.7, as [Cho22]

αSx
i S

x
j + βSy

i S
y
j =

α+ β

2

(
S+
i S

−
j + S−

i S
+
j

)
+
α− β

4

(
S+
i S

+
j + S−

i S
−
j

)
.

� The isotropic XXX-Heisenberg model for equal coupling strengths Jx = Jy = Jz.

� The anisotropic XXZ-Heisenberg model for Jx = Jy ̸= Jz.

Introducing once more the raising and lowering operators F±
i = F x

i ± iF y
i , the XXZ-

Heisenberg model, which is of central interest within this work, can be re-written as

HXXZ =
∑

i,j ̸=i

[
JzF

z
i F

z
j +

Jx
2

(
F+
i F

−
j + F−

i F
+
j

)]
. 3.14

When comparing Eq. 3.14 with the last line of Eq. 3.9 a strong similarity becomes evident.
Importantly, this underlines the fact that our system represents a quantum simulator for
the XXZ-Heisenberg Hamiltonian, arising directly from the dipole-dipole interaction. To
avoid possible confusion it should be emphasized that in literature J is often used as an
abbreviation for the tunneling rate, while here Jx,y,z denotes the coupling strength between
the spin orientations.

The results of the operators F z
i and F+

i acting on the atomic state |F,mF ⟩ is analogous
to Eq. 3.5 and Eq. 3.6, where S is replaced by F . By considering Eq. 3.14, Eq. 3.9, and
applying the operator rules given in Eq. 3.6, it becomes clear, that the early timescale for
the spin-exchange dynamics driven by F+

i F
−
j (and F−

i F
+
j ), for a fixed lattice configuration,

is depending on two factors:
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(i) on the initial mF state, as

F+F− |F,mF ⟩ =
√
F (F + 1)−mF (mF + 1)

√
F (F + 1)−mF (mF − 1) |F,mF ⟩

= γ(mF ) |F,mF ⟩

and

(ii) on the strength of the DDI given by Vi,j and therefore on the dipole orientation θ; see
Eq. 3.8.

In our experimental work presented in Sec. 3.3, we demonstrate control over both the initial
spin state and the dipole orientation.

3.2.3. Our experimental system

In this section we give a brief reminder about our experimental lattice setup and describe
in particular how it relates to the Hamiltonian given in Eq. 3.9. Note that a more detailed
description of the setup is given in Sec. 2.3.2.

Our lattice is created by three orthogonal retro-reflected laser beams, whereby two beams
that are at a wavelength of 532 nm form a horizontal plane and a third beam at 1064 nm
propagates along gravity. This leads to lattice spacing of 266 nm between two sites within
the horizontal plane and a spacing of 532 nm along the vertical direction. We perform our
measurements at lattice depths of (sx, sy, sz) = (20, 20, 80), given in units of the respective
recoil energy Ex,y,z

rec . The related tunneling rates are of about 10Hz along x and y, and
about 1mHz along z. As we will see below, these rates are comparatively small with respect
to timescales of the spin-exchange dynamics and the contribution of tunneling to Eq. 3.9 is
therefore strongly suppressed.

To prepare atoms in different initial Zeeman states, we apply a technique that was developed
within our group in Ref. [Bai18a]. In brief, we exploit the quadratic Zeeman shift that arises
for fermionic erbium due to the additional nuclear spin to induce a differential energy shift
between neighboring Zeeman levels; see also Sec. 2.1.3. We ramp the magnetic field to about
40G and transfer the atoms, initially polarized in the lowest magnetic sublevel mF = −19/2,
by means of a rapid-adiabatic passage. Importantly, prior ramping the magnetic field, we
load the atoms into the optical lattice and use the latter as a protection shield against
three-body losses when crossing the dense Feshbach spectrum [Fri14b, Mai15]. The fact that
we are using fermionic erbium and that we are loading a spin polarized sample into the
lattice leads, in addition to the suppressed tunneling, to a second important consequence to
the Hamiltonian in Eq. 3.9: The Pauli exclusion principle prevents double occupancies and
therefore also onsite interactions are negligible. Considering the Hamiltonian in Eq. 3.9, we
can therefore consider only the last line, which describes the spin-exchange interactions.

However, as experimental realizations are never perfect, inhomogeneities over our atomic
sample that derive either from ac-Stark shifts or Zeeman shifts need to be considered. A
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Figure 3.2.: Interaction strength governing the early spin dynamics for the simplified configuration
of 2 atoms in a double well potential for different (a) initial mF states with θ = 0 ◦ and (b) dipole
orientations for mF = −17/2. The interaction strength Vdd is calculated using Eq. 3.8. The dashed
line in (a) is a quadratic function as a guide for the eye to indicate the quadratic dependence on mF .
The dotted line in (b) indicates the magic angle at θ = 54.7 ◦ where the DDI vanishes.

quantitative description of inhomogeneities in our lattice system is given in Sec. 2.3.2. The
energy contribution regarding these additional terms can be written as

Hinh =
∑

i

δi(F
z
i )

2 +
∑

i

BiF
z
i 3.15

Here, δi accounts for all quadratic shifts and Bi considers a lattice site dependent magnetic
field gradient. It is important to mention that in Sec. 3.3 we use these inhomogeneities for
our advantage to temporally control the spin-exchange dynamics.

Finally, the Hamiltonian describing our system can be written as

H =
1

2

∑

i ̸=j

Vi,j

[
F z
i F

z
j − 1

4
(F+

i F
−
j + F−

i F
+
j )

]
+
∑

i

δi(F
z
i )

2 +
∑

i

BiF
z
i . 3.16

For our particular system, Fig. 3.2 shows the contributions of γ(mF ) and the angle-dependent
Vi,j for the simplified situation of two dipoles in a double well potential, separated by 266 nm.
This extraordinary tunability leads to two different control knobs, which allow for a careful
and controlled tuning of the spin-exchange dynamics.
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Dipolar interactions are ubiquitous in nature and rule the behavior of a broad range of systems spanning from
energy transfer in biological systems to quantum magnetism. Here we study magnetization-conserving dipolar
induced spin-exchange dynamics in dense arrays of fermionic erbium atoms confined in a deep three-dimensional
lattice. Harnessing the special atomic properties of erbium, we demonstrate control over the spin dynamics by
tuning the dipole orientation and changing the initial spin state within the large 20-spin hyperfine manifold.
Furthermore, we demonstrate the capability to quickly turn on and off the dipolar exchange dynamics via optical
control. The experimental observations are in excellent quantitative agreement with numerical calculations based
on discrete phase-space methods, which capture entanglement and beyond-mean-field effects. Our experiment
sets the stage for future explorations of rich magnetic behaviors in long-range interacting dipoles, including
exotic phases of matter and applications for quantum information processing.

DOI: 10.1103/PhysRevResearch.2.023050

I. INTRODUCTION

Spin lattice models of localized magnetic moments (spins),
which interact with one another via exchange interactions,
are paradigmatic examples of strongly correlated many-body
quantum systems. Their implementation in clean, isolated,
and fully controllable lattice confined ultracold atoms opens
a path for a new generation of synthetic quantum magnets,
featuring highly entangled states, especially when driven out
of equilibrium, with broad applications ranging from preci-
sion sensing and navigation to quantum simulation and quan-
tum information processing [1,2]. However, the extremely
small energy scales associated with the nearest-neighbor spin
interactions in lattice-confined atoms with dominant contact
interactions have made the observation of quantum magnetic
behaviors extremely challenging [3,4]. On the contrary, even
under frozen motional conditions, dipolar gases, featuring
long-range and anisotropic interactions, offer the opportunity
to bring ultracold systems several steps ahead toward the
ambitious attempt of modeling and understanding quantum
magnetism. Great advances in studying quantum magnetism
have been achieved using arrays of Rydberg atoms [5–8],
trapped ions [9–11], polar molecules [12,13], and spin-3
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bosonic chromium atoms [14,15]. Most of these studies so
far have been limited to spin-1/2 mesoscopic arrays of at
most a few hundred particles or to macroscopic but dilute
(<0.1 filling fractions) samples of molecules in lattices or
were contaminated by the effects of double occupancies in
the system. Only very recently, experiments using bosonic
chromium gas have revealed the power of magnetic atoms
toward the understanding of quantum magnetism [16].

Here we report on a substantial leap forward in the control
and understanding of atomic dipolar platforms for simulating
quantum magnetism. Relying on the atomic properties of
erbium, we realize a quantum simulator of the long-range
XXZ Heisenberg model in a dense array of fermionic mag-
netic atoms with unique control knobs. Our platform roots
on the special atomic properties of 167Er. The erbium ground
state bears large angular momentum quantum numbers with
I = 7/2 for the nuclear spin and J = 6 for the electronic an-
gular momentum, resulting in a F = 19/2 hyperfine manifold.
These large numbers bring in several important consequences
and provide novel control capabilities. First, they give access
to a fully addressable landscape of 2F + 1 = 20 internal
levels, as depicted in Fig. 1(a). Second, they are responsible
for the large magnetic moment in erbium, leading to a strong
dipolar coupling between atoms in neighboring lattice sites.
Such coupling can be up to 49 times larger than the ones
felt by F = 1/2 alkali atoms and about 40% larger than the
one in chromium [17]. Finally, the non-S character of the
ground state leads to comparatively large tensorial light shifts
[18], which enables spin-dependent optical manipulation in
addition to the quadratic Zeeman effect [19].

In our work, any of the 20 internal spin states available in
erbium can be selected to initialize our simulator in a quantum

2643-1564/2020/2(2)/023050(16) 023050-1 Published by the American Physical Society
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FIG. 1. (a) Illustration of the total spin space of a single 167Er atom in the lowest hyperfine level |F = 19/2〉 with all 20 mF states. The angle
of the symbols indicates the orientation of the total spin |F| = √

F (F + 1) in relation to the quantization axis. (b) Sketch of the experimental
system, an anisotropic three-dimensional lattice structure filled with fermionic 167Er with a quantization axis tunable by the angles (�, φ)
of the external magnetic field B. (c) Illustration of the experimental sequence (from left to right): The system is initialized by preparing all
atoms in one starting state, here |–17/2〉. We activate the spin dynamics by changing the magnetic field to set δ̄ = 0. Early-time dynamics are
happening mainly among nearest-neighbor atoms. Subsequently, interactions between atoms at larger distances are involved in the dynamics.

spin Fock state. After activating spin-exchange processes,
arising from the large magnetic dipole interaction of erbium,
we study the spreading of the spin population, characterize
the effective strength of the dipolar coupling, and observe ev-
idence of beyond-nearest-neighbor couplings. We benchmark
our simulator with an advanced theoretical approach, which
takes quantum entanglement and spatial inhomogeneities into
account [20]; see Appendix H. Moreover, we show that the
spin-exchange dynamics can be fully controlled via optical
light fields on timescales much faster than typical interaction
times. The reported demonstration of these new control knobs,
some without equivalence in alkali and chromium atoms,
constitutes an important step toward a fully controllable quan-
tum simulator, e.g., for the realization of synthetic dimension
[21–23] or as qudits for quantum computation [24–26].

II. THEORETICAL DESCRIPTION

The XXZ Heisenberg model that rules the magnetization-
conserving spin dynamics of our system can be conveniently

written using spin-19/2 dimensionless angular momentum
operators F̂i = {F̂ x

i , F̂ y
i , F̂ z

i }, acting on site i and satisfying
the commutation relation [F̂ x

i , F̂ y
i ] = iF̂ z

i . We use the eigen-
basis of F̂ z denoted as |mF 〉 with 0 � |mF | � F [27,28]
(see Appendix F):

Ĥ = 1

2

∑
i, j �=i

Vi, j

[
F̂ z

i F̂ z
j − 1

4
(F̂+

i F̂−
j + F̂−

i F̂+
j )

]

+
∑

i

δi
(
F̂ z

i

)2
. (1)

The coupling constants Vi, j = Vdd
1−3 cos2(θi, j )

r3
i j

describe the

direct dipole-dipole interactions (DDI), which have long-
range character and thus couple beyond nearest neighbors.
The dipolar coupling strength between two dipoles located
at �ri and �r j depends on their relative distance ri j = |�ri − �r j |
and on their orientation, described by the angle θi, j between
the dipolar axis, set by the external magnetic field, and the
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FIG. 2. (a) Measured spin populations in states mF = |–17/2〉 (circles) and mF ± 1 (diamonds and squares) after 50 ms hold time as a
function of the magnetic field with � = 0◦. A Gaussian fit (not shown) to the data provides a resonant magnetic field value of ≈1.67 G. The
top axis shows the mean total detuning δ̄ from the resonance condition. (b) Measured spin population in states mF = |–13/2〉 (circles) and
mF ± 1 (diamonds and squares) as a function of the hold time after quenching onto the spin-exchange resonance with � = 0◦. The dashed line
shows the simple mean-field result, the dashed-dotted line gives the NNI-GDTWA result, the solid lines represent the full-GDTWA result, and
the dotted line shows the full-GDTWA for the ideal case of a lattice with unit filling. The inset shows the total magnetization M(t ). [(c) and
(d)] Spin diffusion with initial state m0

F = |–13/2〉 plotting the population of states from mF − 3 to mF + 3 as a function of the hold time, for
the experiment (c) and the full-GDTWA model (d), with the same initial conditions as (b). Data points consist of a minimum of four individual
realizations and error bars denote the standard error of the mean.

interparticle axis; see Fig. 1(b). Here Vdd ≈ μ0g2
F μ2

B
4π

denotes the
dipolar coupling strength, with gF ≈ 0.735 for 167Er, μ0 the
magnetic permeability of vacuum, and μB the Bohr magneton.
The F̂ z

i F̂ z
j terms in the Hamiltonian account for the diagonal

part of the interactions while the F̂+
i F̂−

j + F̂−
i F̂+

j terms de-
scribe dipolar exchange processes. The second sum denotes
the single-particle quadratic term δi(F̂ z

i )2 with δi = δZ
i + δT

i ,
accounting for the quadratic Zeeman effect ∝ δZ

i and tensorial
light shifts ∝ δT

i . These two contributions can be indepen-
dently controlled in our experiment.

The quadratic Zeeman shift allows us to selectively pre-
pare all atoms in one target state of the spin manifold; see
Appendix B. The tensorial light shift can compete or cooper-
ate with the quadratic Zeeman shift and can be used as an
additional control knob to activate/deactivate the exchange
processes. Note that, for all measurements, a large linear
Zeeman shift is always present, but since it does not influence
the spin-conserving dynamics, it is omitted in Eq. (1).

III. EXPERIMENTAL SEQUENCE

In the experiment, we first load a spin-polarized quantum
degenerate Fermi gas of ≈104 Er atoms into a deep three-
dimensional (3D) optical lattice, following the scheme of
Ref. [29]. The cuboid lattice geometry with lattice constants
(dx, dy, dz ) = (271(2), 266(1), 542(4)) nm results in weakly
coupled 2D planes, with typical tunneling rates of ∼10 Hz
inside the planes and ∼mHz between them; see Appendix E.
The external magnetic field orientation, setting the quantiza-
tion axis as well as the dipolar coupling strengths, is defined
by the polar angles � and φ in the laboratory frame; see
Fig. 1(b). The fermionic statistics of the atoms enables us
to prepare a dense band insulator with at most one atom per

lattice site. Additionally, Pauli exclusion blocks tunneling as
well as superexchange processes on the initial timescales,
helping in realizing a frozen condition, as required for a
clean implementation of the XXZ Heisenberg model; see
Appendix J. This is an advantage of fermionic atoms as
compared to bosonic systems, which typically require filtering
protocols to remove doublons and higher lattice depths to
avoid tunneling [16].

Our experimental sequence to study the spin dynamics is il-
lustrated in Fig. 1(c). In particular, we prepare the system into
the targeted spin Fock state, with a near-unity population of
the m0

F level, by using the lattice-protection protocol demon-
strated in Ref. [29]. At the end of the preparation, the majority
of atoms are in the desired m0

F (>80%) at B ≈ 4 G. We note
that atom losses during the spin preparation stage reduces the
filling factor to about 60% of the initial one; see Appendix D.
We then activate the spin dynamics by quenching the mag-
netic field to a value for which δ̄ = ∑

i δi = 0, providing a
resonance condition for the magnetization-conserving spin-
exchange processes; see Fig. 2(a) with m0

F = |–17/2〉. After
a desired time of evolution, we stop the dynamics by rapidly
increasing the magnetic field, leaving the resonance condition.
We finally extract the atom number in each spin state via a
spin-resolved band-mapping technique and derive the relative
state populations by normalization to the initial total atom
number. Note that, throughout all our experiments, within
our detection resolution, we do not observe any population
in higher bands.

We now probe the evolution of the spin-state population
as a function of the hold time on resonance. We observe
a redistribution of the population from the initial state to
multiple neighboring states in mF space, as for exemple shown
for an initial state of |–13/2〉 in Figs. 2(b) and 2(c). The
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dynamics preserves the total magnetization; see the inset of
Fig. 2(b). We observe similar behavior independently of the
initialized m0

F states. The spin transfer happens sequentially.
At short times it is dominated by the transfer to states directly
coupled by the dipolar exchange Hamiltonian, i.e., those ones
which differ by plus/minus one unit of angular momentum
(�mF = ±1). At longer times, subsequent processes transfer
atoms to states with |�mF | � 2; see Figs. 2(c) and 2(d).

IV. COMPARISON TO GDTWA

To benchmark our quantum simulator, we use a semi-
classical phase-space sampling method, the so-called gener-
alized discrete truncated Wigner approximation (GDTWA)
[16,20,30–32]; see Appendix G. The method accounts for
quantum correlation in the many-body dynamics and is
adapted to tackle the complex dynamics of a large-spin system
in a regime where exact diagonalization techniques are im-
possible to implement with current computers. The GDTWA
calculations take into account actual experimental parameters
such as spatial inhomogeneites, density distribution after the
lattice loading, initial spin distribution, and effective lattice
filling, including the loss during the spin preparation protocol;
see Appendices D and H. Figure 2(b) shows the experimental
dynamics together with the GDTWA simulations. Although
the model does not include corrections due to losses and
tunneling during the dynamics, it successfully captures the
behavior of our dense system not only at short time but also
at long time, where the population dynamics slows down and
starts to reach an equilibrium. A similar level of agreement
between experiment and theory is shown in Figs. 2(c) and
2(d) where we directly compare the spreading of the spin
population as a function of time.

Our choice of using a quantum Fock state instead of a
spin coherent state [16] as initial state combined with our
possibility to cancel the quadratic energy shift (i.e., set δ̄ = 0)
allows us to directly reveal the important role of quantum
effects in the observed spin dynamics. This can be shown
both at the quantitative and qualitative levels by contrasting
the GDTWA simulation with a mean-field calculation. Indeed,
the mean-field calculation fails in capturing the system be-
havior. It predicts a too-slow population dynamics for nonper-
fect spin-state initialization, as in the experiments shown in
Fig. 2(b), and no dynamics for the ideal case where all atoms
are prepared in the same internal state. To emphasize the
beyond-nearest-neighbor effects, we also compare the experi-
ment with a numerical simulation that only includes nearest-
neighbor interactions (NNI-GDTWA). Here we again observe
a very slow spin evolution, which largely deviates from the
measurements. The agreement of the full GDTWA predictions
with our experimental observations points to the long-range
many-body nature of the underlying time evolution. Our
theory calculations also support the build-up of entanglement
during the observed time evolution. To illustrate the quantum
spin dynamics under ideal conditions, in Fig. 2(b), we also
show the results for a system with unity filling and perfect
initialization in state m0

F = |–13/2〉. In this case a speedup
of the dynamics due to the increased effective interaction
strength is visible, quickly approaching an equilibrium state.

V. CONTROL OF THE INTERACTION STRENGTH

Different spin configurations feature distinct effective in-
teraction strengths, which also depend on the orientation of
the dipoles with respect to the lattice. We demonstrate our
ability to control this interaction, which governs the rate
of population exchange, by the choice of the initial m0

F
state and the orientation of the external magnetic field. This
capability provides us with two tuning knobs to manipu-
late dipolar exchange interactions in our quantum simulator.
Figures 3(a)–3(f) plot the dynamics of the populations for
three neighboring spin states after the quench, starting from
different initial spin states. Solid lines show the results of
the full-GDTWA calculations. For each initial m0

F , we find
a remarkable agreement between theory and experiment. We
observe a strong speedup for states with large spin projections
perpendicular to the quantization axis, as is expected from the
expectation value of F̂+

i F̂−
j , which gives a prefactor γ (m0

F ) =√
F (F + 1) − m0

F (m0
F + 1)

√
F (F + 1) − m0

F (m0
F − 1). The

initial dynamics can be well described by a perturbative
expansion up to the second order (see Appendix I), resulting in
the analytic expression for the normalized population nmF (t )
of the initial state:

nm0
F
(t ) = nm0

F
(0)

[
1 − nm0

F
(0)

V 2
eff

h̄2 t2

]
. (2)

Here V 2
eff ≡ γ 2(m0

F )
8N

∑
i, j �=i V 2

i j is the overall effective interac-
tion strength summed over N atoms and nm0

F
(0) denotes

the purity of the initial state preparation. For a quantitative
analysis of the early-time spin evolution, we compare the
theoretically calculated Veff from the initial atomic distribution
used in the GDTWA model with the one extracted from a fit of
Eq. (2) to the experimental data. Here we consider the data up
to t < 0.5 h̄

Veff
estimated using the theoretically calculated Veff

[33]. Figure 3(g) plots both the theoretical and experimental
Veff as a function of the initial m0

F and highlights once more
their quantitative agreement. The interaction parameter Veff

can also be used to rescale the time axis. As shown in
Fig. 3(h), all data sets now collapse onto each other for
tVeff

h̄ < 0.5, revealing the invariant character of the short-time
dynamics under the internal state initialization. At longer
timescales, the theory shows that the timetraces start to deviate
from each others and saturate to different values, indicating
that thermal-like states are on reach. In the experiment, we
observe a similar behavior but here the saturation value might
also be affected by losses and residual tunneling.

Because of the anisotropic character of the DDI, the
strength of the dipolar exchange interaction can be controlled
by changing the angle �; see Fig. 1(b). As shown in Fig. 4(a)
for |–17/2〉, the observed evolution speed of the spin popu-
lations strongly depends on �, changing by about a factor
of 2 between � = 40◦ and 80◦. The GDTWA results show
a very good quantitative agreement with the experiment. We
repeat the above measurements for different values of � and
we extract Veff; Fig. 4(b). It is worthwhile to mention that,
while the dipolar interactions can be completely switched off
at a given angle in a 1D chain, in a 3D system the situation
is more complicated. However, as expected by geometrical
arguments, we observe that the overall exchange strength
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FIG. 3. [(a)–(f)] Dynamic evolution of the initial states |–17/2〉 (a), |–9/2〉 (b), |–5/2〉 (c), |1/2〉 (d), |9/2〉 (e), and |13/2〉 (f) and of the
corresponding neighboring states mF ± 1 together with the full-GDTWA results (solid lines) for � = 0◦. (g) Extracted Veff as a function of the
initial state m0

F from a fit to the experimental data (cyan triangles) and numerically computed from the initial spin distribution (black circles).
Error bars denote the 68% confidence interval of the fits. (h) All datasets with m0

F < 0 used in (g) together with the corresponding full-GDTWA
results (solid lines) plotted in units of the rescaled time τ = Veff/h̄ · t . Note that all experiment and theory data are plotted for times t � 100 ms
of (a)–(f). To account for the different preparation fidelity, the populations of the initial states are shifted to 1 by adding a constant offset. For
clarity error bars are omitted here.

becomes minimal for a specific dipole orientation (�c ≈ 35◦,
φc = 45◦). We compare our measured Veff with the ones
calculated from the initial spin distribution, which is a good
quantity to describe the early-time dynamics. Theory and
experiment show a similar trend, in particular reaching a
minimum at about �c. Note that the simple analytic formula
[Eq. (2)], used for fitting the data, deviates from the actual
evolution at longer times. This leads to a small down-shift of
the experimental values; see Appendix I. Our study ultimately
demonstrates the ability to tune the lattice spin model through
the magnetic field orientation. This paves the way to the
simulation of various spin-lattice models [34].

VI. OPTICAL CONTROL

Finally, we demonstrate fast optical control of the spin
dynamics relying on the remarkably large tensorial light shift
of erbium compared to alkali atoms. As shown in Fig. 4(c),
we can almost fully suppress the spin-exchange dynamics
by suddenly switching on a homogeneous light field after an
initial evolution time on resonance. Therefore, the tensorial
light shift, inducing a detuning from the resonance condition
(see inset), allows a full spatial and temporal control over
the exchange processes as light fields can be easily shaped
in space and time, in stark contrast to magnetic fields. For
example, the light power can be changed orders of magni-
tude faster than the typical interaction times and can address
even single lattice sites in quantum gas microscopes [35–37].

By exploiting the rich energy spectrum of lanthanides like
erbium, narrow optical transitions [38] allow an even more
refined manipulation of the spin manifold like, e.g., blocking
specific spin-exchange channels or additional Floquet engi-
neering. This capabilities can be an excellent resource for
quantum information processing, e.g., we could use dipolar
exchange processes to efficiently prepare highly entangled
states between different parts of a quantum system and then
store the quantum information at longer times by turning the
interactions off.

VII. CONCLUSION AND OUTLOOK

In our work, we explore the dipolar exchange dynamics
and benchmark our simulator with an advanced theoretical
model, which takes quantum entanglement and spatial in-
homogeneities into account. In particular, we initialize the
system into a desired spin Fock state and activate the spin
dynamics, while the motional degree of freedom mainly re-
mains frozen. We study the spreading of the spin population
with different choices of the macroscopically populated initial
Zeeman level as a function of both the specific initial spin
state and the dipole orientation. We demonstrate that the
spin dynamics at short evolution time follows a scaling that
is invariant under internal state initialization and that is set
by the effective strength of the dipolar coupling. On the
contrary, at longer times, the many-body dynamics is affected
by the accessible spin space and the long-range character
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FIG. 4. (a) Exemplary measurements of the time evolution for
the starting spin state |–17/2〉 for � = 40◦, 80◦. Solid lines show the
full-GDTWA results. (b) Extracted Veff as a function of � from a fit
to the experimental data (orange circles) and numerically computed
from the initial spin distribution (black circles). Error bars denote the
68% confidence interval of the fits. (c) Time evolution of the initial
state |–9/2〉 at δ̄ = 0 and � = 0◦ without (filled circles) and with
(open circles) switching on an additional light field after 20 ms of
evolution. Solid (dashed) lines are the corresponding full-GDTWA
calculations. The inset shows the population of the initial spin state
after 50 ms evolution time as a function of the quadratic Zeeman shift
without (filled circles) and with (open circles) the additional light
field. Determining the centers of the resonances via a fit yields an
absolute shift of the resonance condition by h × 27(1) Hz between
both conditions.

of dipolar interactions beyond nearest neighbors. We further
demonstrate temporal control of the exchange dynamics using
off resonant laser light.

The excellent agreement between the experiment and the
theory not only verifies our quantum simulator but also sets
the stage toward its use for the study of new regimes in-
tractable to theory. For example, by operating in a shallow
lattice where motion is involved, the dynamics is no longer
described by a spin model but by a high spin Fermi-Hubbard
model with long-range interactions. Alternatively by treating
the internal hyperfine levels as a synthetic dimension [21,22]
while adding Raman transitions to couple them, one could
engineer nontrivial synthetic gauge field models even when

tunneling is only allowed in one direction. Moreover, the
demonstrated control over the initial state population of ar-
bitrary hyperfine levels, our capability to tune the strength
of the direct dipolar exchange coupling via the magnetic
field angle, and the possibility of the dynamical and spatial
control of the hyperfine manifold via tensorial light shifts
make our system a potential resource for quantum information
processing with a qudit-type multilevel encoding using the 20
different interconnected hyperfine levels [24–26].
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APPENDIX A: EXPERIMENTAL SETUP
AND LATTICE LOADING

In our experiment we start with a degenerate Fermi gas
of about 2.4 × 104 167Er atoms in the lowest spin state
|F = 19/2, mF = –19/2〉 = |–19/2〉 and a temperature of
T ≈ 0.3 TF [29,39]. The atoms are confined in a crossed
optical dipole trap (ODT) and the trap frequencies are
(ν⊥, ν‖, νz ) = (63(1), 36(2), 137(1)) Hz, where ν⊥ (ν‖) are
the trap frequencies perpendicular to (along) the horizontal
ODT and νz is measured along the vertical direction defined
by gravity. We load the atomic sample adiabatically into a
3D lattice that is created by two retroreflected laser beams at
532 nm in the x-y plane and one retroreflected laser beam at
1064 nm nearly along the z direction, defined by gravity and
orthogonal to the x-y plane. Note that due to a small angle of
about 11(2)◦ between the vertical lattice beam and the z axis
we obtain a 3D lattice, slightly deviating from an ideal situa-
tion of a rectangular unit cell and our parallelepipedic cell has
the unit lattice distances of dx = 271(2) nm, dy = 266(1) nm,
and dz = 542(2) nm. The lattice geometry is similar to the
one used in our previous works [29,40]. We ramp up the
lattice beams in 150 ms to their final power and switch off
the ODT subsequently in 10 ms and wait for 500 ms to
eliminate residual atoms in higher bands [29]. For our typical
lattice depths used in the measurements reported here of
(sx, sy, sz ) = (20, 20, 80), where si with i ∈ x, y, z is given in
the respective recoil energy ER,i with ER;x,y = h × 4.2 kHz and
ER;z = h × 1.05 kHz, the atoms can be considered pinned on
single lattice sites with low tunneling rates Jx,y = h × 10.5 Hz
and Jz = h × 1 mHz.
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APPENDIX B: STATE PREPARATION
AND DETECTION EFFICIENCY

To prepare the atoms in the desired spin state, after load-
ing them into the lattice, we use a technique based on a
rapid-adiabatic passage (RAP). During the full preparation
procedure, the optical lattice operates as a protection shield
to avoid atom loss and heating due to the large density of
Feshbach resonances [29]. To reach a reliable preparation
with high fidelity it is necessary that the change in the en-
ergy difference between subsequent neighboring spin states is
sufficiently large. Therefore, we ramp the magnetic field in
40 ms to 40.6 G to get a large-enough differential quadratic
Zeeman shift, which is on the order of ≈h × 40 kHz. After
the magnetic field ramp we wait for 80 ms to allow the latter
to stabilize before performing the RAP procedure. The follow
up RAP protocol depends on the target state. For example, to
transfer the atoms from |–19/2〉 into the |–7/2〉 state, we apply
a radio-frequency (RF) pulse at 41.31 MHz and reduce the
magnetic field with a linear ramp, e.g., by 500 mG in 42 ms.
The variation of the magnetic field is analogous to the more
conventional scheme where the frequency of the RF is varied
[see Fig. 5(a)]. For the preparation of higher (lower) spin
states we perform a larger (smaller) reduction of the magnetic
field on a longer (shorter) timescale. After the RAP ramp we
switch off the RF field and ramp the magnetic field in 10 ms
to B = 3.99 G. Here we wait again for 100 ms to allow the
magnetic field to stabilize. During the ramp up and down to
40 G of the magnetic field we loose 25(2)% of the atoms. We
attribute this loss mainly to the dense Feshbach spectra that we
are crossing when ramping the magnetic field. The exact loss
mechanism has not been yet identified, constituting a topic of
interest for latter investigation. At 3.99 G, before switching
on the spin dynamics, about 1.7 × 104 atoms remain in the
lattice. The losses affect the lattice filling at which the spin
dynamics occur. Our simulations account for this initially
reduced filling; see Appendix H.

Additionally to the losses due to the magnetic field ramps,
we also observe losses caused by the RAP itself. To quantify
the preparation efficiency, i.e., the loss of atoms due to the
spin preparation via RAP as a function of the target mF

state, we perform additional measurements where we either
do not perform a RAP or where we add an inverse RAP to
transfer all atoms back into the |–19/2〉 state. By comparing
the atom numbers from measurements without RAP and with
double-RAP and assuming that the loss process is symmetric,
we derive the preparation efficiency as plotted in Fig. 5(b).
We also account for the difference in the counting efficiency
of the individual spin states, which arises from different
effective scattering cross sections for the imaging light. Here
we compare the measured atom number in a target mF state to
the expected atom number taking into account the previously
determined preparation efficiency as discussed above and the
atom number without RAP; see Fig. 5(c).

The counting and preparation efficiencies are determined
for the |–17/2〉, |–15/2〉, |–9/2〉, and |9/2〉 states and in-
terpolated assuming a linear dependency of these efficien-
cies on mF [see Figs. 5(b) and 5(c)]. We estimate the
preparation efficiency of the respective mF state to be
0.86(1) − 0.008(1) × mF . We attribute the lower preparation
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FIG. 5. (a) Energy levels of the ground-state hyperfine manifold
in the dressed-state picture in dependence of the detuning between
the applied just RF and the atomic resonance condition for the |–1/2〉
to the |1/2〉 hyperfine levels. The solid red arrow exemplary shows
the RAP for preparation of atoms into the m0

F = |–7/2〉 state. The
insets show a zoom of one avoided crossing. [(b) and (c)] Spin-
preparation and atom-counting efficiency measured for |–17/2〉,
|–15/2〉, |–9/2〉, and |9/2〉. The obtained values are interpolated
linearly assuming a linear dependence on the m0

F state.

efficiency for higher spin states to the larger number of
avoided crossing between spin states that come into play
during the RAP procedure. Overall, we expect that the lattice
filling over the whole sample, taking into account the losses
due to magnetic field ramping and spin state preparation,
reduces from close to unity down to a value between 0.6 and
0.7; see also Tables I and II.

APPENDIX C: QUENCH PROTOCOL AND
DETECTION SEQUENCE

In our experiment we exploit both the light and the
magnetic shifts of the energies of each spin state to reach
a resonant condition where the energy difference between
neighboring spin states is canceled and therefore spin chang-
ing dynamics preserving the total magnetization become en-
ergetically allowed. In particular, we exploit the tensorial light
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TABLE I. Percentage of lost atoms and extracted, effective filling fraction ν for different |mF 〉 states at t = tfit and t = 100 ms.

m0
F tfit (ms) Nloss(tfit ) (%) ν (0) ν (tfit ) Nloss(100 ms) (%) ν (100 ms)

− 17
2 34.2 1.8 0.7 0.68 5.3 0.66

− 13
2 15.7 7.2 0.69 0.64 19.6 0.55

− 9
2 11.3 8.7 0.67 0.62 25.1 0.51

− 5
2 9.6 13.7 0.66 0.58 27.7 0.48

− 1
2 9.0 12.2 0.65 0.57 36.1 0.42

1
2 9.0 13.5 0.65 0.56 36.7 0.41
3
2 9.2 9.2 0.64 0.58 34.0 0.43
9
2 11.3 6.7 0.63 0.59 23.1 0.49
13
2 15.7 4.9 0.62 0.59 21.9 0.48

shift of the spin states energies [18]

Ut = 3m2
F − F (F + 1)

F (2F − 1)

3 cos2 θp − 1

2
αt (ω),

present in atomic erbium to initialize the dynamic evolution
of the spin population. The tensorial light shift depends
quadratically on the mF state as well as on the angle θp

between the magnetic field axis and the axis of polarization
of the light. Here αt refers to the tensorial polarizability
coefficient and ω to the light frequency. After the preparation
of the respective spin state we start all our measurements at
B = 3.99 G, pointing in the z direction. However, to reach
the resonance condition we use two slightly different quench
protocols for the measurement sets with fixed � = 0◦ for the
different initial spin state and for the sets of measurements
where |mF 〉 = |–17/2〉 and � ∈ (0◦, 80◦). The measurement
sequences differ on the one hand by the way we jump on
resonance to initialize the spin dynamics and on the other
hand by shining in an additional laser beam of wavelength
1064 nm and power of 7 W. This additional light is necessary
because changing � reduces simultaneously θp, resulting in
a smaller tensorial light shift and therefore in a shift of the
resonance position to lower magnetic field values. For large
� the light shift of the lattice beams is smaller and therefore
the resonance is very close to 0 G which we want to avoid
to prevent spin relaxation processes. For the sets of measure-
ments where we keep � = 0◦ but vary the initial m0

F state we
quench the magnetic field directly after the preparation, from
3.99 G to resonance. In contrast we use a different approach

for the measurements where � is varied. After the preparation
we ramp in 10 ms the additional laser beam to 7 W. Due to
the reduced speed of our magnetic field coils in the x and
y directions we first rotate the magnetic field such that the
transverse components Bx and By are already at their target
values while keeping an additional offset of 2 G in the z
direction. The quench to resonance is then done using only the
coils for the magnetic field in the z direction. The additional
offset field of 2 G is large enough to suppress dynamics. We
measure the evolution of the magnetic field by performing
RF spectroscopy and find that for both quench procedures
the magnetic field evolves exponentially toward its quench
value with 1/e decay times of 1.4 and 1.2 ms, respectively.
After holding on resonance for a certain time we quench
the magnetic field back to 3.99 G and we rotate the latter
back to � = 0◦. After a waiting time of 50 ms we perform a
band-mapping measurement combined with a Stern-Gerlach
technique, i.e., we ramp the lattice down in 1 ms and apply
a magnetic field gradient that is large enough to separate
the individual spin states after a time of flight (TOF) of
15 ms. This allows us to image the first Brillouin zone for the
different spin states. During TOF the magnetic field is rotated
toward the imaging axis. We typically record the population
of the initially prepared |mF 〉, of its four neighbors, and of
|–19/2〉 by summing the 2D atomic density over a region of
interest. Figure 6 shows examples of the imaging of different
spin states for the cases of a nonadjusted RAP as well as for
the preparation of the atoms in |–9/2〉, |3/2〉, and |5/2〉. In the
case of |3/2〉 residual atoms in |–19/2〉, |–17/2〉, and |5/2〉
are visible due to a nonperfect preparation.

TABLE II. Percentage of lost atoms and extracted effective filling fraction ν for different � at t = tfit and t = 100 ms.

� (deg) tfit (ms) Nloss(tfit ) (%) ν (0) ν (tfit ) Nloss(100 ms) (%) ν (100 ms)

0 26.8 13.8 0.7 0.60 30.1 0.49
10 30.1 11.9 0.7 0.61 25.6 0.52
20 36.7 6.9 0.7 0.65 18.2 0.57
30 47.0 8.6 0.7 0.64 17.8 0.57
35 52.0 6.7 0.7 0.65 11.4 0.62
40 53.2 7.2 0.7 0.65 13.2 0.60
50 46.1 12 0.7 0.61 17.2 0.58
60 37.0 8.9 0.7 0.63 19.2 0.56
80 30.0 10.4 0.7 0.62 19.3 0.56
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FIG. 6. Absorption images for a nonadjusted RAP and for the
preparation of |–9/2〉, |3/2〉, and |5/2〉. Whereas for the |–9/2〉 and
|5/2〉 case no residual atoms in other spin states are visible, for the
|3/2〉 case we observe a small amount of residual atoms in other spin
states due to a nonperfect preparation.

APPENDIX D: LIFETIME AND LOSSES IN THE LATTICE

Off-resonance, i.e., at a magnetic field of B = 3.99 G,
we measure the lifetime of the prepared spin state to be on
the order of a few seconds, being slightly shorter for higher
spin states. Note that here we do not observe any population
growing in the neighboring spin states. Differently, for the
measurements on resonance, we observe a faster loss happen-
ing on the timescale of the first 20–30 ms followed by loss at
lower speed for the remaining atoms. We fit an exponential
decay to extract the atoms loss and change in filling over the
timescale that we use to extract Veff , tfit, (see Appendix I) as
well as over the full 100 ms of the dynamics reported in the
main text (Figs. 2 and 3). Table I gives the corresponding
numbers for the sets of data for the different initial m0

F states.
During the fitting timescale we observe atoms loss on the
order of 5–10%. This atom loss can be converted into a change
of the effective filling of the lattice compared to the state
obtained after the lattice loading giving a minimum filling
of ν = 0.56 for the m0

F = |1/2〉 case. For longer timescales
larger losses in the range between 10 and 35% are observed.
In general, we note that the amount of loss depends on the
initial m0

F state, resulting larger for the central |mF 〉0 states.
Similar numbers are obtained for the sets of measurement
where we vary � (see Table II). The exact mechanism leading
to these losses is not yet understood and will be the topic of
future studies. Thanks to their limited importance over the
early-time dynamics, we here compare our results to theoreti-

cal prediction without losses; see Incorporating Experimental
Conditions in Numerical Simulation. A proper description of
the long-time dynamics will certainly require to account and
understand such effects.

APPENDIX E: EXPERIMENTAL UNCERTAINTIES
AND INHOMOGENEITIES

Ideally, all atoms in the sample experience the same linear
and quadratic Zeeman shift and the same quadratic light shift.
However, in the experiment inhomogeneities from the mag-
netic field and light intensities lead to a spatial dependence of
those shifts. An upper bound of the variation of Zeeman shifts
can be deduced from RF-spectroscopy measurements done
with bosonic erbium. From the width of the RF resonance
(≈500 Hz) and the size of the cloud (≈15 μm) we esti-
mate a maximum magnetic field gradient of �230 mG/cm,
assuming the gradient as main broadening mechanism for
the resonance width, neglecting magnetic field noise and
Fourier broadening. This translates into a differential linear
Zeeman shift of �h × 6 Hz between adjacent lattice sites in
the horizontal x-y plane and �h × 12 Hz between adjacent
planes along the z direction. Together with the magnetic field
values used in the spin dynamic experiments, the variation
of the quadratic Zeeman shift is negligible compared to
other inhomogeneities (�h × 0.1 Hz). The inhomogeneity of
the quadratic light shifts can be estimated by considering
the shape of the lattice light beams [Gaussian beams with
waists of about (wx,wy,wz ) = (160, 160, 300) μm] and the
resonance condition of the magnetic field, translated into a
quadratic Zeeman shift of h × 71(1) Hz. These considerations
can be used to obtain an estimation for a site-dependent light
shift compared to the center of the atomic sample. If we
take a possible displacement of the atoms by �10 μm in all
directions, from the center of the lattice to the center of the
beams, into account, then we can estimate an upper bound for
the light shift of δT

i � h × 2 Hz at 20 lattice sites away from
the center along the y direction.

APPENDIX F: SPIN HAMILTONIAN

The experiment operates in a deep lattice regime, where
tunneling is suppressed. At the achieved initial conditions,
the 167Er atoms are restricted to occupy the lowest lattice
band, and Fermi statistics prevents more than one atom per
lattice site. In the presence of a magnetic field strong enough
to generate Zeeman splittings larger than nearest-neighbor
dipolar interactions, only those processes that conserve the to-
tal magnetization are energetically allowed [15]. Under these
considerations, the dynamics is described by the following
secular Hamiltonian:

Ĥ =
∑

i

δi
(
F̂ z

i

)2 +
∑

i

BiF̂
z

i

+ 1

2

∑
i, j �=i

Vi, j

[
F̂ z

i F̂ z
j − 1

4
(F̂+

i F̂−
j + H.c.)

]
. (F1)

Here the operators F z,±
i are spin 19/2 angular momentum

operators acting on lattice site i. The first two terms account
for the site-dependent quadratic and linear shifts, respectively,
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where δi includes both Zeeman terms and tensorial light
shifts as discussed in the main text. Bi = B + �Bi denotes
the linear Zeeman shift at site i. While the constant and
uniform contribution, B, commutes with all other terms, thus
can be rotated out, the spatially varying contribution, �Bi, is
relatively small in the experiment but still is accounted for in
the theory calculations. The last term is the long-range dipolar
interaction between atoms in different sites, with

Vi,j ≡ Vdd d3
y

1 − 3 cos2 θi, j

|ri − r j |3 , (F2)

where θi j is the angle between the dipolar orientation set by an
external magnetic field and the interparticle spacing ri − r j .

Vdd ≈ μ0g2
F μ2

B
4πd3

y
corresponds to the interaction strength between

two atoms, i and j, separated by the smallest lattice constant
|ri − r j | = dy = 266 nm and forming an angle θi, j = π/2
with the quantization axis. Here gF ≈ 0.735 is the Lande
g factor for Er atoms, μ0 is the magnetic permeability of
vacuum, and μB is the Bohr magneton. We compute Vdd from

Vdd = μ0(μBgF )2

4π

∫
d3rd3r′ 1 − 3 cos2 θrr′

|r − r′|3 |φi(r)|2|φ j (r′)|2,
(F3)

where φi(r) denotes the lowest band Wannier function cen-
tered at lattice site i. For the experimental lattice depths
(sx, sy, sz ) = (20, 20, 80) in units of the corresponding recoil
energies, Vdd is estimated to be h × 0.336 Hz.

APPENDIX G: THE GDTWA METHOD

To account for quantum many-body effects during the dy-
namics generated by long-range dipolar interactions in these
complex macroscopic spin F = 19/2 3D lattice array, we
apply the so-called GDTWA, first introduced in Ref. [16].
The underlying idea of the method is to supplement the
mean-field dynamics of a spin F system with appropriate
sampling over the initial conditions in order to quantitatively
account for the build-up of quantum correlations. For a spin-F
atom i with N = 2F + 1 spin states, its density matrix ρ̂i

consists of D = N × N elements. Correspondingly, we can
define D Hermitian operators, �i

μ, with μ = 1, . . . , D, using
the generalized Gell-Mann matrices (GGM) and the identity
matrix [41]:

�i
μ=1,...,N (N−1)/2 = 1√

2
(|β〉 〈α| + H.c.), (G1)

for α > β, 1 � α, β � N ,

�i
μ=N (N−1)/2+1,...,N (N−1) = 1√

2i
(|β〉 〈α| − H.c.), (G2)

for α > β, 1 � α, β � N ,

�i
μ=N (N−1)+1,...,N 2−1

= 1√
α(α + 1)

⎛
⎝ α∑

β=1

|β〉 〈β| − α |α + 1〉 〈α + 1|
⎞
⎠, (G3)

for 1 � α < N ,

�i
D =

√
1

N I. (G4)

With these operators, the local density matrix ρ̂i, as well as
any operator Ôi of local observables can be represented as

Ôi =
∑

μ

ci
μ�i

μ, with (G5)

ci
μ = Tr

[
�i

μÔi
]
, (G6)

and μ = 1, 2, . . . ,D. This allows expressing both one-body
and two-body Hamiltonians in the form Ĥi = ∑

μ ci
μ�i

μ and

Ĥi j = ∑
μ,ν ci j

μν�
i
μ�

j
ν . The Heisenberg equations of motion

for �i
μ can be written as

ih̄
d�i

μ

dt
= [

�i
μ, Ĥ

]

=
∑

μ

ci
ν

[
�i

μ,�i
ν

] +
∑
σ, j,ν

ci j
σ,ν

[
�i

μ,�i
σ

]
� j

ν . (G7)

In the experiment, the initial state is a product state of single-
atom density matrices ρ̂(t = 0) = ∏

ρ̂ i(t = 0). If we adopt
a factorization 〈�i

μ�
j
ν · · · �k

σ 〉 = 〈�i
μ〉〈� j

ν〉 · · · 〈�k
σ 〉 for any

nonequal i, j, . . . , k (i.e., each operator acts on a differ-
ent atom) and arbitrary μ, ν, σ , then Eq. (G7) becomes a
closed set of nonlinear equations for λi

μ = 〈�i
μ〉. Within

a mean-field treatment, the initial condition is fixed by
λi

μ(t = 0) = Tr[�i
μρ̂(t = 0)], which determines the ensuing

dynamics from Eq. (G7). This treatment neglects any correla-
tions between atoms. In the GDTWA method, the initial value
of λi

μ is instead sampled from a probability distribution in

phase space, with statistical average λi
μ(0) = Tr[�i

μρ̂(t = 0)].
Specifically, each �i

μ can be decomposed via its eigenval-
ues and eigenvectors as �i

μ = ∑
ai

μ
ai

μ |ai
μ〉 〈ai

μ|. We take

ai
μ as the allowed values of �i

μ in phase space, and
then for an initial state ρ̂ i(t = 0), the probability distri-
bution is p(ai

μ) = Tr[ρ̂ i(t = 0) |ai
μ〉 〈ai

μ|]. From Eq. (G7),
each sampled initial configuration for the N atom array,
{aμ} = {ai1

μ1
, ai2

μ2
, . . . , aiN

μN
}, leads to a trajectory of �i

μ, which
we denote as λi

μ,{aμ}(t ). The quantum dynamics can be ob-
tained by averaging over sufficient number of trajectories

λi
μ(t ) ≈ λi

μ(t ) =
∑
{aμ}

p({aμ})λi
μ,{aμ}(t ). (G8)
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FIG. 7. Spin dynamics for m0
F = |–9/2〉 as shown in Fig. 3 of

the main text. The solid line represents the spin population and the
shaded area denotes the standard deviation of individual trajectories
which shows that the spread of the GDTWA trajectories does not
grow large with time. The inset visualizes 10 typical trajectories
obtained from the GDTWA simulation. Note that the different trajec-
tories include both the quantum noise, which is essential to account
for beyond-mean-field effects, and statistical noise, which averages
out when sampling over enough trajectories.

This approach has been shown capable of capturing the build-
up of quantum correlations [16,31]. In Fig. 7, we illustrate
the typical trajectories and their spread in the spin dynamics
obtained with GDWTA for m0

F = |–9/2〉.

APPENDIX H: INCORPORATING EXPERIMENTAL
CONDITIONS IN NUMERICAL SIMULATION

In our experiment, the lattice filling fraction is not unity
when the spin dynamics takes place. The reduced filling frac-
tion is due to two effects: the finite temperature and atom loss
during the initial state preparation. To account for the effect
of a finite temperature, we first obtain the density distribution
before ramping up the lattice from a Fermi-Dirac distribution
n0(ri ) = 1

1+exp{β[ε(ri )−μ]} , with parameters β = 1/kBT and μ

matching the inferred experiment temperature T and the total
atom number N0 = 2.4 × 104. The function ε(ri ) accounts
for the weak external harmonic confinement. We compute
the density distribution function after loading the atoms in
the lattice, nF (ri ), by simulating the lattice ramp which is
possible since to an excellent approximation we can treat
the system as noninteracting. Indeed, we neglect the dipolar
interaction in the loading given that their magnitude is much
lower than the Fermi energy of the gas. In the numerical
simulation, we then sample the position of atoms ri in the
lattice according to a distribution p(ri ) = nF (ri )/N0. In prac-
tice, to reduce computation cost we need to reduce the total
atom number in our calculations and use a smaller lattice
with fewer populated lattice sites. In this case, we reduce
the number of lattice sites by a factor ξ = (Nsim/Nexp)1/3,
where Nsim(exp) are the number of atoms in the simulation
(experiment), while keeping the lattice spacings the same
as in experiment, (dx, dy, dz ) = (272, 266, 544) nm. That is,
for an initial lattice with Lx sites along x direction, in our
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FIG. 8. Histogram showing the average number of atoms in
distances normalized to the lattice direction along y for random
removal of atoms and for removal depending on the number of
nearest neighbors (NN-dependent removal).

simulations there are ξLx sites while the separation between
two adjacent lattice sites is still dx. We then sample the initial
distribution of atoms in the lattice with p̃(r̃i ) = ξ 3 p(ξ r̃i ),
which preserves the local density and is similar to sampling
in a coarse-grained lattice. In our simulations, we chose
Nsim � 350 and checked that the convergence in Nsim has been
reached.

As discussed in Appendix B, a fraction of atoms is lost
during the ramp up and down of the magnetic field before
initializing the spin dynamics over the sample. While a rig-
orous treatment on how these losses modify the distribution is
not currently accessible with our current experimental setup,
we try to account for it in the simulation by preferentially
removing those atoms with a probablity ∝ p(ri )Nnn, where
Nnn is the number of nearest neighbors (separation �dy),
until N = ν(0)N0 atoms are left. According to experiment
estimates, the filling fractions before the initialization of
the spin dynamics are ν(0) = 0.6–0.7 (see Tables I and II).
Figure 8 shows the histogram of neighbors in the resulting
atom distribution. Such distribution effectively reduces the
nearest-neighbor interactions and is found to give a better
agreement with experiment.

Both the quadratic and linear shifts in the experiment
are inhomogeneous across the lattice as discussed in Ap-
pendix E, and we include them in our numerical sim-
ulation as site-dependent terms δi(F̂ z

i )2 and BiF̂
z

i , with
δi = a|ri|2 and Bi = b(xi + yi + zi ). Based on experimental
estimation, we have chosen the values of a and b such that
δi = h × 1.6 Hz (h × 0.7 Hz) at 20 sites along y away from
the lattice center, and Bi differs by h × 6 Hz (h × 1.8 Hz)
between adjacent sites, for Fig. 2 and 3 (Fig. 4) in the
simulation.

To illustrate the quantum spin dynamics under ideal condi-
tions, in Fig. 2(b), we also show the results for atoms frozen in
the lattice with unity filling fraction and zero temperature and
all initialized in a single m0

F state. In the numerical simulation
for this ideal case, a lattice size of 9 × 9 × 3 is used, which
accounts for the fact that the lattice spacing along z is larger
and thus the dipolar coupling decreases significantly within a
few lattice sites. Even though numerical simulations cannot be
performed for a lattice as large as that one in experiment, as
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shown in Ref. [16], for such a lattice configuration finite-size
effects are negligible.

APPENDIX I: SHORT-TIME POPULATION DYNAMICS

Considering a fixed initial atomic distribution over the
lattice, the population dynamics at early times can be derived
via a perturbative short-time expansion

nmF (t ) ≡ 〈n̂mF (t )〉 = 〈n̂mF 〉 + i〈[Ĥ, n̂mF ]〉t/h̄

−〈[Ĥ , [Ĥ , n̂mF ]]〉t2/2h̄2

−i〈[Ĥ , [Ĥ , [Ĥ , n̂mF ]]]〉t3/3!h̄3

+〈[Ĥ , [Ĥ , [Ĥ , [Ĥ , n̂mF ]]]〉t4/4!h̄4 + O(t5). (I1)

Here the average 〈·〉 is over the initial state, which is
assumed to be a pure state, n̂mF = (

∑
i PmF

i )/N , where
PmF

i = |mF 〉i i〈mF | is the onsite projector for an atom at site
i in state |mF 〉 and N denotes the total number of atoms. Note
that here the sums are always carried out over the populated
lattice sites in the initial lattice configuration. We obtain

V 2
eff = γ 2

(
m0

F

)
8N

∑
i, j �=i

V 2
i, j, (I2)

γ
(
m0

F

) =
√

F (F + 1) − m0
F

(
m0

F + 1
)

×
√

F (F + 1) − m0
F

(
m0

F − 1
)
, (I3)

where nm0
F

denotes the population on the selected target state.
To obtain Eq. (I2), we have assumed that initially most of the
population is in this target state, i.e., nm0

F
(0) ∼ 1. In the experi-

ment, this assumption is always satisfied and therefore Eq. (I4)
is expected to reproduce well the short-time dynamics.

The dependence of γ (m0
F ) on the initial state

m0
F is a consequence of the dependence of dipolar

exchange processes on the spin coherences, i.e.,
|〈i : m0

F +1, j : m0
F −1|F̂+

i F̂−
j |i : m0

F , j : m0
F 〉|. Therefore the

smaller the value |m0
F | of the initial populated states, the

faster the early-time dynamics. Notably, to order t2 the
initial dynamics is independent of quadratic shifts and
external magnetic field gradients. This is because both of
their corresponding Hamiltonians commute with the spin
population operator n̂mF . From this simple perturbative
treatment one learns that by preparing different initial
states with different m0

F , the decay rates of the short-time
population dynamics provide information of Veff and thus of
the underlying dipolar couplings. As discussed in Appendices
B and H, the lattice filling fraction is not unity and the initial
atomic density distribution in the lattice may vary from shot
to shot. To account for this effect, we perform a statistical
average of Eq. (I3) calculated for each lattice configuration
generated with the procedure in Appendix H to obtain the
theoretical values in Fig. 3(g) and Fig. 4(b).

It is important here to compare the predictions obtained
from a simple mean-field analysis. In contrast to Eq. (I4),
neglecting quantum correlations yields

nMean−Field
m0

F
(t )

= nm0
F
(0)

{
1 − nm0

F
(0)

[
1 − nm0

F
(0)

]V 2
eff

h̄2 t2 + O(t4)

}
. (I4)
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FIG. 9. The dotted-dashed line exemplary shows the fit of
Eq. (I2) to the experimental data to extract Veff for m0

F = |–9/2〉. The
solid green line indicates the time tfit up to which the fit is performed.

At the mean-field level, therefore, if initially the atoms are
prepared such that nm0

F
(0) = 1, then there is no population dy-

namics. This is in stark contrast to the quantum systems where
dynamics is enabled by quantum fluctuations. To extract Veff

from our experimental data and to compare it to the theoretical
simulations we fit the initial dynamics with Eq. (I4). We
define the timescale for the fitting via tfit < 0.5 h̄

Veff
, which

corresponds to the timescale on which each atom did on
average half a spin flip. We note that on this timescale the
time evolution starts already to deviate from the short-time
expansion [Eq. (2)], leading to a systematic downshift of the
experimentally fitted Veff; see Fig. 4(b). However, a minimum
timescale has to be chosen to ensure that the fit is performed
using a large-enough number of data points. Figure 9 shows
exemplary the fit to the experimental data for m0

F = |–9/2〉.
In Fig. 10 we show for completeness the experimental data
as well as the theory calculations for all spin states with the
rescaled time axis [see Fig. 3(h)].

APPENDIX J: EFFECT FROM TUNNELING PROCESSES

In our experiment, the tunneling rate is small but finite.
To understand its possible effect on the measured spin dy-
namics, we recall that our system can be described by a
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FIG. 10. Expansion of Fig. 3(h) showing all measured spin states
and the corresponding theory predictions.
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Fermi-Hubbard Hamiltonian:

ĤFH = Ĥtun + Ĥinho + ĤVdd + ĤUdd + Ĥs (J1)

with

Ĥtun = −
∑

〈i,j〉,m
(Ji,j f̂ †

im f̂jm + H.c.), (J2)

Ĥinho =
∑

i

∑
m,n

δi f̂ †
im

(
F z

mn

)2
f̂in +

∑
i

∑
m,n

Bi f̂ †
imF̂ z

mn f̂in, (J3)

ĤVdd = 1

2

∑
i �=j

∑
m,n,k,l

Vi,j

[
F z

mnF z
kl − 1

4
(F+

mnF−
kl + F−

mnF+
kl )

]

× f̂ †
im f̂ †

ik f̂jl f̂jn, (J4)

ĤUdd = 1

2
Udd

∑
i

∑
m,n,k,l

[
F z

mnF z
kl − 1

4
(F+

mnF−
kl + F−

mnF+
kl )

]

× f̂ †
im f̂ †

ik f̂il f̂in, (J5)

Ĥs = 1

2

∑
i

∑
m,n,k,l

Umnkl f̂ †
im f̂ †

ik f̂il f̂in, (J6)

where f̂im ( f̂ †
im) annihilates (creates) a fermion of spin state

m on site i = {ix, iy, iz}, and F z,+,−
mn are the matrix elements

of the corresponding spin-19/2 angular momentum operators.
The first term describes the single-particle tunneling between
adjacent sites, with the tunneling rate J calculated from the
integral over the lowest band Wannier functions:

Ji,j = −
∫

d3rφ∗
i (r)

[
− h̄2∇2

2M
+ Vlatt (r)

]
φj(r), (J7)
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FIG. 11. Comparison between spin dynamics obtained with the
reduced spin model Eq. (F1) (solid lines) and the Hamiltonian
Eq. (J12) accounting for superexchange interactions (circles) for ini-
tial state m0

F = |−17/2〉 and typical experimental conditions. Results
are shown for the three most populated spin states, m0

F , m0
F ± 1. For

the on-site interaction strengths, we adopt for a18 the value measured
in Ref. [29] and assume the rest aS’s are randomly distributed within
±40% with respect to a18. For identical aS and absent of Udd the
superexchange Hamiltonian has a SU(2F + 1) symmetry that does
not change spin population. We expect that the reasonable variation
between aS’s of 167Er atoms does not exceed ±40 %.

where M denotes the atomic mass and Vlatt is the external
lattice potential. The second term Ĥinho includes the site-
dependent quadratic and linear shifts, respectively. In the
experiment, initially all atoms are prepared in the same spin
state. At the achieved initial temperature at which atoms are
restricted to occupy the lowest lattice band, Fermi statistics
prevents more than one atom per lattice site. Dipolar exchange
processes can change the atomic internal spin states, allowing
tunneling to happen. When two Er atoms occupy the same
lattice site they interact with each other via both a contact
interaction governed by the Hamiltonian Ĥs and an on-site
dipolar interaction governed by ĤUdd , which are the last two
terms in Eq. (J1). The strength of on-site dipolar interaction
can be obtained from

Udd = μ0(μBgF )2

4π

∫
d3rd3r′ 1 − 3 cos2 θ

|r − r′|3 |φ(r)|2|φ(r′)|2,
(J8)

with the integral over Wannier functions at the same lattice
site, φ(r). For dipoles oriented along z, (i.e., � = 0, see
Fig. 1), the experimental lattice geometry leads to an attractive
net Udd . For s-wave scattering, the interaction kernel in Ĥs can
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FIG. 12. Spin dynamics from the Fermi-Hubbard model with
F = 3/2 (symbols). A one-dimensional system with eight sites is
used, with uniform nearest-neighbor tunneling rate Ji,j = J . To re-
duce finite-size effect, a periodic boundary condition is adopted. We
assume an on-site contact interaction Us with SU(2F + 1) symmetry
and strength Us/J = 200, approximately corresponding to the value
measured in Ref. [29] and J/h̄ = 10 Hz. Since Us is much stronger
than the on-site dipolar interaction for the erbium experiment [29],
we do not include Udd in these calculations. We have also neglected
external inhomogeneous fields [Eq. (J3)] in the model. Initially five
sites are occupied with atoms all prepared in the m0

F = 1/2 state. The
spin dynamics is calculated using exact diagonalization and averaged
over all possible initial distribution of empty sites. To provide a
reference for the F = 19/2 erbium case, we have focused on a
timescale similar to the one probed in experiment, with Veff defined
as in the main text and setting F = 3/2 in the expression for γ (m0

F ).
As a comparison, the spin dynamics obtained with the frozen spin
model [Eq. (F1)] with the same lattice configuration is also plotted
with solid lines.
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be generally rewritten in terms of

Umnkl =
2F−1∑

S=0,2,...

cS (aS )
S∑

mS=−S

(〈F, m; F, k|S, MS〉

× 〈S, MS|F, n; F, l〉), (J9)

where S is the total angular momentum of the colliding
particles and MS its projection along the quantization axis.
The subscripts m, n, k, l run from −19/2 to 19/2. Odd values
of F are forbidden for s-wave collision. Here

cS (aS ) = 4π h̄2aS

M

∫
d3r|φ(r)|4, (J10)

characterizing the scattering in the total spin S channel and aS

is the corresponding background scattering length. For 167Er,
with F = 19/2 there are in principle 10 different scattering
lengths. Most of the aS remain unknown, except the one
between m = −19/2 and n = −17/2, which was measured to
be ∼91(8) a0 with a0 the Bohr radius [29]. Given the complex
molecular potential of Er atoms we expect not significant
variations between them.

In the deep lattice regime, the on-site interactions are of
the order of kHz [29] and therefore much stronger than the
tunneling rate ∼10 Hz. As a consequence, tunneling processes
between two adjacent occupied lattice sites are energetically

forbidden and they contribute only as second-order virtual
processes also known as superexchange interactions. They
take the form

Ĥ 〈i,j〉
ex = −

∑
γ

〈α| Ĥtun |γ 〉 〈γ | Ĥtun |β〉
〈γ | Ĥs |γ 〉 + 〈γ | ĤUdd |γ 〉 |α〉 〈β|, (J11)

where α, β denote a basis set spanned by states where two
adjacent sites i, j are each occupied by one atom and γ denotes
the set of states where two atoms occupy the same site and
are diagonal in both the s-wave and on-site dipolar interaction
Hamiltonians, Ĥs, ĤUdd . The superscript 〈i, j〉 emphasizes that
the superexchange interaction only occurs between nearest-
neighbor sites.

After accounting for all these interactions, we can obtain
an effective spin Hamiltonian by projecting to the physical
subspace with at most one atom per site and also neglecting
tunneling processes to empty sites, which anyway do not
modify the magnetic character of the system:

Ĥ ′ = Ĥ +
∑
〈i,j〉

Ĥ 〈i,j〉
ex , (J12)

where Ĥ is the spin Hamiltonian given in Appendix F.
To get a basic idea of the resulting superexchange interac-

tions, we first provide as an example the case of F = 3/2, for
which the Hamiltonian obtained using the above procedure for
two adjacent sites is

Ĥ 〈i,j〉
ex =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −a 0 0 a 0 0 0 0 0 0 0 0 0 0 0
0 0 b 0 0 0 0 0 −b 0 0 0 0 0 0 0
0 0 0 c 0 0 d 0 0 −d 0 0 −c 0 0 0
0 a 0 0 −a 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 d 0 0 e 0 0 −e 0 0 −d 0 0 0
0 0 0 0 0 0 0 b 0 0 0 0 0 −b 0 0
0 0 −b 0 0 0 0 0 b 0 0 0 0 0 0 0
0 0 0 −d 0 0 −e 0 0 e 0 0 d 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −a 0 0 a 0
0 0 0 −c 0 0 −d 0 0 d 0 0 c 0 0 0
0 0 0 0 0 0 0 −b 0 0 0 0 0 b 0 0
0 0 0 0 0 0 0 0 0 0 0 a 0 0 −a 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (J13)

where

a = 4J2

3Udd + 2Us
, (J14)

b = 8J2

3Udd − 4Us
, (J15)

c = 2J2[3Udd + 2Us(2 + x0)]

9U 2
dd + 6UddUs(1 + x0) − 4U 2

s (1 + x0)
, (J16)

d = 2J2(3Udd + 2Usx0)

9U 2
dd + 6UddUs(1 + x0) − 4U 2

s (1 + x0)
, (J17)

e = 2J2[−9Udd + 2Us(2 + x0)]

9U 2
dd + 6UddUs(1 + x0) − 4U 2

s (1 + x0)
, (J18)

J is the nearest-neighbor tunneling rate,

Us = 4π h̄2a2

M

∫
dr|φ(r)|4, (J19)

023050-14



CONTROLLING DIPOLAR EXCHANGE INTERACTIONS IN … PHYSICAL REVIEW RESEARCH 2, 023050 (2020)

and x0 = a0/a2 − 1 denotes the fractional difference between
the scattering lengths of the two channels with total spin 0 and
2. With this explicit form of the superexchange Hamiltonian,
we can find the short-time dynamics for atoms initialized in
the same state m0

F = |–1/2〉:

n−1/2 = 1 − 3t2

4

∑
i, j �=i

V 2
i, j + O(t4), (J20)

which indicates that superexchange interactions do not
affect the initial dynamics, as one would expect from Fermi
statistics.

Although for the case of Er atoms with F = 19/2 we do
not have a simple analytical expression for the final Hamilto-
nian Eq. (J12) we can obtain it numerically. Moreover, since
for Er most aS are unknown we assume random values for aS

and solve the ensuing dynamics with the GDTWA approach.

In Fig. 11, we plot the result for a typical initial state m0
F =

|−17/2〉, which shows that the addition of superexchange
interactions hardly affects the measured spin dynamics during
the relevant timescale.

To further analyze the role of tunneling during the dy-
namics and account for the presence of initially unoccu-
pied sites, we calculate the spin dynamics from the Fermi-
Hubbard model Eq. (J1). In Fig. 12, we plot the results
obtained for a small-size system using exact diagonaliza-
tion and assuming ∼40% holes at t = 0. At short times
J/h̄ · t ∼ 1, tunneling effect is negligible. At longer times,
tunneling interplays with interaction and Fermi statistics and
modifies the quantum dynamics. Nevertheless, these results
suggest that such modification is not significant for the most
relevant timescales probed in this work. Therefore, for the
comparison with experimental observations in this work, we
use the reduced spin model Eq. (F1) and neglect tunneling
altogether.
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4
Narrow inner-shell orbital
transition at 1299 nm

One of the strengths of precision atomic physics is the possibility to resolve the ladder
structure of the energy levels of an atomic spectrum. In particular, a tremendous advance
has been the identification, manipulation, and control of two isolated energy levels in an atom
that form a two-level system. Such levels can be used as an atomic oscillator with powerful
application in metrology. An atomic oscillator can indeed be used as a high precision clock,
being an ideal frequency reference. The reason for this are the relatively small linewidths of
the excited states, which be intuitively interpreted as measurement uncertainties.

Time occupies not only a special role in the organization of our everyday humans life, but
also represents a very important physical quantity. Its accurate knowledge is fundamental for
a large variety of applications, e. g. to increase the accuracy of Global Navigation Satellite
Systems [Lud15] or to determine the earth’s geoid [Bon12]. Historically, the first clocks
were built by the ancient Sumerians and Egyptians around 3000B.C. based on the position
of the sun. Although many new technologies to measure time have been developed over
time, such as candle clocks, hourglasses, pendulum clocks, and quartz clocks, the concept
has remained the same for all technical approaches, i. e. counting periods of a periodically
repeating observable [Bru00]. Modern definition of time use an atomic oscillator as reference.
Since 1967, the second is defined via the microwave transition between the two hyperfine
states of the ground state in atomic caesium-133 [Aud02]. Today’s best clocks are based
on optical atomic transitions and reach an accuracy on the order of 10−18, leading to a
clock uncertainty of 1 s over more than 300 billion years [Gao18, Bot19a, Bel21]. Indeed, the
International Bureau of Weights and Measures is pursuing the goal of redefining the second
on the basis of ultranarrow optical transitions around the year 2030 [Pet21].

In addition to the application in atomic clocks, narrow and ultranarrow atomic transitions
have demonstrated to be a very versatile tool in ultracold quantum gas experiments. Thanks
to the large Q-factor1 they are attractive for the application in high-precision measurements
as well as for the manipulation and the control of atoms. An outstanding example is the
1S0 → 3P0 transition in fermionic ytterbium and strontium featuring a linewidth in the
mHz regime. The reason for the existence of this transition, even though it is spin for-

1 The ratio between the transition frequency and the linewidth is referred to as quality-factor (Q-factor).
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Figure 4.1.: Energy levels with ∆J = 0,±1 with respect to the ground state for all atomic species of
the lanthanide series up to an energy of 10.5× 104 cm−1. The horizontal red (blue) lines correspond
to even (odd) parity. The shaded are denotes the telecommunication-wavelength window ranging
from 1260 nm until 1625 nm, being the lower (upper) limit of the O-band (L-band). Until today, laser
cooling has been realized for Er, Yb, Dy, Tm, Ho, and Eu.

bidden, is the hyperfine interaction, which causes a mixing between states of the same
total spin F , including the 3P1,

3P2, and 1P1 levels [Boy07]. The high spectral resolu-
tion allowed to accurately determine the s- and p-wave interaction strengths by performing
lattice- or Ramsey-spectroscopy [Zha14, Sca14] and enabled the observation of many-body
effects including the building up of correlations in optical lattice clocks [Mar13, Rey14].
Recent experiments showed, that ultranarrow transitions can also be employed to coher-
ently create molecules [Ni08, Cap19] and realize novel synthetic phases via spin-orbit cou-
pling [Kol17, Liv16]. Ultimately, the coherent control over individual atomic states is a
fundamental ingredient for quantum simulation and quantum computation platforms based
on neutral atoms [Dal08, Gor09]. Very recently, in Ref. [Hei20] it was demonstrated that in
an optical lattice, which operates at a tune-out wavelength for the ground state2, losses due
to excited state interactions can be highly suppressed, paving the path for the application
of quantum simulation and quantum computation schemes.

Although the study of ultranarrow atomic transitions has been mostly focused on atomic
species having two addressable valence electrons, the existence of narrow transitions can be
generally expected in multi-electron atoms. In this thesis, we have performed a first ex-
perimental study in search of a clock-type transition in ultracold atomic erbium. Prior to
this work, to the best of our knowledge, the transition at 1299 nm has not been directly
observed. The NIST database [Kra20] refers to unpublished spectroscopic data of van Kleef
and Koot [vK75] from the 70’s. A more detailed historical overview on spectroscopic mea-
surements of erbium in given in Sec. 2.1.1. Complementary, H.Y.Ban and co-workers in
Ref. [Ban05] performed theoretical calculations of the atomic structure and qualitatively re-
produced the reported energy levels. For atoms of the lanthanide series, very recently, first
experimental studies have been performed using dysprosium [Pet20a] and thulium [Tre20],
which possess narrow atomic transitions at 1001 nm and 1140 nm, respectively. While dys-
prosium, similar to erbium, has a large permanent magnetic dipole moment, the interest

2 At the tune-out wavelength the atomic polarizability is zero and therefore the trapping potential vanishes.
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in thulium arises from the fact that the transition corresponds to an inner-shell f -f ex-
citation. This makes the transition frequency less sensitive to energy shifts induced by
black-body radiation, which constitutes one of the biggest limitations in current optical
clock systems [Gol19, Fed20].

It is interesting to note, that although almost all atomic species of the lanthanide series ex-
hibit a large number of optical transitions, erbium is so far the only atomic species that has
an atomic transition in the telecommunication-wavelength window and has been successfully
laser cooled; see Fig. 4.1. This could be an important aspect in the field of quantum infor-
mation in the future, making erbium an interesting candidate for this type of application.

Within the work of this thesis, we extend our experimental toolbox with the narrow inner-
shell orbital transition at 1299 nm. We observe the atomic transition and characterize im-
portant parameters such as the excited state lifetime and related linewidth, the gJ -factor,
and the dynamic polarizability of the excited state relative to the ground state at 532.2 nm.
The first part of this chapter, Sec. 4.1, will introduce the electron configuration of the state
of interest and the most important transition parameters. The publication that derived from
the work on this transition is presented in Sec. 4.2. Finally, in Sec. 4.3 we present further
work on the atomic transition, i. e. the determination of the A and B hyperfine constants,
the dependency of the excited state lifetime on the atomic density, and the preparation of
atoms in higher Zeeman sublevels. A description of the laser system that is used to generate
and stabilize the light at 1299 nm is given in Appendix B.

On a personal note, as part of this project, I had the privilege to visit Jun Ye’s group in
Boulder (Co) for two months. Being one of the world’s leading groups in the field of three-
dimensional lattice clocks and high-precision metrology, I was able to gain a deep insight
into the world of ultra-stable laser systems during this time. Furthermore, I visited Stable
Laser Systems Inc. during my stay in Boulder, which was an important aspect in the further
planning and realization of this project in terms of the laser system.

4.1. Electron configuration and transition parameters

4.1.1. The J1j-coupling and energy level diagram of the 4f 115d6s2 electron
configuration

The valence electron configuration relevant in this chapter is the one of 4f115d6s2, which,
in contrast to the ground state, involves the excitation of an electron from the 4f -shell to
the 5d-shell. Interestingly, both orbitals have a lower principle quantum number than the
6s orbital occupied by two electrons. This circumstance is the motivation for naming the
transition an inner-shell orbital transition. Fig. 4.2 shows a schematic illustration of the
involved orbitals.

The coupling of valence electrons is an important effect that must be considered to de-
scribe the energy levels of an atomic system. Due to the large mass of erbium, contribution
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Figure 4.2.: Schematic illustration of the inner-shell orbital transition corresponding to the excitation
of an electron in the 4f to the 5d orbital. The red shell illustrates the 6s orbital, while the blue shell
corresponds to the (a) 4f (ml = 1) and (b) 5d (ml = 2) orbital. Note that the inner shells are scaled
up for better visibility.

of the spin-orbit interaction becomes significant with respect to the Coulomb interactions
among the electrons and makes therefore the application of coupling schemes other than
LS-coupling3 necessary. A coupling scheme that is suitable for this electronic configuration
is the J1J2-coupling, also referred to as J1j-coupling [Dra96, Wyb07]. This scheme is par-
ticularly relevant in configurations, where a single electron of an orbital l′ is weakly coupled
to a core containing N electrons. Applied to our configuration, this means that the electron
in the 5d orbital couples to the 11 remaining electrons in the 4f orbital.

In the following we briefly outline the application of the J1j-coupling scheme to the 4f115d6s2

electron configuration. First, the 11 remaining valence electrons in the 4f -core are consid-
ered, which couple via LS-coupling. This leads to angular momentum and total spin quantum
numbers of L = 6 and S = 3/2. Following the LS-coupling scheme, this results in a possible
total angular momentum ranging from J1 = L−S = 9/2 to J1 = L+S = 15/2. In the manifold
of energy levels that we are interested in, the inner-valence electrons couple to J1 = 15/2, also
written as 4I15/2

4.

Subsequently, the spin s = 1/2 of the electron in the 5d-orbital adds vectorially to the orbital
angular momentum l = 2 leading to j = s+ l and j = 3/2 or j = 5/2. Note that the quantum
numbers are written in lowercase letters to indicate that they refer to a single electron.
Finally, following the J1j-coupling, j couples to J1 (J1 = 15/2) resulting in J = J1 + j with
angular momentum quantum numbers ranging from J = J1 − j to J = J1 + j. The final
atomic state with total angular momentum J is usually labeled as (J1, j)J . Accounting for
all coupling possibilities for the combinations of J1 and j leads to six and four different
energy levels, respectively, with each group representing the fine-structure. Interestingly,
this manifold of energy levels represents an odd parity ground state configuration, as there
is no lower lying energy level with the same parity.

Figure 4.3 shows the manifold of energy levels with inner-valence electrons coupled to 4I15/2.

3 Also known as Russel-Saunders coupling scheme. For N electrons, the total spin S =
∑N

i si and the total

orbital angular momentum L =
∑N

i li couple to a total angular momentum J = S + L.
4 The electronic state is denoted as SLJ .
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Figure 4.3.: (a) Full energy level spectrum (see also Fig. 2.1) and (b) energy levels of the electron
configuration where the electron in 5d couples to the f11(4I15/2) core via J1j-coupling. The levels
correspond to (J1, j) = (15/2, 3/2) and (J1, j) = (15/2, 5/2), respectively. The dashed line connects the
energy levels that belong to the same (J1, j) coupling manifold. All the energy levels shown in (b)
have odd parity.

As mentioned in Sec. 2.1.1, the levels were assigned first by N. Spector [Spe65] in 1965.
All 10 levels are energetically between 7177 cm−1 and 11 888 cm−1 and their respective J
values range from 5 to 10. Remember, that the ground state of erbium has a total angular
momentum of J = 6 and therefore only half of the levels fullfill the selection rule ∆J =
0,±1. As discussed above, the energy levels can be separated into two manifolds, which
can be distinguished by the coupling of the electronic spin and the angular momentum of
the electron in the 5d orbital. The manifolds are denoted by (J1, j)J = (15/2, 3/2)J and
(J1, j)J = (15/2, 5/2)J , containing four and six energy levels, respectively.

The state at an energy of 7969 cm−1 with respect to the ground state, which corresponds to
a wavelength of 1299 nm, has quantum numbers of j = 3/2 and J = 7. Considering also the
atomic core, the atomic state is denoted as

[Xe]f11(4I15/2)5d(
2D3/2)6s

2(15/2, 3/2)07. 4.1

Note that 0 indicates the odd parity of the atomic state.

4.1.2. Lifetime of the excited state and other transition parameters

For application in ultracold quantum gas experiments, a number of parameters characterizing
the atomic transition play an important role. One of them is the lifetime, which describes
the time an electron remains in the excited state before decaying back to the ground state by
spontaneous emission of a photon. To derive an expression for the decay rate Γ the coupling
of the atom to all modes of the vacuum field needs to be considered [Wei30], which, however,
goes beyond the scope of this section. At this point we refer to further literature, for example
Ref. [Ste20, CT98].
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Table 4.1.: Theoretical and experimental parameters for the atomic state at 1299 nm. The theoretical
parameters are deduced from calculations in Ref. [Ban05] while the experimental ones are determined
within the work of this thesis.

Property Theoretical values Experimental value

transition rate Γ 13(7) s−1 5.6(6) s−1

linewidth ∆ν 2.1(1.1)Hz 0.9(1)Hz
lifetime τ 75(40)ms 178(19)ms
saturation intensity Isat 1.3(7) µW/m2 0.56(6) µW/m2

recoil temperature Trec 33.8 nK
recoil velocity vrec 1.83mm/s

For a two-level system formed by the two states |g⟩ and |e⟩5, Γ is given by [Ste20]

Γ =
ω3
0 × |⟨g|d |e⟩|2
3πϵ0ℏc3

, 4.2

with ω0 being the transition frequency arising from the energy difference between |g⟩ and |e⟩.
Moreover, the transition rate depends on the dipole matrix element ⟨g|d |e⟩ of the involved
states, which corresponds to the electric dipole moment associated with the transition, and
c denotes the speed of light.

In systems involving more than two atomic levels, all possible transition rates to lower-energy
states must be considered for the lifetime of a single state. In addition, for experimental ap-
plications it is important that the transition is optically closed, meaning that the decay to
other states than the ground state is highly suppressed. We can make a few simple con-
siderations that indicate there are no significant optical leaks [Ban05]. First, in the entire
energy spectrum of erbium (see Fig. 2.1 and Fig. 4.3(a)), no energy level exists below the
state at 1299 nm, which has even parity and satisfies the dipole selection rule ∆J = 0,±1.
This leads to the conclusion that no spontaneous emission can occur via an electric dipole
transition (E1) to states other than the ground state. Second, possible higher order transi-
tions via magnetic dipole radiation (M1) and electric quadrupole radiation (M2) are highly
suppressed due to a low energy difference between the involved states and the dependence of
Γ ∝ ω3

0. Combining these arguments and considerations, there will be no significant optical
leakage to different states and the transition at 1299 nm can therefore be considered to be
closed for our experimental purposes.

Prior to the work within this thesis, a first theoretical study of Γ, which relates to the excited
state lifetime τ = 1/Γ and the natural transition linewidth ∆ν = Γ/2π, has been performed
by H.Y.Ban and co-workers in Ref. [Ban05]. The calculations of the dipole matrix element
in Eq. 4.2 are based on the relativistic Hartree-Fock code of Cowan [Cow81] and yield a
transition rate of Γ = 13(7) s−1, which converts into a lifetime of τ = 75(40)ms and a
linewidth of ∆ν = 2(1)Hz. The relatively long lifetime arises as a direct consequence of the
major quintet character of the excited state (5H7) in contrast to the triplet character of the
ground state (3H6).

5 Here and in the following |g⟩ refers to the ground state and |e⟩ to the excited state of the system.
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Table 4.1 summarizes some important transition parameters that arise from the lifetime of
the excited state and gives, where it is appropriate, a comparison to the experimental values
determined within this thesis; see Sec. 4.2. In addition to Γ, ∆ν, and τ , the saturation
intensity6, the recoil temperature7, and recoil velocity8 are given. Note that, the theoretical
calculations agree within two standard deviations with the experimentally determined values.
A description of the magnetic field sensitivity of the atomic state is given in Appendix C.

6 Saturation intensity Isat = πhc
3λ3τ

.
7 Recoil temperature Trec = ℏ2k2

2mkB
.

8 Recoil velocity vrec = ℏk
2

.
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Observation of a narrow inner-shell orbital transition in atomic erbium at 1299 nm
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We report on the observation and coherent excitation of atoms on the narrow inner-shell orbital transition, con-
necting the erbium ground state [Xe]4 f 12(3H6)6s2 to the excited state [Xe]4 f 11((4I15/2 )0)5d (5D3/2 )6s2(15/2, 3/2)0

7.
This transition corresponds to a wavelength of 1299 nm and is optically closed. We perform high-resolution
spectroscopy to extract the gJ factor of the 1299-nm state and to determine the frequency shift for four bosonic
isotopes. We further demonstrate coherent control of the atomic state and extract a lifetime of 178(19) ms,
which corresponds to a linewidth of 0.9(1) Hz. The experimental findings are in good agreement with our
semi-empirical model. In addition, we present theoretical calculations of the atomic polarizability, revealing
several different magic-wavelength conditions. Finally, we make use of the vectorial polarizability and confirm
a possible magic wavelength at 532 nm.

DOI: 10.1103/PhysRevResearch.3.033256

I. INTRODUCTION

Ultranarrow atomic transitions are an extremely powerful
resource for high-precision measurements and for controlling
and manipulating atoms on a quantum level [1]. Prominent
examples are clock transitions in alkaline-earth-like atoms
[2–4]. The small spectral linewidth of these transitions en-
ables the high-resolution detection of energy shifts on very
fine scales. This unique property made it possible, e.g., to
observe SU(N)-symmetric interactions in both, ytterbium and
strontium [5,6]. An additional important avenue paved by
narrow transitions is the optical manipulation and coherent
control of ultracold atoms. The tuning of the interparti-
cle interactions using optical Feshbach resonances has been
demonstrated and benefits from the narrow linewidth due to
the suppressed photon scattering rate [7–11]. Coherent control
enabled the creation of ultracold molecules via Raman state
transfer [12–15], the preparation of the atoms in different
nuclear spin configurations [5,6], and the creation of spin-
orbit coupled quantum gases [16–19]. Finally, the coherent
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excitation allows for the realization of quantum computation
and quantum simulations, e.g., with neutral atoms loaded into
optical lattices [20–22].

Atomic species of the lanthanide family are multivalence
electron atoms and possess a special electron configuration, a
so-called submerged shell, in which the 6s subshell is filled,
while the lower-lying 4 f or 5d subshells are open, being
partially unoccupied. This leads to a large variety of optical
transitions in these elements, whose linewidths range from
tens of μHz to tens of MHz [23–25]. In contrast to alkaline-
earth-like atoms, which do not carry a magnetic moment in
their ground state, a selection of lanthanides allow for the
combination of a narrow transition with a large magnetic
moment. While narrow and ultranarrow transitions have been
extensively studied in alkaline-earth and ytterbium atoms,
only little is known for the other elements of the lanthanide
series. Some spectroscopic studies have been carried out for
dysprosium [26] and thulium [27,28].

For the specific case of erbium, there is a prediction of a
narrow inner-shell orbital transition, which has a change in
the total angular moment of �J = +1 (|J = 6〉 → |J ′ = 7〉)
and a change in the total spin of �S = 1 [23]. The transition
involves the excitation of a 4 f ground-state electron to a 5d
state; see Fig. 1. Theoretical calculations predict a linewidth of
about 2 Hz [23], which fills a gap between ultranarrow tran-
sitions in the mHz regime and transitions having linewidths
on the order of kHz, available in alkaline-earth atoms and
previously explored in lanthanide atoms. Moreover, in con-
trast to most narrow transitions in other atomic species, the
wavelength of 1299 nm lies within the telecom-wavelength
window, which, e.g., is advantageous for the application in
quantum communication systems [29–32]. Here, we report on
the experimental observation of this transition. We perform a
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FIG. 1. Schematic level scheme illustrating the [Xe]4 f 12

(3H6)6s2 → [Xe]4 f 11((4I15/2 )0)5d (5D3/2 )6s2(15/2, 3/2)0
7 inner-shell or-

bital transition at 1299 nm (|g〉 → |e〉) and the [Xe]4 f 12(3H6)6s2 →
[Xe]4 f 12(3H6)6s6p(1P0

1)(6, 1)0
7 transition at 401 nm, used for ab-

sorption imaging. The horizontal lines indicate the energy levels
for |g〉 (blue, even parity), |e〉 (red, odd parity), and the state at
401 nm (black, odd parity). [Xe] stands for the electron configuration
of xenon. The insets illustrate the electron configurations. The grey
shaded boxes represent the Zeeman manifold for |g〉 and |e〉. Energies
are not to scale.

careful experimental survey and characterization of the 1299-
nm transition, realizing the first crucial step towards extended
applications, e.g., to explore novel few and many-body phe-
nomena in dipolar or large spin systems.

We experimentally observe the transition at 1299 nm for
the bosonic isotopes 164Er, 166Er, 168Er, and 170Er and for
the fermionic isotope 167Er. We perform high-resolution spec-
troscopy to determine the gJ ′ factor of the excited atomic
state (|e〉) and to measure the frequency shift for the four
bosonic isotopes. We further demonstrate coherent control
of the atomic state and measure an excited-state lifetime of
178(19) ms. We carry out trap frequency measurements to
determine the atomic polarizability of the excited state relative
to the ground state with the trapping light at 532.2 nm. As
we vary the polarization of the light we take advantage of the
vectorial term of the atomic polarizability and we are able to
get close to a magic-wavelength condition, where the ground
state (|g〉) and |e〉 feature the same polarizability. We finally
present theoretical calculations of the atomic polarizability
based on a sum-over-states formula and report on several
alternative options for magic wavelengths.

II. EXPERIMENTAL SETUP

We search for the narrow inner-shell transition by per-
forming spectroscopic measurements on a trapped quantum-
degenerate erbium gas. Our experimental procedure to create
an erbium Bose-Einstein condensate (BEC) follows Ref. [33].
In brief, after laser cooling in a magneto-optical trap, we load
the atoms into a crossed optical dipole trap (ODT) operating
at 1064 nm and perform evaporative cooling down to quantum

degeneracy. The BEC typically contains N = 1–3×104 atoms
with BEC fractions ranging from 30–80%, depending on the
isotope choice. For the fermionic 167Er isotope, we obtain a
degenerate quantum gas of N = 2×104 atoms at a tempera-
ture of T ≈ 0.5TF , where TF is the Fermi temperature. During
the evaporation, a homogeneous magnetic field B is applied
to ensure that the atomic cloud remains spin-polarized in the
lowest Zeeman level mJ = −6 (mF = −19/2) for the bosonic
(fermionic) isotopes.

The light for driving the narrow inner-shell transition is
generated from an external-cavity diode laser (ECDL) oper-
ating at 1299 nm. We determine the absolute frequency of
the laser by measuring the frequency-doubled light with a
calibrated wavemeter [34], which has an accuracy of 60 MHz.
For our coarse spectroscopy, we use the wide tunability of
the ECDL via the control of a piezoelectric element, which
allows us to change the laser frequency. Furthermore, we can
narrow the laser linewidth and stabilize the frequency using
a high-finesse reference cavity made of ultralow expansion
glass. The reference cavity has a free spectral range (FSR)
of 1.4972462(3) GHz and finesse of about 175000. The stabi-
lized laser system has an Allan deviation of 3.1×10−15 over
an observation time of 1 s. The coherence time is extracted
from the phase noise power spectral density and corresponds
to 96 ms [35]. We measure a linear frequency drift of the high-
finesse cavity of 4.34(7) kHz/day. In the experiment, we use
the frequency stabilized configuration for the high-resolution
spectroscopy.

III. COARSE SPECTROSCOPY

In the 1960s, the atomic spectra of lanthanides began to
attract interest. Absorption lines were observed using King’s
furnace or oxyacetylene flames in the range between 650 to
250 nm [36,37]. In early spectroscopic works, the configu-
ration of the low-lying energy levels, and particularly that
of the odd parity states, was not known. The first work to
identify the odd-parity level 4 f 115d6s2—i.e., ortho-erbium
ground state—as the lowest-lying configuration above |g〉 was
Ref. [38]. In this configuration, the angular momentum J1 =
7/2 of the 4 f 11 core couples via J1 − j coupling to the j of the
5d electron, which leads to a total of 10 fine structure levels
with J ranging from 5 to 10. The assignment of the fine struc-
ture levels has been deduced by analyzing energy differences
between absorption lines using a spectroscopic-level search-
ing algorithm. The NIST database reports the energies of the
corresponding fine-structure levels, referring to unpublished
measurements from mid 70 s [39]. For our level of interest
|e〉 = 4 f 11((4I15/2 )0)5d (5D3/2 )6s2(15/2, 3/2)0

7, the wavenumber
given by NIST [40], not accounting for the isotope shift, is

ν̄NIST = 7696.956 cm−1. (1)

To the best of our knowledge, prior to this paper, there has
been no direct measurement of the 1299-nm transition. Our
ultracold quantum gas provides a new opportunity to observe
and characterize this transition.

We start our search of the line by performing a coarse
spectroscopy over a broad frequency range around ν̄NIST

(corresponding to νNIST = 230.738 THz). After preparing an
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FIG. 2. Coarse spectroscopy results for the four bosonic isotopes
164Er, 166Er, 168Er, and 170Er at B = 1.355(5) G and for the fermionic
isotope 167Er at B = 0.52(5) G. The normalized atom number in
|g〉 is plotted versus the laser frequency, which is controlled by the
piezoelectric element of the ECDL. The atom number is normalized
to the moving median formed by 21 data points.

optically-trapped ultracold erbium gas in |g〉, we shine the
1299-nm spectroscopy light on the sample. The spectroscopy
beam has a peak intensity of Ipeak ≈ 0.8 W/cm2 and a 1/e2

waist of about 110 μm. The irradiation time is 100 ms,
during which we sweep the laser frequency with an ampli-
tude of about ±40 MHz. After irradiation, we release the
atoms from the trap for a free expansion of 30 ms. We
record the number of remaining |g〉 atoms by performing
standard absorption imaging using resonant light at 401 nm
(see Fig. 1).

We record the absorption spectrum by repeating the mea-
surement over a wide frequency range with a step size
of 40 MHz. Figure 2 summarizes our results for the four
most abundant bosonic erbium isotopes (164Er, 166Er, 168Er,
and 170Er) and for the fermionic 167Er isotope. As ex-
pected from their zero nuclear spin (I = 0), each bosonic
isotope exhibit just one resonant absorption line, detected
as a sharp dip in the number of |g〉 atoms when vary-
ing the 1299-nm laser frequency. For the fermionic 167Er
isotope, possessing a hyperfine structure (I = 7/2), we iden-
tify three resonances. We attribute the three resonances to
the transitions |F = 19/2〉 → |F ′ = 21/2〉, |F = 19/2〉 →
|F ′ = 19/2〉, and |F = 19/2〉 → |F ′ = 17/2〉, respectively.
Notably, at the resonance positions, the population of |g〉
reaches values below 0.5, indicating an underlying loss mech-
anism, such as heating from a reduced trapping potential for
|e〉 or an interaction-based loss processes.

IV. HIGH-RESOLUTION SPECTROSCOPY

Thanks to the coarse spectroscopy measurements, we can
now restrict the frequency region of interest and perform a
spectroscopy survey with a much higher spectral resolution
and lower laser intensity, allowing also to resolve the magnetic
Zeeman sublevels.

For this, we stabilize the laser frequency to the high-finesse
reference cavity and then precisely tune the laser frequency
using an acousto-optical modulator. The recorded absorption
spectra have a step size ranging from 1 to 8 kHz, depend-
ing on the measurement. Moreover, the spectroscopy is now
performed with a free-falling gas to eliminate possible ac
Stark shifts, eventually caused by the ODT light at 1064 nm.
Therefore, after sample preparation, we switch off all trap-
ping lights, and then irradiate the sample with a 1299 nm
spectroscopy pulse of 1 ms, corresponding to a Fourier lim-
ited linewidth of 800 Hz. The pulse has a peak intensity
of Ipeak ≈ 25 mW/cm2. To minimize the possible frequency
shifts caused by the Doppler effect in a free-falling sample,
the 1299-nm laser beam propagates in a plane orthogonal to
the vertical direction, defined by gravity. The quantization
axis, defined by our bias magnetic field, is oriented along the
vertical direction. The light contains contributions from all
light polarizations, such that the 1299-nm beam can induce
σ+, σ−, and π transitions; see inset in Fig. 3(a).

Figure 3(a) shows the ground-state population for the 168Er
isotope as a function of the laser detuning, plotted with respect
to the central frequency of the π transition. We clearly observe
three resonant dips in the ground-state population, corre-
sponding to the transitions from the ground-state level mJ =
−6 to the excited Zeeman sublevels mJ ′ = −7, −6 and − 5.
We extract the center frequency and the transition linewidth
by fitting the spectroscopy signals with a Lorentzian function.
The extracted linewidths are 2.4(1) kHz and 2.5(1) kHz for
the π and σ+ transition and 20(1) kHz for the σ− transition.
The different linewidths of the spectroscopy resonances can
be explained by a power broadening effect, due to the different
Clebsch-Gordan coefficients of the magnetic sublevels, and
the composition of the light polarization.

We use the wavemeter to determine the absolute wavenum-
ber as

ν̄168 = 7696.955(2) cm−1. (2)

Our measurement is consistent with the value reported in
the NIST database [40] [see Eq. (1)]. The accuracy of the
absolute wavenumber is limited by the wavemeter. However,
our spectroscopy measurement has a precision of about 2 kHz,
which provides the opportunity to improve the accuracy of
the absolute frequency by several orders of magnitude using
advanced measurement techniques, such as frequency combs
[41].

V. LANDÉ FACTOR FOR BOSONIC ISOTOPES

From the observed Zeeman structure in the bosonic iso-
topes, we can extract the Landé gJ factor. This is an important
quantity, e.g., to describe the atomic interaction with an ex-
ternal magnetic field, to describe the interaction between
different atoms via their magnetic dipoles, and to benchmark
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FIG. 3. (a) High-resolution spectroscopy of 168Er at B =
1.358(2) G, unveiling the σ−, π , and σ+ transition (|mJ = −6〉 →
|mJ ′ = −7〉, |mJ = −6〉 → |mJ ′ = −6〉, and |mJ = −6〉 →
|mJ ′ = −5〉). The normalized population in |g〉 is measured against
the laser frequency relative to the frequency position of the π

transition. (b) Measured gJ ′ factor for the four bosonic isotopes
for the different atomic mass numbers. The error bars denote the
1σ -standard deviation. The red solid line represents the weighted
mean of the experimental data and the grey shaded area corresponds
to the combined standard deviation. The black solid lines represent
the gJ ′ factor calculated using our semi-empirical method and the
value given in the NIST database [40].

atomic spectrum calculations. Here, we use the relative fre-
quencies of the π and σ+ transitions to determine the value
of the gJ ′ factor for the excited state. In small magnetic fields,
the Zeeman splitting is linear and the transition frequencies
can be written as

νπ = ν0 − mJ (gJ − gJ ′ )μBB/h, (3)

for the π transition and

νσ+ = ν0 − [mJgJ − (mJ + 1)gJ ′ ]μBB/h, (4)

for the σ+ transition, where ν0 is the absolute transition fre-
quency at B = 0 G, μB is the Bohr magneton and h is the
Planck constant. By taking the difference of Eq. (4) from
Eq. (3) one obtains

gJ ′ = (νσ+ − νπ )h

μBB
, (5)

which allows us to extract the value of gJ ′ , where the uncer-
tainties are arising from the measured frequencies νπ , νσ+,
and the applied B.

We calibrate B, before and after each spectroscopic mea-
surement, by driving the atomic radio-frequency transition of
the atoms in |g〉 from mJ = −6 → mJ = −5. We evaluate
possible drifts of B from these spectroscopy measurements
and estimate them to be ≈1 mG. This uncertainty on B

TABLE I. Isotope shifts for three bosonic isotopes in dependence
of the 168Er isotope. The error bars denote the statistical error, mainly
given by uncertainties of B. Systematic errors are not taken into
account.

isotope pair ν0 − ν168
0 (MHz)

164−168 –2732.290(3)
166−168 –1371.710(3)
170−168 1414.920(5)

represents the dominant limitation on the precision of our
measurements.

Figure 3(b) shows the experimentally extracted values of
the gJ ′ factor as a function of the isotope mass number for the
four bosonic isotopes. We find that, as expected, the values for
the gJ ′ factor are the same within one standard deviation for
all four isotopes. We combine the results by calculating the
weighted mean and determine the gJ ′ factor of |e〉 to

gJ ′ = 1.2599(5). (6)

The individual gJ ′ factors are weighted by their standard de-
viation and the final error corresponds to the combined 1σ

standard deviation. We compare our experimentally deter-
mined gJ ′ factor to the value specified in the NIST database
[40], gNIST

J ′ = 1.266, and find agreement at the 1% level. A
careful study of systematic effects such as calibration errors
on the magnetic field or collisional shifts (not included in the
presented uncertainty) could refine this comparison further,
providing a useful benchmark for atomic structure calcula-
tions.

VI. ISOTOPE SHIFT

In addition to the gJ ′ factor, the high-resolution spec-
troscopy allows us to extract the isotope shift between the
four bosonic isotopes with high precision. Because the π

transition is less sensitive to magnetic field fluctuations, we fix
B and, with the knowledge of the FSR, determine the relative
frequency difference directly from the individual transitions.
Table I gives the isotope shifts relative to the transition fre-
quency of the 168Er isotope.

At leading order, isotope shifts are caused by two effects,
the field shift and the mass shift, which arise from the change
of the nuclear size and the mass, respectively. Here, for the
involved 4 f → 5d transition, both of the contributions are
comparably large [42,43]. Isotope shifts of two different tran-
sitions, plotted against each other, follow at leading order a
linear dependence, which is referred to as King’s linearity
[44]. Violations of the linearity can provide an exceptional
insight into intranuclear interactions and can help to shed light
on processes that are not described by the current theory of
the standard model [45–50]. The availability of four isotopes
that have zero nuclear spin and a large number of different
narrow transitions make erbium a potential candidate for in-
vestigations along this route. In particular, erbium features
further narrow transitions that involve the excitation of an
electron from the 4 f orbital to the 5d orbital. Consequently, in
combination with our transition at 1299 nm, the nonlinearity
might be less sensitive to field shifts induced by different
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electron configurations and therefore interesting for future
investigations [45,46,48].

VII. COHERENT CONTROL AND LIFETIME
MEASUREMENTS

An important opportunity that comes along with narrow
line transitions and plays a fundamental role, e.g., in quantum
information and communication protocols, is the possibility
to coherently control the atomic state. To demonstrate the
ability to drive coherent excitations, we measure Rabi oscil-
lations on the closed σ− transition for a thermal cloud of the
168Er isotope. We use a thermal cloud to reduce the effect of
interactions, by allowing for lower densities. From theoreti-
cal calculations (see description in Sec. VIII), it is expected
that the atomic polarizability of atoms in |e〉 is very low,
or even negative at 1064 nm, depending on the polarization
of the trapping light. Therefore, we transfer the atoms after
evaporation into a crossed ODT that is created by two inter-
secting laser beams at 532.2 nm and 1570 nm, resulting in trap
frequencies of (ωx, ωy, ωz ) = 2π [232(6), 117(7), 209(3)] Hz
for the ground-state atoms. At this stage, we measure 2×104

atoms at a temperature of T ≈ 700 nK, corresponding to a
peak density of about 9×12 cm−3. After the preparation of
the atomic cloud, we shine a resonant narrow-line laser with
a peak intensity of about 4.9 W/cm2 for a pulse duration of
tpulse onto the atomic sample and measure the atom number in
|g〉 after a time of flight of 10 ms.

Figure 4(a) shows the population in |g〉, normalized to the
maximum atom number as a function of tpulse. We observe a
damped oscillation of the population in |g〉, which is well de-
scribed via pg(t ) = 0.5e−t/τosc cos(�Rt ) + 0.5, where �R is the
Rabi frequency and τosc is the 1/e decay time of the contrast of
the oscillation. We find that �R = 2π×50.02(8) kHz, which
corresponds to a normalized Rabi frequency of �norm.

R =
2π×0.76(6) kHz/

√
mW/cm2. For the decay time of the

contrast we find τosc = 192(20) μs, indicating a strong deco-
herence mechanism. Possible mechanisms that might lead to
the decoherence are, e.g. atomic interactions, intensity noise
on the trapping light, intensity inhomogeneities of the probe
light over the atomic cloud, or fluctuations of the magnetic
field. Nonetheless, the coherent control allows us transfer
atoms from |g〉 to |e〉 with an efficiency >97%.

The ability to transfer atoms from |g〉 to |e〉 with high effi-
ciency enables us to measure the lifetime of atoms in |e〉. At
high densities we observe a short lifetime of the sample in |e〉,
suggesting a density-dependent loss mechanism, similarly to
Ref. [51]. Therefore, we reduce the atom number to N ≈ 300
atoms by using a shorter loading time of the magneto-optical
trap and we stop the evaporative cooling process at an ear-
lier stage, leading to a temperature of T ≈ 1 μK. Here, we
obtain a peak number density of about 7.5×1010 cm−3. In
this regime of low density, radiative losses dominate over
few-body collisional losses.

To measure the lifetime of |e〉, we carry out two comple-
mentary measurements. First, we perform a π pulse to transfer
|g〉 atoms to |e〉 with high efficiency. To obtain a pure sample
of |e〉 atoms, we remove the small remaining fraction of |g〉
atoms with a resonant pulse at 401 nm. Note that, the light at
401 nm is not resonant for atoms in |e〉. We then measure the
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FIG. 4. (a) Coherent Rabi oscillations for 168Er on the
|mJ = −6〉 → |mJ ′ = −7〉 transition. Shown is the normalized atom
number in |g〉 against the duration of the laser pulse. The dashed
line represents a fit of a damped sinusoidal oscillation to the ex-
perimental data points. (b) Schematic illustration of the two applied
measurement sequences to extract state populations (see main text).
(c) blue circles [red squares] represent the atom number in |g〉[|e〉] in
dependence of the hold time for the measurements sequence (i) [(ii)].
The grey diamonds represent the total atom number. The solid lines
are exponential fits to the experimental data. Error bars denote the
standard error of 4 (a) and 10 (c) repetitions.

lifetime of the excited sample in two independent measure-
ments, (i) the number of atoms in |g〉, which decayed from |e〉
due to spontaneous emission, and (ii) the atomic population in
|e〉 by applying a second π pulse to invert the populations in
|e〉 and |g〉 in order to directly measure the excited-state atoms;
see Fig. 4(b).

Figure 4(c) shows the measured atom number for both
measurement sequences at different holding times thold. We
observe a decay of the atom number in |e〉, which is consistent
with the simultaneous growth of the atom number in |g〉. Note
that, the sum of the atom number in both states remains con-
stant over the observed timescale, indicating that atoms in |e〉,
indeed, decay dominantly to |g〉. We extract the lifetime, for
both measurement protocols, by fitting an exponential func-
tion N (t ) = ae−t/τe + d to the non-averaged atom numbers.
Here, a denotes the amplitude and d the offset of the growth
(decay) of the atom number in |g〉 (|e〉). The characteristic
time τe represents the lifetime of |e〉. We extract a lifetime of
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162(23) ms [212(33) ms] through the measurement sequence
(i) [(ii)]. We combine both results by calculating the weighted
mean and obtain a mean lifetime of

τe = 178(19) ms. (7)

This lifetime corresponds to a natural linewidth of 0.9(1) Hz,
which is in agreement within error bars with the theoreti-
cal predicted value of 2(1) Hz in Ref. [23]. Note that, the
measured lifetime is consistent with the natural linewidth
predicted from �R determined above.

VIII. THEORETICAL PREDICTIONS

We compare our experimental findings with the results
of a semi-empirical model, which has previously been very
successful in predicting the properties of broader optical tran-
sitions in erbium and dysprosium [52,53]. Our calculations
are based on the semi-empirical method provided by the
COWAN suite of codes [54,55], and extended by us [52].
In a first step, ab initio radial wave functions Pn	 for all the
subshells n	 of the considered configurations, with n and 	

being the principal and orbital quantum numbers, are com-
puted with the relativistic Hartree-Fock (HFR) method. Those
wave functions are then used to calculate energy parameters
that are the building blocks of the atomic Hamiltonian. In
a second step, the energy parameters are adjusted so that
the eigenvalues of the Hamiltonian best fit the experimental
energies of the NIST database [40], using Kramida’s version
of the least-square fitting COWAN code RCE [55]. The Pn	

wave functions also serve to calculate the mono-electronic
transition integrals 〈n	|r|n′	′〉 = ∫

drPn	(r)rPn′	′ (r), that are
the building blocks of Einstein coefficients for spontaneous
emission Aik . In a third step, the 〈n	|r|n′	′〉 integrals are ad-
justed to minimize the difference between experimental and
theoretical Aik coefficients [52].

For the even-parity levels of erbium, we use the same
energy parameters as Ref. [56]. Briefly, the even electronic
configurations are separated into three groups:

4 f 126s2 + 4 f 125d6s + 4 f 116s26p,

4 f 126s2 + 4 f 115d6s6p,

and

4 f 126s2 + 4 f 126s7s + 4 f 126s6d + 4 f 126p2.

Each group is associated with a different least-square fitting
calculation with experimental levels belonging to the corre-
sponding configurations.

Compared to Refs. [56,57], the odd-parity level calcu-
lations have been improved by adding some high-lying
experimental energy levels that were previously excluded
from the fitting procedure, as well as incorporating a larger
number of free configuration-interaction parameters into the
fitting procedure. The following configurations are included in
the calculation: 4 f 115d6s2, 4 f 115d26s, 4 f 126s6p, 4 f 125d6p,
and 4 f 136s. The latter is included for technical purpose, but
does not play a physical role. The fitting procedure is per-
formed using a total of 30 free groups of parameters and
219 levels. The standard deviation between experimental and
calculated energies is equal to 53 cm−1, which is satisfactory

for a semi-empirical calculation. Details on the parameters
for the first four odd parity configurations are given in the
Appendix.

The 〈n	|r|n′	′〉 transition integrals were adjusted using
the set of experimental Aik coefficients of Ref. [58], es-
pecially the transitions involving levels of the ground-state
configuration [Xe]4 f 126s2. Following Ref. [52], we seek to
minimize the standard deviation σA on Einstein coefficients
Aik [52]. Because the latter is poorly sensitive to 〈4 f |r|5d〉,
we could not find a value of that integral minimizing σA,
we have taken a scaling factor with respect to the HFR in-
tegral equal to f4 f ,5d = 0.95, following previous works on
dysprosium [53] and holmium [59]. We applied the fitting
procedure on 〈6s|r|6p〉, and found f6s,6p = 0.786. We have
fitted 77 experimental lines and found a standard deviation
σA = 8.085×106 s−1.

With this optimized set of energies and transition inte-
grals, we have calculated the polarizabilities of the ground
and excited states using the sum-over-state formula coming
from second-order perturbation theory. The polarizability of
the excited level also depends on 〈5d|r|6p〉, for which we took
a scaling factor of 0.8.

From our theory we obtain a wavenumber of ν̄ th =
7729.3 cm−1, a gJ ′ factor of gth

J ′ = 1.2622, and an excited-state
lifetime of τ th = 602 ms. For ν̄ th and gth

J ′ we find satisfac-
tory agreement with the values reported from the current
experimental work. Note that, by included least-square fitted
energy parameters in the theoretical calculations (compared
with Ref. [60]), we obtain better agreement with the exper-
imental data. The extracted lifetime is about a factor of 3
longer compared to the experimentally measured value. This
discrepancy comes from the fact that the underlying transition
dipole moment involves small components in the eigenvector
associated with level |e〉. Those small components are more
difficult to optimize, as they are less affected by the least-
square fitting procedure on energies.

Figure 5(a) shows the calculated atomic polarizability α(ω)
for |e〉 in a broad wavelength range from 350 nm to 1500 nm.
The polarizability spectrum becomes very dense at lower
wavelengths. The background value of α(ω) is dominantly
positive; however, a strong transition at around 1140 nm
causes a negative value of α(ω) around 1064 nm, commonly
used for optical dipole traps. Further, this strong transition
creates two interesting situations appearing at 1010 nm and
1070 nm. Here, while α(ω) is finite for |g〉, α(ω) of |e〉 is either
0 (1010 nm) or has the same absolute value with opposite
sign (1070 nm). These circumstances are beneficial for the
realization of spin-dependent lattice configurations [61]. Due
to the weak coupling to |g〉, the effect of the transition at
1299 nm is not visible in this plotting range.

IX. MAGIC-WAVELENGTH CONDITIONS

A very important ingredient for the coherent control of our
two-level system is the atomic polarizability of each state,
α(ω), and their ratio α|e〉/α|g〉. Figures 5(b)–5(d) show exam-
ples of interesting wavelength regions in which, for a given
light polarization (π ), the |g〉 and |e〉 state polarizabilities
cross, meaning that atoms in both states will experience the
same optical trapping potential. These specific values of the
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FIG. 5. (a) Theoretically calculated α(ω) for |e〉 as a function of the wavelength λ for π -polarized light. [(b)–(e)] Zoom-in into specific
wavelength regions showing α(ω) for |e〉 (red) and |g〉 (blue). The green stars indicate possible magic wavelengths. The dashed black lines in
(e) denote the wavelength of 1010 nm, 1064 nm, and 1070 nm.

wavelength realize the so-called magic condition. Our calcu-
lation shows wavelength values for which both red-detuned
[Figs. 5(c) and 5(d)] or blue detuned magic [Fig. 5(b)] trap-
ping is possible. Moreover, Fig. 5(e) shows a case in which the
polarizability of |g〉 and |e〉 has opposite sign. This situation
might be interesting to create an effectively subwavelength
lattice in which |g〉 and |e〉 atoms are spaced by λ/4.

The existence of such type of crossings is a rather general
feature also in more simpler atomic species. Additionally,
α|e〉/α|g〉, and thus the exact crossing position, can be tuned
by changing the light polarization or the magnetic-field
orientation [56,62–64]. These features, named in analogy
“magic”-polarization condition [64,65], originate from the
vectorial and tensorial part of the atomic polarizability, fol-
lowing the equation:

α(ω) = αs(ω) + i
[u∗ × u] · J

2J
αv (ω)

+J (J + 1) − 3m2
j

J (2J − 1)

1 − 3 cos2 θp

2
αt (ω). (8)

Here, αs(ω), αv (ω), and αt (ω) are the scalar, the vectorial, and
the tensorial polarizabilities and u is the polarization vector of
the laser field. The angle θp defines the orientation of u with
respect to B.

We aim at exploring the impact of the vectorial polariz-
ability on α|e〉/α|g〉 for a commonly used trapping wavelength
of 532.2 nm. As for Sec. VII, we prepare our |g〉 atoms in a
crossed optical dipole trap, with a horizontal (vertical) beam
operating at 532.2 nm (1570 nm). For reference, we first excite
the center-of-mass (COM) motion and extract the vertical trap
frequency (mainly determined by the light at 532.2 nm) of
the atoms in |g〉; see Fig. 6(a). We then repeat the same trap-
frequency measurements for atoms in |e〉 and use the relation
of α|e〉/α|g〉 = (ω|e〉/ω|g〉)2 [63].

To study the impact of the vectorial polarizability, we mea-
sure α|e〉/α|g〉 for different polarization of the light at 532.2 nm.
In each measurement, θp = 90◦, while the angle φ defining u
is varied [66]; see inset in Fig. 6(b). Figure 6(b) summarizes
our results. We observe a periodic behavior of α|e〉/α|g〉 as a
function of φ, which reaches its maximum for σ−-polarized
light (φ = 45◦). At this angle, we find α|e〉/α|g〉 = 0.98(3), which
is consistent within the experimental uncertainty to the magic-
trapping condition. The figure also shows our theoretical
calculation, which qualitatively reproduces the experimen-
tal values, although with a smaller amplitude, which might
indicate a shift of the close by transition as well as an under-
estimation of the transition strength. At φ = 45◦, the theory
gives (α|e〉/α|g〉)theo = 0.97, and predicts crossings at 528.9 nm
and 532.5 nm, which are interesting options to explore with
tunable laser systems. The polarizabilities for the special cases
of σ−- and σ+-polarized light are shown in Fig. 6 for an
extended wavelength region.

We estimate from our theoretical calculations, that the rela-
tive change of α|e〉 − α|g〉 for φ = 45◦, in linear approximation,
follows a slope of about 4 a. u./nm at 528.9 nm and a slope of
about 80 a. u./nm at 532.5 nm. This implies that a sufficient
laser stability to resolve our observed linewidth can be reached
with standard laser locking techniques. Further, the measured
BEC lifetime at 532.2 nm is about 2 s, which suggests a low
photon scattering rate. Furthermore, as the detuning to the
nearby ground-state transition is increased, for the crossing
at 528.9 nm a potentially lower scattering rate can be found
[see Fig. 6(c)].

X. CONCLUSION

In conclusion, we have observed the narrow inner-shell
orbital transition at 1299 nm for the four bosonic, as well
as for the fermionic isotope. We characterized the transition
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FIG. 6. (a) Center position of the thermal cloud in dependence
of the hold time for |g〉 (blue) and |e〉 (red) for the case of linearly
polarized light with u pointing along y and B aligned opposite to
the propagation axis of the 532.2 nm trapping light. Atoms are
transferred to |e〉 following the protocol (ii) described in Sec. VII.
(b) Polarizability ratio α|e〉/α|g〉 for different polarizations of the trap-
ping light defined by the angle φ between u and the optical axis of
the λ/4-waveplate. The black solid line is a guide to the eye based on
a sinusoidal fit to the experimental data and the grey solid represents
theoretical results obtained from the sum-over-states method. The
inset illustrates the experimental configuration for the shown data.
(c) Theoretically calculated α(ω) for |e〉 (red) and |g〉 (blue) in their
lowest magnetic sublevels as a function of the wavelength λ for σ−-
(solid line) and σ+-polarized (dashed line) light. The green solid line
indicates the wavelength for the measurement in (b) and the green
stars indicate possible magic wavelengths for σ−-polarized light.

by measuring the gJ ′ factor and the atomic polarizability at
532.2 nm, which we compare to a semi-empirical model.
Further, we demonstrated the ability to coherently control the
atomic state. The narrow transition, at a wavelength within
the telecom window, with a linewidth of 0.9(1) Hz and a
related long lifetime of 178(19) ms, represents a very versatile
tool with outstanding potential for a broad range of possible
applications.

For the realization of efficient long-distance quantum
communication, atom-photon interfaces at wavelengths that
are compatible with telecom wavelengths are highly desired
[29–31]. To date, most of the existing approaches rely either

on frequency conversion of the photons [67,68], leading to
undesired noise and reduced efficiency, or suffer from vari-
ous other dephasing mechanisms [69,70]. Here, our transition
at 1299 nm, lying within the O-band of the telecom wave-
length architecture, is a potential candidate to circumvent
these issues. Finally, the photon storage time can be drastically
improved by collective scattering in ordered atomic arrays,
exceeding the natural lifetime [71,72].

The relatively long wavelength of this transition may also
provide a favorable platform for studies of collective scatter-
ing from ordered atomic samples. Such effects, which include
geometry-dependent enhancement or suppression of emission
[73,74], can be more significant when the spacing between
atoms is small relative to the transition wavelength. For our
266 nm spacing, typical of lattice confinement with 532 nm
light [75], this condition is well met in our system, in con-
trast to the more common situation present in alkaline atoms
where the wavelength of trapping light typically exceeds the
wavelength of the scattering transition.

Additionally, the advantages of encoding qubits in the
ground and the metastable state and the possibility for inde-
pendent control of atomic motions by lattice light is promising
for quantum computational tasks [20–22]. Moreover, the
contact interaction can be tuned using the technique of a
narrow-line optical Feshbach resonance, where the system
suffers only weak atom loss [7–9].

Finally, this transition enables the coherent control of mag-
netic Zeeman levels for dipolar bosonic atoms, which has been
elusive so far, due to the absent hyperfine interactions [76].
The 13 magnetic Zeeman levels in the ground state of erbium

TABLE II. Parameter names, constraints (see text), fitted values
and scaling factors fX = Xfit/XHFR, for the 4 f 115d6s2 and 4 f 115d26s
configurations of neutral Er. All parameters are in cm−1.

Parameter X Constraint Xfit fX Xfit fX

4f11 5d 6s2 4f11 5d2 6s

Eav 464120 65531.6
F 2(4f 4f) r1 981776 0.761 98004.7 0.761
F 4(4f 4f) r2 692640 0.856 69134.0 0.856
F 6(4f 4f) r3 500680 0.861 49972.2 0.861
α r4 200 20.0
β fix –6500 –650.0
γ fix 20000 2000.0
F 2(5d 5d) 21668.3 0.663
F 4(5d 5d) 17208.2 0.831
ζ4 f r5 23898 0.984 2387.8 0.984
ζ5d r6 7882 0.831 652.6 0.831
F 1(4f 5d) r7 7417 741.7
F 2(4f 5d) r8 157117 0.775 13597.8 0.775
F 4(4f 5d) r9 105582 1.149 8970.9 1.149
G1(4f 5d) r10 50541 0.580 4325.8 0.580
G2(4f 5d) r11 17174 1717.4
G3(4f 5d) r12 64003 0.928 5422.6 0.928
G4(4f 5d) r13 16306 1630.6
G5(4f 5d) r14 38097 0.732 3216.7 0.732
G3(4f 6s) r15 1254.3 0.844
G2(5d 6s) r17 11696.8 0.609
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can be employed as spin states and allow for the realization
of large bosonic spin systems with dipolar interactions. In
combination with optical lattices, this enables the possibil-
ity to study many-body dynamics in extended Bose-Hubbard
models [77,78]. Generally, in such large spin systems, the long
lifetime of the excited state is helpful for the realization of
advanced, spin-resolved imaging-shelving techniques [79,80].
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APPENDIX

Odd-parity energy parameters

Here we present the parameters of the first four odd-parity
configurations of neutral erbium. The ones of the 4 f 136s
configuration are not shown, as the latter does not play any
physical role in the level interpretation.

Tables II and III show the one-configuration parameters,
like the direct F k , exchange Gk , or spin-orbit ζn	 integrals.
Table IV shows the configuration-interaction ones. We also
give the scaling factor fX = Xfit/XHFR between the fitted and
ab initio value of the parameter X . During the fitting pro-
cedure, some groups of parameters are constrained to vary
within the same scaling factors; such groups are characterized
by the same fX = rn value in the second column of Tables II–
IV. The word “fix” means that the corresponding parameters
are not adjusted. Finally, we use so-called “effective” param-
eters, like α, β, γ , or F1(4 f 5d ), which cannot be calculated
ab initio, but which are there to compensate the absence of
electronic configurations not included in the model. Their
initial values are known from previous studies.

TABLE IV. Configuration-interaction parameters: parameter
names, constraints (see text), fitted values and scaling factors fX =
Xfit/XHFR, for odd-parity configuration pairs of neutral Er. All param-
eters are in cm−1.

Parameter X Constraint Xfit fX

4f11 5d 6s2 - 4 f 11 5d2 6s

R2 (4f 6s, 4f 5d) r21 –799.8 0.852
R3 (4f 6s, 4f 5d) r21 1128.5 1.465
R2 (5d 6s, 5d 5d) r17 –13663.3 0.621

4f11 5d 6s2 - 4f12 6s 6p

R1 (5d 6s, 4f 6p) r20 –3173.6 0.461
R3 (5d 6s, 6p 4f) r20 –679.9 0.461

4f11 5d2 6s - 4f12 6s 6p

R1 (5d 5d, 4f 6p) r22 2405.6 0.647
R3 (5d 5d, 4f 6p) r22 643.7 0.647

4f11 5d2 6s - 4f12 5d 6p

R1 (5d 6s, 4f 6p) r22 –2536.8 0.427
R3 (5d 6s, 4f 6p) r22 –564.5 0.427

4f12 6s 6p - 4f12 5d 6p

R2 (4f 6s, 4f 5d) r23 –5359.9
R3 (4f 6s, 5d 4f) r23 2758.3
R2 (6s 6p, 5d 6p) r22 –6833.7
R1 (6s 6p, 6p 5d) r22 –7463.2

033256-9



A. PATSCHEIDER et al. PHYSICAL REVIEW RESEARCH 3, 033256 (2021)

[1] X. Zhang and J. Ye, Precision measurement and frequency
metrology with ultracold atoms, Natl. Sci. Rev. 3, 189 (2016).

[2] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt,
Optical atomic clocks, Rev. Mod. Phys. 87, 637 (2015).

[3] W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K.
Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani,
M. Schioppo, T. H. Yoon, and A. D. Ludlow, Atomic clock
performance enabling geodesy below the centimetre level,
Nature (London) 564, 87 (2018).

[4] F. Schäfer, T. Fukuhara, S. Sugawa, Y. Takasu, and Y.
Takahashi, Tools for quantum simulation with ultracold atoms
in optical lattices, Nat. Rev. Phys. 2, 411 (2020).

[5] F. Scazza, C. Hofrichter, M. Höfer, P. C. De Groot, I. Bloch,
and S. Fölling, Observation of two-orbital spin-exchange inter-
actions with ultracold SU(N)-symmetric fermions, Nat. Phys.
10, 779 (2014).

[6] X. Zhang, M. Bishof, S. L. Bromley, C. V. Kraus, M. S.
Safronova, P. Zoller, A. M. Rey, and J. Ye, Spectroscopic
observation of SU(N)-symmetric interactions in Sr orbital mag-
netism, Science 345, 1467 (2014).

[7] F. K. Fatemi, K. M. Jones, and P. D. Lett, Observation of
Optically Induced Feshbach Resonances in Collisions of Cold
Atoms, Phys. Rev. Lett. 85, 4462 (2000).

[8] M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R.
Grimm, and J. H. Denschlag, Tuning the Scattering Length with
an Optically Induced Feshbach Resonance, Phys. Rev. Lett. 93,
123001 (2004).

[9] S. Blatt, T. L. Nicholson, B. J. Bloom, J. R. Williams, J. W.
Thomsen, P. S. Julienne, and J. Ye, Measurement of Optical
Feshbach Resonances in an Ideal Gas, Phys. Rev. Lett. 107,
073202 (2011).

[10] S. Saha, A. Rakshit, D. Chakraborty, A. Pal, and B. Deb,
Optical feshbach resonances through a molecular dark state:
Efficient manipulation of p-wave resonances in fermionic 171Yb
atoms, Phys. Rev. A 90, 012701 (2014).

[11] T. L. Nicholson, S. Blatt, B. J. Bloom, J. R. Williams, J. W.
Thomsen, J. Ye, and P. S. Julienne, Optical feshbach reso-
nances: Field-dressed theory and comparison with experiments,
Phys. Rev. A 92, 022709 (2015).

[12] K. Winkler, F. Lang, G. Thalhammer, P. v. d. Straten, R. Grimm,
and J. H. Denschlag, Coherent Optical Transfer of Feshbach
Molecules to a Lower Vibrational State, Phys. Rev. Lett. 98,
043201 (2007).

[13] J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart,
N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nägerl, Quantum
gas of deeply bound ground state molecules, Science 321, 1062
(2008).

[14] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B.
Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin,
and J. Ye, A high phase-space-density gas of polar molecules,
Science 322, 231 (2008).

[15] G. Reinaudi, C. B. Osborn, M. McDonald, S. Kotochigova,
and T. Zelevinsky, Optical Production of Stable Ultracold 88Sr2

Molecules, Phys. Rev. Lett. 109, 115303 (2012).
[16] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-

tors, Rev. Mod. Phys. 82, 3045 (2010).
[17] V. Galitski and I. B. Spielman, Spin-orbit coupling in quantum

gases, Nature (London) 494, 49 (2013).
[18] L. F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M.

Frittelli, F. Levi, D. Calonico, J. Catani, M. Inguscio, and L.

Fallani, Synthetic Dimensions and Spin-Orbit Coupling with an
Optical Clock Transition, Phys. Rev. Lett. 117, 220401 (2016).

[19] S. Kolkowitz, S. L. Bromley, T. Bothwell, M. L. Wall, G. E.
Marti, A. P. Koller, X. Zhang, A. M. Rey, and J. Ye, Spin-orbit-
coupled fermions in an optical lattice clock, Nature (London)
542, 66 (2017).

[20] A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, Quantum Com-
puting with Alkaline-Earth-Metal Atoms, Phys. Rev. Lett. 101,
170504 (2008).

[21] A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P.
Zoller, and M. D. Lukin, Alkaline-Earth-Metal Atoms as Few-
Qubit Quantum Registers, Phys. Rev. Lett. 102, 110503 (2009).

[22] A. Heinz, A. J. Park, N. Šantić, J. Trautmann, S. G. Porsev,
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Figure 4.4.: Spectroscopic measurements for three different hyperfine states. The normalized atom
number in the ground state is measured as a function of the relative frequency of the spectroscopy
light, given as the radio-frequency applied to the AOM relative to the locking point of the laser. The
solid lines are a triple-, double-, and single-Gaussian fit to the experimental data points, respectively.

4.3. Further work

4.3.1. Hyperfine constants of the fermionic isotope

The interaction between the total angular momentum J and the nuclear spin I of the atomic
core leads to a hyperfine splitting of the energy levels. While for the bosonic isotopes I = 0,
the fermionic 167Er isotope carries a nuclear spin of I = 7/2. The basic concept of the
hyperfine structure roots on the interaction between the magnetic moment of the nucleus
and the magnetic field generated by the negatively charged electrons surrounding the core
and thus creating an effective current. By considering the magnetic dipole and the electric
quadrupole interaction, the hyperfine energy shift is given by [Sch55, Ste20]

∆Ehfs(F, J, I) =
1

2
AhfsC +Bhfs

3
2C(C + 1)− 2I(I + 1)J(J + 1)

4I(2I − 1)J(2J − 1)
, 4.3

with
C = F (F + 1)− I(I + 1)− J(J + 1). 4.4

Here, Ahfs and Bhfs denote the magnetic dipole and the electric quadrupole hyperfine con-
stants, respectively. For an accurate description of the energy levels for the fermionic iso-
topes, knowledge of the hyperfine constants is of course a prerequisite.
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Figure 4.5.: Schematic illustration of the allowed transitions in fermionic erbium 167Er. Starting
from the ground state |F = 19/2,mF = −19/2⟩, a total of six excited states that fullfill the angular
momentum conservation ∆mF ′ = 0,±1 with respect to the ground state can be reached using σ+-
(red dotted line), π-(blue dashed line), and σ−- (green solid line) transitions.

We can use spectroscopic measurements on 167Er to extract the values for Ahfs and Bhfs with
high accuracy. The measurement sequence follows the lines given in Sec. 4.2. After cooling
and trapping in the magneto optical trap, the atoms are loaded into a crossed optical dipole
trap, formed by two orthogonal intersecting laser beams at 1064 nm and 1570 nm. We further
evaporatively cool the atomic sample until the atoms reach a temperature of about 1 µK.
Subsequently, we irradiate the atoms with light at 1299 nm and record the remaining atom
number via absorption imaging.

Figure 4.4 shows the normalized atom number measured as a function of the laser frequency
for three different frequency ranges. In total, we observe six transitions, which we identify
by a dip in the atom number. Starting from the ground state |F = 19/2,mF = −19/2⟩, the
observed resonances can be grouped as transitions

� |F = 19/2,mF = −19/2⟩ → |F ′ = 21/2,mF ′⟩,

� |F = 19/2,mF = −19/2⟩ → |F ′ = 19/2,mF ′⟩, and

� |F = 19/2,mF = −19/2⟩ → |F ′ = 17/2,mF ′⟩.

To understand the exact number of transitions observed, we must consider that starting from
the ground state, only σ+-, π-, and σ−-transitions are allowed, leading to ∆mF = 0,±1
with respect to mF = −19/2. While for |F = 19/2,mF = −19/2⟩ → |F ′ = 21/2,mF ′⟩ ex-
citations to three magnetic sublevels (mF ′ = −21/2, −19/2, and −17/2) are possible, for
|F = 19/2,mF = −19/2⟩ → |F ′ = 19/2,mF ′⟩ and |F = 19/2,mF = −19/2⟩ → |F ′ = 17/2,mF ′⟩
only two (mF ′ = −19/2, −17/2) and one (mF ′ = −17/2) magnetic sublevel can be reached, re-
spectively. Figure 4.5 shows a schematic illustration of the involved energy levels and the
allowed transitions.

Importantly, the σ+-transition (mF ′ = mF + 1) is the only excitation that can be observed



4.3. Further work 77

in all three spectra. We can therefore use this transition to derive the values for Ahfs and
Bhfs from the spectroscopic measurements. Using Eq. 4.3, the frequency of the transition
|F,mF ⟩ → |F ′,mF ′⟩ can be written as

νσ+(F ′,mF ′) = ℏω − (mF gF + (mF ′ + 1)gF ′)µBB −∆Ehfs(F, J, I) + ∆Ehfs(F
′, J ′, I), 4.5

where ω is the bare transition frequency. By taking the difference between νσ+(F ′,mF ′) for
two different hyperfine states F ′, all terms beside the hyperfine energy shift of the excited
state cancel each other. We combine the three spectroscopy measurements and determine
the hyperfine constants to

Ahfs = −125.62(1)MHz 4.6

and
Bhfs = −3050.7(5)MHz. 4.7

4.3.2. Dependence of the excited state lifetime on the atomic density

Collisions between atoms are an important constituent in ultracold quantum gas systems.
For experiments involving narrow and ultranarrow transitions, both elastic and inelastic
collisions must be considered. For example, while elastic collisions result in a shift of the
resonance frequency [Cam09, Lem11], inelastic collisions between atoms in the excited state
lead to two-body losses and a suppression of excitation [Bis11]. Furthermore, the latter cause
automatically a reduced lifetime for the excited state.

To estimate the magnitude of the two-body loss in our experiment, we measure the excited-
state lifetime for a dense atomic cloud. In brief, after evaporative cooling, we load the
atoms into a crossed optical dipole trap created by to intersecting laser beams at 532 nm and
1570 nm, respectively. Note that we use light at 532 nm because of a negative polarizability
of the excited state for the usual 1064-nm light. At this stage, we obtain about N = 3× 104

atoms at a density of n ≈ 1× 1014 cm−3 and temperature of T ≈ 1 µK. We efficiently transfer
the ground-state atoms to the excited state by applying a π-laser pulse at 1299 nm. After
a certain hold time, we apply a second π-pulse to re-transfer the atoms to the ground state
and quantify the atom number by absorption imaging.

Figure 4.6(a) shows the measured atom number in the excited state as a function of hold time.
Although the natural lifetime of atoms in the excited state is about 180ms (see Sec. 4.2), we
observe a much faster decay that occurs on the timescale of several ms. Importantly, we do
not observe atoms decaying to the ground state, suggesting that the atoms are lost from the
trapping potential.

To describe the behavior of the atom number, we follow the approach of Ref. [Bis11] and
adopt a model that accounts for two-body loss occurring for atoms in the excited state. The
atomic density in the excited state ne can be described by [Tra09, Lis09]

dne
dt

= −Γobne −Keen
2
e , 4.8

with Γob being the one-body loss rate and Kee being the coefficient describing the two-body
loss rate arising from collision between atoms in the excited state. Note that this approach
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Figure 4.6.: (a) Atom number as a function of hold time for the excited state. The red solid line
represents a two-body loss fit (Eq. 4.9) to the experimental data. The green sold line in the inset
indicates an exponential fit to the data. (b) Lifetime of the excited state in dependence of the peak
number density of the atomic cloud. The red solid line is an empirical exponential fit. Error bars
denote one standard deviation.

does not take into account collisions between atoms in the ground and excited state, since
their contribution is expected to be negligible. For our experimental parameter regime, Γob

is dominated by spontaneous emission and therefore depending on the natural lifetime of the
excited state. An expression for the time dependent atom number N(T ) can be found by
integration of Eq. 4.8 [Bis11], which leads to

N(t) =
N0 exp(−Γobt)

1 +
[
N0Kee/(π3/2Γbgwxwywz)

]
[1− exp(−Γobt)]

. 4.9

Here, N0 is the atom number at t = 0 and wx, wy, and wz describe the 1/e2-radius of the
atomic cloud along the corresponding direction.

We fit Eq. 4.9 to the atom number shown in Fig. 4.6(a). For the fitting procedure we fix
Γob to 1/180ms. The decay of the atom number is well described by Eq. 4.9 and we extract
a two-body loss rate coefficient of Kee ≈ 5× 10−21 cm3/s for our experimental condition.
In contrast, a pure exponential decay of the form N(t) = A+ Be−t/τ fails to reproduce the
atom decay, in particular at early times; see inset Fig. 4.6(a).

Since knowledge of the atomic lifetime at different densities is important for various experi-
mental realizations, we repeat the above measurement for different atomic numbers, keeping
the trap and temperature the same. We control the atom number by changing the loading
time of the magnet-optical trap. Although an exponential fit does not describe the experi-
mental data perfectly in all density regimes, we can use it to obtain a quantitative estimation
for the excited-state lifetime as a function of density.

Figure 4.6(b) summarizes the excited-state lifetime as a function of the atomic density.
For low densities, where collisions are strongly reduced, the lifetime approaches the natural
lifetime of about 180ms; see Sec. 4.2. In contrast, an increasing density goes hand in hand
with strong reduction of the lifetime. Finally, we find empirically that the dependence of the
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lifetime on the density follows an exponential behavior.

4.3.3. Preparation of bosonic erbium atoms in higher Zeeman states

Finally, we now discuss the application of our transition at 1299 nm for spin manipulation.
The preparation of atoms in different magnetic sublevels that can be utilized as spin states is
very attractive, as discussed in Chapter 3. In contrast to fermions, bosonic isotopes lack the
quadratic Zeeman shift, making deterministic preparation impossible with this technique.
Here, the inter-orbital atomic transition opens up new opportunities for transferring atoms
to energetically higher states.

The narrow transition is a flexible tool and allows for the implementation of different prepara-
tion protocols. Due to the large energy difference of about 1.62MHz/G10 between subsequent
magnetic sublevels, a straightforward preparation follows the stimulated Raman adiabatic
passage [He90]. Starting from the mJ = −6 ground state, the subsequent application of
σ+ and π transitions allows to move within the spin-manifold to any desired spin state.
For example, we were able to transfer atoms from mJ = −6 to mJ = 0 with an efficiency
> 80% using two consecutive laser pulses, even without careful optimization of the laser-
pulse times.

A second, alternative method relies on the ac-Stark shift induced by the light at 1299 nm.
For an atom with total angular momentum J (as it is true for the bosonic erbium isotopes
for which I = 0), following the derivation of Ref. [Ros09, LK13], the energy shift induced by
a light field oscillating at a certain frequency ω is given by

U(r, ω) = − 1

cϵ0
α(ω)I(r, ω)

= − 1

cϵ0

[
αs(ω) + i

[u∗ × u] · J
2J

αv(ω)+

+
J(J + 1)− 3m2

j

J(2J − 1)

1− 3 cos2 θp
2

αt(ω)

]
I(r, ω). 4.10

Here, u and I(r, ω) are the polarization vector and the intensity11 of the laser field, respec-
tively. The angle θp defines the orientation of u with respect to B. Further, αs(ω), αv(ω),
and αt(ω) are the scalar, the vectorial, and the tensorial polarizabilities.

The contributions of αs(ω), αv(ω), and αt(ω) are on the same order of magnitude, which in
consequence allows for a large tunability of α(ω). Looking at Eq. 4.10 and on the dependence
of α(ω) on u, B, and mJ , various possibilities to control the light shift for the atomic state
become apparent. Particularly appealing for the preparation of atoms in spin states is the
dependence of the contribution of αt(ω) on m

2
J . This results in a light shift that dependents

quadratically on the magnetic sublevel and allows to control the energy difference between
two subsequent mJ levels.

10 About 1 MHz/G for fermionic Er.
11 I(r, ω) = cϵ0|E(r, ω)|2
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Figure 4.7.: Influence of light at 1299 nm for preparation of atoms in different magnetic Zeeman
levels for the bosonic 168Er isotope. (a) Absorption image after Stern-Gerlach separation and time
of flight expansion of 30ms. Starting with an atomic sample polarized in the lowest Zeeman level,
a resonant radio-frequency pulse without light at 1299 nm causes a spreading of the population over
many spin states. (b) Rabi oscillations between the two lowest magnetic sublevels mJ = −6 (blue)
and mJ = −5 (red). Almost no population can be detected in the mJ = −4 (green) state. To lift the
degeneracy of the energy difference between subsequent mJ states, 0.5mW of light at 1299 nm, on
resonance with the mJ = −4 → mJ′ = −4 transition, is shined onto the atoms. The upper images
show the absorption image for the two spin states again after Stern-Gerlach separation and time of
flight expansion of 30ms.

This quadratic dependence on the laser intensity corresponds to the same effect as the
quadratic Zeeman shift for fermionic isotopes and enables the coherent preparation of atoms
in different mJ states by driving a radio-frequency transition. To test this technique in the
experiment, we shine light at 1299 nm, resonant with the transition mJ = −4 → mJ ′ = −4,
on the atoms and apply subsequently a radio-frequency pulse at the transition frequency
of mJ = −6 → mJ = −5 for variable hold time. While without light at 1299 nm a radio-
frequency pulse causes a board distribution of population among the Zeeman levels (see
Fig. 4.7(a)), the light at 1299 nm enables the isolation of only two levels. Figure 4.7(b)
shows the observed Rabi oscillations between the two lowest magnetic sublevels mJ = −6
and mJ = −5 for a Bose-Einstein condensate of the 168Er isotope. Importantly, during
the Rabi oscillations, no higher Zeeman sublevels are populated enabling deterministic spin
preparation for future experimental realizations.
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5
Determination of the contact
scattering length via
cross-dimensional thermalization

Atomic interactions constitute a key ingredient in ultracold quantum gases as they have
an important impact on the physical system. In dipolar quantum gases, a very interesting
aspect is the interplay between the dipole-dipole interaction (DDI) and the so-called contact
interaction, whose strength is given by s-wave scattering length as. In the case of magnetic
atoms, the maximum strength of the DDI cannot be tuned in the experiment because its is
intrinsically given by atomic magnetic moment. On the other hand, as can be controlled, for
example with an external magnetic field by means of a Feshbach resonance [Chi10]. There-
fore, to carefully control the competition between the interactions an accurate knowledge
on as and its dependence on the magnetic field is required. A fascinating example is the
recently observed one-dimensional supersolid state, which exists only in a small parameter
range of about 3 a0 [Böt19b, Tan19, Cho19].

Away from any Feshbach resonance [Chi10], for alkali atoms the scattering length, also re-
ferred to as background scattering length, is typically constant (an exception is cesium [Kra06]).
Due to the dense Feshbach spectra in lanthanide atoms, which for example in the case of
bosonic (fermionic) erbium contains about three (20) resonances per gauss [Fri14b], the
definition of a unique background scattering length is a general problem. Moreover, the
theoretical prediction of as for lanthanides is very challenging, although knowledge on the
interactions potentials has been obtained [Kot14]. A special theoretical challenge arises from
the coupling of different angular momentum states making the allocation of resonances diffi-
cult [Pet12]. Altogether, experimental techniques are required to contribute to the accurate
determination of as.

Over the last years, a number of different approaches have been realized to experimentally
determine the scattering length of erbium and dysprosium. For the latter, examples are
based on the anisotropic expansion of a thermal cloud [Tan16, Luc18], the measurement of
the molecular binding energy [Mai15, Luc18], cross-dimensional thermalization [Tan15], or by
direct comparison between experimental observables and theory in the droplet regime [FB18,
Böt19c]. Table 5.1 summarizes the various results for the two isotopes 162Dy and 164Dy
that have been obtained via the different approaches. Interestingly, these results do not
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Table 5.1.: Summary of experimentally determined as for the dysprosium isotopes 162Dy and 164Dy.
Additionally, the respective magnetic field at which the measurement was performed and the corre-
sponding reference are given.

Isotope as (a0) B (G) Reference

162Dy 180(50) 22, 27 [Luc18]
162Dy 220(50) 22, 27 [Luc18]
162Dy 122(10) 1.6 [Tan15]
162Dy 154(22) 1.6 [Tan16]
162Dy 157(4) 5.2 [Tan16]

164Dy 96(22) 1.6 [Tan16]
164Dy 92(8) 1.6 [Tan15]
164Dy 91(16) 80, 180 [Mai15]
164Dy 62.5 6.6 [Sch16]
164Dy 69(4) 6.6 [FB18, Böt19c]

appear to be entirely consistent at first glance. Although a potential explanation for this
inconsistency could ly in the different magnetic field values at which the measurements have
been performed and nearby Feshbach resonances could affect the results, this opens the
challenge for an accurate determination of as over a broader magnetic field range.

For erbium on the other hand, a different experimental approach has been applied, which is
based on high-precision spectroscopy of the on-site interaction energy in a three-dimensional
optical lattice. This technique, often referred to as lattice modulation spectroscopy, is known
for its accuracy, however, it also is technically more demanding because it requires the
implementation of an optical lattice. Thanks to its exceptional accuracy, lattice modulation
spectroscopy can be used as a benchmark for other methods that are experimentally easier
to realize; see Sec. 5.3.

This Chapter covers the work on determination of the scattering length over a magnetic
field range from 0G to 5G for four bosonic erbium isotopes, using the cross-dimensional
thermalization technique. In Section 5.1 a brief introduction into ultracold scattering is given,
with the aim, to show the influence of the DDI on the scattering cross section and to highlight
the competition between the two types of interactions. The following Sec. 5.2 provides an
overview over the cross-dimensional thermalization technique and gives in particular an
explanation for the geometrical dependence of the thermalization process.

5.1. Dipolar scattering in the ultracold regime

To derive a description for the scattering of two particles 1 and 2 with reduced mass mr =
m1m2
m1+m2

, one needs to solve the Hamiltonian describing the relative motion of the scattering
constituents [Dal98]

Ĥ =
p2

2mr
+ V (r) =

p2

2mr
+ Vc(r) + VDDI(r), 5.1
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where p = (p1−p2)/2 and r = r1 − r2 are the relative momentum and position coordinates,
Vc(r) is the short range potential accounting for the contact interaction, and VDDI(r) is the
dipolar interaction potential. This Hamiltonian can be interpreted as the scattering event
of a single particle with reduced mass mr from the potential V (r).

At large distances from the scattering potential, the general solution for the wave function
describing the scattering process requires the following asymptotic form [Lan81]

ψk(r) ∼ eikr + f(k,k′)
eikr

r
. 5.2

Physically, this solution corresponds to a superposition of an incoming plane wave with
momentum k and a scattered spherical wave function. The amplitude of the latter, f(k,k′),
is called the scattering amplitude and is generally unknown as it depends on the form of the
underlying potential. Moreover, it depends on the energy of the particle given though |k| and
the relative angle between incoming momentum k and outgoing momentum k′ [Boh14].

The scattering amplitude can be used to determine the differential scattering cross sec-
tion [Lan81]

dσ

dΩk′
(k,k′) = |f(k,k′)|2, 5.3

which can be interpreted as a probability measure that an incident particle at momentum k
is scattered into k′. Finally, integration of the differential scattering cross section over the
full three-dimensional solid angle leads to the total scattering cross section

σ(k) =

∫
dΩk′

dσ

dΩk′
(k,k′). 5.4

For simplicity, we first consider the particular case of colliding particles with negligible DDI,
e. g. as it is the case for alkali atoms. Here, the only interaction potential that needs to be
considered is the short range van der Waals potential, scaling as Vc(r) = −C6/r−6, with C6

being the van der Waals C6 coefficient. For low enough energies1, f(k,k′) is isotropic and
therefore independent on the specific scattering direction [Dal98]. The scattering amplitude
can be calculated by making use of the partial wave expansion, leading to the total scattering
cross section of

σB(k) =
8π

k2

∑

l even

(2l + 1) sin2 δl(k) (bosons) 5.5

and

σF(k) =
8π

k2

∑

l odd

(2l + 1) sin2 δl(k) (fermions) 5.6

for bosons and fermions, respectively. Furthermore, for low scattering energies, the contri-
bution of all partial waves with l ̸= 0 vanishes and Eq. 5.5 and 5.6 become [Lan81]

lim
k→0

σl=0
B (k) = 8πa2s (bosons) 5.7

and
lim
k→0

σl=0
F (k) = 0 (fermions). 5.8

1 This comprises the regime, where Ecoll ≪ ℏ2/2mrb
2, with b describing the range of the potential.



84 5. Determination of the contact scattering length via cross-dimensional thermalization

Equation 5.8 has strong consequences for fermionic atoms, as this implies that no scat-
tering occurs between individual particles at ultracold temperatures. Therefore, for exam-
ple, alternative approaches need to be applied to realize evaporative cooling of fermionic
atoms [DeM99b].

We now turn our attention to the DDI (see also Sec. 3.1), which strongly modifies the atomic
scattering behavior [Lan81, Dal98, Cho22]. Note that the following discussion will focus on
magnetic dipolar interaction, although the same description holds for electric dipoles. An
important consequence of the long-range DDI2, scaling as VDDI(r) ∝ r−3, is that even in the
regime of low collision energy all partial waves contribute to the scattering process, leading,
as we will see below, to an anisotropic scattering cross section.

For purely dipolar interacting systems at low collision energies, theoretical works suggested
the existence of a universal scattering behavior, i. e. different dipolar systems show the same
scattering behavior and the dynamics are independent on the collision energy [Tic08, Boh09].
Moreover, the scattering cross section takes on a constant value in this low energy (ultracold)
regime. The threshold energy below which the ultracold regime is reached is defined via the
ratio of the collision energy Ecoll = ℏ2k2/2mr, where k = |k|, and the natural energy scale of
the dipolar interaction [Boh09] as

ED =
mrµ0µ

2

4πa3D
=

16π2ℏ6

m3
rµ

2
0µ

4
. 5.9

with

aD =
mrµ0µ

2

4πℏ2
, 5.10

being the typical length scale characterizing the DDI and referred to as dipolar length. For
two colliding erbium atoms of the 166Er isotope, aD = 98.2 a0 and ED/kB ≈ 200 µK. As we
will see later in Sec. 5.3, the measurements in this Chapter are performed at temperatures
< 1 µK and thus in the ultracold regime.

In the case of a weak scattering potential, i. e. when the incident plane wave is only weakly
modified compared to the asymptotically outgoing wave, the potential can be assumed as a
perturbation, which allows for the application of the Born-approximation [Yi01]. Within the
first order Born-approximation, the scattering amplitude for dipolar particles can be written
as [Boh14]

f(k,k′) = −as + f (1)(k,k′)aD, 5.11

with

f (1)(k,k′) = − 1

2π

∫
d3re−ik′rVDDI(r)e

ikr. 5.12

Here, as account for the s-wave scattering length and f (1)(k,k′) denotes the first order Born-
approximation for the dipolar scattering contribution.

The integral in Eq. 5.12 can be solved by applying the spherical wave expansion to the plane-
wave ei(k−k′)r. Details on the calculation can be found for example in Ref. [Boh14]. Finally,

2 The DDI is long-range in three dimensions; see 3.1.
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Figure 5.1.: (a) Scattering cross sections σB (aD = 98.2 a0, solid lines) and σF (aD = 98.8 a0, red
dashed line) as a function of the angle η between B and k. For the bosonic case σB(η) is shown for
as = 0 a0, 15 a0, 30 a0, 45 a0, 60 a0, and 500 a0. For better visibility σB(η) for as = 500 a0 is rescaled
by a factor 30. (b) Three-dimensional illustration of σB(η) for as = 0 a0. The color code indicates the
absolute value of σB(η). (c) Same as (b) for σF(η). Note that the size of (b) and (c) is not to scale.

f(k,k′) can be written in terms of the incoming and outgoing momenta as well as an external
polarizing magnetic field as [Boh14]

f(k,k′) = −as −
(
(k ·B− k′ ·B)2

1− kk′ +
3

2

)
aD. 5.13

Note that, this expression assumes elastic scattering with |k| = |k′|.

Depending on the considered quantum statistics, i. e. fermionic or bosonic, the scattering
amplitude needs to be symmetrized accordingly, as

fB,F(k,k
′) =

1√
2

(
f(k,k′)± f(k,−k′)

)
. 5.14

Inserting the symmetrized scattering amplitudes into Eqs. 5.3 and 5.4 results in the total
scattering cross section of

σB(η) =
π

9

(
72a2s − 24as

(
1− 3 cos2(η)

)
+ 11− 30 cos2(η) + 27 cos4(η)

)
a2D 5.15

for the case of indistinguishable bosons, and

σF(η) =
π

3

(
3 + 18 cos2(η)− 13 cos4(η)

)
a2D 5.16

for the case of indistinguishable fermions. Here, η denotes the angle enclosed by the incoming
relative momentum k and the orientation of the dipoles polarized by an external field B.

Figure 5.1(a) shows σB(η) and σF(η) as a function of η as well as σB(η) for different as.
Let us first consider the case of pure dipolar interaction, i. e. as = 0 a0 for σB(η). In
this case, a remarkable difference between σB(η) and σF(η) can be observed, which roots in
the symmetrization of the scattering amplitudes in Eq. 5.14. For purely dipolar interacting
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Figure 5.2.: Scattering cross section for dipolar bosons σB with aD = 98.2 a0 in dependence of the
relative momentum k and the orientation of an external, polarizing magnetic field B at 0 a0, 15 a0,
30 a0, and 500 a0. Note that the size of the individual geometric shapes is not to scale.

bosons (as = 0) the scattering cross section is the largest if the atoms collide in a side-
by-side configuration (η = 90°) and minimal if they collide at η ≈ 45°. This is in strong
contrast to the fermionic case, where σF(η) is the largest for atoms approaching under an
angle of about η ≈ 45° and is reduced for the side-by-side configuration (η = 90°). For a
more intuitive picture, Fig. 5.1(b)-(c) show three-dimensional surface plots that represent (b)
σB(η) (as = 0 a0) and (c) σF(η), once again indicating the distinct difference in geometric
shape. Note that σB,F(η) is cylindrically symmetric about the magnetic field axis.

While, obviously, the total scattering cross section has a purely dipolar nature for fermions,
σB(η) changes significantly for as > 0; see Fig. 5.1(a). For larger as, the probability to scatter
in head-to-tail configuration (η = 0°) increases with respect to the side-by-side configuration
(η = 90°). Finally, for large as, the geometrical shape of σB(η) approaches spherical symme-
try, reflecting the dominant contact interaction. Similar to Fig. 5.1(b)-(c), Fig. 5.2 illustrates
the geometrical shape of σB(η) for different as, reflecting the transition from the spinning
top like (as = 0 a0) to almost spherical geometry (as = 500 a0).

Finally, for experimental purposes it is convenient to define an angular averaged scattering
cross section. Calculating the angular average via [Boh14]

σ̄B,F =
1

2

∫ 1

−1
d cos(η) σB,F(η) 5.17

leads to

σ̄B = 8πa2s +
32π

45
a2D (bosons) 5.18

and

σ̄F =
32π

15
a2D (fermions). 5.19

The averaged cross sections depend only on the dipolar length aD (and as for bosons), which
reveals once more the universal scattering behavior in the ultracold regime.

The scattering anisotropy of dipolar atoms has important implications on the thermaliza-
tion behavior of an atomic cloud out of thermal equilibrium, as it has been beautifully
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demonstrated in experiments using fermionic erbium [Aik14b] and KRb molecules [Li21].
In the following, we will focus on cross-dimensional thermalization measurements to extract
knowledge on the contact scattering length of bosonic erbium atoms.

5.2. Determining the scattering length via coss-dimensional
thermalization

A cold atomic cloud brought out of thermal equilibrium re-thermalizes by elastic collisions
and the rate at which thermalization occurs depends on the elastic scattering cross section.
For atomic systems where the scattering length and thus the scattering cross section is
unknown a priori, measurements of the thermalization rate offer the possibility to gain insight
into the scattering properties. The cross-dimensional thermalization method represents an
efficient technique to determine the thermalization rate for an atomic cloud confined in an
harmonic trapping potential [Mon93].

Starting from an atomic cloud that is in thermal equilibrium, the concept of the cross-
dimensional thermalization technique is based on a change of the systems energy along one
spatial dimension and to record the quasi-temperature along the orthogonal dimension. Note
that in general, excitation along two spatial dimensions is also possible, but for simplicity
in the following we will focus on the excitation along a single direction. The thermalization
rate determines the time the atomic cloud need to reach thermal equilibrium again after
excitation.

One approach to increase the energy along one spatial direction is based on a compression
of the trapping potential, which leads to an increase of the potential energy. The mean total
energy per particle in a harmonic trap can be written as [Pit16]

E0 = Ekin + Epot 5.20

=
∑

q=x,y,z

1

2
mv2q +

1

2
mω2

qq
2 = 3kBT0, 5.21

with ωq being the harmonic trapping frequency along the spatial dimension q. After an
increase of the trapping frequency along one dimension, here exemplary along y, the energy
increases to

E∞ =
5

2
kBT0 +

1

2
m(ωy +∆ωy)

2y2 = 3kBT∞. 5.22

Here, T∞ denotes the temperature of the atoms after thermalization and can be calculated
by inserting kBT0 = mω2

yy
2 into Eq. 5.22 as

T∞ = T0

[
5

6
+

1

6

(ωy +∆ωy)
2

ω2
y

]
. 5.23

This means, an increase of the harmonic trapping frequency by 50% results in a total tem-
perature increase of about 20%.
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After being brought out of thermal equilibrium, the atoms will thermalize by redistributing
the gained energy along the orthogonal spatial dimensions through elastic collisions. The
characteristic rate γth at which an atomic cloud re-thermalizes is given by [Rei65]

γth = nvrσrth, 5.24

with n being the average number density3, vr being the relative velocity4, and σrth being the
scattering cross section relevant for re-thermalization. Equation 5.24 can be interpreted as
the combination of the probability of two atoms to meet, given by 1/nvr, and the probability
of two atoms to scatter, represented by σrth.

Due to the anisotropy of the scattering cross section and the related dependence on the
trapping geometry and the magnetic field orientation, σrth cannot simply be replaced by the
averaged total cross section of Eq. 5.18. However, they can be related via a proportionality
constant leading to [Boh14, Syk15]

σrth =
σ̄B
α(η)

. 5.25

For an intuitive interpretation, α(η) is often referred to as the number of collisions per
re-thermalization. This describes the fact that not all collision contribute equally to the
thermalization process, as for example forward and backward scattering does not contribute
to the redistribution of energy. The dependence of α(η) on η will be discussed below. Note
that, although this specific designation, α(η) does not take on only integer values.

For the specific case of alkali atoms, which have an isotopic scattering behavior, α(η) ≡ α
is independent on external parameters such as the trap geometry or the magnetic field
orientation. In Ref. [DeM99a], the value of α was determined to be α = 2.5 for s-wave
collisions and α = 4.17 for p-wave collisions. The higher value for p-wave collisions originates
in the fact that here forward and backward scattering is favored compared to sideward
scattering, making thermalization less efficient.

The description of α(η) is becoming more complicated in the case of strongly dipolar atoms.
The reason for this is two fold: On the one hand the DDI leads to an anisotropic scattering
cross section that needs to be included in α(η). As a consequence, α(η) depends on both,
the orientation of the magnetic dipole and the geometry of the trapping potential. On the
other hand, due to the competition between contact and dipolar interactions α(η) depends
on the scattering length as.

The dependence of α(η) on the underlying geometry and dipole orientation can be understood
by considering the total and the differential scattering cross section. The efficiency of the
thermalization process is strongly based on two arguments:

� a large scattering cross section σB(η)

� an efficient transfer of momentum into the dimensions orthogonal to the excitation,
described by dσ

dΩk′
(k,k′).

3 n = 1/N
∫
d3r n(r⃗)2.

4 vr =
√

8kBT
πµ

, with µ being the reduced mass.
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Figure 5.3.: Geometric representation of dσ
dΩk′ (k,k

′) = |f(k,k′)|2 giving the probability for a momen-

tum transfer from k to k′ for different as and η. The color indicates the absolute vale of dσ
dΩk′ (k,k

′).
Note that the size of the individual geometric shapes is not to scale.

While σB(η) is shown in Fig. 5.2 and has been discussed earlier, various differential scattering
cross sections describing the probability of momentum transfer into k′ are shown in Fig. 5.3
for different η and as. For two atoms scattering in a head-to-tail configuration (η = 0°) the
geometric shape of dσ

dΩk′
(k,k′) shows spherical symmetry, independent on as. In contrast,

for η > 0° both, as and the orientation of B have an influence on the probability to scatter
into different dimensions. A significant influence of as can be observed for η = 90° (atoms in
side-by-side configuration), where the dimension for the most efficient momentum transfer
becomes inverted from as = 0 a0 to as = 60 a0.

The exact form of α(η) is a complex interplay between σB(η) and
dσ

dΩk′
(k,k′), and therefore

strongly depending on the underlying system parameters such as trap geometry, direction of
excitation, and orientation of B. In Sec. 5.3 α(η) was calculated by our theory collaborators
R.R.W.Wang and J. L. Bohn (JILA, Boulder Co) for our specific experimental configura-
tion. Moreover, R.R.W.Wang and J. L. Bohn applied a theoretical framework based on the
Enskog’s equations of change to extract as from cross-dimensional thermalization measure-
ments.
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An accurate knowledge of the scattering length is fundamental in ultracold quantum gas experi-
ments and essential for the characterisation of the system as well as for a meaningful comparison to
theoretical models. Here, we perform a careful characterisation of the s-wave scattering length as
for the four highest-abundance isotopes of erbium, in the magnetic field range from 0 G to 5 G. We
report on cross-dimensional thermalization measurements and apply the Enskog equations of change
to numerically simulate the thermalization process and to analytically extract an expression for the
so-called number of collisions per re-thermalization (NCPR) to obtain as from our experimental
data. We benchmark the applied cross-dimensional thermalization technique with the experimen-
tally more demanding lattice modulation spectroscopy and find good agreement for our parameter
regime. Our experiments are compatible with a dependence of the NCPR with as, as theoretically
expected in the case of strongly dipolar gases. Surprisingly, we experimentally observe a dependency
of the NCPR on the density, which might arise due to deviations from an ideal harmonic trapping
configuration. Finally, we apply a model for the dependency of the background scattering length
with the isotope mass, allowing to estimate the number of bound states of erbium.

I. INTRODUCTION

The high degree of environmental isolation and the
high control over the large parameter-space of ultracold
quantum gases are key for their success [1]. One of the
most decisive properties in determining the many-body
phases of a quantum gas is the interaction force between
atoms. Among neutral particles, it can be isotropic and
short-range, as in alkali atoms, and/or anisotropic and
long-range. Open-shell lanthanides, such as erbium (Er)
and dysprosium (Dy), have both interactions in place [2].
Their strong magnetic character is reflected in a large
dipole-dipole interaction (DDI), while the contact po-
tential is governed by the well-known scattering length,
whose value as, as in alkali atoms, can be largely con-
trolled by so-called Fano-Feshbach resonances [3–5].

Although the concept of the scattering length itself is
well known by now, theoretical challenges to calculate as

depend on the atomic species of interest. For lanthanides,
predicting as remains a major challenge of quantum
chemistry and microscopic scattering theories [6]. The
complexity of describing such atoms has several reasons:
the multiple valence electrons, the strongly anisotropic
orbital shells, the strong coupling between core and va-
lence electrons, and the relativistic contributions, also

∗ Present address: Physikalisches Institut, University of Heidel-
berg, 69120 Heidelberg, Germany.
† Present address: Optical Materials Engineering Laboratory, De-
partment of Mechanical and Process Engineering, ETH Zurich,
8092 Zurich, Switzerland.
‡ Present address: Southern University of Science and Technology,
Shenzhen 518055, China

made important by the large atomic mass. To date,
there are still no ab-initio models with the capacity for
quantitative predictions, although many general proper-
ties of the interaction potentials (e. g. Born-Oppenheimer
potentials) have been studied and understood [7].

Yet, knowledge of the scattering length remains of
prime importance since it is an essential regulator of few-
and many-body quantum phenomena. For instance, the
fascinating supersolid state, recently discovered in Dy [8–
10] and Er [9], lives in a narrow range of only a few
a0 (a0 is the Bohr radius), or the functional forms of
beyond-mean-field corrections, which are still under dis-
cussion [11–14], depend on as in a subtle way. In the
absence of complete microscopic and ab-initio potential
models, the study of as in lanthanides therefore relies on
experimental investigations and empirical models.

Several different experimental methods have been ap-
plied in previous works to extract as for Er and Dy. These
include spectroscopy of the molecular binding energy
close to a broad Fano-Feshbach resonance [15, 16], the
anisotropic expansion of a thermal gas [17], and the cross-
dimensional thermalization technique [18–21]. Further-
more, for the 166Er isotope, as has been determined with
high accuracy based on a measurement of the particle-
hole excitation gap in the Mott insulator regime via lat-
tice modulation spectroscopy [22, 23]. These techniques
did not always provide consistent values, opening up a
number of fundamental questions, e. g. from the validity
of the additivity of the interaction pseudo-potentials [24–
27] to the appropriateness of the Lee-Huang-Yang form
for beyond-mean field effects [12–14, 28].

In this work, we extensively study the scattering length
of the four most abundant bosonic isotopes of erbium
(164Er, 166Er, 168Er, and 170Er) and its magnetic-field de-
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pendence. For each isotope, we perform high-resolution
Fano-Feshbach spectroscopy in the low magnetic-field re-
gion (0 to 5 G) and identify previously unreported scat-
tering resonances. In this range, we then accurately de-
termine the erbium scattering length, as, by develop-
ing a model based on the Enskog equations to extract
as from cross-dimensional-thermalization experiments.
We benchmark our results with the ones obtained from
high-precision lattice-modulation spectroscopy, which
has been previously developed for 166Er [23, 29] and here
expanded to 168Er. Finally, from the magnetic-field map-
ping of as, we extract for each isotope an effective back-
ground scattering length abg

s at zero B field and we dis-
cuss the results in the context of the isotope-mass scaling.

II. CROSS-DIMENSIONAL THERMALIZATION

The cross-dimensional-thermalization technique is a
very powerful method to experimentally determine the
scattering length. First successfully applied to alkali
atoms [30–33], this technique has proved to be very gen-
eral and, more recently, has been used for more complex
atomic species, such as chromium [34], specific isotopes
of erbium [19] and dysprosium [21], and molecular sys-
tems [35, 36].

Starting from a cold thermal cloud, the basic idea of
the cross-dimensional thermalization method is to excite
the system by increasing the potential energy along one
spatial dimension of the atomic cloud and to measure
the characteristic time τ that the system needs to re-
thermalize in an orthogonal directions [30]. In the regime
of small excitations, for an atomic cloud at a temperature
T and a total atom number N , the characteristic time is
related to the total scattering cross section σ̄ by

τ =
α

n̄σ̄vr
, (1)

where n̄ is the mean number density

n̄ =
Nω̄3

√
8

(
m

2πkBT

)3/2

(2)

and vr the mean relative velocity for two colliding atoms

vr =

√
16kBT

πm
(3)

Here, ω̄ is the geometric mean of the harmonic trap-
ping frequencies, m is the atomic mass, and kB is the
Boltzmann constant. Because multiple collisions, not all
contributing equally to re-thermalization, are occurring
during the thermalization process, the parameter α can
be interpreted as a re-scaling of σ̄ and therefore as a
number of collisions per re-thermalization (NCPR). Ex-
perimentally, the knowledge of α is fundamental for the
extraction of the total scattering cross section.

Equation 1 has two unknown parameters: as and α. In
contrast to alkali atoms, where the scattering is isotropic,

the situation is more complex for dipolar atoms such as
Er and Dy [18, 20]. Here, the total cross section for
bosons is not only given by the contact scattering length
as, but an additional contribution from the non-isotropic
DDI, which for two atoms at a distance r and polarized
by an external magnetic field B, reads as

Vdd(r, θ) =
µ0µ

2

4π

1− 3 cos2 θ

|r|3 . (4)

Here, µ0 is the magnetic permeability, µ is the magnetic
dipole moment, and θ the angle between B and r. Taking
an angular average of the total cross section leads to

σ̄ = 8πa2
s +

32π

45
a2

d, (5)

where ad = mµ0µ
2

8π~2 is the dipolar length (ad = 98.2 a0

for 166Er), with ~ being the reduced Planck constant.
Finally, we can rewrite Eq. 1 as

τ =
α

n̄σ̄vr
=

α
4Nmω̄
πkBT0

(a2
s + 4

45a
2
d)
. (6)

The interplay between the isotropic scattering length
and the anisotropic dipolar cross section leads to a de-
pendence of α on both, the dipole orientation θ and
as [37]. In the limit of weak excitation, an analytic form
of α(as, θ) can be found based on the Enskog equations;
see later discussion.

III. EXPERIMENTAL PROCEDURE

In our experiment, we produce a spin-polarized ther-
mal cloud of Er atoms in the lowest Zeeman sublevel,
similarly to Ref. [38]. In brief, after cooling and trapping
the Er atomic ensemble in a narrow-line magneto-optical
trap [39], we transfer the atoms into a crossed optical
dipole trap (cODT). Here, we first further cool the atoms
via standard evaporative cooling, and then tighten the
trapping confinement to avoid atom loss due to residual
evaporation. Simultaneously, we ramp B to the desired
value. At this stage we typically reach a temperature of
T = 250 nK−300 nK with N ≈ 1× 105. The exact num-
bers depend on the isotope choice and the individual set
of measurement. The typical final trap frequencies are
(ωx, ωy, ωz) = 2π × (65(1), 19(1), 300(2)) Hz. For all sets
of measurements the critical temperature for the onset of
Bose-Einstein condensation Tc lies between 150 nK and
200 nK, such that T & 1.5 × Tc. The orientation of the
magnetic dipoles is controlled by the direction of the po-
larizing B and is represented by the angle θ between B
and the vertical direction z, defined by gravity; see inset
Fig. 1.

After preparing the thermal sample, we perform cross-
dimensional thermalization experiments [19]. In particu-
lar, we excite the cloud along the y direction and probe
the thermalization dynamics in the z direction. Our ex-
citation scheme relies on a rapid increase in power of one
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0 50 100 150 200 250 300

300

400

500

600

FIG. 1. Effective temperatures Tz (blue circles) and Ty (red
diamonds) after the increase of the trapping potential along
the weakest trapping direction y. The measurement was per-
formed at 1 G and θ = 0° for the 166Er isotope. The red
dashed line represents a guide to the eye. The black solid line
denotes the results of the Enskog simulations for this specific
dataset. The errorbars denote the standard error for 3 rep-
etitions. The inset shows a schematic representation of our
experimental system.

trapping beam, leading to a 60 % increase of the trapping
frequency, while leaving the other two directions mostly
unaffected. We extract the effective temperature Tz (Ty)
for a variable in-trap hold time th from the width of the
momentum distribution σz(th) (σy(th)) after a time of
flight of tToF = 25 ms (20 ms). This scheme, illustrated
in the inset of Fig. 1, leads to an out-of-equilibrium cloud
with an effective temperature increase along y from about
300 nK to 600 nK.

Figure 1 shows Tz and Ty as a function of th at
B = 1 G. As we excite the system along y, we observe the
expected rapid increase of Ty. After reaching a maximum
effective temperature, Ty starts to decay, and simultane-
ously Tz increases, both reaching the same equilibrium
temperature, thus showing thermalization dynamics. We
observe oscillations in Ty, which we attribute to a breath-
ing mode that gets induced by the excitation. We observe
an exponential-type growth of the form

Tz(t) = Tf(1−∆Te−t/τ ). (7)

Here, Tf denotes the final temperature and ∆T denotes
the temperature increase due to the added energy. How-
ever, using this simple fit we can not directly extract as

as additional knowledge on α(as, θ) is needed (see Eq. 6).

IV. THEORETICAL ESTIMATE OF α(as, θ)

To compute α(as, θ), we utilize the Enskog equations
of change [40]: a coupled set of differential equations de-
rived in closed-form for dipolar gases, by linearization of
the Boltzmann equation, and the assertion of a Gaussian

s-wave

p-wave

0 30 60 90

1.5

3

4.5

6

s-wave

0 100 200 300
1.5

2

2.5

3

3.5

0 20 40
1.5

2.5

3.5

FIG. 2. (a) Dependency of α on θ and as for as = 0 a0, 5 a0,
10 a0, 36.5 a0, and 68.3 a0. These values are chosen such that
the angle dependence at small as becomes visible. Note that,
at 68.3 a0 (as at 1 G, see later measurements) the variation
of α with θ is strongly suppressed. (b) α vs. as for θ = 0°.
The inset shows an enlargement of the region for as between
0 a0 and 40 a0. The grey dashed lines show the values of α for
s-wave and p-wave scattering, respectively.

phase-space distribution [41]. These equations permit
an analytic derivation of α(as, θ) in the limit of short-
times and small excitations [37]. For the current exper-
iment with excitation along y and thermalization mea-
sured along z, the NCPR is described by a simple ana-
lytic formula, which reads

α(as, θ) =
14
(
45a2

s + 4a2
d

)

252a2
s + 96asad + (3 cos(4θ) + 13)a2

d

. (8)

The quantity α(as, θ) exhibits an anisotropic character
via its angle dependence, as already observed for dipolar
fermionic atoms [19] and molecules [36].

Figure 2 shows α(as, θ) as a function of θ (a) and as (b),
for our experimental configuration of a pancake shaped
trap. Figure 2(a) shows that the anisotropic character of
α(as, θ) competes with the contact one. Indeed, while for
small as (. 10 a0), α(as, θ) exhibits a pronounced angle-
dependence with a maximum at 45°, for increasing as

such behavior progressively washes out. For as ≈ 70 a0,
the thermalization behavior becomes basically indepen-
dent of θ, however α(as, θ) acquires a number below the
one expected for purely contact interacting s-wave col-
lisions. This suggests faster thermalization for dipolar
particles, arising from a more efficient diversion of veloc-
ities of the scattering constituents. In the experiment, we
only measure re-thermalization for relatively large values
of as & 30 a0, and therefore we are not sensitive to the
angle dependence of α(as, θ). In the course of this work,
we will thus focus on the case θ = 0°, simplifying Eq. 8
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FIG. 3. Normalized atom number (orange circles) and as extracted from cross-dimensional thermalization measurements using
both, the Enskog equations (red squares) and the analytic formula of Eq. 8 (blue diamonds) are shown for 166Er. Additionally
aLMS
s (black triangles) obtained from lattice modulation spectroscopy measurements are given. The solid black lines represent

a fit of Eq. 10 to aLMS
s . Error bars and the shaded area of the fitting results denote the standard error.

to

α(as, θ = 0°) =
14
(
45a2

s + 4a2
d

)

252a2
s + 96asad + 16a2

d

. (9)

As shown in Figure 2(b), after an initial decrease,
α(as, 0°) increases for as & 36.7 a0 – and thus the ther-
malization loses efficiency – moving to the regime of
contact dominated interaction, eventually reaching the
α(as, 0°) = 2.5 limit of non-magnetic atoms [18, 42]. We
note that by setting θ = 0° and ad/as ≈ 2.7, the NCPR is
minimized with value α ≈ 1.65, indicating highly efficient
collisional thermalization. This is directly attributed to
the innate anisotropic differential cross-section in dipolar
bosons [18].

V. MAPPING OF as AS A FUNCTION OF B
FOR 166Er

Before taking cross-dimensional thermalization mea-
surements for 166Er, we perform a high resolution scan
of the atom number as a function of the magnetic field
in order to record the spectrum of Fano-Feshbach reso-
nances, which we know to be exceptionally dense [4, 5].
We record the Fano-Feshbach spectra in a magnetic field
region from 0 G to 5 G; see Fig. 3 and Ref. [43]. In all the
measurements the magnetic field is oriented along z.

We then perform thermalization measurements at val-
ues of the magnetic field, where the system is not dom-
inated by resonant atom loss. For each thermalization
curve, we extract as using two different approaches, one
numerical and one semi-analytical. The first, constitutes
a direct fit of the full Enskog solutions to the experimen-
tal data, leaving as as a float parameter of the theory;
see [43] for more details. The second method, is based
on the exponential growth rate τ , from Eq. 1 using the
analytic expressin for α(as, 0°) in Eq. 9. For the latter,
since as is unknown a priori, we use an iterative approach
to determine α(as, 0°) starting from α(as, 0°) = 1.7. We

use the calculated as and the analytic formula (see Eq. 9)
to obtain a new value for α(as, 0°). We stop the iteration
once the relative change of α(as, 0°) is ≤ 1× 10−7.

Figure 3 summarizes as for 166Er in the region from
0 G to 5 G. In the studied B-field regime, the scattering
behavior is essentially dominated by a broad resonance at
3 G and a second one around B = 0 G. The as extracted
from the Enskog model and the semi-analytic one are
in very good agreement with each other, reflecting the
strength of the analytic formula of Eq. 9.

VI. BENCHMARKING WITH LATTICE
SPECTROSCOPY

To evaluate the robustness of our approach to extract
as, we benchmark our cross-dimensional thermalization
results with the one obtained using an alternative tech-
nique based on lattice modulation spectroscopy (LMS).
Such a technique, which we have developed in the past
for 166Er [23, 29] and 167Er [44], is based on the mea-
surement of the on-site interaction - related to as - of
a lattice-confined dipolar gas in a Mott insulator state.
The LMS is able to provide accurate values of aLMS

s , but
at the price of being experimentally more involved due
to its requirements of an optical lattice together with a
clean degenerate sample. Here we compare the values
of as obtained with cross-dimensional thermalization on
a low-density thermal sample, with aLMS

s obtained from
the lattice modulation spectroscopy obtained in Ref. [29].
In brief we extract aLMS

s as follows. We prepare an ultra-
cold sample of 166Er atoms in a three-dimensional opti-
cal lattice, created by two retro-reflected laser beams at
532 nm in the horizontal plane and by one retro-reflected
laser beam at 1064 nm along the vertical z direction,
defined by gravity. The final lattice depth along the
three directions is (sx, sy, sz) = (20, 20, 100), in units of
Erec = 4.2 kHz (1.05 kHz) for 532 nm (1064 nm). The un-
certainty on sx, sy, and sz is about 5 %. In such a deep



5

lattice, the atoms are in the Mott insulator phase [23].
We then create particle-hole-excitations by sinu-

soidally modulating the power of the horizontal lattice
beams for 90 ms with a peak-to-peak amplitude of about
30 % and measure the recovered BEC fraction after melt-
ing of the lattice. At the resonance condition, where the
modulation frequency matches the particle-hole excita-
tion gap, we observe a resonant reduction in the BEC
fraction [45]. The particle-hole excitation gap is directly
given by the on-site interaction U = Uc + Udd. Here, Uc
is the contact interaction – and thus depends on the un-
known aLMS

s – while the on-site dipolar interaction, Udd,
can be accurately calculated. We repeat the measure-
ments at various magnetic-field values and, for each, we
extract aLMS

s .
In Fig. 3, we compare aLMS

s with as extracted from
the thermalization measurements. We see an overall
very good agreement between the value of as extracted
using the two techniques. This shows that the cross-
dimensional thermalization approach combined with the
Enskog equations is a very reliable method to extract as,
even in the case of complex atoms for which the knowl-
edge of α(as, θ) is not a priori given.

VII. DENSITY DEPENDENCE

Our measurements for the 166Er isotope were per-
formed in a regime of relatively low density (n̄ ≤
0.5× 1013 cm−3). Interestingly, when applying the same
method in a regime of high density, we observe a depen-
dence of the thermalization rate on the density which
goes beyond the Enskog approach. For instance, we re-
peat the cross-dimensional thermalization measurements
for 166Er at B = 1 G and variable cloud density, n̄. We
control the density by either increasing N or by apply-
ing a tighter trapping configuration of (ωcyl

x , ωcyl
y , ωcyl

z ) ≈
2π× (300, 19, 300) Hz before compression, or both. From
the lattice modulation spectroscopy, we have extracted a
value as = 68.3(7) a0 at B = 1 G. By fixing this value
– meaning to impose that the scattering length does not
depend on density – and using Eq. 1, we can determine
α(as, 0°) as a function of n̄.

Figure 4 shows α(as, 0°) for different values of n̄. We
find a pronounced dependency on n̄, with a rapid increase
and an eventual saturation at high densities. Such a be-
havior is not captured by our theoretical model, which, as
reflected in the definition of α(as, 0°) in Eq. 1, predicts no
density dependence. To the best of our knowledge, such
a dependence has not been reported in previous works on
cross-dimensional thermalization. Possible explanations
root in various causes, either physical or technical nature.
Although being above Tc, precursors of quantum many-
body phenomena might influence the scattering behavior.
Exemplary, we tried to explicitly include effects coming
from Bose-enhancement into our theoretical framework.
This did not have significant influence on the thermaliza-
tion behavior.

0.5 1 1.5 2 2.5 3

1013

1

2

3

4

5

FIG. 4. Measurements of α(as, θ) as a function of n̄. The
blue circles correspond to the datasets at 1 G, shown in Fig. 3.
The black solid line marks the value given by the analytic
formula in Eq. 9. All measurements are performed with θ =
0°. Errorbars denote the standard error.

Another possible explanation, based on unavoidable
experimental imperfections, roots in deviations from an
ideal harmonic trapping condition, leading to a modifi-
cation of the kinetic energy and the mean density. Such
a variation would manifest in an apparent change of
α(as, 0°); see Eq. 1. Indeed, Eq. 2 and 3 are only valid
for an ideal harmonic trapping confinement. First Monte-
Carlo simulations performed by using a realistic gaussian
trapping potential seem to support this assumption [43].
Note that, varying the initial temperature of the atomic
cloud and the excitation strength did not show any influ-
ence on the observations. We emphasize that, since our
measurements to extract as have been performed at low
densities, our method should remain valid.

VIII. SCATTERING LENGTH FOR 164Er AND
170Er

After the detailed study on 166Er and the benchmark-
ing of the results with high-precision lattice modulation
spectroscopy, we confidently apply our cross-dimensional
thermalization approach to other two isotopes, 164Er and
170Er. Again we start with a Fano-Feshbach spectroscopy
between 0 G and 5G to identify the position of the scat-
tering resonances as shown in Fig. 5. We note that this
Fano-Feshbach spectra have not been reported previ-
ously. For the cross-dimensional thermalization measure-
ments we follow a similar experimental procedure as de-
scribed above. From the thermalization curve, we again
use both, the full fit of the Enskog equations as well as
the iterative approach on α(as, 0°) to determine as from
the exponential growth rate τ .

Figure 5 shows as for the isotopes (a) 164Er and (b)
170Er. While the scattering behavior for 164Er is, sim-
ilarly to 166Er, dominated by two broad resonances at
1.5 G and 3.3 G, 170Er features several narrow overlap-
ping resonances, providing different test scenarios for our
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FIG. 5. Normalized atom number (orange circles) and as extracted from cross-dimensional thermalization measurements using
both, the Enskog equations (red squares) and the analytic formula of Eq. 8 (blue diamonds) are shown for (a) 164Er and (b)
170Er. The solid black lines represent a fit of Eq. 10 to as obtained using the Enskog equations. Error bars and the shaded area
of the fitting results denote the standard error.

cross-dimensional thermalization. Although minor devi-
ations can be observed in the vicinity of Fano-Feshbach
resonances, for both isotopes, the extracted as using the
two approaches are once more in good agreement.

IX. SCALING OF BACKGROUND
SCATTERING LENGTH WITH MASS

The knowledge on as as a function of the magnetic-
field allows us to extract an effective background scat-
tering length abg

s for each isotope. The general behavior
of as with B can be described by generalizing the well-
known formula [46]

as(B) = (abg
s + sB)×

Nres∏

i=1

(
1− ∆Bi

B −Bi

)
, (10)

to the case of Nres overlapping resonances of position Bi
and width ∆Bi, and allowing for a smooth off-resonant
variation of as with B. We observe that a linear vari-
ation of slope s already well reproduces the data with
as(0) defined as the effective abg

s . We note that different
mechanisms could lead to an off-resonant variation of as.
For instance, the influence of broad Fano-Feshbach res-
onances, which are not within our measurement range,
could lead to a smooth variation of the background be-
havior, similar to that observed for cesium [47]. Alterna-
tively, the effect could be due to the coupling induced by

DDI between the incident scattering channel and Zeeman
states that lie higher in energy. As a consequence this re-
sults in a perturbation of the molecular potential, whose
strength depends on the magnetic field, leading to an
increasing value of the van der Waals C6 coefficient [48].

To parametrize as as a function of B, we fit Eq. 10 to
the measured as for 164Er, 166Er, 168Er, and 170Er. For
166Er and 168Er, we use the scattering lengths obtained
from the lattice modulation spectroscopy, corresponding
to our most accurate determination; see solid lines in
Fig. 3 and [43]. For 164Er and 170Er, we fit Eq. 10 to the
as data obtained by applying the Enskog equations to
the cross-dimensional thermalization measurements; see
solid lines in Fig. 5. More details on the fitting procedure
as well as the complete list of the fit parameters is given in
Ref. [43]. In general, we observe that the fitting function
reproduces very well the behavior of as for every isotope.

Figure 6 shows the value of abg
s from the fit as a func-

tion of the isotope mass. We observe a monotonic ris-
ing of abg

s with increasing m, which might be compatible
with different functional forms, including a simple linear
increase. Under the assumption that erbium has a sim-
ilar behavior to ytterbium and cesium, we can use the
model for the mass scaling as developed in Ref. [49–51].
Such a model assumes that as is only given by the Van
der Waals potential U(r) = −C6/r

6, with C6 being the
Van der Waals coefficient. This might be a rather severe
approximation for magnetic atoms but, in absence of al-
ternative models, it is interesting to compare the simple
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FIG. 6. Background scattering length abgs for four bosonic
isotopes (red circles). The solid line represents the best fit
with φ = 144(1); see text. The shaded area, enclosed by the
dotted lines, represents the fitting function for φ = 143 and
φ = 145. The errorbars denote the standard error of the fit
of Eq. 10 to the experimental data.

mass-scaling approach to erbium.

As introduced in Ref. [49], as can be written as

as = ā
[
1− tan

(
φ− π

8

)]
, (11)

with ā = 2−3/2 Γ(3/4)
Γ(5/4)

(
mC6

~2

)1/4
being the characteristic

length and

φ =

√
m

~

∫ ∞

R0

√
−U(r)dr. (12)

Here, Γ(x) is the gamma-function and R0 is the classical
turning point of U(r). Although the exact shape of U(r)
is unknown, Eq. 11 can be employed to extract a mass-
scaling due to the dependence of φ ∝ √m [50]. Such a
scaling is valid, as long as the mass dependent modifica-
tion of U(r) is negligible. Furthermore, φ allows for the
calculation of the number of bound states NB via relation
NB = bφ/π − 5/8c, where b c denotes the floor integer
function.

We now apply this model to our Er case. Figure 6
shows the fit of Eq. 11 to the experimental data; see
Ref. [43] for details. We obtain the best agreement for
φ = 144(1), leading to NB = 143(1) for 168Er. Despite

the similar C6 coefficient, NB is approximately a factor
of 2 larger than for ytterbium [50]. Note that, NB is
in agreement with the result obtained when using the
same approach but assuming a hard core potential [43].
We would like to emphasize once more that this model
does not consider any contribution arising from the DDI.
An improved description calls for the development of ad-
vanced theoretical models.

X. CONCLUSION

In conclusion, we report on an accurate study of the
scattering length of four different isotopes of erbium. Our
work focuses on the low magnetic field region, which is
the range of most interest in current experiments. Our
experimental survey combines two different techniques:
a high-precision, yet demanding, approach based on the
measurement of the onsite interaction in a Mott insu-
lator phase, and another one based on measuring the
re-equilibration time in cross-dimensional thermalization
experiments. From the latter, we extract the the value
of as by both numerically applying the full Enskog equa-
tions and using the analytic formulation for α(as, θ). All
these different approaches, benchmarked one with re-
spect to the others, provide a very consistent measure
of the scattering length in the region of interest. These
results will be relevant for current experiments and more-
over point to a practical manner to extract as with re-
duced experimental effort, which can be readily general-
ized to other magnetic lanthanides.
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SUPPLEMENTARY MATERIAL

A. Analytic number of collisions per
re-thermalization

Analytic expressions for α(as, θ) can be derived under
a short-time approximation, with the Enskog equations

d〈q2
j 〉

dt
− 2

m
〈qjpj〉 = 0, (13a)

d〈p2
j 〉

dt
+ 2mω2

j 〈qjpj〉 = C [p2
j ], (13b)

d〈qjpj〉
dt

− 1

m

〈
p2
j

〉
+mω2

j 〈q2
j 〉 = 0, (13c)

where rj and pj are positions and momenta respectively
(j = x, y, z), and C is the collision integral. The deriva-
tion follows from Ref. [37], but we present a brief out-
line here for completeness. The gas is assumed close-to-
equilibrium, allowing us to treat rj and pj as Gaussian
distributed. Thermalization trajectories are then tracked
using the Gaussian widths along each axis, to compute
the energy differential

〈χj〉 ≡ Ej − kBTf , (14)

where Tf = (Tx+Ty+Tz)/3 is the final equilibration tem-
perature (obtained from the equipartition theorem), 〈. . .〉
denotes an ensemble average assuming a Gaussian phase
space distribution whose widths are allowed to vary, and
Ej = 〈p2

j 〉/(2m)+mω2
j 〈r2

j 〉/2 is the sum of kinetic and po-
tential energies in the j-th direction. The Enskog equa-
tions dictate that the relaxation of 〈χj〉 follows the dif-
ferential equation

d〈χj〉
dt

= C [χj ]. (15)

For small deviations from equilibrium and at short
times, re-thermalization can be approximated with a sin-
gle decay rate γ, such that C [χ] ≈ −γ〈χ〉. This results in
the relation

dEj
dt

= −γyj (Ej − kBTf ) = C [Ej ], (16)

where the subscript on γyj indicates that the gas was
excited along y, and re-thermalization measured along j.
This then permits us to compute

αyj =
n̄σ̄vr
γyj

=

(
Ej − kBTf

C [Ej ]

)
n̄σ̄vr, (17)

which for j = z, has the form in Eq. (8).

B. Fitting Enskog equations to experimental data

The extraction of the scattering lengths as, from cross-
dimensional thermalization data was done here by means
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FIG. S1. Benchmarking of the Enskog simulation results
for Tz (red solid line) with Monte-Carlo simulations (black
dashed line). The dataset is the same as in Fig. 1.

of full numerical solutions to the Enskog equations. To
do so, as was left as a float parameter in the theory, then
varied until a best fit between the theory and experimen-
tal data was obtained. A feature we noticed during fitting
was the high sensitivity of thermalization rates to varia-
tions in the trapping frequencies ω, over the finite-time
quench. Measurement uncertainties therefore motivate
us to also leave ω a float parameter, with allowed values
within its 1-sigma errorbars. This is applied both to the
trapping frequencies before and after the quench.

We performed fits using a χ2 optimization criterion

min
ω,as

tend∑

t=t0

(
T (t)− TE [T (0);ω, as] (t)

δT (t)

)2

, (18)

where the sum runs over measurement time instances
t, T (t) is the temperature data from the experiment,
δT (t) is the temperature measurement uncertainty, and
TE [T (0);ω, as] is the solution to the Enskog equations
with initial condition T (0), and fit parameters as and ω.

To reduce biasing of the fits, we run an iterative algo-
rithm that recursively fits ω and as in succession until
they converge to stable values. Such a procedure would
take exceedingly long times (∼ weeks) with full Monte
Carlo (MC) simulations, but can be done in minutes with
the Enskog equations on a current-day computing device.

Solutions to the Enskog equations have shown them-
selves accurate when compared to MC simulations [37,
41]. We show their accuracy here yet again, using the
parameters from the current experimental set-up. An
illustrative example is provided in the plot of Fig. S1,
comparing an instance of the Enskog solutions (red solid
line), MC simulations (black dashed line) and the exper-
imental data (blue circles).

C. Monte-Carlo simulations including trap
anharmonicities

Optical dipole traps are, in many studies, assumed to
be well modeled by purely harmonic potentials. This
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may however be inadequate in regimes with significant
trap anharmonicity effects, which we currently attribute
the density dependence of α to. In such cases, the poten-
tial is better modeled as two cross-propagating Gaussian-
profile beams along the y and z axes (with gravity). This
produces the confinement potential

VODT(r) = − 2Ũ1P1

πw1,x(z)w1,y(z)
e
−2

(
x2

w2
1,x(z)

+ y2

w2
1,y(z)

)

− 2Ũ2P2

πw2,x(y)w2,y(y)
e
−2

(
x2

w2
2,x(y)

+ z2

w2
2,z(y)

)

+mgz, (19)

where P is the laser power Ũ is an atomic polarizability
parameter and

w(z) = w0

√
1 +

z2

z2
R

, (20)

with zR and w0 denoting Rayleigh lengths and beam
widths respectively.

Such a potential limits the applicability of the afore-
mentioned Enskog equations as formulated in Ref. [41].
Instead, more robust MD methods are required to ac-
curately predict thermalization trajectories. We imple-
ment a MD simulation similar to that in Ref. [20], which
evolves simulation particles under the action of VODT via
the Verlet symplectic integrator

qk = rk(t) +
∆t

2m
pk(t), (21a)

pk(t+ ∆t) = pk(t) + F k∆t, (21b)

rk(t+ ∆t) = qk +
∆t

2m
pk(t+ ∆t), (21c)

where subscripts k denote the k-th simulation particle,
∆t is the simulation time-step, t is the time and

F k = −∇VODT(rk). (22)

Dipolar collisions are then computed with the direct sim-
ulation Monte Carlo method [52], that determines post-
collision momenta via stochastic sampling of the differ-
ential cross section.

In a preliminary study of the density dependence, ideal
Gaussian beam profiles are assumed, along with perfectly
accurate beam widths and Rayleigh lengths. Following a
trap quench, thermalization of the out-of-equilibrium gas
in VODT indeed shows an apparent increase of α with den-
sity, qualitatively similar to that observed in the exper-
iment. This effect is absent in simulations with an ideal
harmonic trap. Furthermore, in higher density regimes,
the simulations with VODT predict the experimentally ob-
served equilibration temperatures more accurately com-
pared to the harmonic trap case. These early findings
on density dependence from trap anharmonicities are in-
triguing, and a cautionary tale for future experiments.
However, we do not develop this idea further here and
leave such analysis for future works.

D. Fano-Feshbach spectroscopy

To identify the positions of the Fano-Feshbach reso-
nances we perform high-resolution loss spectroscopy in
a cylindrically symmetric trap. We evaporatively cool
the atoms until they reach a temperature between T =
300 nK and 400 nK. At this stage, the atom number is be-
tween 6× 104 and 1.2× 104 with typical trap frequencies
of (ωx, ωy, ωz) = 2π × (300, 30, 300) Hz. The exact val-
ues depend on the isotope choice. After reaching thermal
equilibrium, we change B, oriented along the z axis, in
1 ms to the desired value and wait for a holding time be-
tween 250 ms and 500 ms. We use different holding times
for different datasets to avoid saturation effects of the
resonances for higher densities. After the holding time,
we measure the atom number using absorption imaging
after a time of flight expansion of 25 ms. The results of
the loss-spectroscopy measurements are shown in Fig. 3,
Fig. 5 and Fig. S2.

E. Scattering length for 168Er

To obtain as for the 168Er isotope, we follow a simi-
lar approach as for 166Er. First, we perform loss spec-
troscopy to identify the position of Fano-Feshbach reso-
nances. We then transfer the atoms into an optical lat-
tice with a depth of (sx, sy, sz) = (20, 20, 40)Erec and
apply the lattice modulation spectroscopy technique to
extract as. The lattice modulation spectroscopy follows
the same lines as for the 166Er isotope; see main text.
Fig. S2 summarizes the results for 168Er and shows the
Fano-Feshbach spectroscopy result as well as as as a func-
tion of B in the magnetic field range from 0 G to 5 G.

F. Extracting background scattering length

To obtain a value for abg
s , we fit Eq. 10 either to as ob-

tained from the full Enksog equations (164Er and 170Er)
or aLMS

s (166Er and 168Er). Due to the different numbers
of Fano-Feshbach resonances compared to the number of
available data points for as, we slightly vary the fitting
approach for the individual isotopes. Depending on the
position and the width of the resonance, for some res-
onances, we fix the position Bi to the minimum of the
loss feature and keep only the width ∆Bi as a floating
parameter. For the very narrow resonances, which have
a negligible influence on the overall scattering behavior,
we fix both Bi and ∆Bi.

Table I gives the results for the background scattering
lengths abg

s and the slopes s for all four isotopes. More-
over, Tables II–V contain a detailed listing of all Fano-
Feshbach resonances and how they are included in the fit-
ting procedure. Note that for 170Er, we are aware of the
existence of a particularly broad resonance at 6.91 G [53],
which we include with variable width. When looking
closely, the onset of this resonance can actually be seen
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FIG. S2. Normalized atom number (yellow circles) and measured scattering lengths as obtained for 168Er from lattice
modulation spectroscopy measurements. The solid black line represents a fit to aLMS

s . The shaded area as well as the error
bars denote the standard error.

TABLE I. Values for abgs and s obtained from the fit of Eq. 10
to as for the four bosonic isotopes. The error denotes the fit
error of one standard deviation.

isotope abgs (a0) s (a0/G)

164 52(6) 9(3)

166 61(3) 5.4(9)

168 110(2) 11(2)

170 129(9) 20(10)

TABLE II. Parameters for the Fano-Feshbach resonances in-
cluded into the fit of Eq. 10 to as for 164Er. The error denotes
the fit error of one standard deviation. Values without error
are fixed in the fitting procedure.

Position Bi (G) Width ∆Bi (G)

1.52 0.22(3)

2.67 0.005

2.83 0.005

3.26 0.10(3)

as a reduction of N towards higher magnetic field values
in the loss spectroscopy (see Fig. 5(b)).

G. χ2 analysis for mass scaling

In this section, we describe our analysis of the back-
ground as of the 4 Er isotopes (Fig. 6) with Eq. 10. To
find the best fitting parameter φ, we analyze the agree-
ment of the theoretical model in Eq. 11 with our exper-
imental data. For each value of φ, we calculate the χ2

via

χ2 =
4∑

i=1

(
amod
s − ais
σis

)2

. (23)

TABLE III. Parameters for the Fano-Feshbach resonances
included into the fit of Eq. 10 to as for 166Er. The error de-
notes the fit error of one standard deviation. Values without
error are fixed in the fitting procedure.

Position Bi (G) Width ∆Bi (G)

0.02(5) 0.05(2)

3.04(5) 0.15(2)

4.208 0.01

4.96 0.005

TABLE IV. Parameters for the Fano-Feshbach resonances in-
cluded into the fit of Eq. 10 to as for 168Er. The error denotes
the fit error of one standard deviation. Values without error
are fixed in the fitting procedure.

Position Bi (G) Width ∆Bi (G)

0.49 0.005

0.911(6) 0.032(2)

1.51 0.01

2.174(4) 0.038(2)

2.471(9) 0.19(1)

2.86 0.005

3.79 0.006(5)

4.23 0.005

4.5 0.005

Here, amod
s is the scattering length given by the model

for the corresponding φ and ais and σis are the measured
as with the corresponding standard error.

The behavior of χ2 is non-monotonic with the appear-
ance of several minima. We identify the absolute mini-
mum of χ2 for φ = 144.03. To further obtain an estimate
for the error of φ we fit a quadratic function to the local
minima. We extract the limits of the confidence interval
by considering the region where χ2 ≤ χ2 + 1.
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TABLE V. Parameters for the Fano-Feshbach resonances in-
cluded into the fit of Eq. 10 to as for 170Er. The error denotes
the fit error of one standard deviation. Values without error
are fixed in the fitting procedure.

Position Bi (G) Width ∆Bi (G)

0.35 0.005

0.86 0.028(12)

1.12 0.005

1.62 0.01

2.17 0.067(7)

2.74 0.134(9)

3.3 0.01(1)

3.57 0.01

4.38 0.005

4.49 0.01

6.91 0.8(7)

H. Hard-core potential for mass scaling

The model contains the assumption, that the s-wave
scattering length is given at large distances by the van-
der-Waals potential scaling with UvdW(r) ∝ −C6/r

6,
with C6 being the Van der Waals coefficient, and at short
distances r < rc by a hard core potential [49]. In this
specific case, the scaling of abg

s can be described by

abg
s = ā tan(Φ), (24)

where ā = Γ(3/4)

2
√

(2)Γ(5/4)
ac with ac =

(
2mrC6

~2

)1/4
being the

characteristic scattering length scale of the potential, and

Φ =
a2c
2r2c
− 3π

8 is the semi-classical phase [49].

From theoretical calculations in Ref. [6] we use C6 =
1723 a.u. and we estimate from the theoretical interac-
tion potential given in Ref.[6] that rc ≈ 4 − 8 a0. We
fit Eq. 24 to abg

s of the four bosonic isotopes. Due to a
large number of possible local minima, we combine the
fitting with a minimization of the χ2-value while varying
the start parameter for rc. We obtain the best agreement
for rc = 5.05(5) a0.

In addition, the Levinson theorem [54] allows us to
estimate the number of bound states NB , which can be
calculated from the semi-classical phase Φ using

NB =

[
Φ

π
− 5

8

]
+ 1, (25)

where the square brackets mean the integer part. For
the current fitting we obtain NB ranging from 141 to
144, in agreement with the approach in the main text.
We want to emphasize, that this modelling of abg

s is a
simple approach and a more thorough analysis could add
deeper valuable insights.
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6
Conclusion and outlook

6.1. Conclusion

This work describes experiments with quantum gases composed of ultracold fermionic and
bosonic erbium atoms, which possess a large permanent magnetic dipole moment. The
overarching objective of my PhD thesis was to push the frontier of accurate knowledge
about fundamental aspects of quantum physics with dipolar gases. This include the mapping
of spin-exchange interactions, the search, observation, and characterization of a clock-type
optical transition, and an accurate determination of the erbium scattering length.

The first part of the thesis describes our experimental efforts to study lattice spin physics with
fermionic erbium. In particular, we have developed a precise control over the internal degree
of freedom (spin) of our system in order to realize and study a XXZ-Heisenberg model based
on dipolar interactions. The spin states are encoded in the magnetic Zeeman sub-levels,
and we find that under the condition that the energy difference between subsequent levels
is equal, resonant spin-exchange dynamics occur. We have measured the out-of equilibrium
dynamics of spin populations, which represent a global quantity, and studied the spreading
and redistribution driven by the exchange interaction. We have shown that the rate at which
the dynamics occur depends strongly on the initial spin state and on the magnetic dipole
orientation. Moreover, we have demonstrated a new protocol for switching the dynamics
fast on and off by exploiting the tensorial ac-Stark shift induced by an off-resonant light
field. This work was carried out in collaboration with A.-M.Rey and B. Zhu, who developed
numerical calculations that show excellent quantitative agreement with our experimental
findings.

The second part of the thesis focuses on endowing our erbium quantum gas platform with
clock-type laser capabilities. The existence of a narrow optical transition at 1299 nm with
a linewidth in the Hz range has been predicted theoretically, although with low precision.
We performed high-resolution spectroscopic measurements for various isotopes and were able
to accurately determine the resonance position. We have characterized the atomic transi-
tion in detail and determined important parameters such as the lifetime of the atomic state
and the Landé gJ -factor. Moreover, we were able to demonstrate the ability to coherently
control the atomic state. As an important input for the design of future experiments, we
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measured the ratio of the polarizability between the ground state and the excited state.
Comparison to calculations based on a semi-empirical method, performed by our collabora-
tors G.Hovhannesyan and M.Lepers, showed good agreement. Finally, we have performed
initial experiments on spin manipulation that show efficient preparation of spin states and
spin mixtures for bosonic isotopes, which would otherwise not be possible because of the
lack of hyperfine structure.

Finally, the third part of the thesis describes our investigation aiming at expanding the
knowledge of the scattering length in various erbium isotopes and at obtaining an accurate
magnetic-field to scattering length conversion. This work has been conducted in collabora-
tion with theorists from JILA, i. e. J. Bohn and R.Wang. This project has been developed
following two paths. On the one hand, we have performed high-precision lattice spectroscopy
and extracted the scattering length with low uncertainty. On the other hand, we have used
these results to benchmark the scattering length obtained with the much easier approach
using cross-dimensional thermalization measurements. For the latter we applied the the-
oretical Enskog equations and an analytic formula based on the number of collisions per
re-thermalization. We carried out cross-dimensional thermalization measurements for four
bosonic isotopes in a magnetic field range from 0G to 5G, which allowed us to determine a
background scattering length for this magnetic field range. Finally, we applied a simplified
theoretical approach to model the background scattering length scaling with isotope mass.

Overall, the knowledge gained about erbium atoms and the characterization of the nar-
row atomic transition represent a promising starting point for future experiments. In the
following, a number of possible applications, especially for the transition at 1299 nm, are
outlined.

6.2. The transition at 1299 nm: A versatile experimental tool

6.2.1. Prospects for combining the optical lattice and the narrow inner-shell
orbital transition

The successful observation of dipolar spin-exchange dynamics with fermionic erbium in a
three-dimensional optical lattice, opens the door to a number of interesting questions about
many-body dynamics that remain to be answered. To address many of these questions, the
implementation of new tools is required. For our system, the narrow optical transition at
1299 nm is of particular importance because it represents a unique tool the preparation, de-
tection, and identification of quantum states. In this section, we will discuss two particularly
interesting aspects.

Thermal equilibrium for spin-exchange dynamics

One direction for further investigation of spin-exchange dynamics is to observe the attain-
ment of an eventual thermal equilibrium [Lan15]. From theoretical calculations based on the
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generalized discrete truncated Wigner approximation [Zhu19], it is expected that the atomic
distribution among the magnetic sublevels reaches a thermal equilibrium state, which de-
pends crucially on the spin quantum number. While for an integer spin, as it is the case for
bosonic erbium (J = 6), a homogeneous spin distribution is expected, for fermionic erbium
(F = 19/2) an imbalanced population of Zeeman levels should occur due to the half-integer
spin. Moreover, for fermionic erbium, the equilibrium state depends significantly on the size
of the spin manifold.

To be able to study this behavior, two major improvements need to be implemented: First,
it is important to decouple the spin-exchange dynamics from other processes that may occur
due to tunneling effects. This includes, e. g. losses due to on-site dipolar relaxation in cases
where the gain in energy exceeds the lattice depth [dP13a]. In our current experimental
system, the tunneling rate is about 10Hz, which limits the usable timescale of those exper-
iments to several 100ms. Thanks to a technical upgrade of our laser-light distribution for
the optical lattice (see Appendix A), a reduction of the tunneling rate by a factor of about
250 is within reach. This will allow to observe pure spin-exchange dynamics on much longer
timescales.

Second, a deterministic preparation of Zeeman-states for bosons as well as a procedure for the
isolation of sub-systems within the spin manifold is necessary. Our narrow-line transition at
1299 nm can be employed for both. It enables the preparation of bosonic atoms in higher spin
states (see Sec. 4.3.3), which has not been realized so far due to the lack of a quadratic Zeeman
shift. On the other hand it allows for the isolation of sub-systems within the spin manifold
by exploiting the quadratic ac-Stark shift and shifting Zeeman levels out of resonance for the
spin dynamics. The latter enables therefore the possibility to study thermalization behavior
for smaller system sizes.

Spin-resolved imaging technique

Up to now, experiments studying dipolar spin-exchange dynamics [Yan13, Lep19, Ala22] are
lacking information about the spatial distribution of spin populations. Similar to our case,
in previous experiments that studied dipolar-spin exchange dynamics with large spin, the
atomic distribution within the spin manifold was measured via Stern-Gerlach separation.
For this purpose, the atoms were released from the lattice confinement and a magnetic field
gradient is applied during time of flight expansion, which causes a spatial separation of the
different spin states. In this way, detailed information about the spin populations is obtained,
but the spatial atomic distribution in the lattice remains inaccessible.

The realization of quantum gas microscopes, so far implemented with alkali and alkaline-earth
like atoms, provides detailed spatial information due to the detection of individual atoms on
single lattice sites [Bak09, She10]. In addition to single atom resolution, recent experiments
demonstrated spin resolved imaging for spin-1/2 systems using 6Li [Bol16, Ber18]. However,
in optical lattices these techniques rely on a super-lattice and a magnetic field gradient,
limiting the detection scheme to one-dimensional spin chains. For dipolar atoms, so far no
quantum gas microscope has been realized, however, different groups around the world are
working towards its implementation [Phe20, Soh21, Uer21].
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Figure 6.1.: Schematic illustration of the shelving technique to image different spin states (indicated
by blue, red, and green circles) in a single experimental cycle, with the energy level at 1299 nm serving
as a storage state. (a) By applying a π-pulse, all atoms, except those in the spin state which is imaged
first, are transferred to the excited state. (b) Subsequently, an imaging pulse with light at 401 nm
is applied to image the ground-state atoms. (c) Step by step, all atoms in different spin states are
pumped to the ground state and imaged.

The narrow line at 1299 nm opens here new opportunities to realize a spin resolved imaging
technique in a quantum gas microscope. Here, the excited state takes on the role of a storage
state for atoms in different spin states. Figure 6.1 shows a schematic illustration of spin-
resolved imaging using this shelving technique. First, all atoms except those in one spin state
are transferred to the excited state by application of a π-pulse using the light at 1299 nm.
Subsequently, the remaining atoms in the ground state are detected, e. g. via fluorescence
imaging as considered in Ref. [Pic19], using the broad transition at 401 nm. In the following,
atoms in other spin states are successively transferred to the ground state and detected.
Note that a similar scheme might be realized with the corresponding transition at 1001 nm
in dysprosium [Pet20a].

An important aspect for this imaging technique is taken on by the different time scales, such
as the duration of the π-pulse and the imaging pulse length. Since the excited state lifetime
is finite, an extended imaging time leads to a reduced detection fidelity. Considering the
Rabi oscillation as measured in Chap. 4, the duration for the π-pulse corresponds to about
10 µs. Further, in Ref. [Pic19], an optimal imaging-pulse length was determined to 1.5 µs. In
the case of fermionic erbium, which has 21 spin states, an estimation for the imaging time of
all spin states leads to about 250 µs. Considering the excited-state lifetime of about 180ms,
this leads to detection efficiency > 99.9%. Importantly, during our measurements performed
in Chapter 4 we did not observe any influence of the light at 401 nm on the excited state.

In addition to spin-resolved imaging, the shelving technique can be used to enable imaging of
single atoms beyond the diffraction limit, thereby achieving an effectively higher imaging res-
olution [Fra21]. This allows the implementation of very short lattice spacing, which is relevant
for dipolar systems since the interaction strength (∝ 1/r3) can be significantly increased. The
conceptual idea follows the stochastic optical reconstruction microscopy (STORM)1, which

1 In 2014 the Nobel Prize in chemistry was awarded for the development of super-resolved fluorescence
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is widely applied in biology to distinguish overlapping fluorophores [Hua08]. In a controlled
manner, only a fraction of the fluorophores are activated simultaneously, effectively reduc-
ing the density and thus the number of overlapping molecular complexes. Using multiple
images, the overall image can thus be reconstructed with higher resolution. Analogously,
by promoting the majority of atoms to the excited state, the number of atoms that are
imaged simultaneously is reduced and neighboring atoms whose separation is smaller than
the imaging resolution can be identified.

6.2.2. Further potential applications

The transition at 1299 nm has further potential applications, which may not be immediately
obvious, since they are not directly related to our experimental apparatus. This shows once
again the flexibility the transition and the variety of new possibilities that the transition
brings. Here we will describe two fields for potential future applications.

Quantum Communication

For the realization of quantum networks and the associated transmission of quantum in-
formation over long-distances, it is of special interest to take advantage of already existing
technologies. One aspect is the use of optical fibers in the telecommunication-wavelength
window, since these exhibit a particularly low photon absorption. Most of the existing plat-
forms, based for example on trapped ions or nitrogen-vacancy centers, use transitions which
are outside this particular wavelength range. Therefore, they rely on frequency conversion
of light to the telecommunication-wavelength range [Dra18, Kru19], which limits current
performance. Today, best conversion schemes reach an efficiency of about 25% [Kru19],
however they suffer from various dephasing mechanisms [Bau20]. Being directly in the
telecommunication-wavelength O-band, the transition at 1299 nm is an interesting candi-
date for future realizations of quantum information systems.

Generally, for the successful realization of quantum networks it is fundamental to have large
entanglement generation rate. More specifically, it is important that the entanglement gen-
eration rate exceeds the decoherence rate of the entangled state [Hum18]. Current state-
of-the-art systems achieve entanglement rate on the order of tens of Hz [Hum18, Lan21].
At first glance, this seems unattainable due to the relatively long lifetime of the state at
1299 nm for erbium. However, a possible workaround could be obtained by exploiting the
Purcell effect in optical cavities [Pur46], which leads to a reduced lifetime due to the atom-
cavity coupling. Similar concepts have been successfully realized using trapped ions [Cas15],
nitrogen-vacancy centers [Ruf21], and rubidium atoms [Wel21]. Although a more detailed
characterization of the potential system performance is needed, erbium might be a promising
candidate for future quantum networks.

microscopy.
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Rydberg atoms

Rydberg states in neutral atoms have become a very promising platform for quantum sim-
ulation and quantum computation. While many exciting results have been obtained using
alkali [Ber17, Sch20b] and alkaline-earth like [Nor18, Coo18] atomic species in configurable
tweezer experiments, lanthanide atoms have not been exploit in this context up to know.
Only recently, the first high-resolution spectroscopic measurement of Rydberg states in er-
bium atoms, performed here in Innsbruck, was reported [Tra21].

The transition at 1299 nm potentially provides additional control knobs when combined
with Rydberg atoms. Thanks to the multi-valence electrons of erbium, the electronic core
remains optically active after excitation of an electron to a Rydberg state. A first interesting
aspect is the inner-shell character of the 1299-nm transition, which describes the fact that
both orbitals involved in the transition have a lower principle quantum number (4f and 5d)
than the 6s orbital. In strontium it was shown that the excitation of an electron in the 5s
orbital to the 5p orbital leads to strongly enhanced auto-ionization [Mad20]. In the case
of erbium, if an electron of the 6s orbital is promoted to a Rydberg state, the inner-shell
electrons might still be shielded by the remaining electron in 6s, which eventually reduces
the effect of auto-ionization. Within the same work of Ref. [Mad20], an alternative single
photon excitation protocol was demonstrated, where the long-lived clock state in strontium
is used as a meta-stable ground state and an improved transfer fidelity was obtained. Since
also the lifetime of the state at 1299 nm is much longer than the typical one of Rydberg
states, a similar approach can be applied. Additionally, starting from the state at 1299 nm,
larger angular momentum Rydberg states can be reached in a simplified approach, leading
to longer lifetimes and modified interactions.
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7.1. Publication: A two-species five-beam magneto-optical trap
for highly magnetic Er and Dy atoms
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1 Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
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a The author of the present thesis contributed to the building of the experimental apparatus together
with P. I. and G. D., performed the measurements together with P. I., A. T., and G. D., and contributed
in writing the manuscript.

Summary

In this publication, we demonstrate the realization of the first magneto-optical trap that
works simultaneously for the two highly magnetic atoms erbium and dysprosium. For both
species, we use the narrow intercombination transitions that lead to final temperatures of
about 10 µK, which is beneficial for the subsequent creation of dipolar quantum mixtures.
A special aspect of our magneto-optical trap is that we achieved a trapping configuration
consisting of only 5-beams, showing similar atom numbers and final temperatures compared
to the standard 6-beam approach.
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Two-species five-beam magneto-optical trap for erbium and dysprosium
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We report on the first realization of a two-species magneto-optical trap (MOT) for the highly magnetic erbium
and dysprosium atoms. The MOT operates on an intercombination line for the respective species. Owing to the
narrow-line character of such a cooling transition and the action of gravity, we demonstrate a trap geometry
employing only five beams in the orthogonal configuration. We observe that the mixture is cooled and trapped
very efficiently, with up to 5 × 108 Er atoms and 109 Dy atoms at temperatures of about 10 μK. Our results offer
an ideal starting condition for the creation of a dipolar quantum mixture of highly magnetic atoms.

DOI: 10.1103/PhysRevA.97.023633

Within the very active research field of ultracold quantum
gases, heteronuclear mixtures of different atomic species offer
unique possibilities to study a broad range of quantum phe-
nomena. In the past 15 years, various atomic species have been
combined to produce quantum degenerate mixtures. Each such
quantum mixture has its own characteristic traits. Among the
widely used alkali mixtures (e.g., [1,2]), the mass imbalance
and the selective tuning of the intra- and interspecies interac-
tion have allowed to investigate fascinating phenomena, such
as heteronuclear Efimov states [3–6], polaron and impurity
physics in both bosonic and fermionic backgrounds [7–11], and
heteronuclear molecules with large electric dipole moments
[12–14].

The latter development is mainly driven by the interest in
studying phenomena arising from long-range and anisotropic
dipole-dipole interactions among the molecules [15]. As an
alternative approach, magnetic atoms have proven to be a
robust system for study of few- and many-body dipolar physics.
The strength of magnetic atoms for the study of dipolar
physics was first shown using Bose-Einstein condensates of
chromium atoms [16,17]. More recently, both erbium (Er) and
dysprosium (Dy), among the most magnetic and isotope-rich
atomic species, have been individually brought to quantum
degeneracy [18–21]. Using these species, remarkable many-
body dipolar phenomena have been observed, including the
observation of deformed Fermi surfaces [22], quantum droplets
[23–25], and roton excitations [26] and the recent study of
thermalization in many-body dipolar gases [27].

Adding the flexibility of mixtures to the richness of mag-
netic atoms, we here report on the first combination of the
two highly magnetic atomic species Er and Dy in a sin-
gle experimental apparatus. The Er-Dy system extends the
collection of available quantum mixtures by an unexplored
case, as the interplay between the interspecies contact and
dipolar interactions and the dipolar imbalance among the two
species provides a new dimension in the parameter space of

*arno.trautmann@uibk.ac.at
†Corresponding author: Francesca.Ferlaino@uibk.ac.at

accessible quantum phenomena. This impacts, e.g., the mis-
cibility properties of the mixture [28]. Although imbalanced
dipolar mixture systems have not yet been considered in theory,
they are good candidates for observation of, e.g., long-range
dominated polarons, dipolar pairing, and the anisotropic BEC-
BCS crossover with deformed Fermi surfaces.

While single-species magneto-optical traps (MOTs) of Er
[29–31] and Dy [32–34] as well as other lanthanoid atoms
[35–37] have already been attained, we simultaneously cool
and trap Er and Dy in a two-species MOT operating on
intercombination lines. We observe a remarkably robust op-
eration of the dual MOT, with atom numbers similar or even
surpassing the typical ones recorded in the single-species Er or
Dy experiments. Moreover, we demonstrate magneto-optical
trapping using a unique beam configuration, allowing us to
efficiently operate the MOT using only five beams (5B) in an
orthogonal open-top configuration; see Fig. 1(b). The working
principle of our orthogonal 5B MOT relies on the combined
effect of the narrow-line cooling and gravity [30,31,33–35,38]
and contrasts with the classical six-beam (6B) approach.

A beneficial factor for combining the multivalence-electron
atoms Er and Dy is their similarity in atomic properties [see
table in Fig. 1(e)]. They both have several stable isotopes
with a high natural abundance, >14%; in total, five bosonic
(166Er, 168Er, 170Er, 162Dy, 164Dy) and three fermionic (167Er,
161Dy, 163Dy) isotopes. This isotope variety will allow us to
prepare ultracold Bose-Bose, Bose-Fermi, and Fermi-Fermi
quantum mixtures of Er and Dy. Whereas all bosonic isotopes
have zero nuclear spin, the fermionic isotopes possess nuclear
spins of IEr = 7/2 and IDy = 5/2, leading to eight and six
hyperfine states in the electronic ground state, respectively.
Both elements exhibit a rich atomic energy spectrum, arising
from their submerged-shell electronic configuration, featuring
a [Xe] core, a partially filled inner 4f shell, and a closed outer
6s shell. The electron vacancy in the 4f shell is responsible
for the large orbital quantum numbers and the respective high
magnetic moments, i.e., 7μB and 10μB for Er and Dy, with
μB being the Bohr magneton.

Figures 1(c) and 1(d) show the electronic levels of Er and
Dy for wave numbers up to 26 000 cm−1 [39]. While most of

2469-9926/2018/97(2)/023633(6) 023633-1 ©2018 American Physical Society
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FIG. 1. Illustration of the vacuum apparatus, including the optical setup for the 5B MOT, and atomic properties of Er and Dy. (a) Er-Dy
vacuum apparatus, including the high-temperature oven, transversal cooling chamber, Zeeman slower (ZS), and main chamber. The atomic
beam propagates from right to left. The ZS beam is reflected by a metallic mirror in vacuum. (b) Sketch of the working principle of the open-top
MOT. Arrows depict MOT beams, and the blue region indicates the ZS beam. For clarity, we depict the atomic clouds displaced from each
other. (c, d) Energy level diagrams for Er and Dy up to 26 000 cm−1 at different total electronic angular momentum quantum numbers J . States
with odd (even) parity are indicated by black (orange) horizontal lines. Arrows show the broad and narrow laser-cooling transitions. (e) Table
listing the atomic properties of Er and Dy.

the possible transitions are dipole forbidden, both species offer
one particularly broad transition, suitable for laser cooling, to
the respective singlet 6s6p state [blue arrows in Figs. 1(c)
and 1(d)], which we label broad in the following. The blue
transition light has a wavelength of 401 nm(421 nm), and the
transition line width is �broad/2π = 27.5 MHz (32.2 MHz) for
Er (Dy) [30,33]. We use this transition for transversal cooling,
Zeeman slowing, and absorption imaging. The laser light,
driving the broad transition, is derived from grating-stabilized
laser diodes, followed by tapered amplifiers and frequency-
doubling cavities. The laser systems emit more than 1W of
power each. Both systems are frequency-stabilized using sig-
nals from modulation-transfer spectroscopy in hollow-cathode
lamps [30].

Following previous single-species experiments with Yb
[35], Er [30], and Dy [33,34], we produce the MOT using an
intercombination line driving the transition from the ground
state to the triplet 6s6p state [yellow (red) arrow in Figs. 1(c)
and 1(d)] at a wavelength of 583 nm(626 nm) in Er (Dy)
and a line width of �583/2π = 190 kHz(�626/2π = 136 kHz).
The narrow-width character of these transitions leads to the
conveniently low Doppler temperatures of TD,Er = 4.6 μK and
TD,Dy = 3.2 μK. The laser system for the Er MOT is based on a
Raman fiber-amplified diode laser at 1166 nm and a single-pass

frequency-doubling stage, with an output power above 1.7 W.
The laser system for the Dy MOT is based on two fiber
lasers operating at 1050 and 1550 nm, which are amplified and
frequency-converted in a single-pass sum-generation stage,
resulting in more than 1.6 W of output power. Both MOT laser
systems are frequency-stabilized against long-term drifts on a
home-built ultralow expansion cavity via a Pound-Drever-Hall
lock [40] and have line widths below 100 kHz.

The experimental procedure generalizes our previously
demonstrated single-species MOT approach [30] to two-
species operation. The very similar strengths and wavelengths
of the laser-cooling transitions of Er and Dy and their similar
masses and melting points greatly simplify the design of the
vacuum apparatus and the experimental procedure for the
mixture. Figure 1(a) shows the experimental apparatus. Er
and Dy atoms are emitted from a single high-temperature
oven, consisting of two sections: The first section (effusion
cell) operates at a temperature of 1100 ◦C, and the second
one (hot lip) operates at 1200 ◦C, unless otherwise stated.
Three apertures of different diameters, placed inside the oven,
geometrically collimate the Er-Dy atomic beam before it enters
the transversal-cooling chamber. We operate the transversal
cooling resonantly on the broad transitions with total powers
of 300 mW(120 mW) for Er (Dy) and elliptic waists of

023633-2
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approximately whoriz = 30 mm and wvert = 6 mm. We observe
that the transversal cooling increases the MOT loading rate by
a factor of 10 (6) for Er (Dy). The two-species atomic beam
is slowed down to about 5 m/s using a two-species Zeeman
slower (ZS) about 35 cm long in the spin-flip configuration.
The magnetic-field values along the ZS are experimentally
optimized for Dy and work equally well for Er. The two light
beams for the ZS of Er and Dy are overlapped using dichroic
optics and guided through the ZS via a metallic in-vacuum
mirror [41]; see Fig. 1(a). The optimal performance of the
ZS has been found for laser powers of 57 mW(121 mW) with
beam waists of 4 mm at a detuning of −520 MHz(−530 MHz)
for Er (Dy).

The slow atoms are then captured into a two-species MOT,
operating on the respective intercombination line. Taking
advantage of the similar wavelengths, we combine the MOT
beams for both species into the same fibers. The MOT light
is spectrally broadened utilizing electro-optic modulators with
resonance frequencies of 139 kHz(102 kHz) for Er (Dy), which
increases the capture range and thus the number of atoms in
the MOT by a factor of 5 (2). The recapture volume is further
enhanced by using large MOT beams, with diameters of about
36 mm. We observe an optimal loading for peak intensities
of each laser beam of I583 = 50Isat,583 and I626 = 160Isat,626.
Additionally, we endow our main chamber with inverted top
and bottom view ports with large clear apertures of 64 mm.
As discussed later, our special 5B MOT geometry allows us
to completely free the top view, where we will implement a
high-resolution in situ imaging with a numerical aperture of
0.45, which can resolve structures down to 600 nm. A pair of
vertical coils creates a magnetic quadrupole field for the MOT
of ∇B = 4.6 G/cm. A vertical bias field of B0 = 2.9 G shifts
the zero point of the quadrupole field downwards. Additional
coil pairs in the horizontal plane compensate for external
magnetic fields.

We produce and study the Er-Dy MOT using two beam
configurations. In the first one, we use a standard 6B geometry
with three pairs of orthogonal retroreflected beams. For the
second configuration, we remove the top → bottom MOT
beam, demonstrating for the first time a 5B geometry with
an open top; see Fig. 1(b). Although this 5B MOT would
not work for alkali MOTs [42], we here demonstrate a very
robust operation for our lanthanoid mixture. In the first set
of experiments, we study the loading performance of our
two-species MOT in both the 6B and the 5B configurations
for 168Er and 164Dy. For all atom numbers we report in this
paper, we load the MOTs at the optimized detuning for each
setting as discussed later (see Fig. 3), apply a compression
phase after MOT loading, and detect the atomic clouds using
absorption imaging, as described later. Figure 2 shows the
Er and Dy atom numbers as a function of the MOT loading
time. From a fit to the data using a standard loading function,
N (t) = Nss(1 − e−γ t ), we extract the loading rate R and decay
rate γ with the steady-state atom number Nss = R/γ (see
Table I). In both the 6B and the 5B configurations, we observe
a very efficient loading of the two-species MOT. After about
10 s of loading, the atom numbers approach their steady-state
value of some 108 atoms (see Table I). We do not observe any
mutual influence of one species on the other, as reported for
some alkaline mixtures, as, e.g., shown in Refs. [43] and [44].
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FIG. 2. Loading curve of the two-species MOT for the 6B and
5B configurations. Filled and open squares (circles) show data for
the 6B and 5B Er (Dy) MOTs, respectively. The corresponding lines
are fits to the data, as detailed in the text. Fit parameters are listed
in Table I. Inset: Loading rate of the two species dependent on the
effusion cell temperature TEC. Note that the hot lip is always kept at
THL = TEC + 100 ◦C.

Given the complex scattering properties and optical spectra
of multielectron lanthanoids, this surprising result enables
the simultaneous MOT operation and greatly simplifies the
experimental sequence.

The difference in the loading curves between Er and Dy
is due to their different vapor pressures. The ratio of vapor
pressures of Er and Dy is typically higher than 10 at the
same temperature [45] and strongly temperature dependent,
which would prevent an efficient simultaneous MOT loading.
To mitigate this, we selectively heat up the atoms exploiting
the two-section design of the oven. We fill the effusion cell
with a 33%/67% alloy of Er/Dy and the hot-lip section with
pure Er. We operate the oven with a differential temperature of
100 ◦C between the two sections. In the temperature range from
1000 ◦C to 1200 ◦C for the first section, we expect to reduce
the vapor-pressure ratio among the two species to about 2.3.
We investigate this effect by repeating the loading experiments
for different temperatures of the effusion cell, while keeping
the hot lip always 100 ◦C hotter; see Fig. 2 (inset). We observe
a roughly constant loading ratio of between 2.5 and 3.5, which
confirms the above expectations and shows that our concept of
differential heating works very efficiently.

We remarkably find that the performance of the 5B MOT is
only slightly below that of the 6B MOT. Moreover, even our 5B
double-species MOT shows atom numbers similar to or larger
than those previously reported for single-species Er or Dy MOT
experiments [29,30,32–34]. Judging from our experience with

TABLE I. Loading rates R, decay rates γ , and steady-state atom
numbers Nss obtained from fits to the data shown in Fig. 2. Values for
both species in the 5B and 6B configurations are listed. Also listed
are the lifetimes obtained from the data in Fig. 4.

Er Dy

5B 6B 5B 6B

R (108 s−1) 0.35(1) 0.45(2) 1.21(4) 1.79(3)
γ (s−1) 0.100(2) 0.086(6) 0.166(7) 0.187(5)
Nss (108) 3.5(1) 4.5(3) 7.3(4) 9.6(3)
Lifetime cMOT (ms) 515(65) 475(50) 374(44) 345(23)
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Er [30], we are thus confident that these numbers are sufficient
for reaching quantum degeneracy. The 5B MOT configuration
has the advantage of automatically spin-polarizing the atoms
and providing full optical access through the vertical top view
port, allowing implementation of optical setups which require
large numerical apertures, e.g., high-resolution imaging or
angle-resolved Bragg spectroscopy.

The simultaneous cooling and polarization of the inter-
combination MOT in lanthanoids has been studied for single-
species Er [30] and Dy [34] 6B MOTs. In brief, the combined
effects of a narrow-line MOT and gravity yield a peculiar semi-
shell-shaped MOT with its center lying below the zero of the
magnetic quadrupole field; see Fig. 1(b). The center position of
the MOT can be adjusted by changing the MOT detuning. For
large enough vertical displacement of the MOT, i. e., detuning,
the atoms predominantly absorb σ−-polarized photons, which
are coming from the bottom-top beam. As a consequence, the
atoms are spin-polarized into the lowest Zeeman sublevel. For
lower detuning, the atoms can absorb both σ+ and σ− light and
the sample is unpolarized [34]. With our 5B MOT, we bring
this concept to the extreme: We completely remove the (σ+)
top-bottom beam and force the atoms to sit only below the
zero of the magnetic field. We verified the spin polarization
by performing spin-resolved absorption imaging using the
Stern-Gerlach technique. Within our experimental resolution,
we do not detect atoms in higher Zeeman sublevels [46].
Thanks to this spontaneous spin polarization, optical-pumping
schemes are not necessary. The spin purity is very beneficial
for future loading of the mixture into an optical dipole trap,
where the presence of additional spin states can lead to atomic
losses via inelastic dipolar relaxation processes.

In the second set of experiments, we systematically study
the effect of MOT-light detuning from the respective resonant
atomic frequency on the atom number and compare the results
for the 6B and 5B configurations after 5s of loading; see
Fig. 3. For both species, we see a clear rise of atom numbers
with increasing detuning. After reaching a maximum value
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FIG. 3. Dependence of atom numbers in the cMOT on the initial
MOT detuning, in units of the respective linewidth of the narrow
transition of �583/2π = 190 kHz(�626/2π = 136 kHz) for Er (Dy).
Both species show broad ranges of detuning for efficient MOT loading
in the 6B configuration, while 5B shows a narrower range. The optimal
detunings are nearly equal for the 5B and 6B configurations. Data were
taken for 5 s of MOT loading.

the numbers undergo a sharp decrease at large detunings. This
decrease can be simply explained by the spatial downshift
of the MOT position with increasing detuning, eventually
causing the atoms to leave the recapture volume. Here, the
equal behavior of the 6B and 5B MOTs indicates that the
top-bottom beam does not play a significant role. At inter-
mediate detunings, however, the two configurations clearly
show different behaviors. In particular, the 6B MOT has a
much broader range of operation than the 5B configuration.
We believe that this difference is due to the fact that the
central cloud position approaches the magnetic-field zero point
with decreasing detuning. In the absence of the top-bottom
beam, atoms above the magnetic-field zero do not experience
a restoring light force towards the trap center and may escape
from the MOT. Contrariwise, in the 6B approach, these atoms
are retrapped, resulting in the broader operation range in terms
of detuning.

As observed in previous experiments [33], the Dy atom
number shows a small dip at detunings around −70�626 nm. We
attribute this feature to a partial overlap of the cloud with the
ZS light beam, which drives off-resonant pumping processes
resulting in atom losses [30]. For Er, the influence of the ZS
light is weaker due to its lower light intensity and larger relative
detuning, and this effect is not observed.

Finally, we study the lifetime of the mixture in the com-
pressed MOT (cMOT). The compression phase is essential to
efficiently load an optical dipole trap in future experiments,
as the compression reduces the temperature and increases the
density of the mixture. After loading the MOT, we switch
off the spectral broadening electro-optic modulators, the ZS
beams, and block the atomic beam with a mechanical shutter.
The compression has a duration of 200 ms, during which we
(i) reduce the detuning of the MOT light to 10 �583 (18 �626),
(ii) decrease the MOT-beam power to I583 = 0.17Isat,583 and
I626 = 0.6Isat,626, (iii) ramp down the magnetic-field gradient
to ∇B = 4.3 G cm−1, and (iv) switch off the vertical bias
magnetic field. As shown in Fig. 4, we observe that the
double-species cMOT has a lifetime that is fully sufficient for
loading of atoms into an optical dipole trap, which typically
requires a holding time of about 100 ms. The data are taken in
dual operation, with both species present in all settings. Again,
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FIG. 4. Lifetime of the cMOT for both Er (red) and Dy (blue) in
the 5B (open symbols) and 6B (filled symbols) configurations. We
adjust the MOT loading time to compare samples with equal atom
numbers. Solid lines show exponential fits to the respective data. From
the fits we extract lifetimes of 515(65) and 475(5) ms [374(44) and
345(23) ms] for Er [Dy] in the 5B and 6B cMOTs, respectively.
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we do not see any interplay between the species. The results
of fits to the lifetime data are listed in Table I. Additionally,
we extract temperatures of 11(1) μK [10(1) μK] for Er [Dy]
in both the 5B and the 6B configurations from time-of-flight
measurements. We observe that lower temperatures close to
the Doppler temperatures can be achieved with different sets
of parameters, at the expense of lower atom numbers. From
our experience, we are certain that the observed lifetimes
and temperatures are fully sufficient for efficient loading
into an optical dipole trap as the next step towards quantum
degeneracy.

The data we present here refer to the mixture of 168Er and
164Dy. Moreover, we are also able to trap and cool all other
abundant bosonic isotopes with equally good performance,
except for the 170Er MOT, which has smaller numbers, as
expected from its low natural abundance. For future studies
of the fermionic isotopes, no changes in the experimental
apparatus are necessary.

In conclusion, we have demonstrated efficient cooling and
trapping of an Er-Dy mixture in a two-species MOT operating

on narrow-line transitions. In addition, we demonstrate a beam
geometry for our two-species MOT which consists of only five
laser beams in an open-top orthogonal setting. This geometry
has the big advantage of providing free optical access from
the top with a large numerical aperture, greatly simplifying the
implementation, e.g., of high-resolution imaging, as well as
optical lattices. Our recorded temperatures and atom numbers
provide ideal conditions for subsequent evaporative cooling,
towards the first production of a quantum-degenerate dipolar
mixture. Optimization of the optical-trap loading and evapo-
rative cooling is under way in our laboratory.
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Summary

This publication covers the realization of a strongly interacting dipolar Fermi gas of erbium
atoms. The atoms are prepared in a higher Zeeman level with high efficiency using a lattice-
protection technique. We perform high-resolution Feshbach spectroscopy over a magnetic
field range of 200mG for atoms initialized in the two lowest hyperfine sublevels. In addition
to several narrow intra- and inter-spin resonances, we identify a relatively broad inter-spin
resonance and characterize the inter-spin scattering length in its vicinity using lattice mod-
ulation spectroscopy. Our experiment represents the starting point for future experiments
with strongly interacting Fermi gases.
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We realize a two-component dipolar Fermi gas with tunable interactions, using erbium atoms.
Employing a lattice-protection technique, we selectively prepare deeply degenerate mixtures of the
two lowest spin states and perform high-resolution Feshbach spectroscopy in an optical dipole trap. We
identify a comparatively broad Feshbach resonance and map the interspin scattering length in its vicinity.
The Fermi mixture shows a remarkable collisional stability in the strongly interacting regime, providing a
first step towards studies of superfluid pairing, crossing from Cooper pairs to bound molecules, in presence
of dipole-dipole interactions.
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The ability to prepare dipolar quantum gases of magnetic
atoms [1–6] has enabled fascinating, yet unexpected, obser-
vations, emerging from the long-range and anisotropic
character of the dipole-dipole interaction (DDI) among
particles. In bosonic systems with dominant DDI, this
includes d-wave-patterned collapse [7], droplet stabilization
[8–10], and roton quasiparticles [11]. With fermions, many-
bodydipolar phenomena have been investigated only in spin-
polarized systems. Here, the DDI competes with the Pauli
pressure, rendering dipolar effectsmuchmore subtle, as, e.g.,
their influence on the shape of the Fermi surface [12].
Magnetic atoms further realize high-spin systems; e.g.,

fermionic Er has 20 available spin states in the lowest
hyperfine manifold. In particular, bosonic dipolar spinor
gases have been investigated in remarkable experiments
with magnetic Cr atoms [13–16], whereas the fermionic
counterpart remains rather unexplored in the quantum
regime. Scattering experiments with fermionic Dy mixtures
slightly above quantum degeneracy showed a large colli-
sional stability against inelastic dipolar relaxation [17],
enabling, e.g., the production of long-lived spin-orbit-
coupled gases via Raman excitations [18].
As yet, the realization of a two-component dipolar Fermi

mixturewith tunable interactions has remained elusive. Such
a system can disclose fascinating phenomena, from aniso-
tropic quantum phases of matter, e.g., anisotropic Fermi
liquids and superfluid pairing [19,20], to dipolar magnetism
[21], but also extended Fermi-Hubbard models with off-site
interactions [22]. Fermionic Er and Dy are very promising
candidates for such studies, given their large magnetic
moment. However, the large density of Feshbach resonances
(FRs) even in spin-polarized gases [23–25] raises the
question of whether stable fermionic quantummixtures with
tunable interactions can be realized with lanthanides.
We here report on a powerful platform to produce a

two-component dipolar Fermi gas of pseudospin 1=2 and

demonstrate tunability of the interspin interactions. By
using highly magnetic 167Er atoms and a three-dimensional
(3D) optical lattice as a tool for spin preparation, we
perform high-resolution Feshbach spectroscopy and unam-
biguously identify the spin nature of the different FRs.
Among the resonances, we find a well-isolated and com-
paratively broad interspin FR and precisely measure the
interspin scattering length. Our Fermi mixture reveals a
remarkable collisional stability in the strongly interacting
regime.
Achieving a deterministic preparation of a spin-1=2

mixture and a precise control over the interspin interactions
in highly magnetic lanthanide atoms challenges experi-
mental schemes. Indeed, the enormous density of FRs can
cause collisional losses and severe heating, limiting the
production and preparation of deeply degenerate mixtures
at arbitrary magnetic fields (B), where hundreds of FRs
might need to be crossed (see, e.g., [18]). Moreover, state-
selective preparation of a spin-1=2 system typically
requires large B values for which the quadratic Zeeman
effect lifts the degeneracy on the Zeeman splitting among
consecutive sublevels [17,26].
For these reasons, we establish a technique for colli-

sional protection during the spin preparation (see Fig. 1). In
a nutshell, the key production steps are as follows. We
produce a spin-polarized degenerate Fermi gas (DFG) in an
optical dipole trap (ODT) at low B [1 in Fig. 1(a)] and load
the atoms into the lowest band of a deep 3D optical lattice,
which acts as a collisional shield [2 in Fig. 1(a)] [27,28].
We then sweep to high B for spin preparation and perform
radio-frequency (rf) transfer [3 in Fig. 1(a)], sweep to the
desired B, and eventually melt the lattice [4 in Fig. 1(a)].
Experimentally, we prepare a spin-polarized DFG of

167Er atoms in a crossed-beam ODT [5,29] [1 in Fig. 1(a)].
All fermions occupy the lowest Zeeman state j↓i≡ jF ¼
19=2; mF ¼ −19=2i of the ground-state manifold. Here,
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F is the total spin quantum number and mF its projection
along the quantization axis. A homogeneous magnetic field
of B ¼ 0.6 G is applied along the vertical z direction to
define the quantization axis and to maintain spin polariza-
tion. The sample typically contains N ¼ 2.4 × 104 atoms at
about T ¼ 0.25TF. Note that the ODT is shaped to optimize
single-band loading of the optical lattice and yields EF ¼
kB × TF ¼ kB × 170 nK ¼ h × 3.6 kHz (see Supplemental
Material [29]). Here, TF is the Fermi temperature, h is the
Planck constant, and kB is the Boltzmann constant.
In the next step, we transfer the spin-polarized DFG into

a 3D optical lattice [2 in Fig. 1(a)]. Our lattice has a cuboid
geometry with lattice spacings ðdx; dy; dzÞ ¼ ð266; 266;
532Þ nm along the three orthogonal directions [29,37].
In order to pin the atoms in a one-fermion-per-lattice-site
configuration (unit filling), we use large lattice depths of
about ðsx; sy; szÞ ¼ ð20; 20; 80Þ, where si with i ∈ fx; y; zg
is given in units of the respective recoil energies, ER;x;y ¼
h × 4.2 kHz and ER;z ¼ h × 1.05 kHz. After lattice load-
ing, we obtain a single-component fermionic band insulator
(BI) of about 2.2 × 104 j↓i atoms. By melting the lattice
and reloading the fermions into the ODT, we measure T ≲
0.3TF with N ¼ 2.1 × 104 (TF ≈ 160 nK) and extract a
heating rate in the lattice as low as _T ¼ 0.03 TF=s.
Our system is well described by a single-band extended

Fermi-Hubbard model [22] with residual tunneling rates of
Jx;y ¼ h × 10.5 Hz and Jz ¼ h × 0.001 Hz and nearest-
neighbor interactions on the order of h × 50 Hz [37]. We
confirm the single-band population by performing standard

band-mapping measurements [38]. In the horizontal (xy)
plane, we do not resolve higher-band occupation [see
Fig. 1(b) and Supplemental Material [29]). Along the z
axis, we detect a residual < 5% population in the first
excited band, resulting from the fact that EF > ER;z [39].
Because of the Pauli exclusion principle, doubly occupied
sites (doublons) in a single band are strictly forbidden for
identical particles (j↓i).
In the BI regime, the lattice is expected to provide a strong

collisional protection to the particles. As a first application,
we use the lattice-protection technique to realize a spinor
Fermi gas with pseudospin 1=2 (j↓i–j↑i), with j↑i≡ jF ¼
19=2; mF ¼ −17=2i [3 in Fig. 1(a)]. Experimentally, we
start with a j↓i BI atB ¼ 0.6 G and then rampB in 40 ms to
a value of about 40 G, for which the quadratic Zeeman effect
in 167Er is large enough to lift the degenerate coupling of the
individual spin levels [29]. After letting the field stabilize for
120ms, we use a standard rf-sweep technique to transfer part
of the atoms into the j↑i state. By tuning the rf power, we can
precisely control the population imbalance, δ ¼ ðN↓ − N↑Þ=
N, in the mixture, with N↓ (N↑) the number of atoms in j↓i
(j↑i). Figure 1(c) shows exemplary spin-resolved absorption
images of j↓i–j↑i mixtures for various δ after B is swept
back to low values. We typically record N ¼ N↓ þ N↑ ¼
1.8 × 104 and T ≈ 50 nK after melting the lattice down [4 in
Fig. 1(a)]. For comparison, similar measurements in absence
of the lattice clearly show a much lower atom number of
N ¼ 0.6 × 104, proving the strength of our lattice-protection
scheme to circumvent losses when cruising through the
ultradense Feshbach spectrum [18,23].
Figure 2 shows the high collisional stability of the lattice-

confined spin mixture. In particular, we probe N↓;↑ as a
function of the holding time in the lattice [see Fig. 2(a)].
From an exponential fit to the data, we extract long
lifetimes of τ↓ ¼ 31ð3Þ s and τ↑ ¼ 12.2ð7Þ s. The mea-
surements are carried out at B ¼ 3.99 G, where no FRs
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FIG. 1. Spin-1=2 dipolar fermions in a 3D optical lattice.
(a) Sketch of the four key stages of our preparation scheme;
see text. (b) Band population in the horizontal xy plane, obtained
by averaging 50 absorption images for a 12 ms time of flight
(TOF). The red arrows indicate the first Brillouin zone of the
lattice. (c) Spin-resolved band-mapping images after 9 ms of TOF
in the vertical zx̃ plane, where x̃ accounts for the angle between
the imaging beam and the y axis of the lattice, for population
imbalances δ ¼ 1 (left), 0.02 (middle), and −0.94 (right). The
images are averages of about 20 absorption pictures. The spin
states are separated along the z direction by a Stern-Gerlach
technique.
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FIG. 2. Spin mixture of dipolar 167Er in a 3D lattice. (a) Lifetime
measurements for spin-polarized samples of j↓i (squares) with
δ ¼ 1 and of j↑i (circles) with δ ¼ −0.92 at B ¼ 3.99 G and their
respective exponential decay (solid lines). (b) Lifetimes as a
function of δ. Constant fits extract mean lifetimes across δ of
τ̄↓ ¼ 29.9ð3Þ s and τ̄↑ ¼ 11.8ð7Þ s. All error bars indicate the
statistical uncertainty.
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occur (see Supplemental Material [29]). Interestingly,
within our error bars, we find no dependence of the lifetime
of each spin state on the population in the other state; they
remain long regardless of δ [see Fig. 2(b)].
We note that, although very long for our purpose, we

always record shorter lifetimes for a j↑i BI with respect to
the ones measured for a j↓i BI. Differently from the j↓i
case, two-body relaxation processes for j↑i are allowed. At
our magnetic fields, this process converts Zeeman energy
into a large enough kinetic energy to let the atoms escape
from the lattice [13,40] and requires the particles to collide
at short distance (on site) [17,41]. In the spin-polarized
cases (e.g., δ ¼ −1; j↑i), double occupancy necessarily
involves population in higher bands since the Pauli exclu-
sion principle forbids doublons in the lowest band. In our
system, a continuous transfer of a small fraction of atoms
into higher bands might be driven by intensity and
frequency noise of the lattice beams [28]. In the case of
j↑i, this would lead to subsequent fast relaxation and
justify the observed difference in the lifetimes.
With our spin-preparation method, we are now able to

conduct high-precision Feshbach spectroscopy in an ODT
[4 in Fig. 1(a)] in search of interspin loss features. For this,
we first prepare the spin-1=2 mixture in a deep lattice at
the desired B value. We then transfer the mixture back into
the ODT, hold the atoms for 500 ms, and finally measure
the spin populations. Figure 3 exemplifies the high-
precision Feshbach spectroscopy for three values of δwithin
a narrowmagnetic field range fromB ¼ 550 to 750mGwith
a resolution of 1 mG. A lower-resolution and larger-range
scan is shown in the Supplemental Material [29].
As expected [23,24], the atom-number trace as a function

of B shows a high density of resonant loss features on top of
a constant background. By controlling δ, we are able to
distinguish the spin nature of each of the observed FRs.
In the excerpt shown in Fig. 3, we identify three narrow
homospin FRs in a pure j↓i sample [Fig. 3(a)] and four in a
quasipure j↑i sample [Fig. 3(b)]. In the spin-polarized

cases, all FRs exhibit widths of the order of our magnetic
field stability of ≈1 mG. Thanks to our lattice-preparation
technique, the shape and thewidth of the FRs are not affected
by the magnetic field ramps, namely, we do not observe
neither broadening nor fictitious asymmetry in the loss
peaks. For the 50%–50% spin mixture (δ ¼ 0), we observe
five additional interspin FRs [Fig. 3(c)], where atoms in the
two spin states are simultaneously lost. Because of the
complicated scattering behavior of Er, standard coupled-
channel methods to assign the leading partial-wave character
of the FRs are currently not available [42]. However, the
width of the FRs can give indications on the strength of
the coupling between open and closed channels [43].
Among the observed interspin FRs, the one at about

0.68 G stands out from the forest of narrow FRs. This FR is
almost 2 orders of magnitude broader, making it a promising
candidate for Fermi-gas experiments in the strongly interact-
ing regime. We further investigate this FR by performing
modulation spectroscopy on the lattice-confined spin-1=2
mixture [3 in Fig. 1(a)] to extract the interspin on-site
interaction energy, U↓↑ ¼ Uc þUdd, given by the sum of
the interspin contact interaction Uc and the DDI Udd [37].
Thanks to the precise knowledge of Udd and to its angle
dependence, we are able to directly extract the interspin
scattering length,a↓↑ ∝ Uc ¼ U↓↑ −Udd, both in amplitude
and in sign (for details, see Supplemental Material [29]).
Figure 4(a) summarizes our results, showing the tunability

of a↓↑ from positive to negative values across the interspin
FR. As a first estimate of the B-to-a↓↑ conversion, we use
the simple single-channel formula, leading to a↓↑ðBÞ ¼
abgð1 − Δ=ðB − B0Þ − Δ0=ðB − B0

0ÞÞ [43]. From the fit to
the data, we extract the background scattering length
abg ¼ 91ð8Þa0, the position of the comparatively broad
FR B0 ¼ 687ð1Þ mG, and its width Δ ¼ 58ð6Þ mG. Note
that our fitting function also accounts for a nearby interspin
FR at B0

0 ¼ 480 mG (out of range of Figs. 3 and 4) of
width Δ0 ¼ 29ð4Þ mG, whereas narrower interspin FRs are
neglected. Based on the extracted values, we can estimate an
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FIG. 3. High-resolution Feshbach spectroscopy for three different population imbalances in an ODT (illustrations): atoms in j↓i
(squares) and j↑i (circles) for δ ¼ 1 (a), −0.6 (b), and 0 (c) as a function of B. The determined width and spin nature of the FRs are
indicated by the blue (j↓i), orange (j↑i), and green (j↓i–j↑i) shaded regions. Each data point is the mean of 2–4 repetitions.
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order of magnitude for the effective range of the FR, R� ¼
ℏ2=ðmErΔabgδμ) [43]. Here, mEr is the mass of 167Er. The
differential magnetic moment between the open and closed
channel δμ is not known for the considered FR. However,
taking δμ ¼ 3μB, which is the typical value measured on
bosonic Er2 [42], we estimate R� on the order of 1000a0.
With this order of magnitude, our typical two-component
Fermi gases verify 1=kFR� ≳ 1, with kF being the Fermi
wave vector [29]. This identifies the intermediate strength of
the FR [44], for which the gas is expected to remain strongly
interacting at unitarity [45,46].
For strongly interacting alkali Fermi gases, the large

collisional stability in two-component mixtures has been
essential for observing the crossover from a superfluid of
delocalized pairs along the Bardeen-Cooper-Schrieffer
(BCS) mechanism to a Bose-Einstein condensate (BEC)

of bound molecules [47]. As a direct consequence of the
Pauli principle, three-body recombination occurs primarily
on the repulsive (BEC) side of broad s-wave FRs, where a
weakly bound molecular level exists [48], whereas on the
attractive (BCS) side, large scattering lengths coexist with a
remarkable collisional stability [49–52]. Such an asymme-
try in the scattering behavior is identified as an essential
attribute of BEC-BCS physics.
We investigate this aspect in a second set of experiments.

We prepare an equally populated spin mixture (δ ¼ 0) in an
ODT [4 in Fig. 1(a)] and probe the time evolution of the
spin population as a function of the holding time in the
trap for various B across the FR. Exemplary decay curves
are shown in Figs. 4(b) and 4(c). On the BEC side, at
a↓↑ ¼ 880ð140Þ a0, we observe a fast decay of both j↑i
and j↓i atoms [Fig. 4(b)]. A simple exponential fit to the
data gives lifetimes of τ1=e ≈ 150 ms. In contrast, on the
BCS side at a↓↑ ¼ −1500ð500Þ a0 [Fig. 4(d)], the spin
mixture shows a large collisional stability with lifetimes
exceeding τ1=e ¼ 1200 ms [Fig. 4(c)].
To get deeper insights, we systematically study the initial

decay rate _N=N0 as a function of B. We determine the rates
by using a linear fit to the data for the initial time evolution.
Figure 4(d) summarizes our results, plotted in terms of the
dimensionless coupling constant 1=ðkFa↓↑Þ. We observe
an asymmetry of the loss rate curve, indicating that the
Fermi mixture is remarkably stable in the unitary and
strongly attractive regime. We note that both the qualitative
shape and the quantitative values of the loss rates in 167Er
show strong similarities to the ones measured in 40K [51].
The existence of a comparatively broad interspin FR and

our demonstration of the interaction tuning across this
resonance make fermionic Er gases a promising system
for accessing BEC-BCS crossover physics within a distinct
scattering scenario. Indeed, our mixture adds both the DDI
and an intermediate effective range in the short-range
scattering compared to the alkali cases [46,47], paving the
way for studying exotic Cooper pairs and molecular BECs
[19,44,53] and calling for new theory developments [54].
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Spin-polarized degenerate Fermi gases

Our experimental protocol for the preparation of
deeply degenerate Fermi gases (dFgs) of 167Er follows
the one described in ref. [1]. The experiment starts with
a narrow-line magneto-optical trap operated at 583 nm to
prepare spin-polarized 167Er atoms with N = 1.2 × 107

atoms and T ≈ 10µK in the lowest hyperfine sublevel
|F = 19/2,mF = –19/2〉, where F is the total angu-
lar momentum quantum number and mF is its projec-
tion along the quantization axis. The atoms are then
transferred to a horizontal optical dipole trap (ODT)
formed by a laser beam at 1064 nm. The aspect ratio
AR = w⊥/wz between the horizontal, w⊥, and verti-
cal, wz, waists of this beam can be tuned from 1.6 to
15 via a time-averaging potential technique [2], which al-
lows to reach a good spatial mode overlap between the
atomic cloud and the ODT. Subsequentially the atomic
cloud is compressed by reducing the AR and transferred
to a tight ODT created by a laser beam at 1570 nm with
a waist of about 15µm, and counterpropagating to the
1064 nm-beam such that their focii overlap. At this stage
we typically have 1× 106 atoms. During the evaporation
procedure the atoms are further confined by an addi-
tionnal ODT at 1570 nm, formed by a beam propagating
vertically with a waist of about 32µm. The crossed ODT
at 1570 nm is later denoted ODT1570.

Following our previous work of ref. [1], we perform
evaporative cooling based on elastic dipolar scattering
among identical fermions. Such a cooling scheme has
been proven to be very efficient to produce samples in
the deeply quantum degenerate regime [1, 3]. At the
end of the evaporation, the trap frequencies in ODT1570

are (ν⊥, ν‖, νz) = (286(3), 85(1), 255(3)) Hz with ‖ (⊥)
corresponding to the axis along (perpendicular to) the
horizontal ODT beam and z indicating the axis of grav-
ity. We typically obtain spin-polarized dFgs with up to
N = 6×104 atoms and temperatures of T ≤ 0.15TF, with
TF being the Fermi temperature corresponding to the
Fermi energy EF = kBTF = hν̄(6N)1/3, where h is the

Planck constant, ν̄ =
(
ν⊥ν‖νz

)1/3
the geometric mean

of the trap frequencies and N the atom number. At this
stage the Fermi energy is EF = kB×630 nK = h×13 kHz.

During the whole evaporation, the magnetic field has a
value of B = 0.6 G and is oriented along z, which sets
the quantization axis of the atomic dipoles. Here and in
the following, N and T/TF are estimated from polylog-
arithmic fits to the absorption images of the dFGs after
12 ms of time-of-flight (ToF) using the horizontal imaging
setup.

Preparation for lattice loading

In deeply dFgs, the atoms fill the Fermi sea up to
the Fermi energy, EF . Hence, the number of populated
bands, when the atoms are loaded to an optical lattice,
crucially depends on the initial value of EF . In first ap-
proximation, EF can be compared to the lattice recoil
energy Erec = h2/(2mErλ

2), with mEr being the mass of
167Er and λ the lattice wavelength. In particular, during
the initial increase of the lattice potential higher bands
become populated if EF > Erec [4].

To minimize the occupation of higher bands due to
the loading procedure we reduce the Fermi energy of
our sample. To this aim, we transfer the atoms back to
a crossed ODT operated at 1064 nm (ODT1064), within
510 ms. Here, the dynamically adjustable AR of the hori-
zontal beam allows a convenient control on ν̄ (see section
above). We optimize the ODT parameters by lowering
ν̄ and N while keeping a low temperature of the sample.
The best conditions for subsequent lattice loading are
reached for (ν⊥, ν‖, νz) = (63(1), 36(2), 137(1)) Hz and
N = 2.4 × 104 atoms with T ≤ 0.3TF, corresponding to
a Fermi energy EF = kB × 170 nK = h × 3.6 kHz. We
note that for lower νz atoms get lost due to gravity.

Three-dimensional optical lattice and its loading

The three-dimensional (3D) optical lattice in our ex-
periment is created by two retro-reflected 532 nm laser
beams along the x- and y-axis and one retro-reflected
1064 nm vertical laser beam along the z axis; see Fig. S1.
The lattice spacings are dx,y = 266 nm along the hor-
izontal xy-plane and dz = 532 nm along the vertical
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z-axis [5]. With the available power, we reach maxi-
mum lattice depths of (sx, sy, sz) = (25, 25, 120), where
si with i ∈ {x, y, z} is given in units of the respec-
tive recoil energies, ER;x,y = h × 4.2 kHz and ER;z =
h × 1.05 kHz. Typical lattice depths used in the ex-
periment are (sx, sy, sz) = (20, 20, 80) corresponding to
band gaps of h× 32.8 kHz along x and y and h× 17.7 kHz
along z.

After preparation and transfer to the ODT1064, we adi-
abatically load the spin-polarized dFg into the 3D lattice
by increasing the lattice-beam intensities exponentially
in 150 ms to the final values. Subsequently, the ODT
beams are switched off in 10 ms and we additionally hold
the atoms for 500 ms before applying our spin prepara-
tion scheme. This holdtime enables to remove most of the
residual atoms that have been pushed to higher bands of
the optical lattice by the Fermi pressure, through their
natural faster decay. We note that when the atoms are
loaded directly from ODT1570 we find up to 25 % of popu-
lation in higher bands, which in this case get strongly de-
populated within 500 ms. Despite our most careful load-
ing procedure and our holdtime, we measure that up to
5 % of the atoms can still populate the higher band of
the vertical lattice; see main manuscript (Note that the
higher bands along z are the most tightly trapped within
our lattice geometry).

Higher-band populations

To access the band population we perform band-
mapping measurements. Here, we decrease all lattice
potential to zero within 1 ms, thus mapping the quasi-
momentum of the band to real momentum. We then
perform ToF absorption imaging, which thus probes the
population of the different bands in directions transverse
to the imaging axis. We note that, the edges of the low-
est band can be smeared out because of the finite width
of the in-situ cloud and due to an imperfect adiabatic
switch-off of the lattice potentials [6], limiting the ac-
curacy of our determination. In our setup, we obtain
our best estimate of the remaining higher band popu-
lations by comparing the absorption images to the ex-
pected profiles computed from the first Brillouin zone.
In the z-direction, we observe a very small population
in higher bands, which we quantitatively estimate using
the horizontal imaging setup. Here, we additionally take
advantage of the observed structure of the higher band
population, which systematically appears below the low-
est band (along the gravity axis). This might be due to a
combined effect of residual magnetic gradient and grav-
ity. We use this behavior to our advantage and extract
the population of the higher band in z from the top-
bottom asymmetry of the band-mapping images. In the
xy-directions, the estimate of the higher band population
is more subtle in particular because of the non-orthogonal

yx

z

d
y dx

d z

FIG. S1. Sketch of our lattice geometry. The coordinate
system {x, y, z} and the lattice constants dx, dy, and dz are
indicated.

configuration between the imaging and horizontal lattice
axes. To the best of our detection sensitivity, we do not
observe any population in higher-bands along these axes.
Based on the higher recoil energies in these directions,
we physically expect a lower initial population of those
bands than along z, as discussed above. In addition, be-
cause of the lower lattice depths, we expect a faster loss
of their population.

Zeeman energy for fermionic Er

Fermionic Er exhibits a hyperfine structure resulting
from the coupling of its nuclear spin I, whose quantum
number is I = 7/2, with the total electronic angular
momentum J, which in the ground state of Er has for
quantum number J = 6. The total angular momen-
tum reads F = J + I. In the lowest hyperfine mani-
fold (F = 19/2) there are 2F + 1 = 20 sublevels which
can be differentiated by the eigenvalues of the projec-
tion of F on the quantization axis, corresponding to the
quantum number mF . Because, in our experiment, an
external magnetic field B is always applied, the degen-
eracy of the sublevels is lifted by the interaction of B
with the different angular momenta. In our description,
the quantization axis is chosen to be parallel to B, and
the mF sublevels are then denoted magnetic states. In
the low B limit, the magnetic states are simply shifted
in energy along EmF

= mF gFµBB, corresponding to
a state dependent magnetic moment, µ = mF gFµB .
In Erbium, the absolute ground state has a magnetic
moment of µ = −6.982804µB , giving the Landé factor
gF = 0.735032 [7]. Here µB is the Bohr magneton.

In a more general way, the atomic energy levels in a
uniform B-field can be calculated via an exact diagonal-
ization of the atomic Hamiltonian [8]. In Fig. S2 we plot
the energy levels of the lowest hyperfine manifold as a
function of the magnetic field computed in such a way.
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FIG. S2. Zeeman energy for the magnetic substates in the
|F = 19/2〉 hyperfine manifold. For this work the energy
splitting of the lowest three spin states |–19/2〉 ≡ |↓ 〉 (blue
line), |–17/2〉 ≡ |↑ 〉 (orange line) and |–15/2〉 (red line) is of
most relevance. Higher spin states are visualized by grey lines.
The linear Zeeman effect dominates the energy evolution such
that ∆1 ≈ ∆2 ≈ qli while the quadratic Zeeman effect is
evident in the differential splitting ∆1−∆2 (inset).

The dominant trend evidences the linear dependence dis-
cussed above in the low B regime. However, at large
enough B, deviations from this simple picture appear due
to the Paschen-Back effect, as J and I start to decouple.
In a perturbative description, this can be accounted via a
quadratic correction to the Zeeman energies which writes
EmF

− qlimF = qqu(m2
F − F 2) with qli = gFµBB and

qqu ∝ B2. The deviation from the linear Zeeman energy
becomes evident when considering the differential split-
ting ∆EZ(mF ) = (EmF

−EmF+1)− (EmF+1 −EmF+2),
as the linear Zeeman effect qlimF cancels out; see inset
of Fig. S2. In the folowing we define ∆EZ = ∆EZ(mF =
−19/2), which is the most relevant quantity for the cur-
rent study, as restricted to mF = −19/2 and −17/2.

Preparation of a spin mixture in the lattice

To achieve a deterministic spin preparation of the two
lowest spin states we typically use a large enough mag-
netic field of B = 40.51 G for which the differential Zee-
man splitting ∆EZ = 42.6 kHz is larger than the fluctu-
ations of the Zeeman energies coming from the magnetic
field noise, corresponding to≈ 20 kHz at this field. In this
way, the spin-spin coupling induced by a small amplitude
modulation of the magnetic field in the radio-frequency
(rf) domain can be restricted to the subspace formed by
the lowest two spin states mF = −19/2 and −17/2. To
couple the two hyperfine sub-states we apply a rf-sweep
by chirping the rf-frequency continuously from a value of

(ν? +30 kHz) to (ν?−30 kHz) within about 10 ms, where
hν? matches the energy difference E−19/2 − E−17/2 (∆1
in Fig. S2). We can prepare a well-reproducible mixture
of |↓ 〉 and |↑ 〉 without populating the next higher spin
state. The population imbalance δ between the two spin
states can be freely controlled by varying the power of the
rf signal. In particular, also almost all the atoms can be
transferred to |↑ 〉 reaching up to δ = −0.94 (see Fig. 1(c)
of the main manuscript). We note that, while our prepa-
ration technique in the lattice initially leads to a coherent
superposition of the two spin states, additional measure-
ments suggest a fast decoherence, leading to a projection
of pure states on the individual lattice sites for the ex-
perimental relevant time scales. In particular, we observe
that coherently driven Rabi oscillations between the two
spin states quickly damp within a few ms.

To image the spin mixture, we perform spin-resolved
TOF absorption imaging using a Stern-Gerlach technique
with a 1-ms pulsed magnetic field gradient at the begin-
ning of the TOF. After an additional 7.2 ms of TOF,
the populations of each spin state are spatially separated
and we measure them by using the horizontal imaging
setup (Fig. 1(c)). N↓.↑ are then counted by integrating
the measured density distribution over well-defined re-
gions of interest.

Lifetime of the spin mixture in a deep lattice

To conduct a clean measurement of the collisional
properties of a spin mixture in the deep optical lattice
it is important to fulfill the following requirements: (i)
The spin mixture is in an insulating regime where the
formation of doublons is suppressed via sufficiently large
ratios of the onsite interspin interaction energy U↑↓ to the
tunneling rate J . This requires not only to use a deep lat-
tice potential but also to sit away from any Feshbach res-
onance (FR) so that U↑↓ is not resonantly modified and
has a value close to its background one. (ii) The Zeeman
energies are large and do not have an equidistant spacing
so that both magnetization changing and magnetization
conserving spin-exchange processes induced by the DDI
are energetically supressed [9–12].

Due to the high density of FRs (see next section and
Ref. [13]), the requirement (i) is not so straightforwardly
achieved in our fermionic erbium mixture. In this sys-
tem, to find a magnetic field value for which we sit stably
away from any FR is eased by a low technical magnetic-
field noise. Because of the different sets of coils used in
our experiment, the magnetic field noise is found to be
≈ 1 mG up to B = 5 G while it increases to ≈ 20 mG
when we go to higher B values. Hence, working at
B ≤ 5 G turns out to be more favorable in our setup.
On the other hand, the requirement (ii) is matched for
a sufficiently large magnetic field, where the quadratic
Zeeman effect (see Fig. S2) is strong enough to not be
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canceled by quadratic light shifts [14]. The best condi-
tions for meeting the requirements (i) and (ii) are found
at B = 3.99 G, which is used for the lifetime measure-
ments of Fig. 2. At this field, we have measured the on-
site interaction energy using a similar technique as for
Fig. 4(a) of the main text; see also below. The extracted
value of U↑↓ = h×2.43(2) kHz exceeds by far the relevant
tunneling rates Jx,y = h × 10.5 Hz so that it lies deeply
in the insulating regime. In addition, we note that no
spin-changing dynamics are observed from the measured
spin population.

We finally note that, for technical reasons, our setup
allows holding in the lattice up to 20 seconds. For longer
times, thermal effects in the high-power fiber start to pre-
vent us from properly stabilizing the output power for our
lattice. We avoid observation in this regime where the
lattice potential would not be properly controlled (which
may also lead to additional losses), as the allowed obser-
vation time is already very long for our purposes. This
restriction however limits the precision of our lifetime
measurements for the long lifetimes observed in our setup
and in particular for the longest-lived |↓ 〉 state.

State-resolved Feshbach spectroscopy

To identify the magnetic field regions where promising
interspin FRs occur, we first perform a rough Feshbach
scan in the 0 − 2 G region for different population im-
balances δ (Fig. S3). For this set of data we do not use
our lattice-protection technique. Instead, the spin prepa-
ration, the magnetic-field ramps, and the Feshbach spec-
troscopy are directly performed in the ODT. As expected,
without the lattice, the loss features present broadening
and asymmetric shapes due to the mere magnetic-field
sweeps (e. g. via losses occuring during the sweeps). Yet,
the most prominent features of the scattering physics can
be identified.

Using this technique, we perform three sets of mea-
surements, varying the composition of the mixture δ.
In a first set, we perform a Feshbach scan in a spin
polarized gas in ODT1570 (Fig. S3, upper panel). We
jump to the final magnetic field and hold for thold =
70 ms before TOF imaging. The trap frequencies are
(ν⊥, ν‖, νz) = (324(1), 147(5), 259(4)) Hz. The system
has an initial temperature of T = 0.18(1)TF. Simi-
lar to Ref. [13], we observe a high density of loss fea-
tures, which correspond to single-component (|↓ 〉) FRs
of high partial-wave character. In a second set of mea-
surements, we repeat the magnetic-field scan in an al-
most pure |↑ 〉 sample (Fig. S3, middle panel). Here, we
use a resonant rf-pulse at 0.99 G to prepare a mixture
with mainly |↑ 〉 atoms. Then we jump on a purely |↓ 〉
homo-spin FR located at 1.034 G to remove remaining
|↓ 〉 atoms. The measurement is performed in the more
shallow ODT1064 to prevent too strong interspecies losses

and thold = 500 ms. For this trap, the trap frequencies
are (ν⊥, ν‖, νz) = (39(1), 37(1), 145(3)) Hz and the initial
temperature is T = 0.35(1)TF. We find new FRs, which
mainly correspond to single-component |↑ 〉 FRs. In a
third set of measurements, we observe the loss features
for a spin mixture prepared at 0.58 G in the same trap as
for the pure |↓ 〉measurement with thold = 50 ms (Fig. S3,
lower panel). Here, the initial temperature is slightly in-
creased to T = 0.24(1)TF due to the spin mixing. The
individual homo-spin FRs are still visible while we also
find new interspin |↓ 〉–|↑ 〉 FRs.

We analyze the three sets of data to extract the spin
nature of the individual FRs. For several FRs, the en-
trance spin channel can be easily identified. In addition,
we also observe overlapping FRs. Here, an exact assign-
ment requires a high-resolution magnetic-field scan and
our lattice-protection technique; see main text. Among
the forest of FRs recorded in the two-component mixture,
we observe a promising interspin FR at about 700 mG,
which remains rather isolated from other homo-spin FRs;
see green shading in Fig. S3.

As a second step, we focus on the magnetic-field region
around 700 mG in which the promising interspin Fesh-
bach resonance has been identified and perform high-
resolution Feshbach spectroscopy, taking advantage of
the lattice-preparation scheme, as described in the main
text. The lattice-protection technique is very powerful in
removing technical broadening and artificial asymmetry
of the loss peaks, as it clearly appears from a comparison
between the atom-number traces recorded with ODT-
preparation (Fig. S3) and lattice-preparation schemes
(Fig. 3). We perform the measurements for Fig. 3 as fol-
lows. We prepare a spin mixture in the lattice at high
B as described above and sub-sequentially ramp the field
to the desired value within 10 ms. After letting the B-
field stabilize for about 100 ms, the dipole trap beams
are ramped up within 10 ms and we unload the atoms
from the lattice back into the ODT1064 within 150 ms.
At this stage, the sample contains N ≈ 1.6 × 104 atoms
at T ≈ 0.3TF, almost independent of δ, and the trap fre-
quencies are (ν⊥, ν‖, νz) = (111.6(2), 35(1), 169.4(6)) Hz.
We then record the spin population after a holding time
of 500 ms. For each magnetic field value, the measure-
ment is repeated between two to four times and the av-
erage is reported in Fig. 3.

For all the above described measurements, we note that
the observed atom losses can be mainly attributed to res-
onant three-body recombination collisions in the short-
range potential. Inelastic two-body losses driven by the
spin-non-conserving dipolar interactions are, in principle,
also energetically allowed since |↑ 〉 atoms are in an ex-
cited Zeeman state [15]. However, we do not expect this
process to be enhanced at resonance.
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FIG. S3. Feshbach spectroscopy of a two-component spin mixture in an ODT (without the lattice-protection technique) for
different population imbalances δ: δ = 1 (upper panel), −0.54 (middle panel), 0.4 (lower panel). While the measurements for
the upper and lower panel are performed in ODT1570 with ν̄ = 231(3) Hz, the data of the middle panel is measured in ODT1064

with ν̄ = 59(1) Hz. Due to the finite resolution of the scans of 10 mG it is possible that narrower FRs are not resolved. The grey
shading shows the magnetic field region studied in the main manuscript with the green shading indicating the comparatively
broad interspin FR. Each data point is the mean of two repetitions. The shading around the data points indicates statistical
uncertainties, which are often smaller than the data points.

Modulation spectroscopy with a fermionic spin
mixture in the lattice

To measure the scattering length between two spin
states of 167Er, we rely on a method similar to the
one that we have already successfully implemented with
168Er [5] and 166Er [2]. It is based on the measurement of
the onsite interaction energy of two atoms in a deep op-
tical lattice. Here, after preparing a spin mixture of |↓ 〉
and |↑ 〉 in the lattice we drive particle-hole excitations
of neighboring atoms by a resonant modulation of the
horizontal lattice depths sx,y. Note that for neighbor-
ing identical particles no single-band excitation will be
observed due to the Pauli exclusion principle and only
neighboring atoms in different spin states can be excited,
allowing to effectively only probe the interspin onsite in-
teraction U↓↑. In our experiment, we probe the doublon
creation via the resulting increase in atom loss. We spec-
ulate that onsite dipolar relaxation is responsible for the
observed loss [16]. We note that a distinct and convenient
method to measure double occupancies has been demon-
strated using the coupling to a third spin state [17]. Close
to a molecular state of the original doublon components,
the third spin state features a smaller interspin onsite
energy and can thus be used to detect an initial double
occupancy. Yet, such a method remains to be explored
in our system.

In our experiment, we typically modulate the lattice
depth for 1 s with a sine function with a peak-to-peak
amplitude of 30% and a frequency νmod. Maximum loss
occurs when νmod reaches the resonance condition νres =
U↓↑/h (see Fig. S4). Following our previous work [5], the
onsite energy U↓↑ consists out of two contributions: the
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FIG. S4. Exemplary modulation spectroscopy measurement
with a spin mixture of |↓ 〉 and |↑ 〉 in the deep lattice at
B = 650 mG. The resonance condition determines νres, which
is related to the onsite energy U↓↑ (cartoon).

contact interaction Uc

Uc =
4πh̄a↓↑
mEr

∫
dr |φ(r)|4 ,

and the DDI Udd

Udd =
µ0µ↓µ↑

4π

∫
dr

∫
dr′ |φ(r)|2 1− 3 cos2 θr−r′

|r− r′|3 |φ(r′)|2 .

Here, φ(r) denotes the onsite Wannier function, |r− r′| is
the interatomic distance and θr−r′ corresponds to the an-
gle between the polarization axis of the two dipoles with
respect to their interparticle axis. The contact part de-
pends on the interspin scattering length a↓↑, the reduced
Plank constant h̄, and the mass mEr of a 167Er atom,
while the DDI part is proportional to the vacuum perme-
ability µ0 and to the magnetic moments of the two spin



6

states µ↓ and µ↑. The contributions of nearest-neighbor
interactions are minor and therefore neglected.

Both, the strength and the sign of Udd strongly depend
on the dipole orientation and the anisotropy of the onsite
Wannier function. As specified in our earlier work [5], we
define the aspect ratio, AR, associated to the Wannier
function by the ratio of the onsite harmonic oscillator
lengths perpendicular and in the xy-plane, AR = lz/lx,y.
Note that, in a deep lattice, the onsite harmonic oscillator

lengths match li = di/(πs
1/4
i ) for i ∈ {x, y, z}. For our

typical lattice parameters we find AR > 1 and hence Udd

can be tuned by rotating the atomic dipole. In particular,
Udd is negative (positive) for a dipole orientation out of
(in) the xy-plane.

In the experiment, we use both our precise control and
our exact knowledge of Udd to determine not only the am-
plitude but also the sign of the scattering length a↓↑. For
a given magnetic field and a given lattice configuration,
we repeat our modulation spectroscopy measurements for
two different dipole orientations: (i) when oriented along
z, we extract the total onsite energy |Uz

↓↑| while know-
ing the dipolar contribution Uz

dd, (ii) when oriented in
the xy-plane, we extract |Uxy

↓↑ | while knowing the dipo-

lar contribution Uxy
dd . This yields the two indepedent

and incommensurate relations: |Uz
↓↑| = |Uc + Uz

dd| and

|Uxy
↓↑ | = |Uc + Uxy

dd |. Their combination gives access to
both the magnitude and the sign of Uc, and thus of a↓↑
as reported in Fig. 4(a).

As a final test of our method we study the dependence
of the onsite energy as a function of the lattice depth sz
(Fig. S5). Here, we fix the magnetic field, oriented along
z, to 650 mG and vary the depth of the z lattice. We
repeat the modulation spectroscopy for different values
of sz and extract νres for each measurement. A compari-
son to our theoretical model with a↓↑ being the only free
parameter shows a good agreement, confirming the valid-
ity of our modulation spectroscopy technique. Here, the
fit gives a value for a↓↑ of 225(2) a0 matching the value
extracted from an independent analysis of the individual
lattice configurations as reported in Fig. 4(a) and giving
a↓↑ = 225(4) a0.

The data presented in Fig. 4(a) shows the mean of the
different experimental datasets, taken with different lat-
tice parameters, for a given magnetic field B. Table 1
summarizes all lattice parameters used in the experiment
as well as the expected values of Uc for a↓↑ = 100 a0,

denoted U
(100)
c , and of Uz

dd from our theoretical model.
Uc being proportional to a↓↑ and Udd depending only
on the lattice parameters, the interspin scattering length
can be evaluated from a given measurement of U↓↑ via

a↓↑/a0 = (U↓↑ − Uz
dd)× 100/U

(100)
c .
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FIG. S5. Modulation resonance νres as a function of the
vertical lattice power sz for sx,y = 20 at B = 650 mG. The
solid line shows a fit with our theory to extract the scattering
length a↓↑. The shaded region accounts for the systematic
uncertainty of the scattering length of ±4 a0 at 0.65 G, which
results from our magnetic field fluctuations of ±1 mG.

(sx, sy, sz) AR U
(100)
c /h (Hz) Uz

dd/h (Hz)

(20, 20, 40) 1.68 2029 −441

(20, 20, 60) 1.52 2263 −396

(20, 20, 80) 1.41 2443 −350

(20, 20, 100) 1.34 2590 −307

(20, 20, 120) 1.28 2717 −265

(15, 15, 80) 1.32 2068 −223

(22, 22, 80) 1.45 2578 −399

TABLE I. Lattice parameters for the determination of a↓↑
(Fig. 4(a)). The lattice depths (sx, sy, sz) define the onsite
Wannier function AR. From our theoretical model we eval-
uate the onsite energy contributions U

(100)
c and Uz

dd for an
interspin scattering length of a↓↑ = 100 a0. Here, the dipoles
are oriented along z. This values are used to extract the inter-
spin scattering length from the measured total onsite energy
U↓↑.

Scattering-length tunability and magnetic-field
stability.

A precise control of the magnetic-field value is crucial
for tuning the interaction strength in the spin mixture.
For the FR of Fig. 4(a), a width of ∆ = 58(6) mG and rel-
ative strength abg/R

∗ = 0.1 have been estimated. Hence,
reaching a↓↑(B) = R∗ requires to sit ≈ 6 mG away from
the resonance pole. Based on an rf-spectroscopy calibra-
tion scheme, an accuracy of the order of 100µG and a
stability of ≈ 1mG on the magnetic-field value are esti-
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mated, corresponding to a relative stability of 10−3 at
the resonance position B0 = 687 mG. Note that in alkali
Fermi experiments, for which B0 is typically 3 orders of
magnitude larger, a much larger relative stability of 10−5

is usually required even if the FR is effectively broader.

Loss spectroscopy in the ODT at the interspin FR

For the measurements of the collisional properties of
the fermionic spin mixture in the vicinity of the com-
paratively broad interspin FR (see Fig. 4(b-d)), we ap-
ply the following experimental procedure. We prepare
a spin mixture with δ = 0 in the deep 3D lattice fol-
lowing the scheme detailed above, that is applying a
RF-sweep at large B. After the application of the RF-
sweep, we ramp the magnetic-field value to an inter-
mediate lower value B = 3.99 G in 100 ms. We then
jump with the magnetic field from the later intermedi-
ate value to the desired final value and let it stabilize
for 10 ms. Finally, we ramp up the ODT1064 beams
in 10 ms, melt the lattice down in 20 ms. This shorter
timescale for the lattice rampdown (compared, e. g. , to
the Feshbach spectroscopy measurements, see above) is
chosen to avoid significant losses to happen already at
this stage. The final trap frequencies in the ODT1064

are (ν⊥, ν‖, νz) = (111.6(2), 35(1), 169.4(6)) Hz. For this
trap, the typical atom numbers recorded (see Fig. 4(b-
c)) correspond to the Fermi energy EF ≈ kB × 150 nK
for each spin component, which in turn gives a Fermi
wave vector kF ≈

√
2mErEF/h̄ = 1 × 107 m−1. We then

hold the two-component mixture in the ODT1064 for a
variable holding time, t, at the selected B-field and ul-
timately record the spin populations via Stern-Gerlach
imaging.

We record the atom number decay with t for various
magnetic fields B across the FR. For each B and each
spin component, we extract an initial decay rate Ṅ/N0

by fitting a linear-decay function to the recorded atom
number N , normalized to its initial value N0, as a func-
tion of t. We fit all data for which the atom number stays
above a threshold of 75% of N0. We checked that the ex-
tracted values of Ṅ/N0 do not change significantly when

varying this threshold between 65 − 85%. An analysis
of the full data using exponential fits also yields similar
decay rate values.
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Summary

In this work, we directly probe the excitation spectrum of a dipolar Bose-Einstein con-
densate by means of Bragg spectroscopy, where our flexible spectroscopy setup based on a
digital micro-mirror device allows us to span a wide momentum range. In the experiment,
we precisely control the contact interaction and determine the spectrum for various relative
strengths ϵdd of the dipolar interaction. As ϵdd increases, we observe an increasing deviation
of the excitation spectrum from a linear phononic behavior. At the transition to a dom-
inant dipole-dipole interaction, we observe a softening of the excitation spectrum and the
emergence of a roton minimum. We compare our findings to theoretical calculations based
on mean-field Bogoliubov theory and find good agreement with our results. Interestingly,
the inclusion of beyond-mean-field corrections leads to a deviation of the theory from the
experiment, calling into question the validity of the applied description.
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Wemeasure the excitation spectrum of a stable dipolar Bose-Einstein condensate over a wide momentum
range via Bragg spectroscopy. We precisely control the relative strength ϵdd of the dipolar to the contact
interactions and observe that the spectrum increasingly deviates from the linear phononic behavior for
increasing ϵdd. Reaching the dipolar-dominated regime ϵdd > 1, we observe the emergence of a roton
minimum in the spectrum and its softening towards instability.We characterize how the excitation energy and
the strength of the density-density correlations at the roton momentum vary with ϵdd. Our findings are in
excellent agreement with numerical calculations based on mean-field Bogoliubov theory. When including
beyond-mean-field corrections, in the form of a Lee-Huang-Yang potential, we observe a quantitative
deviation from the experiment, questioning the validity of such a description in the roton regime.

DOI: 10.1103/PhysRevLett.122.183401

The spectrum of elementary excitations is a key concept
providing insight into the quantum behavior of many-body
systems. An emblematic example is the one of superfluid
helium. At low momentum, the interactions among par-
ticles lead to collective-excitation modes with a linear
energy (ε)-momentum (q) dependence. Those are known as
phonons, highlighting their analogy to sound waves. In
addition, the strong interactions in He induce pronounced
correlations at the mean interparticle distance d. Such
correlations reveal themselves in an energy minimum in
the excitation spectrum at q ≈ 1=d, termed roton [1]. Its
physical interpretation, and even its mere existence, has
been intensively debated for decades [2]. In today’s under-
standing, the roton relates to the system’s tendency to
establish a crystalline order [3], possibly providing access
to supersolid phases [4]. Between the phonon and the roton,
a local energy maximum, termed maxon, appears.
For gaseous Bose-Einstein condensates (BECs),

the excitation spectrum also embeds the many-body inter-
acting behavior. In the weakly interacting bulk regime,
the excitation spectrum is well described within the
Bogoliubov theory and takes the form εðqÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðqÞ2 þ 2EðqÞV intðqÞ

p
, with EðqÞ ∝ q2 being the free-

particle energy and V intðqÞ being the mean-field interaction
energy contribution [5]. In the case of short-range (contact)
interactions, V int is independent of q and a roton minimum
is absent, as confirmed in experiments [6–10]. Deviations
from the Bogoliubov theory were observed in the strongly
interacting regime [11,12], yet a roton minimum has
remained elusive [13].
Quantum gases with dipole-dipole interactions (DDIs),

underlying a q dependence of V int, bring a paradigm shift in
themany-body behavior [14–18]. In particular, dipolarBECs

(DBECs) are predicted to support a roton mode in their
Bogoliubov spectrum [19,20]. This roton spectrum requires
specific conditions, namely, (i) an anisotropic geometry,
tighter along the dipole direction, and (ii) a dominant DDI
over the contact interaction. These conditions enable V int to
depend and change sign with q ¼ jqj, yielding a local
minimum in εðqÞ for q along the weak confinement axes.
Conditions (i) and (ii) also dictate the rotonmode’s character-
istics: its momentum qrot is governed by the confinement
length along the dipoles (i), and εðqrotÞ is controlled by the
ratio ϵdd ¼ add=as of the dipolar (add) and s-wave scattering
(as) lengths (ii). In particular, εðqrotÞ decreases (softens) for
increasing ϵdd and ultimately vanishes, yielding amean-field
instability. The existence of dipolar rotons has been dem-
onstrated in recent quench experiments, via the exponential
growth of the roton mode’s population when εðqrotÞ turns
imaginary, i.e., in the roton instability regime [21].
In this Letter, we directly probe the phonon-maxon-roton

excitation spectrum of a stable DBEC of ultracold erbium
atoms. By precisely controlling ϵdd (via as), we observe the
emergence of a roton minimum at large momentum and
study in detail its softening. Our spectroscopic approach is
based on the well-established technique of Bragg spectros-
copy [6–12,22–26]. For DBECs, this technique has been
previously applied on Cr in the regime of weak DDI [27],
proving the anisotropy of εðqÞ, and consequently of the
speed of sound, recently confirmed with a different
technique with Dy [28]. Bragg spectroscopy has also been
employed to observe rotonlike minima in the dispersion
relations of hybrid systems of short-range interacting atoms
and light [29–31].
Our Bragg spectroscopy is performed using a DBEC of

strongly magnetic 166Er atoms, prepared as in Refs. [17,21].
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After preparation, we confine the DBEC in a cigar-shaped
optical dipole trap with harmonic frequencies ωx;y;z ¼
2π × ð261; 27; 256Þ Hz. A homogeneous magnetic field
B maintains spin polarization of the sample in the lowest
Zeeman sublevel, with atomic dipoles aligned along z; see
Fig. 1(a). It also sets the value of as via a magnetic
Feshbach resonance (FR) [32], centered at about 0 G, for
which the B-to-as conversion has been precisely extracted
with a �2a0-wide prediction interval in the as range here
explored [17,21]. Systematic uncertainties on as are
estimated to be up to �3a0 [33]. The dipolar length,
add ¼ μ0μ

2m=12πℏ2 ¼ 65.5a0, results from the atomic
magnetic moment μ, and mass m of 166Er. μ0 is the vacuum
permeability and ℏ ¼ h=2π the reduced Planck constant.
After preparation, as equals 67a0, corresponding to
ϵdd ≈ 1. In this geometry, a roton mode is expected to
emerge along the axial (y) direction for ϵdd > 1 and softens
for increasing ϵdd. The roton minimum appears at a
momentum qrot ∼ 1=lz, with lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p
≈ 0.5 μm.

To reach ϵdd > 1, we decrease as to the desired value by
ramping B closer to the FR’s pole. The ramping time tr is
chosen to be long enough to ensure adiabaticity with

respect to the tight trapping frequencies (tr > 1=ωx;zÞ but
short enough to avoid too strong three-body collisional
losses near the FR. For the highest ϵdd, we find an optimal
trade-off for tr ¼ 15 ms, defining our fastest ramp. This
ramp is not fully adiabaticwith respect to the axial dynamics.
We observe small-amplitude breathing and sloshing modes
along y, which we account for in our spectroscopic mea-
surements [33]. After ramping B, we hold the atoms for a
time th, after whichwe performBragg spectroscopy to probe
the excitation spectrum of our DBEC of N atoms.
Our Bragg spectroscopy setup is illustrated in Fig. 1(a)

and detailed in Ref. [33]. In brief, it uses two coherent laser
beams of wave vector kL ¼ 2π=λL, with λL ¼ 401 nm,
propagating in the z-y plane and intersecting each other
under an angle θ. At the cloud’s position, the beams form a
light grating along y of potential depth V0 and wave vector
q ¼ 2kL sinðθ=2Þ. The two beams have a small frequency
difference ω, causing the grating to travel at a velocity ω=q.
A key feature of our setup is the wide dynamical tunability
of θ. This is obtained by creating the Bragg beams
using holographic gratings [33,35], generated with a
digital micromirror device [30]. By uploading different
holograms, we can vary θ, and accordingly q from 0 to
1.8l−1z . Moreover, by employing hologram sequences and
changing their display rate, ω can be directly varied, up to
∼2π × 1 kHz. In the experiment, we illuminate the DBEC
with a Bragg pulse of duration τ. The value of τ ¼ 7 ms is
chosen to be long enough to minimize Fourier broadening
of the frequency spectrum, and yet short with respect to a
quarter of the axial trap period [8,23,25]. Immediately after
the pulse, we switch off the trap and let the cloud expand
for 30 ms. We then image the atoms along z via standard
absorption imaging, from which we extract the momentum
distribution of the cloud, nðqx; qyÞ.
The Bragg excitation can be interpreted as a stimulated

two-photon transition, imparting a well-defined momentum
q and energy ℏω to the atoms; see Fig. 1(b). In bulk
systems, for a fixed q and varying ω, atoms, initially at
qy ¼ 0, are resonantly transferred to qy ¼ q for ℏω ¼ εðqÞ
[6–9]. When accounting for finite-size effects, the response
is broadened in q. The dynamic structure factor, which
quantifies the system’s response to an external perturbation,
can be related to the fraction of excited atoms during a
Bragg pulse,F ¼ Nexc=ðN0 þ NexcÞ. Here,N0 (Nexc) is the
number of the zero-momentum (Bragg-excited) atoms. In
the linear response regime [9,22,23],

F ¼ π2V2
0τ

h2
S̃0ðq;ωÞ; ð1Þ

where S̃0ðq;ωÞ is the zero-temperature dynamic structure
factor, Fourier broadened in ω due to the finite τ, see
Ref. [33].
Figure 1(c) shows a representative nðqx; qyÞ for a q ≳ l−1z

excitation. For this high q, the Bragg-excited atoms are well
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FIG. 1. (a) The DBEC (gray ellipsoid) is axially elongated along
y and the atomic dipoles point along z. Two Bragg beams of
frequency ωl and ωl − ω (blue arrows) form a traveling grating
along y with a wave vector q and velocity ω=q (blue shading).
(b) The Bragg excitation drives a stimulated two-photon transition
(dashed arrows), transferring a momentum q and an energy ℏω to
the atoms, resonant for ℏω ¼ εðqÞ (solid line). Δ ≫ ω is the
detuning from the intermediate state. (c) Example of nðqx; qyÞ
after a Bragg excitation with ðq; ωÞ ¼ ½1.74ð9Þl−1z ; 2π × 180 Hz�.
(d) Corresponding nðqyÞ (dots), fitted with a multi-Gauss function
(dashed line). The solid line shows the component of the fit
corresponding to the Bragg-excited atoms. (e) hq2yi vs ω for
q ¼ 0.74ð3Þl−1z . The solid line shows a Gaussian fit used for
extracting ωq and normalizing the data.
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resolved as a side peak. From a multi-Gauss fit to the
integrated density nðqyÞ, we extract F ; see Fig. 1(d) [33].
For q≲ l−1z , the zero-momentum peak and the Bragg-
excited one overlap andF cannot be precisely extracted. To
access S̃0ðq;ωÞ for all q, we use the momentum variance
hq2yi ¼

R
nðqyÞq2ydqy, which relates to the imparted energy

into the system. AsF , hq2yi gives access to S̃0ðq;ωÞ, but via
a more complex relation [5,22,23,33,36]. Figure 1(e)
exemplifies a resonance in hq2yi when varying ω at fixed
q. We extract its center frequency ωq via a Gaussian fit. By
varying q over the experimentally accessible range, we
probe the lowest-lying branch of the axial excitation
spectrum εðqÞ ¼ ℏωq [33].
Figure 2 shows the results of our Bragg measurements,

revealing how εðqÞ is modified when tuning from ϵdd < 1
to ϵdd > 1. For ϵdd < 1, εðqÞ shows a linear dependence
over the whole q range, characteristic of phonon modes,
Figs. 2(a) and 2(b). From a linear fit to εðqÞ, we estimate the
sound velocity c ¼ limq→0εðqÞ=q ¼ 1.01ð1Þ mm=s along
y. As we probe the system for increasing ϵdd > 1, we find
an overall reduction of the excitation energies and increas-
ing deviations of the spectra from the linear phonon
behavior, Figs. 2(c) and 2(d). When further increasing
ϵdd, the spectrum starts to flatten at large q, Figs. 2(e) and
2(f). Ultimately, at the highest ϵdd, we observe a local
minimum occurring at q ≈ qrot ¼ 1.27ð6Þl−1z , providing an

unambiguous signature of the existence of the roton mode,
Figs. 2(g) and 2(h). At intermediate momenta between the
phonon and roton regimes, a maxon [local maximum in
εðqÞ] is also identifiable. Because of optical constraints on
our Bragg setup, the maxon regime is not fully accessible;
see black region in Figs. 2(e) and 2(g). To compare our
measurements with theory, we perform calculations of
S̃0ðq;ωÞ, by calculating the Bogoliubov modes from the
Gross-Pitaevskii equation (GPE) linearized around equi-
librium at the final as [24,33,37]. Here we explicitly do not
include beyond-mean-field effects [33]; see later discus-
sion. Over the entire range of ϵdd, our theory describes
the experimental data, both qualitatively and quantitatively.
In the calculations of Fig. 2, we let as vary within the
prediction interval (�2a0) of our B-to-as conversion to best
match the measured spectrum.
To get a deeper insight into the roton softening, we

perform Bragg measurements at a fixed q ¼ qrot and extract
ωq, denoted ωrot, as a function of as for fixed N. As shown
in Fig. 3, ωrot exhibits a reduction that becomes increas-
ingly sharp for decreasing as. Below 52a0, we observe that
the system undergoes a roton instability, i.e., a spontaneous
population of the roton mode even without applying a
Bragg pulse; see also Ref. [21]. We find that the softening
of ωrot is well approximated by an as-power-law scaling.
By fitting the data to ωrotðasÞ ¼ Aðas − a�sÞp, we extract
the critical scattering length at which ωrot vanishes,
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FIG. 2. Excitation spectra from ϵdd < 1 to ϵdd > 1: (a), (c), (e), (g) Measured hq2yi for varying q (columns, delineated by white
tick marks) and ω at given as. Each column is fitted with a Gaussian function and renormalized by the fitted peak amplitude.
Black columns are inaccessible to measurements [33]. (b), (d), (f), (h) Extracted εðqÞ (white dots) from (a), (c), (e), (g), respectively.
Here and throughout the Letter, the error bars denote � one standard deviation. The solid lines are guides to the eye, based on the
analytic formula from Ref. [24]. The color map shows the calculated S̃0ðq;ωÞ, normalized by the maximum of S̃0ðq;ωÞ at qlz ¼ 1.3
and as ¼ 82a0. For [(a), (b); (c), (d); (e), (f); (g), (h)], N ¼ ½4.6ð5Þ; 3.9ð4Þ; 3.3ð3Þ; 2.5ð3Þ� × 104 and as ¼ ðasexp; aths Þ ¼
½ð80.0; 82.0Þ; ð60.5; 62.5Þ; ð55.3; 54.5Þ; ð52.5; 51.6Þ�a0, respectively.
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a�s ¼ 51.9ð2Þa0, matching our instability observation. We
also observe a scaling exponent of p ¼ 0.27ð2Þ (A is a
scaling coefficient). The pronounced dependence of the
roton energy on the interparticle interactions, i.e., on both
as and the atomic density, makes the measurements at low
energy very sensitive to fluctuations. Indeed, small fluc-
tuations and drifts in B and N can already drive the system
into instability, eventually preventing a reliable measure-
ment of the spectrum for ωrot ≲ 2π × 100 Hz; e.g., see
horizontal error bar in the inset. For comparison, we
additionally probe the as dependence of the excitation
energy ωq near the maxon at q ¼ 0.74ð3Þl−1z , denoted ωm.
We observe that ωm decreases much slower than the roton
case. As shown in the inset of Fig. 3, the two modes’
energies cross around as ¼ 52.8a0. For a�s < as < 52.8a0,
ωrot < ωm, showing the emergence of a local minimum in
the spectrum of a stable DBEC. At as ¼ 52.2ð2Þa0, the
minimum can be distinguished with a confidence level of
98% [33].
Figure 3 also shows ωrot extracted from our numerical

calculations, together with its variation within the predic-
tion interval of as. The theory describes our observation
very well and confirms the rapid variation of the roton
energy with as. We have also performed calculations
including beyond-mean-field effects in the form of a
Lee-Huang-Yang correction in the GPE [38–41]. This
additional term has proven to be crucial to understanding

the behavior of a DBEC in the droplet regime [17,18,
42–44]. Interestingly, the agreement between theory and
experiment becomes worse with a discrepancy that cannot
be accounted for with the experimental as uncertainty. Such
a discrepancy can have several origins. These range from
additional experimental uncertainties (e.g., N values,
effects of residual density-dependent dynamics [33]) to
more fundamental reasons. As speculated in Ref. [21], this
mismatch could call into question the validity of standard
treatments of beyond-mean-field effects in the roton
regime. For instance, the standard inclusion of a Lee-
Huang-Yang term in the GPE relies on a local density
approximation and is justified for negligible quantum
depletion and higher-order corrections [11,40–51]. These
conditions might not be completely fulfilled in the roton
regime. Future theoretical efforts, combined with stringent
validity tests on experiments, are needed to shed light on
this important aspect.
The emergence of a roton minimum intrinsically con-

nects to an increase of density-density correlations. This is
quantified by the amplitude of S̃0ðqrot;ωrotÞ [7,23,24,33],
which is related via Eq. (1) to the fraction of excited atoms
at the Bragg resonance F res. In the experiment, we explore
this aspect by measuring F as a function of ω at q ¼ qrot
using a fixed V0. From a Gaussian fit to the data, we extract
F res. We repeat the experiment for various as in the ϵdd > 1
regime; see Fig. 4. When approaching the roton instability
(a�s), F soars, with an increase by about a factor of 3 when
changing as by less than 15%. Such a behavior is also
confirmed by our theoretical calculations. Experimentally,
we find that the linear-response regime, i.e., the validity of
Eq. (1), extends up to F res ≈ 25%; see inset of Fig. 4.
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In conclusion, we measure the excitation spectrum of a
DBEC and its evolution from the contact-dominated regime
to the dipolar-dominated regime. In the latter regime, we
observe the emergence of a roton minimum. Comparisons
with theory reveal a good agreement with mean-field
Bogoliubov calculations and show deviations when includ-
ing beyond-mean-field corrections, calling for further
studies of their effects and their treatment in the roton
regime. Similar to the cases of superfluid helium [4,52–54]
and of hybrid systems of atoms and light [55,56], the roton
minimum may provide a path for the creation of supersolid
or crystalline phases in DBECs [4,28,57–59]. With the
achievement of a precise knowledge and control of the
roton softening, our work provides a first step in this
direction.
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PREPARATION AND CALIBRATION OF THE
dBECs

A dBEC of 166Er is prepared in the same way as de-
scribed in Refs. [1, 2]. Trapping is provided by crossed
optical beams forming a harmonic potential V (r) =
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)/2 for the atoms. At the end

of the preparation procedure, V (r) has a cigar-shaped
geometry with ωx,y,z = 2π × (261, 27, 256) Hz. The fre-
quencies are measured via exciting and probing either
the center-of-mass oscillation of dBECs (for ωx and ωz)
or the breathing mode of cold, thermal samples (for ωy).
The uncertainties of the trapping frequencies are at the
few-percent level. After reshaping the trap, we ramp as

linearly from as = 67 a0 to its final value in a time tr, by
performing a corresponding ramp in B, computed from
the calibrated B−to−as conversion [1, 2]. The ramp time
is chosen to be relatively long, tr ≥ 15 ms; see main text.
In our Bragg spectroscopy measurements, we apply the
Bragg pulse after an additional holding time th.

The number of atoms in the probed dBEC, N , is ex-
tracted from time-of-flight (TOF) measurements, per-
formed using the same experimental sequence as for the
Bragg measurements, but, instead of applying the Bragg
pulse, simply waiting th + τ/2 before releasing the atoms
from the trap. We extract the integrated density distri-
bution from standard absorption-imaging technique after
30 ms of TOF. We fit a two-dimensional bimodal func-
tion made of a Gaussian and an inverted parabola at the
power 3/2 to the density distribution. The values of N
reported in the main text corresponds to the number of
atoms in the parabolic peak. We note that N typically
fluctuates by up to 10% between experimental runs. In
addition, by measuring N at th and at th + τ , we observe
three-body losses during the Bragg pulse up to 20% for
the lowest values of as. Finally, we point out that the
bimodal function employed to extract N is an approxi-
mate description of a finite temperature BEC and may
lead to an underestimation of N , especially at our lowest
as values. The experimentally calibrated N and ωx,y,z
are used as fixed parameters in the theory calculations;
see below.
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FIG. S1. Example of calibration measurements of the
breathing and sloshing modes for the measurements at as =
52.5 a0 of Fig. 2 (g, h) of the main text. We record the varia-
tions with th of the cloud’s size (upper panel) and position in
TOF. From the position we compute the mean atomic veloc-
ity vat(th) (lower panel). The solid lines are sinusiodal fits to
the data. We time the Bragg pulse (orange shaded area) to
be centered on the cloud’s size maximum. The correspond-
ing mean atomic velocity is in this case vat = −68(16)µm/s.
Similar measurements and analyses have been performed for
each measurement reported in the main text.

ACCOUNTING FOR THE BREATHING AND
SLOSHING MODES: TIMING AND DOPPLER

SHIFTS

Our fastest as-ramps are not fully adiabatic with re-
spect to the axial dynamics and may induce small-
amplitude breathing and sloshing modes along y. Such
excitations could affect our Bragg measurements. The
former mode induces density oscillations and can influ-
ence the value of the roton excitation energy. The lat-
ter mode causes a sizable momentum-dependent Doppler
shift of the Bragg excitation frequency [3]. We account
for these effects in our experiment by performing dedi-
cated calibration measurements. In particular, we probe
the evolution of the atomic density distribution after
TOF, as a function of th. We perform such calibration
measurements for each as-ramp employed in the experi-
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ment.
The breathing excitation reveals itself in the evolution

of the axial size; see Fig. S1 (upper panel). To minimize
the impact of the breathing mode on our measurements,
we synchronize the Bragg pulse symmetrically around the
moment at which the size in TOF reached its maximum.
Then, the in-situ density of the dBEC changes the least
and remains close to its highest value during probing.
The corresponding th, after which we switch the Bragg
beams on, is typically between 10 and 20 ms.

The sloshing mode reveals itself in the variation of
center-of-mass position of the atomic cloud. This gives
direct access to the mean velocity, vat(th), of the atoms
in the dBEC as a function of th; see Fig. S1 (lower panel).
By averaging over the duration of the Bragg pulse, vat =
〈vat(th)〉τ , we extract the induced Doppler shifts for the
Bragg excitation, ωD = vatq which we then use to correct
the applied Bragg frequencies ω. To check the accuracy
of our treatment, we have repeated Bragg spectrscopy
measurements at various as and q using Bragg pulses
corresponding to distinct ωD. In particular, to achieve
distinct ωD, we reversed the Bragg excitation direction
to compare measurements with ±q and used pulses start-
ing at different th, yielding vat ≈ {−vmax, 0, vmax}, vmax

being the maximum insitu mean velocity. A set of such
measurements is exemplified in Fig. S2, where we show
both the uncorrected and corrected resonance frequen-
cies ωq. The good agreement of the Doppler-corrected
values proves the validity of our approach. All data re-
ported in the main text are Doppler-corrected.

We stress that the value of ωD increases with q. As
an example, ωD/2π varies from 15 Hz to 40 Hz for q
varying from 0.74 l−1

z to 1.74 l−1
z in the measurements

of Fig. 2 (h). In the analysis of our data, it has thus been
important to carefully account for this effect.

BRAGG SETUP

Our Bragg spectroscopy setup is illustrated in
Fig. S3 (a, b). It employs a digital micromirror de-
vice (DMD), DLP-V9500 from Vialux with 1920 ×
1080 micromirrors. The DMD features a programmable
mirror area, consisting of 10.8× 10.8 µm-sized micromir-
rors that can be individually tilted in one of two direc-
tions. Depending on the mirror’s tilting direction, the
incoming light is reflected either into the Bragg spec-
troscopy setup or on a beam dump. We illuminate the
mirror area with a single frequency laser beam of wave-
length λL = 401 nm. The beam has an elliptic shape
with waists of (wz, whor) = (10, 1) mm. Here, wz (whor)
denotes the beam’s waist in the z (horizontal) direction;
see Fig. S3 (c). The beam is sent on the DMD’s mir-
ror area under an angle of ∼ 25◦ with respect to its
perpendicular axis, fulfilling the condition for a blazed
grating. This ensures a maximum diffraction efficiency
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FIG. S2. Bragg resonance frequencies ωq at |q| = qrot and
as = 52.7 a0 measured using three different Bragg pulses,
characterized by the couple {q, vat} (abscissa’s labels). For
each measurement, both the uncorrected (diamond) and
Doppler-corrected (circle) frequencies are shown. The dashed
line indicates the mean of the Doppler-corrected resonance
frequenies.

of the incoming beam into the beam path of the Bragg
spectroscopy setup.

Following Ref. [4], the general idea is to use binary
holograms that represent maps of titling directions for
the micromirrors of the DMD. By placing the DMD in
the Fourier-plane of the atoms, the holograms allow for
both amplitude and phase modulation of the laser beam
at the atoms’ position. They consist of an underlying
binary grating with two Gaussian envelopes separated
by a distance d on the DMD; see Fig. S3 (d). The Gaus-
sian envelopes cut out two beams from the incoming one.
Additionally, the envelopes correct for the local intensity
inhomogeneities of the incoming beam. After the DMD,
the two beams travel parallel with a distance d between
each other before being focused in a first optical tele-
scope; see Fig. S3 (b). Due to the binary grating struc-
ture of the holograms, each beam splits at the telescope’s
focus point into a 0th order and ±1st side orders. The fo-
cus point is used to let only the +1st order of each beam
pass by filtering out the other ones. The two remain-
ing +1st order beams constitute our two Bragg beams
and have a similar Gaussian profile as well as similar in-
tensities. After the telescope they are reflected down to
our experimental chamber where a last lens focuses them
under an angle θ onto our atomic cloud. At the focus
point, matching the atom’s position, the beams create
an interference pattern with a wavevector q along y. By
uploading a hologram with a different d one can change θ
and thus q in an almost continuous manner. We note that
due to optical constraints in the experiment (not shown
in Fig. S3), we can not create interference patterns in the
range of q = [0.4− 0.7] l−1

z .
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FIG. S3. Setup for Bragg spectroscopy: (a) Top view of the Bragg spectroscopy setup, showing the beam path of the incoming
beam (dashed arrow), the beams travelling in the Bragg-spectroscopy setup (solid arrow), and the dumped part of the incoming
beam (dotted arrow). (b) Side view of the beams travelling in the Bragg spectroscopy setup when a holographic grating pattern
is displayed on the DMD (see text for details). (c) Sketch of the elliptic beam shape of the incoming laser beam on the DMD.
(d) Examples of binary holograms uploaded on the DMD that allow to create two beams in the Bragg spectroscopy setup,
travelling parallel separated by a distance d. The three smaller images on the right show a zoom of one part of a hologram with
a phase shift of the underlying binary grating, resulting in three distinct phase difference, ϕ, of the Bragg beams. (e) Example
of light interference patterns at the position of the atomic cloud, obtained from offline calibrations with a CCD camera.

Furthermore, the relative phase, ϕ, of the two beam’s
wavefronts is directly related to the phase of the applied
binary grating on the DMD. It thus allows us to intro-
duce a frequency difference ω = dϕ/dt by displaying a se-
quence of holograms during the Bragg excitation, where
the phase of one of the two Bragg beams is constantly
shifted in time; see Fig. S3 (d). Practically, we set a se-
quence of nine holograms, which defines a phase revo-
lution of 2π, and display it in a loop with a fixed rate,
γ. This results in ω = 2πγ/9. The discrete phase steps
of 2π/9 are sufficient to not suffer from higher frequency
harmonics in our measurements. We note that γ is lim-
ited by the maximal refreshing rate of the DMD. Fur-
thermore, the inherent dark time of the DMD at each

hologram update results in a decrease of the average in-
tensity of the light grating when increasing γ. In the
experiment, we compensate for this effect by increasing
the intensity in the Bragg beams to maintain a constant
V0.

We further note, that the binary grating in our am-
plitude holograms take phase aberrations of the opti-
cal setup into account and corrects for them [4]. These
corrections are obtained from offline calibrations with
a CCD camera and greatly improve the beam pointing
of the individual Bragg beams on the atomic cloud, as
all lenses in the optical setup are spherical singlets. In
Fig. S3 (e), we show three example images of final inter-
ference patterns, obtained with a CCD camera during
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offline calibrations.
As the Bragg spectroscopy setup uses amplitude holo-

grams, typically only ∼ 0.1% of the incoming laser light
is used for the Bragg pulse. We take advantage of the
strong transition of erbium at 401 nm. First it allows a
wide tuning of V0 via the frequency detuning, ∆, of the
laser light from the atomic resonance. Second, its short
wavelength also leads to a higher maximum q for a fixed
maximum θ as compared to longer laser wavelengths.

In the measurements presented in the main
manuscript, the detuning ∆ = 2π × 71(1) GHz is
chosen such that we achieve suitable depths of the
Bragg potential (typically V0 ∼ h × 10 − 100 Hz),
while spontaneous light scattering remains negligible
on the experimental time scale. We extract V0 via the
Kapitza-Dirac-diffraction technique [5]. We note that
this approach neglects the inhomogeneity of the atomic
cloud over the wavelength of the interference pattern
and the interactions in the system.

IMAGE ANALYSIS

To probe the system’s response to the Bragg pulse,
we image the atomic cloud after a TOF expansion of
30 ms. As described in the main text, we perform ab-
sorption imaging along the z direction. During the first
15 ms of the TOF, the B-field is kept constant to avoid
any sudden change of the dipolar or contact interactions
when the atomic density is high. We then set the B-field
to B = 0.3 G and then rotate its direction to obtain a
maximal imaging-light scattering cross-section and con-
stant imaging conditions. Assuming ballistic expansion,
we obtain the mean momentum distribution n(qx, qy), by
averaging typically four individual images; see Fig. 1 (c)
in main text. Due to slight variations of the cloud’s po-
sition from shot to shot, each single image is recentered
by extracting the cloud’s center from a two-dimensional
Gaussian fit. In order to obtain the momentum dis-
tribution along the excitation direction of our Bragg
pulses, we numerically integrate n(qx, qy) along qx from
[−4.5,+4.5] µm−1 and obtain n(qy) (1 pixel in our imag-
ing corresponds to ∼ 0.32 µm−1). To extract information

on S̃0(q, ω) from n(qy), we measure either the fraction of
excited atoms, F , or the momentum variance, 〈q2

y〉, as
introduced in the main text and detailed below.

The procedure used to extract 〈q2
y〉 depends on q. For

qlz > 0.7, we use an asymmetric region of interest (ROI)
ranging from qy = [−1.9 µm−1, c̃ q], reflecting the fact
that the Bragg excited atoms occur around qy = q > 0.
The factor c̃ varies between [2.5, 4.5] in order to account
for the change in the cloud’s momentum width with as

(increasing for increasing as). At low momenta qlz < 0.5,
the excited fraction of atoms lies completely within the
unscattered peak and only a broadening of the atomic
cloud on resonance is observed. Therefore, we choose a
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FIG. S4. Resonance frequencies at as = 52.5 a0 obtained
from 〈q2y〉-analysis (cirlces) and F-analysis (diamonds). In
the latter case, we do not report on values for qlz < 1.1 as F
can not be reliably extracted.

symmetric ROI from qy = c̃phon[−1.6,+1.6] µm−1, where
c̃phon is varied between [1, 3] for different as. We fur-
thermore note that for qlz < 0.2 we are not able to ex-
tract a reliable signal in our measurements, as a potential
broadening of the atomic cloud on resonance can not be
resolved.

In order to extract the excited fraction F , we use a big-
ger ROI that includes the full thermal fraction of atoms
and fit a three-Gauss function. The individual Gaus-
sian distributions account for the unscattered atoms in
the dBEC N0 (centered at qy ≈ 0), the excited atom in
the Bragg excitation Nexc (centered at qy ≈ q) and the
broad thermal background. The center positions of the
Gaussian distributions for the unscattered atoms and the
thermal background are kept the same. The center for
fitting the excited fraction is limited to [0.95, 1.05] q. F
is then defined as F = Nexc/(N0 +Nexc), thus discarding
the initial (thermal) population at q and focusing on the
mere fraction of atom promoted during the Bragg pulse.

We extract ωq and Fres by a Gaussian fit to the res-
onances in 〈q2

y〉 and F for varying ω and fixed q. For
too low ω, the discrete phase steps of our holograms
do not provide a well-defined excitation energy over the
timescale of the 7-ms Bragg excitation. Hence, in our
analysis, we discard points at 0 < ω/2π ≤ 40 Hz (cor-
responding here to the non-Doppler-corrected frequen-
cies; the 0 Hz-case is the static case). Nevertheless, we
note that an inclusion of these points do not alter the
extracted resonance frequencies within their uncertain-
ties. Comparing the 〈q2

y〉 and F analysis, we also verify
that both analysis procedures give the same resonance
frequencies within their uncertainties; see Fig. S4).
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SCATTERING-LENGTH VALUE AND ITS
UNCERTAINTIES

In our experiments we control the contact interaction
as by means of a magnetic Feshbach resonance, centered
close to 0 G [6]. From previous lattice-spectroscopy mea-
surements, where we probe the excitation gap in the Mott
insulator regime [1], we have obtained a precise map-
ping of the as-to-B conversion. In those measurements,
the statistical uncertainty on as has an average value of
s̄ = 1.8 a0 coming from the uncertainty on the resonance
frequency of the Gaussian fit to the spectroscopic data.
From a fit to the as-data, we obtained a precise B-to-
as conversion function for B ranging from 0 to 3 G [1].
For as ranging from 80 a0 down to 51 a0 (B from 2.1 G
to 0.21 G), our conversion function yields a confidence
interval of width c̄ varying from ± 0.9 to ± 1.3 a0. This
results into a prediction interval of width p̄ =

√
c̄2 + s̄2

varying from ± 1.9 a0 to ± 2.1 a0, which defines our con-
version uncertainty. In addition we estimate the system-
atic uncertainty to be ±3 a0 with a dominant contribu-
tion coming from the uncertainty on the depth of the lat-
tice potential in the spectroscopic measurements (which
crucially determine the on-site Wannier function’s shape
and thus the conversion of the resonance frequency value
into as).

Besides the conversion and systematic uncertainties,
statistical uncertainties on as arise from magnetic field
fluctuations and drifts in our experiments. For each
dataset we perform independent magnetic-field calibra-
tions by performing radio-frequency (RF) spectroscopy
on cold thermal clouds with a 1-ms RF pulse. Here we
use the same experimental B ramp as for the Bragg mea-
surement and apply a RF pulse of 1 ms duration, either
after holding a time th or a time th+τ . The mean value of
these two measurements is used to extract as. Further-
more, it probes the change of B over the Bragg pulse,
which can be up to 3 mG. Additionally, we have inde-
pendently estimated that B fluctuates up to ±2 mG. In
total, we consider a B uncertainty of ±2.5 mG, which we
convert in an as uncertainty based on the B-to-as con-
version formula. This can be up to ± 0.2 a0, which is
the case for our lowest as. In conclusion, in the relevant
regime for this work, the statistic, conversion and sys-
tematic uncertainties on as are of ± 0.2 a0, p̄ ∼ ±2 a0,
and ±3.2 a0, respectively.

CONFIDENCE LEVEL OF THE EXISTENCE OF
A ROTON MINIMUM

In order to confirm the existence of a local minimum
in the excitation spectrum of our dBECs, we compare
the maxon with the roton energy and extract a confi-
dence level from a statistical analysis. First, we focus
on a scattering length value of as = 52.5(2) a0 for which
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z  
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∆ (ω
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1.27
qlz qlz

0.74 1.270.74

FIG. S5. Analysis on the extracted resonance frequencies ωm

(triangles) and ωrot (circles) for 52.5(2) a0 (a) and 52.2(2) a0

(b). In (a, b) filled symbols show data from Fig. 3, where
as empty symbols show data points from Fig. 2 (h). Error
bars represent ± one standard deviation of the corresponding
Gaussian fits. (c) shows the corresponding differences ∆ (after
averaging for 52.5 a0) together with its uncertainties, deduced
from standard error propagation.

two sets of data are available (from Fig. 2 (h) and inset
of Fig. 3). From both resonance frequencies ωm and ωrot,
we obtain the corresponding mean values ω̃m and ω̃rot.
Calculating the difference ∆ = ω̃m − ω̃rot = −0.08(5)ωz
reveals the existence of a roton minimum with a 93%
confidence level; see Fig. S5 (a,c). The existence of a ro-
ton minimum in the spectrum is even more evident by
analyzing ∆ = ωm − ωrot at 52.2(2) a0, where the mini-
mum is deeper. Here, we find ∆ = −0.15(7)ωz giving a
confidence level of 98% for the existence of a minimun in
the spectrum of a stable dBEC; see Fig. S5 (b,c).

THEORY

To compare our experiment with theory predictions,
we perform numerical calculations of the dynamic struc-
ture factor following the procedure detailed in the sup-
plementary information of Ref. [2]. The calculations are
based on a Bogoliubov treatment of an extended GPE
with energy functional ĤGP[ψ], for which our 166Er
dBEC is the ground-state. The classical field ψ describes
the macroscopic wavefunction of N atoms and is nor-
malized to N . The dBEC state, |0〉, corresponds to the
wavefunction ψ0. The Bogoliubov analysis gives access,
in second-order perturbation, to the discrete modes, |l〉,
of the dBEC’s excitation spectrum, to their energies h̄ωl
and the Bogoliubov spatial amplitudes ul and vl.

In the present calculations, we can in principle account
for the effect of the quantum fluctuations, by includ-
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ing the Lee-Huang-Yang term ∆µ[n] = 32g(nas)
3/2(1 +

3ε2dd/2)/3
√
π in ĤGP[ψ] (here g = 4πh̄2as

m and n = |ψ|2).
∆µ[n] has been obtained under a local density approx-
imation [7, 8] when computing the Bogoliubov modes.
The relevance of the inclusion of such a potential correc-
tion has been demonstrated in various studies of dipolar
Bose gases close to the mean field instability [1, 2, 9–
12]. However, as described in the main text, a better
agreement with experimental data, close to the insta-
bility, is found instead by omitting the Lee-Huang-Yang
term. ∆µ[n] is then only included in ĤGP for computing
the dotted line and the corresponding yellow shading in
Fig. 3 of the main text. It is discarded from all other
theory calculations reported in the main text.

The knowledge of the Bogoliubov modes allows one to
compute the bare zero-temperature dynamic structure
factor S0(q, ω), which is defined as [13, 14],

S0(q, ω) =
∑

l

∣∣〈l|δn̂†q|0〉
∣∣2 δ(ω − ωl), (1)

with δn̂q being the density fluctuation operator in mo-
mentum space:

δn̂q =

∫
dr eiq·r

(
ψ̂†(r)ψ̂(r)− 〈0|ψ̂†(r)ψ̂(r)|0〉

)
, (2)

and ψ̂ is the field operator. The matrix elements of the
density fluctuation operator are computed as

〈l|δn̂†q|0〉 =

∫
dr[u∗l (r) + v∗l (r)]eiq·rψ0(r). (3)

Considering Eq. (1), one sees that S0(q, ω) consists of in-
finitely narrow peaks centered around ω = ωl. The inte-
grated amplitude of each peak corresponds to the contri-
bution of the mode l to the quantum density fluctuations
of the dBEC at momentum q.

For our experimental probing, the relevant quantity
is the Fourier-broadened structure factor, S̃0(q, ω) =[
τsinc2(τω′/2) ∗ S0(q, ω′)

]
(ω), where ∗ denotes a con-

volution over ω′. This ultimately writes

S̃0(q, ω) =
∑

l

∣∣〈l|δn̂†q|0〉
∣∣2 τsinc2(τ(ω − ωl)/2). (4)

S̃0(q, ω) shows the same peaks in frequency as S0(q, ω)
but broadened with a typical width 1/τ . The ampli-

tude of S̃0(q, ω) on resonance matches the contribution
of the mode |l〉 to the quantum density fluctuations of
the dBEC at momentum q, multiplied by the Bragg pulse
duration, τ .

CONNECTION BETWEEN MEASURED
QUANTITIES AND DSF

In our experiment, we probe the dynamic structure
factor either via the fraction of atoms excited from the

dBEC peak at qy = 0 to the Bragg peak at qy = q or
via the momentum variance along the y axis. Following
Refs. [13, 14], we derive the relations of our observables

to S̃0(q, ω). The occupation of each mode after the pulse
is given by (Ref. [14], Eq. (2.31)):

Fl =
〈Nl(t = τ)〉 − 〈Nl(t = 0)〉

N
(5)

=
π2V 2

0 τ

h2

∣∣〈l|δn̂†q|0〉
∣∣2 τsinc2(τ(ω − ωl)/2), (6)

with 〈Nl(t)〉 being the mean number of atoms in the mode
l at time t (t = 0 matching the beginning of the Bragg
pulse). Equation (1) of the main text is then found by
simply summing F =

∑
l Fl and using Eq. (4). We note

that in our data analysis, the thermal (i. e. initial) popu-
lation at qy = q is encompassed in the broad background
Gaussian and thus excluded from the definition of F ,
similarly to Eq. (5).

For the momentum variance, the situation is more
complex. Assuming a fully ballistic expansion and a lin-
ear perturbation regime, h̄2〈q2

y〉/2m matches the energy
transferred during the Bragg pulse. For each mode, the
energy transferred during the pulse writes FlNh̄ωl. Us-
ing Eq. (6), one finds

〈q2
y〉 − 〈q2

y〉0 =

4π3mV 2
0 τN

h3

∑

l

∣∣〈l|δn̂†q|0〉
∣∣2 τωlsinc2(τ(ω − ωl)/2). (7)

where 〈q2
y〉0 is the value of 〈q2

y〉 for the dBEC (ofN atoms)
in absence of a Bragg pulse (at t = 0) and typically de-
pends on the value of as. Because of the multiplication
of ωl in the sum, 〈q2

y〉 can only be related to S̃0(q, ω)
approximately. When only one mode contributes signifi-
cantly to S̃0(q, ω), at a given (q, ω) one can write

〈q2
y〉 − 〈q2

y〉0 ≈
8π4mV 2

0 τNε(q)

h4
S̃0(q, ω). (8)

Note that, for a fixed q, ε(q) is a constant multiplying the
overall amplitude but not affecting the peak position in ω.
We highlight again that, in the experiment, we observe no
significant difference in the extracted ε(q) when analyzing
F or 〈q2

y〉; see Fig. S4.
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Summary

In this publication, we demonstrate, for the first time, the existence of states with superso-
lid properties in dipolar systems of erbium and dysprosium. In this particular regime, the
quantum gas spontaneously develops a density modulation while maintaining phase coher-
ence and therefore superfluidity. This counterintuitive quantum phase is in strong relation
to the roton softening of the excitation spectrum and a stabilization mechanism due to quan-
tum fluctuations. In our work, we identify three parameters regimes, corresponding to the
phases of a regular Bose-Einstein condensate, of the supersolid, and of an insulating droplet
array. Moreover, we find that the supersolid formed by 164Dy isotopes has a much longer
lifetime compared to the 166Er isotopes, which roots in the different atom loss rates. Our
work opens the door to experimental studies of the counter-intuitive supersolid phase.
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By combining theory and experiments, we demonstrate that dipolar quantum gases of both 166Er and
164Dy support a state with supersolid properties, where a spontaneous density modulation and a global
phase coherence coexist. This paradoxical state occurs in a well-defined parameter range, separating the
phases of a regular Bose-Einstein condensate and of an insulating droplet array, and is rooted in the roton
mode softening, on the one side, and in the stabilization driven by quantum fluctuations, on the other side.
Here, we identify the parameter regime for each of the three phases. In the experiment, we rely on a detailed
analysis of the interference patterns resulting from the free expansion of the gas, quantifying both its
density modulation and its global phase coherence. Reaching the phases via a slow interaction tuning,
starting from a stable condensate, we observe that 166Er and 164Dy exhibit a striking difference in the
lifetime of the supersolid properties, due to the different atom loss rates in the two systems. Indeed, while in
166Er the supersolid behavior survives only a few tens of milliseconds, we observe coherent density
modulations for more than 150 ms in 164Dy. Building on this long lifetime, we demonstrate an alternative
path to reach the supersolid regime, relying solely on evaporative cooling starting from a thermal gas.

DOI: 10.1103/PhysRevX.9.021012 Subject Areas: Atomic and Molecular Physics,
Condensed Matter Physics,
Quantum Physics

I. INTRODUCTION

Supersolidity is a paradoxical quantum phase of matter
where both crystalline and superfluid order coexist [1–3].
Such a counterintuitive phase, featuring rather antithetic
properties, has been originally considered for quantum
crystals with mobile bosonic vacancies, the latter being
responsible for the superfluid order. Solid 4He has long
been considered a prime system to observe such a phe-
nomenon [4,5]. However, after decades of theoretical and
experimental efforts, an unambiguous proof of superso-
lidity in solid 4He is still missing [6,7].
In search of more favorable and controllable systems,

ultracold atoms emerged as a very promising candidate,
thanks to their highly tunable interactions. Theoretical
works point to the existence of a supersolid ground state
in different cold-atom settings, including dipolar [8]

and Rydberg particles [9,10], cold atoms with a soft-
core potential [11], or lattice-confined systems [7].
Breakthrough experiments with Bose-Einstein condensates
(BECs) coupled to light have recently demonstrated a state
with supersolid properties [12,13]. While in these systems
indeed two continuous symmetries are broken, the crystal
periodicity is set by the laser wavelength, making the
supersolid incompressible.
Another key notion concerns the close relation between a

possible transition to a supersolid ground state and the
existence of a local energy minimum at large momentum
in the excitation spectrum of a nonmodulated superfluid,
known as the roton mode [14]. Since excitations corre-
sponding to a periodic density modulation at the roton
wavelength are energetically favored, the existence of this
mode indicates the system’s tendency to crystallize [15]
and it is predicted to favor a transition to a supersolid
ground state [4,5,9].
Remarkably, BECs of highly magnetic atoms, in which

the particles interact through the long-range and anisotropic
dipole-dipole interaction (DDI), appear to gather several
key ingredients for realizing a supersolid phase. First,
as predicted more than 15 years ago [16,17] and recently
demonstrated in experiments [18,19], the partial attraction
in momentum space due to the DDI gives rise to a roton
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minimum. The corresponding excitation energy, i.e., the
roton gap, can be tuned in the experiments down to
vanishing values. Here, the excitation spectrum softens
at the roton momentum and the system becomes unstable.
Second, there is a nontrivial interplay between the trap
geometry and the phase diagram of a dipolar BEC. For
instance, our recent observations have pointed out the
advantage of axially elongated trap geometries (i.e., cigar
shaped) compared to the typically considered cylindrically
symmetric ones (i.e., pancake shaped) in enhancing the
visibility of the roton excitation in experiments. Last but
not least, while the concept of a fully softened mode is
typically related to instabilities and disruption of a coherent
quantum phase, groundbreaking works in the quantum-gas
community have demonstrated that quantum fluctuations
can play a crucial role in stabilizing a dipolar BEC [20–26].
Such a stabilization mechanism enables the existence,
beyond the mean-field instability, of a variety of stable
ground states, from a single macrodroplet [22,24,27] to
striped phases [28], and droplet crystals [29]; see also
related works [30–33]. For multidroplet ground states,
efforts have been devoted to understanding if a phase
coherence among ground-state droplets could be estab-
lished [28,29]. However, previous experiments with 164Dy
have shown the absence of phase coherence across the
droplets [28], probably due to the limited atom numbers.
Droplet ground states, quantum stabilization, and dipolar

rotons have caused a huge amount of excitement with very
recent advancements adding key pieces of information to
the supersolid scenario. The quench experiments in an
166Er BEC at the roton instability have revealed out-of-
equilibrium modulated states with an early-time phase
coherence over a timescale shorter than a quarter of the
oscillation period along the weak-trap axis [18]. In the same
work, it has been suggested that the roton softening
combined with the quantum stabilization mechanism
may open a promising route towards a supersolid ground
state. A first confirmation came from a recent theoretical
work [34], considering an Er BEC in an infinite elongated
trap with periodic boundary conditions and tight transverse
confinement. The supersolid phase appears to exist within a
narrow region in interaction strength, separating a roton
excitation with a vanishing energy and an incoherent
assembly of insulating droplets. Almost simultaneously,
experiments with 162Dy BECs in a shallow elongated trap,
performing a slow tuning of the contact interaction,
reported on the production of stripe states with phase
coherence persisting up to half of the weak trapping period
[35]. More recently, such observations have been con-
firmed in another 162Dy experiment [36]. Here, theoretical
calculations showed the existence of a phase-coherent
droplet ground state, linking the experimental findings to
the realization of a state with supersolid properties. The
results on 162Dy show, however, transient supersolid prop-
erties whose lifetime is limited by fast inelastic losses

caused by three-body collisions [35,36]. These realizations
raise the crucial question of whether a long-lived or
stationary supersolid state can be created despite the
usually non-negligble atom losses and the crossing of a
discontinuous phase transition, which inherently creates
excitations in the system.
In this work, we study both experimentally and theo-

retically the phase diagram of degenerate gases of highly
magnetic atoms beyond the roton softening. Our inves-
tigations are carried out using two different experimental
setups producing BECs of 166Er [22,37] and of 164Dy [38]
and rely on a fine-tuning of the contact-interaction strength
in both systems. In the regime of interest, these two atomic
species have different contact-interaction scattering lengths
as, whose precise dependence on the magnetic field is
known only for Er [18,22,39], and different three-body-loss
rate coefficients. Moreover, Er and Dy possess different
magnetic moments μ and masses m, yielding the dipolar
lengths, add ¼ μ0μ

2m=12πℏ2, of 65.5a0 and 131a0, respec-
tively. Here, μ0 is the vacuum permeability, ℏ ¼ h=2π the
reduced Planck constant, and a0 the Bohr radius. For both
systems, we find states showing hallmarks of supersolidity,
namely, the coexistence of density modulation and global
phase coherence. For such states, we quantify the extent of
the as parameter range for their existence and study their
lifetime. For 166Er, we find results very similar to the one
recently reported for 162Dy [35,36], both systems being
limited by strong three-body losses, which destroy the
supersolid properties in about half of a trap period.
However, for 164Dy, we have identified an advantageous
magnetic-field region where losses are very low and large
BECs can be created. In this condition, we observe that the
supersolid properties persist over a remarkably long time,
well exceeding the trap period. Based on such a high
stability, we finally demonstrate a novel route to reach the
supersolid state, based on evaporative cooling from a
thermal gas.

II. THEORETICAL DESCRIPTION

As a first step in our study of the supersolid phase in
dipolar BECs, we compute the ground-state phase diagram
for both 166Er and 164Dy quantum gases. The gases are
confined in a cigar-shaped harmonic trap, as illustrated in
Fig. 1(a). Our theory is based on numerical calculations of
the extended Gross-Pitaevskii equation [40], which
includes our anisotropic trapping potential, the short-range
contact and long-range dipolar interactions at a mean-field
level, as well as the first-order beyond-mean-field correc-
tion in the form of a Lee-Huang-Yang (LHY) term
[18,22–24,27]. We note that, while both the exact strength
of the LHY term and its dependence on the gas character-
istics are under debate [18,19,25,31,41], the importance of
such a term, scaling with a higher power in density, is
essential for stabilizing states beyond the mean-field
instability [18,25,41]; see also Refs. [8,42–44].
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Our theoretical results are summarized in Fig. 1. By
varying the condensed-atom number N and as, the phase
diagram shows three very distinct phases. To illustrate
them, we first describe the evolution of the integrated in situ
density profile nðyÞ with fixed N for varying as, Fig. 1(b).
The first phase, appearing at large as, resembles a regular
dilute BEC. It corresponds to a nonmodulated density
profile of low peak density and large axial size σy exceed-
ing several times the corresponding harmonic oscillator
length (ly ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωy

p
); see Fig. 1(e) and the region

denoted BEC in Figs. 1(f) and 1(g). The second phase
appears when decreasing as down to a certain critical value,
a�s . Here, the system undergoes an abrupt transition to a
periodic density-modulated ground state, consisting of an
array of overlapping narrow droplets, each of high peak
density. Because the droplets are coupled to each other via a
density overlap, later quantified in terms of the link strength
S, particles can tunnel from one droplet to a neighboring
one, establishing a global phase coherence across the cloud;
see Fig. 1(d). Such a phase, in which periodic density
modulation and phase coherence coexist, is identified as
the supersolid (SSP) one [10,34]; see the SSP region in
Figs. 1(f) and 1(g). When further decreasing as, we observe
a fast reduction of the density overlap, which eventually
vanishes; see Fig. 1(c). Here, the droplets become fully
separated. Under realistic experimental conditions, it is
expected that the phase relation between such droplets
cannot be maintained; see later discussion. We identify this
third phase as the one of an insulating droplet (ID) array

[27,28,45]; see the ID region in Figs. 1(f) and 1(g). For low
N, we find a single droplet of high peak density, as in
Refs. [24,27]; see dark blue region in Fig. 1(f). Generally
speaking, our calculations show that the number of droplets
in the array decreases with lowering as or N. The existence
of these three phases (BEC, SSP, ID) is consistent with
recent calculations considering an infinitely elongated
Er BEC [34] and a cigar-shaped 162Dy BEC [36], illustrat-
ing the generality of this behavior in dipolar gases.
To study the supersolid character of the density-modu-

lated phases, we compute the average of the wave function
overlap between neighboring droplets S. As an ansatz to
extract S, we use a Gaussian function to describe the wave
function of each individual droplet. This is found to be an
appropriate description from an analysis of the density
profiles of Figs. 1(b)–1(d); see also Ref. [46]. For two
droplets at a distance d and of identical Gaussian widths σy
along the array direction, S is simply S ¼ expð−d2=4σ2yÞ.
Here, we generalize the computation of the wave function
overlap to account for the difference in widths and
amplitudes among neighboring droplets. This analysis
allows us to distinguish between the two types of modu-
lated ground states, SSP and ID in Figs. 1(f) and 1(g).
Within the Josephson-junction picture [47–49], the tunnel-
ing rate of atoms between neighboring droplets depends on
the wave function overlap, and an estimate for the single-
particle tunneling rate can be derived within the Gaussian
approximation [46]; see also Ref. [40]. The ID phase
corresponds to vanishingly small values of S, yielding
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FIG. 1. Phase diagram of an 166Er and a 164Dy dipolar BEC in a cigar-shaped trap. (a) Illustration of the trap geometry with atomic
dipoles oriented along z. (b) Integrated density profile as a function of as for an 166Er ground state of N ¼ 5 × 104. In the color bar, the
density scale is upper limited to 4 × 104 μm−1 in order to enhance the visibility in the supersolid regime. (c)–(e) Exemplary density
profiles for an insulating droplet state (ID) at as ¼ 49a0, for a state with supersolid properties (SSP) at 51a0, and for a BEC at 52a0,
respectively. (f),(g) Phase diagrams for 166Er and 164Dy for trap frequencies ωx;y;z ¼ 2π × ð227; 31.5; 151Þ and 2π × ð225; 37; 135Þ Hz,
respectively. The gray color identifies ground states with a single peak in nðyÞ of large Gaussian width, σy > 2ly. The dark blue region
in (f) shows the region where nðyÞ exhibits a single sharp peak, σy ≤ 2ly, and no density modulation. The red-to-blue color map shows S
in the case of a density-modulated nðyÞ. In (g) the color map is upper limited to use the same color code as in (f) and to enhance visibility
in the low-N regime. The inset in (g) shows the calculated density profile for 164Dy at N ¼ 7 × 104 and as ¼ 91a0.
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tunneling times extremely long compared to any other
relevant timescale. In contrast, the supersolid phase is
identified by a substantial value of S, with a correspond-
ingly short tunneling time.
As shown in Figs. 1(f) and 1(g), a comparative analysis

of the phase diagram for 166Er and 164Dy reveals similarities
between the two species (see also Ref. [36]). A supersolid
phase is found for sufficiently high N, in a narrow region
of as, upper bounded by the critical value as�ðNÞ. For
intermediate N, a�s increases with increasing N. We note
that, for low N, the nonmodulated BEC evolves directly
into a single droplet state for decreasing as [50]. In this
case, no supersolid phase is found in between; see also
Refs. [24,27]. Despite the general similarities, we see that
the supersolid phase for 164Dy appears for lower atom
number than for Er and has a larger extension in as. This is
mainly due to the different add and strength of the LHY
term. We note that, at large N and for decreasing as, Dy
exhibits ground states with a density modulation appearing
first in the wings, which then progresses inwards until a
substantial modulation over the whole cloud is established
[51]; see inset of Fig. 1(g). In this regime, we also observe
that a�s decreases with increasing N. These types of states
have not been previously reported and, although challeng-
ing to access in experiments because of the large N, they
deserve further theoretical investigations.

III. EXPERIMENTAL SEQUENCE
FOR 166Er AND 164Dy

To experimentally access the above-discussed physics, we
produce dipolar BECs of either 166Er or 164Dy atoms. These
two systems are created in different setups and below we
summarize the main experimental steps; see also Ref. [40].
Erbium.—We prepare a stable 166Er BEC following

the scheme of Ref. [18]. At the end of the preparation,
the Er BEC contains about N ¼ 8 × 104 atoms at
as ¼ 64.5a0. The sample is confined in a cigar-shaped
optical dipole trap with harmonic frequencies ωx;y;z ¼
2π × ð227; 31.5; 151Þ Hz. A homogeneous magnetic field
B polarizes the sample along z and controls the value of as
via a magnetic Feshbach resonance (FR) [18,22,40]. Our
measurements start by linearly ramping down as within
20 ms and waiting an additional 15 ms so that as reaches its
target value [40]. We note that ramping times between 20
and 60 ms have been tested in the experiment and we do not
record a significant difference in the system’s behavior.
After the 15-ms stabilization time, we then hold the sample
for a variable time th before switching off the trap. Finally,
we let the cloud expand for 30 ms and perform absorption
imaging along the z (vertical) direction, from which we
extract the density distribution of the cloud in momentum
space, nðkx; kyÞ.
Dysprosium.—The experimental procedure to create a

164Dy BEC follows the one described in Ref. [38]; see also

Ref. [40]. Similarly to Er, the Dy BEC is also confined in a
cigar-shaped optical dipole trap and a homogeneous
magnetic field B sets the quantization axis along z and
the value of as. For Dy, we will discuss our results in
terms of magnetic field B, since the as-to-B conversion is
not well known in the magnetic-field range considered
[25,40,41,52]. In a first set of measurements, we first
produce a stable BEC of about N ¼ 3.5 × 104 condensed
atoms at a magnetic field of B ¼ 2.5 G and then probe the
phase diagram by tuning as. Here, before ramping the
magnetic field to access the interesting as regions, we
slowly increase the power of the trapping beams within
200 ms. The final trap frequencies are ωx;y;z ¼ 2π ×
ð300; 16; 222Þ Hz. After preparing a stable BEC, we ramp
B to the desired value within 20 ms and hold the sample for
th [40]. In a second set of measurements, we study a
completely different approach to reach the supersolid state.
As discussed later, here we first prepare a thermal sample at
a B value where supersolid properties are observed and then
further cool the sample until a transition to a coherent
droplet-array state is reached. In both cases, at the end
of the experimental sequence, we perform absorption
imaging after typically 27 ms of time-of-flight (TOF)
expansion. The imaging beam propagates horizontally
under an angle α of ≈45° with respect to the weak axis
of the trap (y). From the TOF images, we thus extract
nðkY; kzÞ with kY ¼ cosðαÞky þ sinðαÞkx.
A special property of 164Dy is that its background

scattering length is smaller than add. This allows us to
enter the supersolid regime without the need of setting B
close to a FR, as is done for 166Er and 162Dy, which
typically causes severe atom losses due to increased three-
body-loss coefficients. In contrast, in the case of 164Dy, the
supersolid regime is reached by ramping B away from the
FR pole used to produce the stable BEC via evaporative
cooling, as the as range of Fig. 1(g) lies close to the
background as reported in Ref. [52]; see also Ref. [40]. At
the background level, three-body-loss coefficients below
1.3 × 10−41 m6 s−1 have been reported for 164Dy [25].

IV. DENSITY MODULATION AND
PHASE COHERENCE

The coexistence of density modulation and phase coher-
ence is the key feature that characterizes the supersolid
phase and allows us to discriminate it from the BEC and ID
cases. To experimentally probe this aspect in our dipolar
quantum gases, we record their density distribution after a
TOF expansion for various values of as across the phase
diagram. As for a BEC in a weak optical lattice [53] or for
an array of BECs [54–56], the appearance of interference
patterns in the TOF images is associated with a density
modulation of the in situ atomic distribution. Moreover, the
shot-to-shot reproducibility of the patterns (in amplitude
and position) and the persistence of fringes in averaged
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pictures, obtained from many repeated images taken under
the same experimental conditions, reveals the presence of
phase coherence across the sample [56].
Figure 2 exemplifies snapshots of the TOF distributions

for Er, measured at three different as values; see
Figs. 2(a)–2(c). Even if very close in scattering length,
the recorded nðkx; kyÞ shows a dramatic change in behavior.
For as ¼ 54.7ð2Þa0, we observe a nonmodulated distribu-
tion with a density profile characteristic of a dilute BEC.
When lowering as to 53.8ð2Þa0, we observe the appearance
of an interference pattern in the density distribution,
consisting of a high central peak and two almost symmetric
low-density side peaks [57]. Remarkably, the observed
pattern is very reproducible with a high shot-to-shot
stability, as shown in the repeated single snapshots and
in the average image [Figs. 2(b) and 2(e)]. This behavior
indicates a coexistence of density modulation and global
phase coherence in the in situ state, as expected in the
supersolid phase. This observation is consistent with
our previous quench experiments [18] and with the recent
162Dy experiments [35,36]. When further lowering as to
53.3ð2Þa0, complicated patterns develop with fringes
varying from shot to shot in number, position, and
amplitude, signaling the persistence of in situ density
modulation. However, the interference pattern is com-
pletely washed out in the averaged density profiles
[Fig. 2(f)], pointing to the absence of a global phase

coherence. We identify this behavior as the one of
ID states.
Toy model—To get an intuitive understanding of the

interplay between density modulation and phase coherence
and to estimate the role of the different sources of
fluctuations in our experiment, we here develop a simple
toy model, which is inspired by Ref. [56]; see also
Ref. [40]. In our model, the initial state is an array of
ND droplets containing in total N atoms. Each droplet is
described by a one-dimensional Gaussian wave function
ψ iðyÞ of amplitude αi, phase ϕi, width σi, and center yi. To
account for fluctuations in the experiments, we allow αi,
di ¼ yi − yi−1, and σi to vary by 10% around their expect-
ation values. The spread of the phases ϕi among the
droplets is treated specially as it controls the global phase
coherence of the array. By fixing ϕi ¼ 0 for each droplet or
by setting a random distribution of ϕi, we range from full
phase coherence to the incoherent cases. Therefore, the
degree of phase incoherence can be varied by changing the
standard deviation of the distribution of ϕi.
To mimic our experiment, we compute the free evolution

of each individual ψ i over 30 ms, and then compute the
axial distribution nðy; tÞ ¼ jPiψ iðy; tÞj2, from which we
extract the momentum distribution nðkyÞ, also accounting
for the finite imaging resolution [40]. For each computation
run, we randomly draw ND values for ϕi, as well as of σi,
di, and αi, and extract nðkyÞ. We then collect a set of nðkyÞ
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FIG. 2. Coherence in the interference patterns: measurement and toy model. (a)–(c) Examples of single TOF absorption images at
th ¼ 5 ms for 166Er at as ¼ f54.7ð2Þ; 53.8ð2Þ; 53.3ð2Þga0, respectively. Corresponding average pictures for 100 images obtained under
the same experimental conditions (d)–(f) and their Fourier transform (FT) profiles (g)–(i). The gray lines show the FT norm jF ½n�ðyÞj of
the individual profiles. The averages, nM (blue squares) and nΦ (red dots), are fitted to three-Gaussian functions (blue solid line and
brown dashed line, respectively). The dotted lines show the components of the total fitted function corresponding to the two side peaks
in nΦ. (j)–(l) Interference patterns from the toy-model realizations with 100 independent draws using ND ¼ 4, d ¼ 2.8 μm, σy ¼
0.56 μm (see text) and for different ϕi distributions: (j) ϕi ¼ 0, (k) ϕi normally distributed around 0 with 0.2π standard deviation, (l) ϕi
uniformly distributed between 0 and 2π. (m)–(o) Corresponding FT profiles for the toy model, same color code as (g)–(i).
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by drawing these values multiple times using the same
statistical parameters and compute the expectation value,
hnðkyÞi; see Figs. 2(j)–2(l). The angled brackets denote the
ensemble average.
The results of our toy model show large similarity with

the observed behavior in the experiment. In particular,
while for each single realization one can clearly distinguish
multipeak structures regardless of the degree of phase
coherence between the droplets, the visibility of the
interference pattern in the averaged nðkyÞ survives only
if the standard deviation of the phase fluctuations between
droplets is small (roughly, below 0.3π). In the incoherent
case, we note that the shape of the patterns strongly varies
from shot to shot. Interestingly, the toy model also shows
that the visibility of the coherent peaks in the average
images is robust against the typical shot-to-shot fluctua-
tions in droplet size, amplitude, and distance that occur in
the experiments; see Figs. 2(j) and 2(k).
Probing density modulation and phase coherence.—To

separate and quantify the information on the in situ density
modulation and its phase coherence,we analyze themeasured
interference patterns in Fourier space [36,58–60]. Here, we
extract two distinct averaged density profiles, nM and nΦ.
Their structures at finite y spatial frequency (i.e., in Fourier
space) quantify the two abovementioned properties.
More precisely, we perform a Fourier transform (FT) of

the integrated momentum distributions nðkyÞ denoted
F ½n�ðyÞ. Generally speaking, modulations in nðkyÞ induce
peaks at finite spatial frequency, y ¼ y�, in the FT norm,
jF ½n�ðyÞj; see Figs. 2(g)–2(i) and 2(m)–2(o). Following the
above discussion (see also Refs. [56,61]), such peaks in an
individual realization hence reveal a density modulation of
the corresponding in situ state, with a wavelength roughly
equal to y�. Consequently, we consider the average of the
FT norm of the individual images, nMðyÞ ¼ hjF ½n�ðyÞji, as
the first profile of interest. The peaks of nM at finite y then
indicate the mere existence of an in situ density modulation
of roughly constant spacing within the different realiza-
tions. As the second profile of interest, we use the FT
norm of the average profile hnðkyÞi, nΦðyÞ ¼ jF ½hni�ðyÞj.
Connecting to our previous discussion, the peaks of nΦ at
finite y point to the persistence of a modulation in the
average hnðkyÞi, which we identified as a hallmark for a
global phase coherence within the density-modulated state.
In particular, we point out that a perfect phase coherence,
implying identical interference patterns in all the individual
realizations, yields nM ¼ nΦ and, thus, identical peaks
at finite y in both profiles. We note that, by linearity, nΦ
also matches the norm of the average of the full FT
of the individual images, i.e., nΦðyÞ ¼ jhF ½n�ðyÞij; see
also Ref. [40].
Figures 2(g)–2(i) and 2(m)–2(o) demonstrate the sig-

nificance of our FT analysis scheme by applying it
to the momentum distributions from the experiment
[Figs. 2(d)–2(f)] and the momentum distributions from

the toy model [Figs. 2(j)–2(l)], respectively. As expected,
for the BEC case, both nM and nΦ show a single peak at
zero spatial frequency, y ¼ 0, characterizing the absence of
density modulation, Fig. 2(g). In the case of phase-coherent
droplets, Fig. 2(e), we observe that nM and nΦ are
superimposed and both show two symmetric side peaks
at finite y, in addition to a dominant peak at y ¼ 0; see
Fig. 2(h). In the incoherent droplet case, we find that, while
nM still shows side peaks at finite y, the ones in nΦ wash
out from the averaging, Figs. 2(f), 2(i), 2(l), and 2(o). For
both coherent and incoherent droplet arrays, the toy-model
results show behaviors matching the above description,
providing a further justification of our FT analysis scheme;
see Figs. 2(j)–2(o). Our toy model additionally proves two
interesting features. First, it shows that the equality
nM ¼ nΦ, revealing the global phase coherence of a
density-modulated state, is remarkably robust to noise in
the structure of the droplet arrays; see Figs. 2(j) and 2(m).
Second, our toy model, however, shows that phase fluc-
tuations across the droplet array on the order of 0.2π
standard deviation are already sufficient to make nΦ and
nM deviate from each other; see Figs. 2(k) and 2(n). The
incoherent behavior is also associated with strong varia-
tions in the side peak amplitude of the individual realiza-
tions of jF ½n�j, connecting, e.g., to the observations
of Ref. [36].
Finally, to quantify the density modulation and the

phase coherence, we fit a three-Gaussian function to both
nMðyÞ and nΦðyÞ and extract the amplitudes of the
finite-spatial-frequency peaks, AM and AΦ, for both dis-
tributions, respectively. Note that for a BEC, which is a
phase-coherent state, AΦ will be zero since it probes
only finite-spatial-frequency peaks; see Figs. 2(g)–2(i)
and 2(m)–2(o).

V. CHARACTERIZATION OF THE
SUPERSOLID STATE

We are now in the position to study two key aspects,
namely, (i) the evolution of the density modulation and
phase coherence across the BEC-supersolid-ID phases and
(ii) the lifetime of the coherent density-modulated state in
the supersolid regime.
Evolution of the supersolid properties across the phase

diagram.—The first type of investigation is conducted with
166Er since, contrary to 164Dy, its scattering length and
dependence on the magnetic field has been precisely
characterized [18,22]. After preparing the sample, we ramp
as to the desired value and study the density patterns as well
as their phase coherence by probing the amplitudes AM
and AΦ as a function of as after th ¼ 5 ms. As shown in
Fig. 3(a), in the BEC region (i.e., for large as), we observe
that both AM and AΦ are almost zero, evidencing the
expected absence of a density modulation in the system. As
soon as as reaches a critical value a�s , the system’s behavior
dramatically changes with a sharp and simultaneous
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increase of both AM and AΦ. While the strength of AM
and AΦ varies with decreasing as—first increasing then
decreasing—we observe that their ratio AΦ=AM remains
constant and close to unity over a narrow as range below a�s
of ≳1a0 width; see the inset of Fig. 3(a). This behavior
pinpoints the coexistence in the system of phase coherence
and density modulation, as predicted to occur in the
supersolid regime. For ðas − a�sÞ < −1a0, we observe that
the two amplitudes depart from each other. Here, while the
density modulation still survives with AM saturating to a
lower finite value, the global phase coherence is lost with
AΦ=AM < 1, as expected in the insulating droplet phase.
Note that we also study the evolution of AΦ and AM in
164Dy, but as a function of B, and find a qualitatively similar
behavior.
To get a deeper insight on how our observations compare

to the phase-diagram predictions (see Fig. 1), we study the
link strength S as a function of as; see Fig. 3(b). Since S
quantifies the density overlap between neighboring drop-
lets and is related to the tunneling rate of atoms across the
droplet array, it thus provides information on the ability of

the system to establish or maintain a global phase coher-
ence. In this plot, we set S ¼ 0 in the case where no
modulation is found in the ground state. At the BEC-to-
supersolid transition, i.e., at as ¼ a�s , a density modulation
abruptly appears in the system’s ground state with S taking
a finite value. Here, S is maximal, corresponding to a
density modulation of minimal amplitude. Below the
transition, we observe a progressive decrease of S with
lowering as, pointing to the gradual reduction of the
tunneling rate in the droplet arrays. Close to the transition,
we estimate a large tunneling compared to all other relevant
timescales. However, we expect this rate to become vanish-
ingly small, on the sub-Hertz level [40], when decreasing
as 1–2a0 below a�s. Our observation also hints at the smooth
character of the transition from a supersolid to an ID phase.
The general trend of S, including the extension in as

where it takes nonvanishing values, is similar to the as
behavior of AM and AΦ observed in the experiments [62].
We observe in the experiments that the as dependence at
the BEC-to-supersolid transition appears sharper than at
the supersolid-to-ID interface, potentially suggesting a
different nature of the two transitions. However, more
investigations are needed since atom losses, finite temper-
ature, and finite-size effects can affect, and in particular
smoothen, the observed behavior [64–66]. Moreover,
dynamical effects, induced by, e.g., excitations created at
the crossing of the phase transitions or atom losses during
the time evolution, can also play a substantial role in the
experimental observations, complicating a direct compari-
son with the ground-state calculations. The time dynamics
as well as a different scheme to achieve a state with
supersolid properties is the focus of the remainder of
the paper.
Lifetime of the supersolid properties.—Having identified

the as range in which our dipolar quantum gas exhibits
supersolid properties, the next central question concerns the
stability and lifetime of such a fascinating state. Recent
experiments on 162Dy have shown the transient character of
the supersolid properties, whose lifetime is limited by
three-body losses [35,36]. In these experiments, the phase
coherence is found to survive up to 20 ms after the density
modulation has formed. This time corresponds to about half
of the weak-trap period. Stability is a key issue in the
supersolid regime, especially since the tuning of as, used to
enter this regime, has a twofold consequence on the
inelastic loss rate. First, it gives rise to an increase in
the peak density [see Figs. 1(b)–1(d)] and, second, it may
lead to an enhancement of the three-body-loss coefficient.
We address this question by conducting comparative

studies on 166Er and 164Dy gases. These two species allow
us to tackle two substantially different scattering scenarios.
Indeed, the background value of as for 166Er (as well as for
162Dy) is larger than add. Thus, reaching the supersolid
regime, which occurs at add=as ≈ 1.2–1.4 in our geometry,
requires us to tune B close to the pole of a FR. This tuning
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FIG. 3. Supersolid behavior across the phase diagram. Mea-
sured side peak amplitudes, AΦ (circles) and AM (squares), with
their ratio in inset (a), and calculated link strength S (b) as a
function of as − a�s for 166Er. For nonmodulated states, we set
S ¼ 0 in theory and AΦ=AM ¼ 0 in experiment (crosses in inset).
In the inset, open and closed symbols correspond to AΦ=AM >
0.8 and ≤ 0.8, respectively. In the experiments, we probe the
system at a fixed th ¼ 5 ms. Horizontal error bars are derived
from our experimental uncertainty in B, vertical error bars
corresponding to the statistical uncertainty from the fit are smaller
than the data points. The measured and calculated critical
scattering lengths are a�s ¼ 54.9ð2Þa0 and 51.15a0, respectively
[62]. The numerical results are obtained for the experimental trap
frequencies and for a constant N ¼ 5 × 104 [63].
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also causes an increase of the three-body-loss rate. In
contrast, 164Dy realizes the opposite case with the back-
ground scattering length smaller than add. This feature
brings the important advantage of requiring tuning B away
from the FR pole to reach the supersolid regime. As we
describe below, this important difference in scattering
properties leads to a strikingly longer lifetime of the
164Dy supersolid properties with respect to 166Er and to
the recently observed behavior in 162Dy [35,36].
The measurements proceed as follows. For both 166Er

and 164Dy, we first prepare the quantum gas in the stable
BEC regime and then ramp as to a fixed value in the
supersolid regime for which the system exhibits a state of
coherent droplets (i.e., AΦ=AM ≈ 1); see previous discus-
sion. Finally, we record the TOF images after a variable th
and we extract the time evolution of both AΦ and AM.
The study of these two amplitudes will allow us to answer
the question of whether the droplet structure—i.e., the
density modulation in space—persists in time whereas
the coherence among droplets is lost (AM > AΦ → 0) or
if the density structures themselves vanish in time
(AM ≈ AΦ → 0).
As shown in Fig. 4, for both species, we observe that AΦ

and AM decay almost synchronously with a remarkably
longer lifetime for 164Dy [Fig. 4(b)] than 166Er [Fig. 4(a)].

Interestingly, AΦ and AM remain approximately equal
during the whole time dynamics; see insets of Figs. 4(a)
and 4(b). This behavior indicates that it is the strength of the
density modulation itself and not the phase coherence
among droplets that decays over time. Similar results have
been found theoretically in Ref. [67]. We connect this
decay mainly to three-body losses, especially detrimental
for 166Er, and possible excitations created while crossing
the BEC-to-supersolid phase transition [40]. For compari-
son, the inset of Fig. 4(a) shows also the behavior in the ID
regime for 166Er, where AΦ=AM < 1 already at short th and
remains so during the time evolution [40].
To get a quantitative estimate of the survival time of

the phase-coherent and density-modulated state, we fit a
simple exponential function to AΦ and extract tΦ, defined
as the 1=10 lifetime; see Fig. 4. For 166Er, we extract
tΦ ¼ 38ð6Þ ms. For th > tΦ, the interference patterns
become undetectable in our experiment and we recover
a signal similar to the one of a nonmodulated BEC state [as
in Figs. 2(a) and 2(d)]. These results are consistent with
recent observations of transient supersolid properties in
162Dy [35]. For 164Dy, we observe that the coherent density-
modulated state is remarkably long-lived. Here, we find
tΦ ¼ 152ð13Þ ms.
The striking difference in the lifetime and robustness of

the supersolid properties between 166Er and 164Dy becomes
even more visible when studying tΦ as a function of as
(B for Dy). As shown in Fig. 5, tΦ for Er remains
comparatively low in the investigated supersolid regime
and slightly varies between 20 and 40 ms. Similarly to the
recent studies with 162Dy, this finding reveals the transient
character of the state and opens the question of whether a
stationary supersolid state can be reached with these
species. On the contrary, for 164Dy we observe that tΦ
first increases with B in the range from 1.8 G to about
1.98 G. Then, for B > 1.98 G, tΦ acquires a remarkably
large and almost constant value of about 150 ms over a
wide B range. This shows the long-lived character of the
supersolid properties in our 164Dy quantum gas. We note
that over the investigated range, as is expected to monoto-
nously increase with B [40]. Such a large value of tΦ
exceeds not only the estimated tunneling time across
neighboring droplets but also the weak-axis trap period,
which together set the typical timescale to achieve global
equilibrium and to study collective excitations.

VI. CREATION OF STATES WITH SUPERSOLID
PROPERTIES BY EVAPORATIVE COOLING

The long-lived supersolid properties in 164Dy motivate us
to explore an alternative route to cross the supersolid phase
transition, namely, by evaporative cooling instead of
interaction tuning. For this set of experiments, we have
modified the waists of our trapping beams in order to
achieve quantum degeneracy in tighter traps with respect to
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the one used for condensation in the previous set of
measurements. In this way, the interference peaks in the
supersolid region are already visible without the need to
apply a further compression of the trap since the side-
to-central-peak distance in the momentum distribution
scales roughly as 1=lz [18]. Forced evaporative cooling
is performed by reducing the power of the trapping beams
piecewise linearly in subsequent evaporation steps until a
final trap with frequencies 2π × ð225; 37; 134Þ Hz is
achieved. During the whole evaporation process, which
has an overall duration of about 3 s, the magnetic field is
kept either at B ¼ 2.43 G, where we observe long-lived
interference patterns, or at B ¼ 2.55 G, where we produce
a stable nonmodulated BEC. We note that these two B
values are very close without any FR lying in between [40].
Figure 6 shows the phase transition from a thermal cloud

to a final state with supersolid properties by evaporative
cooling. In particular, we study the phase transition by
varying the duration of the last evaporation ramp, while
maintaining the initial and final trap-beam power fixed.
This procedure effectively changes the atom number and
temperature in the final trap while keeping the trap
parameters unchanged, which is important to not alter
the final ground-state phase diagram of the system. At the
end of the evaporation, we let the system equilibrate and
thermalize for th ¼ 100 ms, after which we switch off the
trap, let the atoms expand for 26.5 ms, and finally perform
absorption imaging. We record the TOF images for differ-
ent ramp durations, i.e., for different thermalization times.
For a short ramp, too many atoms are lost such that the
critical atom number for condensation is not reached, and
the atomic distribution remains thermal; see Fig. 6(a).

By increasing the ramp time, the evaporative cooling
becomes more efficient and we observe the appearance of a
bimodal density profile with a narrow and dense peak at the
center, which we identify as a regular BEC; see Fig. 6(b).
By further cooling, the BEC fraction increases and the
characteristic pattern of the supersolid state emerges; see
Figs. 6(c) and 6(d). The observed evaporation process
shows a strikingly different behavior in comparison
with the corresponding situation at B ¼ 2.55 G, where
the usual thermal-to-BEC phase transition is observed; see
Figs. 6(i)–6(l).
We finally probe the lifetime of the supersolid properties

by extracting the time evolution of both the amplitudes AΦ
and AM, as previously discussed. We use the same
experimental sequence as the one in Fig. 6(d)—i.e., 300-
ms duration of the last evaporation ramp and 100 ms of
equilibration time—and subsequently hold the sample in
the trap for a variable th. As shown in Fig. 7(a), we observe
a very long lifetime with both amplitudes staying large and
almost constant over more than 200 ms. At longer holding
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time, we observe a slow decay of AΦ and AM, following the
decay of the atom number. Moreover, during the dynamics,
the ratio AΦ=AM stays constant. The long lifetime of
the phase-coherent density modulation is also directly
visible in the persistence of the interference patterns in
the averaged momentum density profiles [similar to
Fig. 2(e)], both at intermediate and long times; see
Figs. 7(b) and 7(c), respectively. For even longer th, we
cannot resolve anymore interference patterns in the TOF
images. Here, we recover a signal consistent with a regular
BEC of low N.
Achieving the coherent droplet phase via evaporative

cooling is a very powerful alternative path to supersolidity.
We speculate that, for instance, excitations, which might be
important when crossing the phase transitions by inter-
action tuning, may be small or removed by evaporation
when reaching this state kinematically. Other interesting
questions, open to future investigations, are the nature of
the phase transition, the critical atom number, and the role
of noncondensed atoms.

VII. CONCLUSIONS

For both 166Er and 164Dy dipolar quantum gases, we have
identified and studied states showing hallmarks of super-
solidity, namely, global phase coherence and spontaneous
density modulations. These states exist in a narrow scatter-
ing-length region, lying between a regular BEC phase and a
phase of an insulating droplet array. While for 166Er,
similarly to the recently reported 162Dy case [35,36], the
observed supersolid properties fade out over a compara-
tively short time because of atom losses, we find that 164Dy
exhibits remarkably long-lived supersolid properties.
Moreover, we are able to directly create stationary states

with supersolid properties by evaporative cooling, demon-
strating a powerful alternative approach to interaction
tuning on a BEC. This novel technique provides prospects
of creating states with supersolid properties while avoiding
additional excitations and dynamics. The ability to produce
long-lived supersolid states paves the way for future
investigations on quantum fluctuations and many-body
correlations, as well as of collective excitations in such
an intriguing many-body quantum state. A central goal of
these future investigations lies in proving the superfluid
character of this phase, beyond its global phase coherence
[7,34,68–70].
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GROUND STATE CALCULATIONS

We perform numerical calculations of the ground state
following the procedure detailed in the supplementary
information of Ref. [1]. The calculations are based on
the conjugate-gradients technique to minimize the en-
ergy functional of an eGPE [2]. In particular, the eGPE
accounts for the effect of quantum fluctuations, by includ-
ing the LHY term ∆µ[n] = 32g(nas)

3/2(1+3ε2dd/2)/3
√
π

in the system’s Hamiltonian (here g = 4πh̄2as/m and
n = |ψ|2 is the spatial density of the macroscopic state
ψ). ∆µ[n] has been obtained under a local density
approximation in Refs. [3, 4]. The relevance of the
LHY correction has been demonstrated in various stud-
ies of dipolar Bose gases close to the mean-field instabil-
ity [1, 5–9] as it brings an additional repulsive potential,
stabilizing the gas against mean-field collapse at large
density. We note that the exact functional form of the
potential, originating from beyond mean-field effects, has
been questioned by several experimental results in finite-
size trapped systems [1, 9–11], calling for further theory
developments [12].

Our numerical calculations provide us with the three-
dimensional ground-state wavefunctions ψ(r). From this,
we compute the axial in-situ density profile along the
trap’s weak axis, n(y) =

∫
|ψ(r)|2dxdz and find den-

sity profiles, corresponding to the BEC, the supersolid
or the ID phase, that we plot in Fig. 1. From the
density profiles that exhibit a density modulation, we
evaluate S by performing Gaussian fits to each droplet,
i. e. to n(y) with y ranging between two neighboring lo-
cal density minima. From these Gaussian fits, we eval-

uate the sets of centers {y(0)
i }i and widths {σi}i cor-

responding to the macroscopic Gaussian wavefunctions
{ψi}i associated to the individual droplets in the ar-
ray. We then approximate the droplet wavefunction via

ψi(y) ≈
√
n(y ≈ y(0)

i ) = αi exp
(
−(y − y(0)

i )2/2σ2
i

)
with

αi a normalization coefficient such that
∫
|ψi(y)|2dy = 1.

We then evaluate the wavefunction overlap Si between

the neighboring droplets i− 1 and i via:

Si ≡
∫
ψ∗
i−1(y)ψi(y)dy (1)

=

√
2σiσi−1

σ2
i + σ2

i−1

exp

(
− (y

(0)
i − y

(0)
i−1)2

2(σ2
i + σ2

i−1)

)
. (2)

The latter equation is obtained via an analytical evalu-
ation of the Gaussian integral. The characteristic link
strength defined in the paper is then computed by aver-
aging Si over all droplet links in the array: S = 〈Si〉i. In
our calculation, we only consider as droplets all density
peaks of at least 5 % of the global density maximum.

LINK STRENGTH AND ESTIMATE OF
TUNNELING RATE

Generally speaking, the wavefunction overlap between
neighboring droplets relates to a tunneling term, which
sets a particle exchange term between two neighboring
droplets [13–16]. Following the work of Ref. [17], we per-
form a first estimate of the tunneling coefficient by sim-
ply considering the single-particle part of the Hamilto-
nian and evaluate it between two neighboring droplets.
We note that, in our particular setting where the density
modulation is not externally imposed but arises from the
mere interparticle interactions, the inter-droplet interac-
tion may also play a crucial role. To perform a more
precise estimation of the tunneling between droplets, one
would certainly need to properly account for this effect.
Here, we stress that our approach simply gives a rough
idea of the magnitude of tunneling while it does not aim
to be a quantitative description of it. This consideration
calls for further studies making a systematic analysis of
the full Hamiltonian and of the full phase diagram within
the Josephson junction formalism and beyond.

Generalizing the description of Ref. [17] to neighbor-
ing droplets of different sizes and amplitudes, which are
described by a three-dimensional wavefunction ψi(r) ap-
proximated to a three-dimensional Gaussian of widths
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(σi,x, σi,y, σi,z) with σi,y = σi, our estimate writes:

Ji =
h̄2Si
2m



∑

k=x,y,z
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`2k

)2

σ2
i,k + σ2

i−1,k

+
(y

(0)
i − y

(0)
i−1)2

2σiσi−1

(σiσi−1/`y)
4 − 1

σ2
i + σ2

i−1

]
, (3)

where `x,y,z =
√
h̄/mωx,y,z are the harmonic oscillator

lengths.
In general, the tunnelling coefficients set two typical

rates relevant for equilibration processes. The first one
is the bare single-particle tunneling rate, which is equal
to Ji/h, while the second accounts for the bosonic en-
hancement from the occupation of the droplet modes
and writes t̃i =

√
NiNi−1|Ji|/h where Ni is the num-

ber of atoms in droplet i. In our analysis, we then define
the average rates over the droplet arrays as characteristic
rates J/h = 〈Ji〉i/h, and t̃ = 〈t̃i〉i; see e.g. [18]. While
the ground state evolves from a BEC to a supersolid to
an ID, the relevant timescale for achieving (global) equi-
librium crosses from being set by the trap frequencies to
the above-mentioned tunneling rates.

Using our approximate model, we here give a first es-
timate of the rates J/h and t̃ as a function of as, for the
parameters of Fig. 1(b-d) of the main text (i.e. Er quan-
tum gas with N = 5 × 104 atoms). Here we find that,
for as = a∗s , J/h ∼ 400 Hz and t̃ ∼ 10 MHz while for
as = a∗s − 2.5 a0, J/h ∼ 10−7 Hz and t̃ ∼ 10−3 Hz.

TOY MODEL FOR THE INTERFERENCE
PATTERN

As described in the main text we use a simple toy
model, adapted from Ref. [18], to identify the main fea-
tures of the TOF interference patterns obtained from an
insitu density-modulated state. As a quick reminder, our
model considers a one-dimensional array of ND Gaus-
sian droplets, described by a single classical field, ψi,
thus neglecting quantum and thermal fluctuations. We
compute the TOF density distribution from the free-
expansion of the individual ψi during a time t via
n(y, t) = |∑i ψi(y, t)|2. In our calculations, we also ac-
count for the finite imaging resolution by convolving the
resulting n(y, t) with a gaussian function of width σim.
Here we allow the characteristics of the individual ψi to
fluctuate. In this aim, we introduce noise on the corre-
sponding parameter with a normal distribution around
its expectation value and with a variable standard devi-
ation (only φi can also have a uniform distribution). We
then perform a Monte-Carlo study and perform ensemble
averages, similar to our experimental analysis procedure.
We note that, in this simple implementation, the noise
on the different parameters – droplet amplitudes, widths
and distances – are uncorrelated.

In the main text, we present results for a single set of
parameters, namely ND = 4, d ≡ 〈di〉i = 2.8µm (mean
droplet distance), σy ≡ 〈σi〉i = 0.56µm (mean droplet
size), t = 30 ms, and σim = 3µm, typical for our exper-
imental Er setting and the corresponding theory expec-
tations in the supersolid regime. 〈·〉i denotes the average
over the droplets. In this section, we have a deeper look
at the impact of the different parameters on both the
TOF signal and our FT analysis. We study both the
fully phase coherent and fully incoherent case, and the
unchanged parameters are set as in Fig. 2(j,m) and (l,o).
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FIG. S1. Toy model realizations with varying number
of droplets ND. We use 100 independent draws, and expec-
tation values d = 2.85µm, σy = 0.56µm (with 10% noise) and
either φi = 0 (a,b,e,f,i,j), or φi uniformly distributed between
0 and 2π (c,d,g,h,k,l). (a–d) ND = 2, (e–h) ND = 3 and (i–l)
ND = 8. (a,c,e,g,i,k) TOF density profiles and (b,d,f,h,j,l)
corresponding FT analysis of the interference patterns, same
color code as Fig .2.

In Fig. S1, we first exemplify the TOF and FT pro-
files for a varying number of droplets, between 2 and 8,
which cover the range of relevant ND over the phase di-
agram of Fig. 1. The results remain remarkably similar
to the realization of Fig. 2 with only slight quantitative
changes. The main difference lies in the individual inter-
ference patterns obtained in the phase incoherent case.
With increasing ND, those profiles become more com-
plex and made of a larger number of peaks (see (c,g,k)).
Yet, in this incoherent case, a similar (non-modulated)
profile is recovered in the averaged n(ky) for all ND.
Additionally, we note that for the coherent case with
ND = 8, the side peaks in the FT analysis (see (j))
become less visible. By performing additional tests, we
attribute this behavior to the limited TOF duration, t,
used in our experiment yielding a typical length scale,√
h̄t/m (= 3.4µm), which becomes small compared to

the system size (≈ (ND − 1)d + σy) for large ND. This
intermediate regime in the TOF expansion leads to more
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complex features, including smaller-sized motifs, in the
interference patterns. Finally, when accounting for our
imaging resolution, it yields a broadening of the structure
observed in the TOF images and less visible peaks in the
FT (see (i)). We note that our experiments, because of
limited N and additional losses, should rather lie in the
regime 2 ≤ ND ≤ 5; see Fig. 1(b).
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FIG. S2. Toy model realizations with varying σy/d.
We use 100 independent draws, with ND = 4, d = 2.85µm
(with 10% noise) and either φi = 0 (a,b,e,f,i,j), or φi uni-
formly distributed between 0 and 2π (c,d,g,h,k,l). For each
realization we also compute the associated mean S. (a–d)
σy/d = 0.1, yielding S = 1.8×10−7 (e–h)σy/d = 0.15, match-
ing S = 1.7×10−4 and (i–l) σy/d = 0.25, matching S = 0.028.
(a,c,e,g,i,k) TOF density profiles and (b,d,f,h,j,l) Correspond-
ing FT analysis of the interference patterns, same color code
as Fig. 2.

We then investigate the evolution of the interference
patterns and their FT analysis for a varying mean droplet
size, σy, while keeping their mean distance, d, fixed. This
study is particularly relevant recalling that, within the
Josephson junction formalism (see main text and cor-
responding section of this Supplemental Material), the
key parameter controlling the tunneling rate between the
droplets is set by the ratio σy/d, and the link strength pa-
rameter that we use to characterize the supersolid regime
scales roughly as exp(−(d/2σy)2). Thus, in our experi-
ment, σy/d is intrinsically expected to decrease with the
scattering length (see Fig. 3). Performing a direct esti-
mate of the average droplet link from the initial state of
our toy model, we find S = 0.004 for the calculations
of Fig. 2(j-o), lying in an expected supersolid regime yet
rather close to the supersolid-to-ID transition. Figure
S2 investigates the effect of smaller and larger values of
σy/d (and consequently of S) on the TOF and FT profiles
while independently assuming phase coherence or inco-
herence. Qualitatively, the features remain similar as in
Fig. 2(j-o). In the coherent case, side peaks are visible in

the individual as well as in the mean n(ky) (see (a,e,i))
and yield side peaks in the FT profiles, with nM ≈ n (see
(b,f,j)). Increasing (decreasing) σ/d mainly results in a
stronger (weaker) signal both in the interference pattern
and their FT analysis. Within our toy model, we find
that, already for σ/d = 0.25, the signal nearly vanishes;
see (i,j). Even if, given the approximations used in our
toy model, this exact value may not fully hold for our
experimental conditions, we expect a similar trend. It is
interesting to keep in mind that this effect may limit our
capacity of detecting an underlying supersolid state via
matter-wave interference in experiments. In the incoher-
ent case, the effect of decreasing σy/d mainly results in
a broader shape of the mean density profile, while it re-
mains non-modulated; see (c,g,k). In the FT analysis nΦ

remains structure-less independently of σy/d while the
structures in nM becomes sharper with decreasing σy/d,
as in the coherent case; see (d,h,l).
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FIG. S3. Toy model realizations allowing noise in
the center position. We use 100 independent draws, with
ND = 4, d = 2.85µm (with 10% noise), σy/d = 0.15 (a–
d) or σy/d = 0.2 (e–h), and either φi = 0 (a,b,e,f,i,j), or φi

uniformly distributed between 0 and 2π (c,d,g,h,k,l). Cen-
ter fluctuation are introduced as normal noise around 0 with
standard deviation of 2µm−1 in situ (a,c,e,g,i,k) TOF den-
sity profiles and (b,d,f,h,j,l) corresponding FT analysis of the
interference patterns, same color code as Fig. 2.

Finally, we investigate how a possible shot-to-shot
noise on the position of the central interference peak
could affect our observables of the density modulation
and phase coherence. In the experiments, such fluctua-
tions may occur, for instance, because of beam-pointing
fluctuations or excitations of the gas. Although we com-
pensate for such effects by recentering the individual im-
ages (see Imaging Analysis section), residual effects may
remain, in particular due to center misestimation in the
mere presence of the interference patterns of interest. To
investigate this aspect, we repeat our toy model calcu-
lations now including noise in the global droplet array
position and using a standard deviation of 2µm for two
values of σy/d; see Fig.S3. Again, qualitatively the ob-
served features remains similar to our prediction in the
main text. The main effect lies in the appearance of a
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small discrepancy in the coherent case between nΦ and
nM , while the structure in the incoherent case remains
similar. As the center misestimation should be the most
severe in the latter case (due to the variability of the
interference patterns observed here), our test shows the
robustness of our analysis procedure against this issue.

IMAGING ANALYSIS: 164Dy AND 166Er

The density distributions in momentum space are ex-
tracted from the TOF images using the free-expansion
expectation. In the Dy case, the thermal component is
subtracted from the individual distribution by cutting
out the central region of the cloud and performing an
isotropic Gaussian fit on the outer region. This sub-
traction is beneficial because of the large thermal frac-
tion. In the 166Er case, such a subtraction is on the
contrary complicated because of the weak thermal com-
ponent and this pre-treatment may lead to improper es-
timation of AM and AΦ in the later analysis. The ob-
tained momentum density distributions are then recen-
tered and integrated numerically along kz(kx) between
[−2.0,+2.0]µm−1 ([−1.28,+1.28]µm−1) to obtain n(kY )
(n(ky)) for 164Dy (166Er). The recentering procedure
uses the result a single Gauss fit to the TOF images.
The fit is performed after convoluting each image with
a Gaussian function of width 0.5µm whose purpose is
to reduce the impact of the interference pattern on the
center estimation [19].

In order to characterise the system’s state, we use the
Fourier transform, F [n](y) of the single density profile,
n(ky). We then compute two average profiles, nM and
nΦ, relying on ensemble average over all measurements
under the same experimental conditions; see below for a
detailed discussion on nM and nΦ. In all the measure-
ments reported in this work we use averages over typically
15 to 100 realizations.

To quantify both the existence of a density modulation
and global phase coherence on top of this modulation, we
fit both nM (y) and nΦ(y) with a triple-Gaussian function,
where one Gaussian accounts for the central peak and the
other Gaussians are accounting for the symmetric side
peaks. The amplitudes of the latter give AM and AΦ,
respectively. The distance between the side peaks and
the central one is allowed to vary between [2.5, 2.7]µm
([2.3, 2.5]µm) in the case of 164Dy (166Er).

DETAILS ON THE FOURIER ANALYSIS

In our analysis we rely on two averaged profiles, named
nM or nΦ, to quantify both the density modulation and
its phase coherence. Here we detail the meaning of the
average performed.

The Fourier transform (FT) of the integrated mo-
mentum distributions, n(ky), which reads F [n](y) =
|F [n](y)| exp(i arg (F [n](y))) sets the ground for our
analysis. As stated in the main text, an in-situ density
modulation of wavelength y∗ yields patterns in n(ky) and
consequently induce peaks at y ≈ y∗, in the FT norm,
|F [n](y)|, see Fig. 2(g-i) and (m-o). Spatial variations of
the phase relation within the above-mentioned density
modulation translate into phase shifts of the interference
patterns, which are stored in the FT argument at y ≈ y∗,
arg (F [n](y∗)); see also Ref. [18, 20].

The first average that we use is nM (y) = 〈|F [n](y)|〉,
i. e. the average of the FT norm of the individual images.
As the phase information contained in arg (F [n](y)) is
discarded from nM when taking the norm, the peaks
in nM probe the mere existence of an insitu density
modulation of roughly constant spacing within the dif-
ferent realizations. The second average of interest is
nΦ(y) = |〈F [n](y)〉|, i. e. the average of the full FT of the
individual images. In contrast to nM , nΦ keeps the phase
information of the individual realizations contained in
arg (F [n](y∗)). Consequently, peaks in nΦ indicate that
the phase relation is maintained over the density modula-
tion, in a similar way for all realizations. Their presence
thus provides information on the global phase coherence
of a density-modulated state.

EXPERIMENTAL SEQUENCE: 164Dy AND 166Er

166Erbium - The BEC of 166Er is prepared similarly to
Refs. [1, 8, 21, 22]. We start from a magneto-optical trap
with 2.4 × 107 166Er atoms at a temperature of 10µK,
spin-polarized in the lowest Zeeman sub-level. In a next
step we load about 3 × 106 atoms into a crossed opti-
cal dipole trap (ODT) operated at 1064 nm. We evap-
oratively cool the atomic cloud by reducing the power
and then increasing the ellipticity of one of the ODT
beams. During the whole evaporation a constant mag-
netic field of B = 1.9 G (as = 80 a0) along z is applied.
We typically achieve BEC with 1.4 × 105 atoms and a
condensed fraction of 70%. In a next step the ODT
is reshaped in 300 ms into the final trapping frequencies
ωx,y,z = 2π×(227, 31.5, 151) Hz. Consecutively, we ramp
B linearly to 0.62 G (64.5 a0) in 50 ms and obtain a BEC
with 8.5× 104 atoms, which are surrounded by 3.5× 104

thermal atoms. This point marks the start of the ramp
to the final as.

164Dysprosium - For the production of a 164Dy BEC
we closely follow the scheme presented in [23]. Starting
from a 3 s loading phase of our 5-beam MOT in open-top
configuration [24], we overlap a 1064 nm single-beam
dipole trap with a 1/e2-waist of about 22µm, for 120 ms.
Eventually, we transfer typically 8×106 atoms utilizing a
time averaging potential technique to increase the spatial
overlap with the MOT. After an initial 1.1 s evaporative
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cooling phase by lowering the power of the beam, we
add a vertically propagating beam, derived from the
same laser, with a 1/e2-waist of about 130µm to form a
crossed optical dipole trap for additional confinement.
Subsequently, we proceed forced evaporative cooling
to reach quantum degeneracy by nearly exponentially
decreasing the laser powers in the two dipole-trap beams
over 3.6 s. We achieve BECs of 164Dy with typically 105

atoms and condensate fractions of about 40%. During
the entire evaporation sequence the magnetic field is
kept constant at 2.5 G pointing along the vertical (z-)
axis.

To be able to condense directly into the supersolid,
we modify the dipole trap to condense at a stronger
confinement of ωx,y,z = 2π × (225, 37, 134) Hz. After a
total evaporative cooling duration of 3.1 s, we achieve
Bose-Einstein condensation at 2.55 G and reach a state
with supersolid properties at 2.43 G, keeping the mag-
netic field constant throughout the entire evaporation
sequence for both cases.

Time of flight and imaging for 166Er and 164Dy - In
order to probe the momentum distribution of the Dy (Er)
gases, we switch off the confining laser beams and let the
atoms expand freely for 18 ms (15 ms), while keeping the
magnetic field constant. Consecutively the amplitude of
B is increased to a fixed amplitude of 5.4 G (0.6 G). In the
case of 164Dy, the magnetic field orientation is rotated
in order to point along the imaging axis. This ensures
constant imaging conditions for different as. After an
additional 9 ms (15 ms) we perform a standard absorption
imaging.

TUNING THE SCATTERING LENGTH IN 166Er
AND 164Dy

166Erbium - All measurements start with a BEC at
64.5 a0. In order to probe the BEC-supersolid-ID region,
we linearly ramp as to its target value in tr = 20 ms
by performing a corresponding ramp in B. Due to a
finite time delay of the magnetic field in our experimental
setup and the highly precise values of as needed for the
experiment, we let the magnetic field stabilize for another
15 ms before th = 0 starts. By this, we ensure that the
residual lowering of as during the entire hold time is <∼
0.3 a0. In the main text, we always give the as at th = 0 .
Furthermore, we estimate our magnetic field uncertainty
to be ±2.5 mG, leading to a ±0.2 a0 uncertainty of as in
our experiments.

To choose the best ramping scheme, we have performed
experiments varying tr from 0.5 ms to 60 ms, ramping to
a fixed as lying in the supersolid regime, and holding for
th = 5 ms after a fixed 15 ms waiting time. We record the
evolution of AΦ as a function of tr; see Fig. S4. When

increasing tr, we first observe that AΦ increases, up to
tr = 20 ms, and then AΦ gradually decreases. The initial
increase can be due to diabatic effects and larger exci-
tation when fast-crossing the phase transition. On the
other hand, the slow decrease at longer tr can be ex-
plained by larger atom loss during the ramp. We then
choose tr = 20 ms as an optimum value where a super-
solid behavior develops and maintains itself over a signif-
icant time while the losses are minimal.
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FIG. S4. Ramp time effect on the supersolid behavior
Measured AΦ for various durations of the scattering-length
ramp with 166Er and a final as = 54.1(2) a0. All measure-
ments include a 15 ms stabilization time after tr and are per-
formed with an additional hold of th = 5 ms.

164Dysprosium - As the value of the background scat-
tering, abg length for 164Dy is still under debate [9, 10,
25], we discuss the experimental settings in terms of mag-
netic field. Yet, to gain a better understanding of the
tunability of as in our experiment, we first perform a Fes-
hbach spectroscopy scan on a BEC at T = 60 nK. After
evaporative cooling at B = 2.5 G, we jump to B varying
from 1 G to 7.5 G and we hold the sample for 100 ms.
Finally, we switch off the trap, let the cloud expand for
26ms and record the total atom number as a function of
B. We then fit the observed loss features with a gaussian
fit to obtain the position B0,i and width ∆Bi of the FRs,
numbered i. We finally use the standard Feshbach res-
onance formula to estimate the as-to-B dependence via
as(B) = abg

∏
i (1−∆Bi/(B −B0,i)). Here we account

for 8 FRs located between 1.2 G and 7.2 G. Depending on
the background scattering length abg, the overall magni-
tude of as(B) changes. We can get an estimate of abg

from literature. In Fig. S5, we use the value of as from
Ref. [25] obtained at 1.58 G close to the B-region inves-
tigated in our experiment, as = 92(8) a0. By reverting
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the as(B) formula, we set abg = 87(8) a0. For the mea-
surements of Figs. 4-5, we ramp B linearly from 2.5 G in
20 ms to a final value ranging from 1.8 to 2.1 G, for which
we estimate as ranging from 97(9) a0 to 105(10) a0. We
calibrate our magnetic field using RF spectroscopy, with
a stability of about 2 mG. In the Dy case, we do not apply
an additional stabilization time. This is justified because
of the more mellow as-to-B dependence in the B-range
of interest as well as of the wider as-range of the super-
oslid regime (see Fig. 1) compared to the Er case. For the
measurements of Figs. 6–7, we use two B-values, namely
2.43 G and 2.55 G, at which we perform the evaporative
cooling scheme. Here we estimate as = 109(10) a0 and
as = 134(12) a0, respectively.
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FIG. S5. Estimated scattering length tuning in 164Dy
Estimated dependence of as on B for 164Dy. The FR po-
sitions and widths have been extracted from trap-loss spec-
troscopy measurements, the background scattering length is
estimated to abg = 87(8) a0, see text. The blue dashed line
gives an error-estimate considering only the errorbar on abg

from the mere as measurement of Ref. [25] and not account-
ing for uncertainty of the Feshhach scan. For Figs. 4-5, we
use B between 1.8 G and 2.1 G (red area); for Figs. 6–7, we
keep at two constant B-values, namely 2.43 G and 2.55 G (red
arrows).

ATOM LOSSES IN 166Er AND 164Dy

As pointed out in the main text, in the time evolu-
tion of the quantum gases in both the supersolid and the
ID regime, inelastic atom losses play a crucial role. The
atom losses are increased in the above mentioned regime
as (i) higher densities are required so that a stabiliza-
tion under quantum fluctuation effects becomes relevant
and (ii) the magnetic field may need to be tune close to
a FR pole to access the relevant regime of interaction
parameters. (i) is at play for all magnetic species but
more significant for 166Er due to the smaller value of add.
(ii) is relevant for both 166Er and 162Dy but conveniently
avoided for 164Dy thanks to the special short-range prop-

erties of this isotope.
To quantify the role of these losses, we report here

the evolution of the number of condensed atoms, N , as a
function of the hold time in parallel to the phase coherent
character of the density modulation observed. We count
N by fitting the thermal fraction of each individual image
with a two-dimensional Gaussian function. To ensure
that only the thermal atoms are fitted, we mask out the
central region of the cloud associated with the quantum
gas. Afterwards we subtract this fit from the image and
perform a numerical integration of the resulting image
(so called pixel count) to obtain N .
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FIG. S6. atom number and coherence decays in 166Er
Time evolution of N and AΦ for 166Er at different as, in-
cluding points before th = 0 ms in the experiment. The cor-
responding scattering lengths are 53.3(2) a0 (a,b), 54.0(2) a0

(c,d), 54.2(2) a0 (e,f).

166Erbium - In the Er case, a 15 ms stabilization time
is added to ensure that as is reached up to 0.3 a0. Dur-
ing this time, i. e. for th < 0, we suspect that the time-
evolution of the cloud properties is mainly dictated by
the mere evolution of the scattering length. Therefore,
in the main text, we report on the time evolution for
th ≥ 0. We note that because of the narrow as-range
for the supersolid regime, the long stabilization time for
as is crucial. However, because of the significant role of
the atom losses in our system, in particular for 166Er,
the early evolution of N and the cloud’s properties are
intimately connected. Therefore, the early time evolu-
tion at th < 0 is certainly of high importance for our
observations at th ≥ 0.

To fully report on this behavior, we show the evolution
of N and AΦ during both the stabilization and the hold-
ing time in Fig. S6 for three different as values – either in
the ID (a, b) or supersolid regime (c-f). The time evolu-
tion shows significant atom loss, prominent already dur-
ing the stabilization time, and levels off towards a remain-
ing atom number at longer holding times in which we re-
cover small BECs. Simultaneously, in each case reported
here, we observe that during the stabilization time AΦ

increases and a coherent density modulated state grows.
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TABLE I. Extracted 1/10-lifetime of 166Er atom number
decay for th ≥ 0 and remaining atom number at long holding
time for data in Fig. S6.

as(a0) tN (ms) Nr(104) tΦ (ms)

53.3(2) 32(5) 1.03(5) -

54.0(2) 51(9) 1.29(11) 25(6)

54.2(2) 46(12) 1.7(2) 32(9)

This density modulation starts to appear at a typical
atom number of N >∼ 6 × 104 and consecutively decays.
For the lower as = 53.3(2) a0 case, we observe that the
coherent state does not survive the as stabilization time,
and decays faster than the atoms loss; see Fig. S6 (a, b).
This behavior corresponds to the ID case discussed in
the main text. The central point of the present work is
to identify a parameter range where the coherence of the
density modulated state survives for th > 0 and its decay
time scale is similar to the one of the atom loss. In order
to quantify a timescale for the atom number decay, we
fit an exponential decay to th ≥ 0 ms. Here we allow an
offset Nr of the fit, accounting for the BEC recovered at
long holding times. In Table I, we report on the typical
1/10-decay times of the atom number, which are up to
50 ms. These values are of the order as the extracted tΦ,
see Table I and Fig. 5 of the main text. This reveals that
in 166Er the extracted lifetime of the coherent density
modulated states are mainly limited by atom loss.

Furthermore we note that the extracted Nr values for the
recovered BECs are smaller than 2 × 104, which is con-
sistent with the BEC region found in the phase diagram
of Fig. 1(f).

164Dysprosium - Differently from the 166Er case, for
164Dy, we operate in a magnetic-field range in which the
three-body collision coefficients are small and only mod-
erate atom losses occur. This enables the observation
of an unprecendented long-lived supersolid behavior. To
understand the effects limiting the supersolid lifetime, we
study the lifetime of the condensed-atom number for dif-
ferent B. We perform this detailed study for the data of
Fig. 5 of the main text, which are obtained after prepar-
ing a stable BEC and then ramping B to the target value.
Fig. S7 shows the parallel evolution of N and AΦ for three
different magnetic field values 1.8 G, 2.04 G and 2.1 G.
Here we observe that, for all B values, AΦ seems to de-
cay faster than the atom number. This suggests that the
lifetime of the density-modulated state in our 164Dy ex-
periment is not limited by atom losses. To confirm this
observation, we extract the 1/10 lifetimes of both N and
AΦ; see Table II. The values confirm our observation and
shows an atom number lifetime larger than tΦ at least by
a factor of ≈ 5. In addition, we find that the ratio tN/tΦ
varies, indicating that atom losses are not the only mech-

anism limiting the lifetime of the supersolid properties in
Dy.
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FIG. S7. atom number and coherence decays in 164Dy
Time evolution of N and AΦ for 164Dy at different B for the
data of Fig. 5. The corresponding magnetic fields are 1.8 G
(a,b), 2.04 G (c,d), 2.1 G (e,f).

TABLE II. Extracted 1/10-lifetime of 164Dy atom number
decay and AΦ decay for data in Fig. S7.

B (G) tN (ms) tΦ (ms)

1.8 300(12) 12(5)

2.04 728(34) 152(13)

2.1 926(36) 133(25)

[1] L. Chomaz, R. M. W. van Bijnen, D. Petter, G. Faraoni,
S. Baier, J. H. Becher, M. J. Mark, F. Wächtler, L. San-
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[17] M. Wenzel, F. Böttcher, J.-N. Schmidt, M. Eisenmann,
T. Langen, T. Pfau, and I. Ferrier-Barbut, “Anisotropic

Superfluid Behavior of a Dipolar Bose-Einstein Conden-
sate,” Phys. Rev. Lett. 121, 030401 (2018).

[18] Z. Hadzibabic, S. Stock, B. Battelier, V. Bretin, and
J. Dalibard, “Interference of an Array of Independent
Bose-Einstein Condensates,” Phys. Rev. Lett. 93, 180403
(2004).

[19] We note that we have also checked our analysis without
performing the recentering step and the same features
remain. For instance, for our test data of Fig. 2, the effect
being mainly that the side peaks in (e) are more washed
out and a slight difference occurs between nM and nΦ,
both showing still side peaks.

[20] S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm,
and J. Schmiedmayer, “Non-equilibrium coherence dy-
namics in one-dimensional Bose gases,” Nature (London)
449, 324 (2007).

[21] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler,
R. Grimm, and F. Ferlaino, “Bose-Einstein condensation
of Erbium,” Phys. Rev. Lett. 108, 210401 (2012).

[22] D. Petter, G. Natale, R. M. W. van Bijnen, A. Patschei-
der, M. J. Mark, L. Chomaz, and F. Ferlaino, “Probing
the roton excitation spectrum of a stable dipolar Bose
gas,” arXiv:1811.12115 (2018).
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Summary

The experimental realization of supersolid states in dipolar quantum gases has triggered
numerous questions. This work covers the study of the excitation spectrum of a dipolar
quantum gas across the phase transition from a regular Bose-Einstein condensate to a su-
persolid phase. Theoretical calculations reveal the appearance of two distinct excitation
branches when crossing the phase transition, which are associated with crystalline and su-
perfluid excitations. In the experiment we probe the collective compression modes using the
principle component analysis. While we measure a quadrupole oscillation in the regime of the
Bose-Einstein condensate, we observe two distinct oscillation frequencies in the supersolid
regime which are related to the spontaneous symmetry breaking.

175

https://doi.org/10.1103/PhysRevLett.123.050402




 

Excitation Spectrum of a Trapped Dipolar Supersolid and Its Experimental Evidence

G. Natale,1 R. M.W. van Bijnen,2 A. Patscheider,1 D. Petter,1 M. J. Mark,1,2 L. Chomaz,1 and F. Ferlaino1,2,*
1Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften,

Technikerstraße 21a, 6020 Innsbruck, Austria

(Received 3 July 2019; published 1 August 2019)

We study the spectrum of elementary excitations of a dipolar Bose gas in a three-dimensional anisotropic
trap across the superfluid-supersolid phase transition. Theoretically, we show that, when entering the
supersolid phase, two distinct excitation branches appear, respectively associated with dominantly crystal
and superfluid excitations. These results confirm infinite-system predictions, showing that finite-size
effects play only a small qualitative role, and connect the two branches to the simultaneous occurrence of
crystal and superfluid orders. Experimentally, we probe compressional excitations in an Er quantum gas
across the phase diagram. While in the Bose-Einstein condensate regime the system exhibits an ordinary
quadrupole oscillation, in the supersolid regime we observe a striking two-frequency response of the
system, related to the two spontaneously broken symmetries.

DOI: 10.1103/PhysRevLett.123.050402

Supersolidity—a paradoxical quantum phase of matter
that combines crystal rigidity and superfluid flow—was
suggested more than half a century ago as a paradigmatic
manifestation of a state in which two continuous sym-
metries are simultaneously broken [1]. In a supersolid, the
spontaneously broken symmetries are the gauge symmetry,
associated with the phase coherence in a superfluid, and the
translational invariance, signalizing crystalline order. The
striking aspect is that, in a supersolid of indistinguishable
bosons, the same particles are participating in developing
such two apparently antithetical, yet coexisting, orders.
Originally predicted in quantum solids with mobile bosonic
vacancies [2–4], the search for supersolidity has fueled
research across different areas of quantum matter from
condensed matter to atomic physics, including quantum
gases with nonlocal interparticle interactions [5–19].
Recent experiments have revealed that axially elongated

dipolar quantum gases can undergo a phase transition from
a regular Bose-Einstein condensate (BEC), possessing a
homogeneous density in the local-density-approximation
sense, to a state with supersolid properties, where density
modulation and global phase coherence coexist [15–17].
Such experiments, complementing the ones with BECs
coupled to light [20–22], have opened a whole set of
fundamental questions, covering the very real meaning of
superfluidity in a supersolid state, its shear transport, and
phase rigidity.
Of particular relevance is the study of the spectrum of

elementary excitations, which governs the system response
to perturbations [23–25]. Typically, phase transitions occur
in concomitance with drastic modifications of the excitation
spectra—as in the case of the emergence of roton excita-
tions in He II or the phononic dispersion for BECs—and

similar dramatic changes are expected when crossing the
superfluid-supersolid transition. Theoretical studies of uni-
form (infinite) gases with periodic boundary conditions and
soft-core [26–28] or dipolar interactions [14,29,30] have
shown two distinct branches appearing in the excitation
spectrum of a supersolid state—one for each broken
symmetry. Their coexistence has been identified as an
unambiguous proof of supersolidity, being the direct
consequence of the simultaneous presence of superfluid
and crystalline orders [2,26,27,31].
An important issue is to understand if these trademarks

survive—and can be measured—in the experimentally
relevant regimes of a finite-size quantum gas, confined
in all three spatial dimensions. In this Letter, we address
these points by performing full spectrum calculations and
by experimentally exciting collective modes in an erbium
quantum gas. Both the theory and experiment show the
existence of two distinct classes of excitations, one con-
nected to crystal modes and the other to phase modes,
providing the finite-size equivalent of the two-branches
spectrum for infinite systems.
In our study, we consider a three-dimensional dipolar

quantum gas confined in an axially elongated (y) harmonic
trap with transverse orientation (z) of the atomic dipoles.
These systems are well described by an extended Gross-
Pitaevskii equation (EGPE), including nonlinear terms,
accounting for contact interactions depending on the scatter-
ing length as, the anisotropic long-range dipole-dipole
interaction (DDI), and quantum fluctuations in the form of
a Lee-Huang-Yang type of correction [12,14–17,19,32–36];
see also Ref. [37]. We calculate ground-state wave functions
ψ0ðrÞ by minimizing the energy functional resulting from
the EGPE using the conjugate-gradients technique [46].
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As shown in Fig. 1 (insets), the ground state evolves with
decreasing as from a regular BEC (a), (b) to a supersolid
state with axial density-wave modulation (c)–(f) and finally
to an insulating array of independent droplets (ID) (g), (h)
[7,14,15,17,27].
The spectrum of elementary excitations is calculated by

numerically solving the Bogoliubov–de Gennes equations,
which are obtained from an expansion of the macro-
scopic wave function as ψðr;tÞ¼½ψ0ðrÞþηðule−iϵlt=ℏþ
v�l e

iϵlt=ℏÞ�e−iμt with η ≪ 1 and linearizing the EGPE around
ψ0 [13,25,46,47]. Here, μ is the ground state’s chemical
potential. By solving the resulting eigenvalue problem,
we find a set of discrete modes, numbered by l, of energy
ϵl ¼ ℏωl and amplitudes ul and vl. We calculate the
dynamic structure factor (DSF) Sðk;ωÞ, which informs
on the system’s response when its density is perturbed at a
given modulation momentum k and with an energy
ℏω [25,48,49]. Whereas in the absence of an external trap
the spectrum is continuous and the DSF is a δ-peak
resonance at the Bogoliubov mode ðωl; klÞ, the confining
potential yields instead a discretization of the excitation
spectrum and a k broadening in Sðk;ωÞ. For a given energy
(i.e., a single mode), finite-size effects may even yield
several peaks in k; see, e.g., three-peak structures at large
energy in Figs. 1(a) and 1(b). For the considered param-
eters, these finite-size effects are more pronounced in Er
than Dy, since the latter exhibits a larger number of maxima
in the density-modulated phases, rendering its excitation
spectrum more reminiscent of the infinite-system case;
see Fig. 1.

Figure 1 shows the calculated excitation spectrum for
ground states in the regular BEC, the supersolid, and the ID
phases for a Dy (upper row) and Er (lower row) quantum
gas. In the BEC regime close to the supersolid transition
[Figs. 1(a) and 1(b)], the spectrum of excitations shows a
single excitation branch with the characteristic phonon-
maxon-roton dispersion of a BEC [50–54], as recently
measured [55]. When the roton fully softens (at as ¼ as�),
the ground state becomes density modulated with a wave
number close to the roton one, krot. Here, the excitation
spectrum develops additional structures, marked by the
appearance of nearly degenerate modes [Figs. 1(c) and
1(d)]. When lowering as, we find that these modes start to
separate in energy, where some harden and the others
soften, and two excitation branches become visible
[Figs. 1(e) and 1(f)]. This result resembles that of infinite
systems, where the broken translational and gauge sym-
metry are each associated with the appearance of one
excitation branch [14,26,27]. Additionally, we observe that
the spectrum acquires a periodic structure, reminiscent of
Brillouin zones in a crystal, with reciprocal lattice constant
k ≃ krot. Modes with an energy higher than the maxon
(energy maximum at k < krot) seem to have a single-
droplet-excitation character, and they will be the subject
of future investigations. When further decreasing as < as�,
the lower-lying branch decreases both in energy and in DSF
values, whereas the opposite occurs for the higher branch.
Eventually, when reaching the ID regime, the lower branch
progressively vanishes, underlying the disappearance of
global superfluidity [Figs. 1(g) and 1(h)].

(a) (c) (e) (g)

(b) (d) (f) (h)

FIG. 1. Axial excitation spectra of a trapped dipolar quantum gas across the BEC-supersolid-ID phase transition. The trap frequencies
are 2π × ð260; 29.6; 171Þ Hz. The upper (lower) row shows calculations for a 164Dy (166Er) quantum gas of 4 × 104 (5 × 104) atoms in
the BEC (a),(b), supersolid (c)–(f), and ID (g),(h) regimes, together with the corresponding ground-state density profiles (insets). (a), (c),
(e), and (g) correspond to as ¼ ð92; 91; 90; 81Þa0, and (b), (d), (f), and (h) to as ¼ ð50.8; 50.5; 50; 48Þa0, respectively. In (e) and (f), the
dashed and dash-dotted lines are guides to the eyes, indicating the two excitation branches. The color map indicates the calculated DSF,
and lz is the harmonic oscillator length along the dipoles’ direction.
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We focus on the properties of the excitation spectrum
in the supersolid regime. The interesting question is
how the two branches relate to the two orders in the
systems, crystal and superfluid. To gain insight, we
study the system’s dynamics when a single mode l is
excited with amplitude η ≪ 1 by writing ψðtÞeiμt ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jψ0j2 þ 2ηδρl cosωlt
p

e−iηδφl sinωlt, in terms of density per-
turbations δρl ¼ ðul þ v�l Þjψ0j and phase perturbations
δφl ¼ ðul − v�l Þ=jψ0j. The subsequent time evolution of
the axial density profile is shown in Figs. 2(a)–2(c) for three
relevant cases. For simplicity, only the two extremes of the
mode oscillation are shown. The mode character can be
understood by noting that phase gradients correspond to
mass currents. Large gradients inside a density peak imply
motion of the density peak [e.g., Fig. 2(a)] and relate to
crystal modes. Large phase gradients between density peaks
signify a superfluid current of particles tunneling from one
density peak to another [e.g., Fig. 2(b)] and are associated
with phase modes. However, in our system, the phase or
crystal mode classification is not strict, andwe find that these
two characters mix; see Figs. 2(a)–2(c). Particularly, we
observe both behaviors simultaneously in Fig. 2(c). Such a
mixing is expected from the long-range nature of the DDI,
coupling density, and position of the peaks [26,27]. Note that
the character of the mode can change with as. For instance,
the mode in Fig. 2(c) develops an almost pure crystal
character for decreasing as. To quantify a mode’s character,
we plot in Fig. 2(d) the DSF spectrum at a fixed as, colored

according to the ratio C of phase variances inside, and
between thedensity peaks [37]. This allows us to differentiate
the dominant character of the two branches, being phase type
for the lower branch and crystal type for the upper one.
To test our predictions, we experimentally study the

collective excitations in an erbium quantum gas across the
BEC-supersolid-ID phases.We prepare a BEC at as ¼ 64a0.
The atoms are confined in an axially elongated optical-
dipole trap of harmonic frequencies 2π × ðνx; νy; νzÞ ¼
2π × (259ð2Þ; 30ð1Þ; 170ð1Þ) Hz and polarized along z by
an external magnetic field; see Refs. [13,17]. To probe our
system, we perform standard absorption imaging after 30ms
of time-of-flight expansion, yielding measurements of the
momentum space density nðkx; kyÞ [37]. Using the tunability
of the contact interaction via magnetic Feshbach resonances
[56], we can prepare the system at desired locations in the
phase diagram in theBEC, supersolid, or IDphaseby linearly
ramping down as in 20 ms to the target value. We then allow
the system to stabilize for 10 ms. At this point, we record an
atom number of typically 5 × 104 for the supersolid regime.
We confirmed the relevant as ranges by repeating the matter-
wave interferometric analysis of Ref. [17].While in the BEC
region the momentum distribution shows a regular, nearly
Gaussian single peak, in the supersolid regime the in-trap
density modulation gives rise to coherent interference
patterns along ky, consisting of a central peak with two
lower-amplitude side peaks; see Fig. 3(a).
After preparing the system in the desired phase, we

excite collective modes in the gas by suddenly reducing the
axial harmonic confinement to 10% of its initial value (i.e.,
νy ≈ 3 Hz) for 1 ms, before restoring it again. The atomic
cloud is subsequently held for a variable time th, before
releasing it from the trap and recording the time evolution
of nðkx; kyÞ. As the lifetime of the supersolid state is limited
to around 40 ms [17], we focus on th ≤ 30 ms. As
expected, in the BEC phase, we predominantly observe
an oscillation of the axial width, connected to the lowest-
lying quadrupole mode [25]. In the supersolid regime, the
situation is more complex; see Figs. 1(c)–1(f). Here,
multiple modes, of both crystal and phase character, can
be simultaneously populated, resulting in a convoluted
dynamics of the interference pattern.
We therefore employ a model-free statistical approach,

known as principal component analysis (PCA) [57], to
study the time evolution of the measured interference
patterns at a fixed as. This method has been successfully
used to study e.g., matter-wave interference [58] and
collective excitations [59] in ultracold-gas experiments.
The PCA analyzes the correlations between pixels in a set
of images, decomposes them into statistically independent
components, and orders these principal components (PCs)
according to their contributions to the overall fluctuations
in the dataset.
In a dataset probing the system dynamics after an

excitation, the PCA can identify the elementary modes

(d)(c)

(a) (b)

FIG. 2. Evolution of three different even modes of the system
calculated for 5 × 104 Er atoms at as ¼ 49.8a0: (a) fourth-,
(b) second-, and (c) third-lowest-lying even modes in energy with
frequencies (67.4, 40.3, 49.8) Hz, corresponding to crystal,
phase, and mixed modes, respectively. Each panel shows n ¼
jψð0; y; 0; tÞj2 for t ¼ π=2ωl and t ¼ 3π=2ωl with η ¼ 0.15 and
the corresponding δφð0; y; 0Þ. (d) DSF for the same setting as in
(a)–(c), where the modes are colored according to their associated
phase (red) or crystal (blue) character via C [37].
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with the PC weights in the individual images exhibiting
oscillations at the mode frequencies [37,59]. We apply the
PCA to the time evolution of the interference patterns after
the trap excitation. Figure 3(b) shows the PCA results in the
supersolid regime at as ¼ 49.8a0. We identify two leading
PCs, which we label as PC1 and PC2. Their weights
oscillate with different amplitudes and at distinct frequen-
cies, namely, 41(1) Hz for PC1 and 52(5) Hz for PC2. The
comparison between the measured frequencies and the
theoretically calculated mode energies indicates that, fol-
lowing our trap excitation, the second- and third-lowest-
lying even modes are simultaneously populated. As shown
in Figs. 2(b) and 2(c), these modes possess a phase and a
mixed character, respectively. Note that we apply an overall
shift of −4.3a0 to the as value for the experimental data; for
more details, see the discussion in Refs. [55,60].
To visualize the role of each PC on the interference-

pattern dynamics, we apply a partial recomposition of the
images, accounting only for the PC of interest; see
Ref. [37]. The effect of PC1 on the axial dynamics is
shown in Fig. 3(c), mainly being an axial breathing of the
central peak, accompanied by weaker in-phase breathing of
the side peaks. Instead, PC2 exhibits a dominant variation

of the side-peak amplitude; see Fig. 3(d). These results
show a good agreement with the calculated time evolutions
of the interference patterns for the second and third even
modes, shown in Figs. 3(e) and 3(f).
Finally, we study the evolution of the modes across the

BEC to supersolid and ID phases. We repeat the collective
excitation measurements for various as, and, using the
PCA, we extract the oscillation frequencies of all the
leading PCs. Figure 4 shows our experimental results
together with the mode tracking from the spectrum calcu-
lations. For a give elementary mode l, we plot ωl as well as
the response amplitude Rl ¼ mω2

yhljŷ2j0i=2ℏωl, which
indicates the probability to be excited by our trap-excitation
scheme. For completeness, the figure shows both even and
odd modes, although only even modes are coupled to our
trap-excitation scheme. Here, j0i and jli denote, respec-
tively, the ground and excited states of interest, and ŷ is the
axial position operator.
In the BEC regime, besides the roton mode that

progressively softens with decreasing as, the other modes
show a regular spacing in energy and are nearly constant
with as. In both the theory and experiment, we observe that
just one mode couples to the trap-excitation scheme. This
mode has a compressional, axial breathing character.
Experimentally, we observe that all the leading PCs
oscillate at the same frequency, suggesting that they
account for the same mode [37]. In this regime, both the
PC frequencies ωl and Rl remain rather constant. At the
supersolid phase transition, reached around as ¼ 50.6a0,
the numerical calculations reveal that different modes
undergo an abrupt change and can mix with each other.

(b)(a)

(d)(c)

(e) (f)

FIG. 3. (a) Example of a measured mean interference pattern in
the renormalized central cut of the density distribution nðkyÞ for
th ¼ 5 ms in the supersolid regime at as ¼ 49.8a0 (filled circles)
and in the BEC regime at as ¼ 51.7a0 (open circles). (b)–(d)
PCA results at as ¼ 49.8a0. (b) Time evolution of the weights of
PC1 (filled circles) and PC2 (open circles) together with their sine
fit. Error bars denote the standard error of the mean. (c),(d)
Evolution of the partially recomposed nðkyÞ accounting for the
population of PC1 (c) and PC2 (d) only. (e),(f) Calculated time
evolution of nðkyÞ from excitation of the mode shown in
Figs. 2(b) and 2(c), respectively, and using η ¼ 0.15.

FIG. 4. Comparison between the mode energy obtained from
the theory calculations and the energies extracted from the PCs
(circles). The gradual color code of the theory lines represents the
relative strength of Rl going from strong (red) to no (gray)
coupling. Error bars denote one standard deviation from the fit.
The background color indicates the BEC, supersolid, and ID
regions (see upper labels), identified using a matter-wave
interferometric analysis of the experimental data [17].
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Their energy and phase or crystal character exhibits a
strong dependence on as. Here, several modes respond to
the trap-excitation scheme, as shown by the value of Rl.
In the PCA, we observe that the leading PCs now oscillate
at distinct frequencies and have different characters (see
also Fig. 3). One set of PCs reduces their frequency when
lowering as, indicating (at least) one phase mode that
softens strongly in the supersolid regime, even below the
trap frequency νy. Another set of PCs shows a frequency
that remains hard when decreasing as. Calculations of C
show that this mode changes character along the phase
diagram and eventually becomes crystal type.
In conclusion, the overall agreement between the experi-

ment and theory confirms the calculations in the supersolid
regime, revealing two distinct branches with respective
crystal and superfluid characters. The trademarks of super-
solidity expected in infinite systems thus carry over to
the finite-size ones currently available in laboratories. The
knowledge of the excitation spectrum will provide the base
for future investigations related to the superfluid properties
and phase rigidity in a supersolid state.
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Calculation of the Bogoliubov Spectrum

Our theory is based on an extended version of the
Gross-Pitaevskii equation (eGPE)

ih̄
∂ψ(r, t)

∂t
=
(
− h̄2∇2

2m
+ V (r) +

∫
dr′U(r− r′)n(r′)

+ ∆µ[n]
)
ψ(r, t), (1)

where ψ(r, t) is the dipolar quantum-gas’ wave function
ψ(r, t). The eGPE includes the kinetic energy, exter-
nal trap potential and the mean-field effect of the inter-
actions [1, 2]. The first three terms of Eq. (1) account
for the kinetic energy, the external harmonic trapping
potential, and the mean-field interactions, respectively.
The latter includes the contact and the dipolar inter-
actions. In order to study the supersolid phase, it is
fundamental to also include a beyond-mean-field correc-
tions in order to stabilize the supersolid state against the
roton instability. This is done by adding a term in the
form of the Lee-Huang-Yang correction, ∆µ[n] [3–13]; see
also [14–17]. This is typically included as a correction to
the chemical potential obtained under the assumption of
local density approximation [18, 19]. However, recent
experimental results have raised the questions about the
range of validity of such a treatment since quantitative
disagreements at a level of few % have been observed
when comparing the theory results with the experimen-
tal findings [6, 20–24]. To the best of our knowledge, this
is still an open question, which will need future addi-
tional theoretical investigations. To compensate for this
effect, throughout this letter, we shift as by −4.3a0. To
calculate the ground-state (GS) wave-function, ψ0(r), we
then minimize the energy functional resulting from the
eGPE using the conjugate-gradients technique [25].

In a next step, we study the Bogoliubov de Gennes
(BdG) excitation spectrum of a dipolar Bose-Einstein
condensate trapped in a harmonic cigar shaped poten-
tial [1, 25]. Our calculations are obtained by expanding
the wavefunction ψ(r, t) around ψ0(r). Here, we write:

ψ(r, t) = (ψ0(r) + ηδψ(r, t)) e−iµt,

where η � 1, µ is the chemical potential of the ground
state and

δψ(r, t) = ule
−iεlt/h̄ + v∗l e

iεlt/h̄.

The spatial modes ul and vl are oscillating in time with
the corresponding frequency ωl = εl/h̄. We then linearize
the eGPE around ψ0 at first order in η. By solving the
set of coupled linear equations, we obtained the discrete
modes, numbered by l, of energy εl and amplitudes ul
and vl. We define the (odd) even parity of the mode
from their amplitude ul and vl being (anti-)symmetric in
y.

In order to illustrate the spectrum, we compute the
dynamic structure factor (DSF), since it directly gives in-
formation about the density response of the system when
perturbed at specific energies and momenta. At T = 0
the DSF is defined as [20, 26]:

S(k, ω′) =
∑

l

∣∣∣∣
∫

dr [u∗l (r) + v∗l (r)] eik·rψ0(r)

∣∣∣∣
2

×

× δ(ω′ − ω), (2)

where the sum is over the different spatial modes and k
is the wave vector. In Fig. 1 and Fig. 2 we plot the DSF
of Eq. (2). For better visualization, we use an energy
broadening of 0.09hνy and 0.12hνy for Fig. 1 and Fig. 2,
respectively, similar to what was done in Ref. [26].

Defining the mode character

Within the Bogoliubov theory and in the linear regime,
the effect of the population of the mode l on the global
state dynamics can be studied using the following expres-
sion [1]

ψ(r, t)eiµt ≈
√
|ψ0(r)|2 + 2ηδρl(r) cosωlte

−iηδϕl(r) sinωlt,

where the density fluctuations δρl = (ul + v∗l ) |ψ0| and
phase fluctuations δϕl = (ul − v∗l )/ |ψ0| have been sepa-
rated.

In order to evaluate the dominant character of each
mode l, we introduce the quantity C. As discussed in
the main text, the crystal and phase mode differentiate
from each other by the spatial region where δϕl varies
the most. For crystal modes, this is inside the density
peaks, resulting e. g. in a center-of-mass motion of one
individual peak, which leads to a change of the crystal
structure. Differently, for phase modes, δϕl changes the



2

most between neighboring peaks, signalizing a particle
exchange between peaks and thus a modification of the
atom numbers in the peaks. We quantify these two types
of character by computing the spatial variance of δϕl(r)
inside the density peaks, Vin, and in between them, Vout.
The quantities Vin and Vout are defined as follow.

For a given axial density cut of the GS wave function
|ψ0(0, y, 0)|2, we first define the region inside (between)
the density peaks by identifying the different density
maxima (minima) and number them by j ∈ [1, Nin(out)].
In a next step, we compute the mean distance d between
all density minima to their neighbouring maxima. Fi-
nally, we isolate the region Rj = [−d/3,+d/3] of space
centered around each maxima (minima) and calculate:

Vin(out) =
1

Nin(out)
×

×
Nin(out)∑

j=1

〈|δϕ(0, y, 0)− 〈δϕ(0, y, 0)〉Rj
|2〉Rj

.

The mean 〈· · ·〉Rj is defined for a generic function f as

〈f(y)〉Rj
=

∫

y∈Rj

f(y) dy

/∫

y∈Rj

dy.

The mode character is then evaluated by considering the
ratio C = Vin/Vout. C is large for modes with prevalent
crystal and small for the ones with dominant phase char-
acter. In Fig. 2 (d) we encode the information on C as a
color scale on the DSF spectrum. The same color map is
used to illustrate the modes of the panels (a-c) in Fig. 2,
confirming their correct assignment. For completeness,
we also illustrate in Fig. S1 the modes’ character on the
spectrum of a 164Dy supersolid, using the parameters of
Fig. 1 (e) of the main text.

Applying the principal component analysis to our
data

Dataset for applying the PCA

To identify the excited modes from our experimental
data, we apply a general statistical method called prin-
cipal component analysis (PCA) [27–29] to a set of mea-
sured density distributions after a time-of-flight expan-
sion. For our trap-excitation measurement, a dataset for
the PCA is composed as follow. For each target value
of as, we record the time evolution of the density distri-
bution for holding time, th, between 0 and 30 ms. For
each th, we record between 15 and 30 repeated images,
all together yielding a dataset of Nm >∼ 200 images. Each
experimental run i yields a two-dimensional density dis-
tribution ni(kx, ky). By performing a simple two dimen-
sional Gaussian fit, we extract 71 × 71 pixels region-of-
interest (ROI) centered on the atomic cloud (the pixel’s

0 1 2 3
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FIG. S1. Characterisation of the excitation modes for
N = 4 × 104 atoms of 164Dy at as = 90 a0 in a trap of fre-
quencies 2π×(260, 29.6, 171) Hz. As in the Er case (Fig. 2 (d)
of the main text), the blue color reveals the dominant crystal
character for the upper branch, whereas the red color shows
the dominant phase character for the lower branch.

width in kx,y is 0.32µm−1). In addition, we post-select
the shots in which the atom number, the axial cloud size
and the transverse cloud size vary by less than 20%, 30%
and 15% than their mean values, respectively.

PCA’s working principle

To apply the PCA, we represent each ROI of a dataset
as a vector ρi(s) where s represent the index of the pixel
(s ∈ [1, Np], Np is the number of pixels in one image). We

compute the mean vector image ρ̄(s) =
∑Nm

i=1 ρi(s)/Nm
and consider the variations of the pixel values in each
vector image compared to ρ̄, δρi(s) = ρi(s) − ρ̄(s). Fi-
nally, we consider the covariance matrix of these varia-
tions Cov(p, s) =

∑Nm

i=1 ρi(s)ρi(p)/(Nm−1), which is real
symmetric. By simply diagonalizing the covariance ma-
trix, the PCA constructs a new basis ofNp vector-images,
called principal components (PCs) and written Cp(s) (p ∈
[1, Np]) in the original pixel basis, that are uncorrelated
one from an other. The PCs satisfy CovCp = λpCp where
λp is the eigenvalue of the covariance matrix associated to
the PC p. The original vector images can be all rewritten
in this new basis as ρi(s) = ρ̄(s)+

∑Ns

p=1 wp,iCp(s), where

wp,i =
∑Np

s=1 Cp(s)ρi(s) is the weight of the component
p. We note that, by converting back the pixel represen-
tation to the original two-dimensional momentum space,
the above decomposition means

ni(kx, ky) = n̄(kx, ky) +

Ns∑

p=1

wp,iCp(kx, ky), (3)
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FIG. S2. Examples of the two leading PCs for our dataset
at as = 50 a0. (a) PC1 reveals a dominant fluctuation of
the interference patterns in the central peak at ky ≈ 0µm−1

(central blue region) with a slighter change of the sidepeaks
at ky ≈ ±2µm−1 (red regions) . (b) PC2 shows fluctuations
in the interference patterns’ sidepeaks around ky ≈ 2µm−1

and no significant change of the central peak.

where Cp(kx, ky) encompasses now the density-
distribution change induced by the PC p. The fact
that the covariance matrix is diagonal in the PC basis
indicates that the PCs correspond to uncorrelated
sources of variations in the dataset. More explicitly, the
coefficients wp,i show no correlations in between different
p. This feature makes the PCA a powerful tool, e. g. to
identify and discriminate between elementary modes
of different frequencies when applied to time-evolution
data, as used in Ref. [29]. An example of the obtained
two leading PCs in the supersolid region is given in
Fig. S2.

Identifying the elementary modes of a quantum gas via the
PCA

We quickly remind the working principle, of the iden-
tification of modes via the PCA. In the linear regime,
the contribution of each mode to density oscillations is
expected to decouple and separate temporal and spatial
variations as:

n(r, t) ≈ n0(r, t) + 2
∑

l

ηδρl(r) cos (ωlt+ φl) , (4)

with φl an arbitrary phase for the mode l. This rela-
tion should also hold for the density distribution after
the gas’s free-expansion. If one considers that the im-
age index i encloses a time dependence (ti), the equa-
tions (3) and (4) have a very similar structure, associ-
ating Cp(kx, ky) and wp,i to ρl(r) and cos (ωlti), respec-
tively. Thus the PCA-based identification of uncorre-
lated components in the time-evolution of the density
profiles should enable to identify the elementary modes
of the system. The corresponding PCs’ weights are then

expected to oscillate in time at the frequency ωl of the
modes. In particular, the PCA should separate the
modes oscillating at different frequencies and differenti-
ate them from other sources of fluctuations or of dynam-
ics (e.g. dissipation). Following Ref. [29], we note that
modes can be properly distinguished if the period asso-
ciated to their beating is smaller than the total time for
which the time-evolution is recorded, or, even for shorter
probe time, if they have different enough amplitudes of
oscillations (i.e. excitation probability).

From our dataset with repeated realizations of
each hold time th, we thus consider, for each
PC p, the mean weights at time th, Wp(th) =∑
i/ti=th

wp,i/
∑
i/ti=th

1. We then fit Wp(th) to a sine

function A0 +As cos (ωth + φ) and extract the PC’s fre-
quency (ω) and amplitude As of oscillation. We then
consider as relevant the PCs that show oscillation of am-
plitude As > 8 × 10−4, frequency ν > 20 Hz, and where
the oscillation frequency can be extracted with a preci-
sion < 10%. Examples of the time evolution of Wp and
of their fits are shown in Fig. 3 (b).

We note that the PCA does not always assemble in a
unique PC all the correlations in the pixel values that
follow the same time dependence, and a single mode
can be artificially split into several components in the
analysis process. To better understand this behavior, we
performed tests on theoretical calculations and compare
them to the experiments. Theoretically, we specifically
populate a single Bogoliubov mode on top of the ground-
state, we then compute the interference patterns as a
function of the hold time th, similar to what is done in
Fig. 3 (e-f), and finally we apply the PCA. For each mode
considered, both for regular (BEC) or density-modulated
ground-states, several leading PCs are found to oscil-
late. Their frequencies match the mode frequency while
their oscillation amplitude decreases with the PC’s index.
Typically the ratio in the oscillation amplitudes between
the first and the second PC is about 10, and the ampli-
tude of the larger-index PCs are negligible. Therefore, in
the cases where the modes are the most strongly excited,
i.e. mainly in the BEC regime (see Rl scaling in Fig. 4
for the excitation amplitude), one can indeed expect that
several PCs are sensitive to a single mode in experiment,
matching our observation.

From those theory tests, we can also better understand
the origin of this artificial splitting of one mode in sev-
eral PCs. Indeed, the oscillations of the different PCs are
found to have the same frequencies but different phases,
typically shifted by about π/2. As it treats the pixels in-
dependently, the PCA gets confused by such π/2 phase
shifts in the oscillations occurring in different regions of
space, i.e. pixels’ values that distinctly oscillate, starting
from their extremal or medial values. The PCA then ar-
tificially splits the oscillations occurring in these different
regions into several components while they correspond to
the same mode. Finally, this effect can be further favored
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in typically imperfect experimental settings, by the ad-
dition of experimental noise as well as other technical
(e.g. imaging artifacts) or physical (e.g. dissipation) ef-
fects, which yield differences in the pixel values. Our
theory tests, however, show that those additions are not
the main reasons for the observed splitting.

Based on the conclusions of those tests, in the exper-
iment (see discussion of Fig. 4 of the main text), we in-
terpret as probing distinct modes only the PCs showing
different frequencies, while PCs whose frequencies match
within their error bars are interpreted as probing a single
elementary excitation of the system.

Partial recomposition

To isolate the effect of each PC on the complex time-
evolution of the interference patterns, we use partial re-
composition of the images inspired from Eq. (3). In par-
ticular we define

n(p)(kx, ky, t) = n̄(kx, ky) +Wp(t)Cp(kx, ky). (5)

This is equivalent to consider that a single PC is ”ex-
cited”, similarly to what can be done in theory for the in-
dividual excited modes of the BdG spectrum (see Fig. 2)
and its description in the main text and Supp. Mat.).
In Fig. 3 (c-d), we show examples of the axial cuts of
n(p)(kx, ky, t) for two of the leading PCs. We note that
here, as well as for all experimental data shown in this
manuscript, the axial cuts correspond to the average of
the density distributions for |kx| < 1.6µm−1.
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Summary

In this publication, we present Bragg spectroscopy measurements in the high-energy regime
of a dipolar quantum gas across the transition from a ordinary Bose-Einstein condensate to
a supersolid phase and finally to an incoherent droplet array. Our measurements reveal a
continuous reduction of the systems response, occurring faster than theoretically predicted.
We are able to identify coherent phase dynamics, which arise from the crossing of the phase
transition, as cause for the faster decay. In conclusion, our work confirms that Bragg spec-
troscopy is a sensitive probe for density modulations as well as coherent and incoherent phase
variations.
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We present an experimental and theoretical study of the response of a dipolar supersolid to a Bragg excitation
at high-energy defined by the impulse approximation regime. We experimentally observe a continuous reduction
of the response when tuning the contact interaction from an ordinary Bose-Einstein condensate to a supersolid
state and ultimately to an incoherent array of droplets. Already in the supersolid regime, the observed reduction
is faster than the one theoretically predicted by the Bogoliubov–de Gennes theory. By comparing experiments
and theories, we are able to attribute this discrepancy to the presence of coherent phase dynamics induced by the
crossing of the phase transition. The phase variations are found to change character along the phase diagram and
become predominantly incoherent only when reaching the incoherent-droplet regime.

DOI: 10.1103/PhysRevA.104.L011302

Recently, supersolid states have been realized in laborato-
ries using ultracold quantum gases of dipolar atoms [1–3].
Predicted more than half a century ago [4–7] and long
searched for in helium [8], this intriguing phase of matter
spontaneously breaks two symmetries, namely the transla-
tional and the gauge symmetry. The breaking of the former
one gives rise to a periodic order in space with the system
ground state developing a density modulation, recalling a
crystalline structure, whereas the breaking of the gauge sym-
metry introduces a superfluid flow of particles.

The supersolid phase (SSP) transition is typically con-
trolled by the interaction. By varying its strength, a quantum
system may pass from an unmodulated superfluid to a fully
localized crystal state of insulating droplets (ID). Between
these two extremes, the system is supersolid, showing a co-
existence of these two apparently antithetical orders. The
interplay between localization and superfluidity has raised
lively debates [4–7]. In a seminal work, Leggett derived an
upper-bound relation for the superfluid fraction in a super-
solid [9], which directly connects the loss of superfluidity
with the increase of localization, the latter being quantified in
terms of a modulation contrast. Importantly, Leggett’s famous
formula is valid at equilibrium and requires the macroscopic
phase of the quantum system to be stationary.

*Author to whom correspondence and requests for materials should
be addressed: Francesca.ferlaino@uibk.ac.at

However, in experiments, a common path to create dipo-
lar supersolids relies on interaction tuning [1–3,10–13]. The
corresponding dynamical crossing of the phase transition may
introduce excitations, which, on the one hand, naturally ques-
tions the applicability of equilibrium theories. On the other
hand, excitations typically entail phase variations, raising in-
terest in understanding their role and impact on the system
behavior, calling for the development of theoretical models
accounting for out-of-equilibrium effects.

Interestingly, phase variations across the system display
different natures. They can be coherent and deterministic, or
incoherent and random depending whether they arise from
collective dynamics or, e.g., from quantum and thermal fluc-
tuations. While experiments pointed to the existence of phase
variations in dipolar supersolids [11–13], a comprehensive
study of their characteristics and origins is lacking. Providing
access to local properties of the system, high-energy scattering
measurements may help by bridging this gap. Such scattering
protocols have been successfully used across a vast range of
disciplines, from high-energy [14–17] to condensed-matter
physics [18,19]. They allowed measurements, e.g., of the
condensate fraction in superfluid liquid helium [20] and of
beyond-mean-field effects in ultracold gases [21–27].

In this Letter, we study the response of a dipolar super-
solid to a high-energy two-photon Bragg scattering probe. As
the system crosses from the Bose-Einstein condensate (BEC)
into the SSP, we observe a strong reduction of the scatter-
ing response, that eventually vanishes in the ID regime. A
comparison with theory reveals that the response is reduced

2469-9926/2021/104(1)/L011302(6) L011302-1 ©2021 American Physical Society
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stronger than expected from the emergence of a density modu-
lation in the SSP. Going beyond equilibrium expectations, we
find that coherent phase variations, emerging due to the cross-
ing of the BEC-SSP transition, are the cause of the anomalous
response suppression.

We start by reviewing the description of the dynamical
response of an interacting many-body system to a weak
scattering probe within the linear-response theory [28]. The
dynamic structure factor (DSF), S(k, ω), quantifies the density
response of a system to a probe of momentum, h̄k, and energy,
h̄ω. For weak interactions at equilibrium, the DSF is related to
the excitation spectrum via the Bogoliubov amplitudes, u j and
v j , describing the excitation mode j of energy h̄ω j . It reads

S(k, ω) =
∑

j

∣∣∣∣
∫

dr
(
u∗

j (r) + v∗
j (r)

)
eikrψ0(r)

∣∣∣∣
2

× δ(h̄ω − h̄ω j ), (1)

where we neglect the creation of multiple excitations. Here,
ψ0 is the system’s macroscopic ground-state wave function.

Equation (1) gives different information depending on
the momentum and energy ranges [28]: For low-k trans-
fer, S(k, ω) is sensitive to the system’s collective response,
whereas, in the high-k and high-energy regime, the DSF is
proportional to the momentum distribution of the system,
ñ(k). Here, we focus on the latter regime to probe the im-
pact of density modulation in a superfluid state. We study
the response along the density-modulated direction, y, with
k = (0, ky, 0). In the regime of free-particle excitations (u j →
eik j y, v j → 0, ω j → h̄k2

j /2m with m the atomic mass), the
impulse approximation becomes valid and we find [28–32]

S(ky, ω) =
∑

j

ñ(0, ky − k j, 0) δ(h̄ω − h̄ω j ). (2)

On resonance, ω = ω j and ky = k j , the DSF is uniquely
determined by the system’s momentum distribution
at k = 0, independent on the probed momentum k j ,
S(k j ) ≡ S(k j, ω j ) ∝ ñ(k = 0).

To identify the free-particle regime, we calculate the
excitation spectrum. Following the Bogoliubov–de Gennes
(BdG) theory, a free-particle excitation is an elementary
excitation of plane wave character. This occurs for excita-
tions of high enough energy and single-particle character
(‖uj‖ = ∫ |u j (r)|2dr = 1 and ‖v j‖ = 0) [28,33].

In order to gain an intuition, we begin with calculating
the Bogoliubov amplitudes and S(k, ω) in the thermodynamic
limit. We consider the BdG theory for an infinitely elongated
erbium quantum gas. As shown in Figs. 1(a) and 1(b), the
supersolid spectrum exhibits a periodic structure in momen-
tum space with a period given by the reciprocal lattice vector
kc. The state develops a density modulation along the axial
direction with wavelength 2π/kc [see inset in Fig. 1(b)]. The
two lowest branches correspond to the superfluid and crystal
branches, respectively [35]. At higher energies, excitations
follow a gapped parabolic dispersion branch and a flat band
at ω ≈ 1.25 ωz (corresponding to transverse breathing modes
of single-droplets). Importantly, the excitation modes of the
parabolic branch have a free-particle character, when ‖u‖ = 1.
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FIG. 1. (a) Axial excitation spectrum of the transversely sym-
metric modes and (b) corresponding DSF of an infinitely elongated
dipolar supersolid at as = 51 a0 in a harmonic trap with ωx,y,z =
2π × (250, 0, 160) Hz. The color maps correspond to ‖u‖ and
S(k, ω), respectively. The inset shows the integrated axial den-
sity profile n(y) of the ground state with mean density 4.7 ×
103μm−1. (c) S(k) for the 3D-trapped system with ωx,y,z = 2π ×
(250, 31, 160) Hz. S(k) is calculated at k = 4.2 μm−1 ≈ 1.8 kc (grey
line) and normalized by its value at the BEC-SSP phase transition,
S∗. The atom number is varied with as to match the experimental
conditions [34]. The red (blue) line shows the result from the SIA
(DAA). (upper inset) Integrated density profile of the ground state at
as = 54.49 a0 and N = 5 × 104 atoms. (lower inset) Evolution of the
ground state’s central contrast C. For the infinite (3D-trapped) case,
kc = 2.3 μm−1(2.4 μm−1).

We now move on to the three-dimensional (3D) trapped
case for the experimentally relevant parameters. Previous
works have shown that the main spectral features qualitatively
persist when changing from the infinite to the finite sized sys-
tem [10–12,36,37]. We calculate the spectrum of excitations
as in Refs. [10,38] and extract the Bogoliubov amplitudes.
Similar to the infinite system, we find a free-particle character
for excitations with h̄ω � 0.6 h̄ωz [34]. This enables the im-
pulse approximation for the later experiments, which are done
at an exemplary momentum of k ≈ 1.8kc. Figure 1(c) shows
S(k ≈ 1.8kc), which decreases when entering the SSP from
the BEC and further reduces when lowering as. Simultane-
ously, the ground-state density develops a spatial modulation
(upper inset), whose contrast C rapidly increases (lower inset).
Note that C evolves faster with as than S(k). For instance,
at as = 53 a0, C ≈ 1, whereas S(k) reduces only by about
35 %. Here, C = (nmax − nmin)/(nmax + nmin) with nmax (nmin)

L011302-2
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being the central maximum (minimum) of the integrated den-
sity [34].

To gain an intuitive understanding of the density-response
reduction, we develop a 1D model [32]. Using two differ-
ent wave-function ansatzes, we evaluate S(k) in the weak
and strong density-modulation regimes. As discussed in
Refs. [39–41], for weakly modulated supersolids, with C � 1,
the ground-state wave function can be approximated by a
fully coherent sine-modulated function on top of a uniform
background. At leading order in C, it reads ψ (y) = √

n(1 +
C sin(kcy)/2), with n being the mean density. Applying this
sine ansatz (SIA) in Eq. (2), we find S(k) ∝ n(1 − C2/8).
This result shows that an increasing contrast directly causes
a suppression of the DSF. We find a similar C dependence
for the superfluid fraction derived from Leggett’s formula [9],
fSF = 1 − C2/2. Therefore, in the weakly modulated regime,
the reduction of the high-energy scattering response con-
nects to the reduction of the superfluid fraction [32]. We
benchmark our SIA results with the BdG calculations for an
equilibrium supersolid state, by evaluating C from the full
Gross-Pitaevskii equation (GPE) solution [34]. As shown in
Fig. 1(c), despite its simplicity, the SIA scaling reproduces
very well the full numerics up to C � 40 %. For larger C, as
expected, the model breaks down.

For large C, we employ a droplet-array ansatz (DAA),
describing the system as an array of ND droplets, ψ (y) =∑ND

j=1 χ (y − jd )eiθ j [3,42]. Each droplet is described by a
Gaussian function, χ (y), of size σ , separated by a distance
d > σ from its neighbours. Each droplet is allowed to have
an independent, yet uniform, phase θ j . Within the DAA, the
DSF shows the proportionality S(k) ∝ n| 1

ND

∑ND
j=1 eiθ j |2σ/d .

It decreases with both the density overlap between droplets,
set by σ/d , and the phase variance along the array. The phase
variance can not be accounted for in the ground-state GPE
theory, which describes a state possessing a uniform phase.
To benchmark the DAA results with the BdG calculations, we
thus set θ j = 0 for all j [34]. We find a very good agreement
for C > 80 %. The effect of phase variations on the scattering
response will be later studied using dynamical simulations;
see Figs. 3 and 4.

To summarize, at equilibrium, the high-energy response
decreases when the contrast increases. For a small den-
sity modulation, the response can be directly connected to
Leggett’s estimate for the superfluid fraction. Moreover, the
presence of phase variations further decreases the response,
as we explicitly show using the DAA. We now compare our
theory expectation with the experiment.

In the experiments, we access the density response of a
supersolid by performing high-energy Bragg scattering on a
166Er dipolar quantum gas, confined in an axially elongated
harmonic trap. A transverse homogeneous magnetic field ori-
ents the atomic dipoles and sets as [3]. We initially prepare
the system in the ordinary BEC phase, and enter the SSP
via interaction tuning by linearly lowering as below a critical
value, a∗

s , for which the BEC-SSP phase transition occurs.
Similar to previous experiments [3,10], a∗

s is extracted with
an interferometric technique. For the present trap and atom
numbers, N , we measure a∗

s = 54.94+28
−13 a0. Furthermore, we

observe the ID regime below as ≈ 53.9 a0, see Ref. [34].

FIG. 2. Fraction of Bragg-excited atoms as a function of ω for
various as across the BEC-SSP-ID regimes (see labels). The spectra
are vertically offset for visibility. Here and throughout the Letter,
the error bars correspond to one standard error. Solid lines show the
Gaussian fits to the data.

For the Bragg excitation, we project on the atoms an optical
lattice potential of constant depth V for a duration τ = 7 ms.
The lattice has a constant wave vector k = 4.2(3)μm−1 along
y and moves with a variable frequency ω. After the Bragg
excitation, we measure the integrated momentum distribution,
ñ(kx, ky), using a time-of-flight expansion of 30 ms. The num-
ber of excited atoms Nexc is extracted in a narrow region of
interest around k [34]. For a fixed as, we find a clear resonance
in Nexc/N as we vary ω. From a Gaussian fit we extract the
resonance peak’s amplitude, F . From linear response theory,
we expect F ∝ V 2τS(k) [43]. For the relevant as range, we

0

1

2

3

4

F
 (

%
)

5
BECSSPID

54 54.5 55 55.5 56 56.5 57
as (units of a0)

53.5

FIG. 3. Experimental F (circles) versus as across the BEC-SSP-
ID phases. For the lowest three as, we do not observe a resonance
and plot the standard deviation of the data as an error estimate.
Horizontal error bars correspond to uncertainties of the magnetic
field [34]. Theoretical F (lines) from the BdG calculations on the
ground state (grey), from the RTE simulations (black), and from the
rescaled BdG calculations that include 
� obtained from the RTE
(blue). The gray shading corresponds to the uncertainty in as of the
experimental phase transition (vertical line).
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FIG. 4. RTE simulations without Bragg excitation. (a) Time evo-
lution of the integrated in situ density of the wave function for
as = 54.04 a0. (b) 〈C〉τ (triangles) and 
� (squares) versus as.
The grey line corresponds to the central contrast obtained from the
ground-state theory. The solid blue line is a smooth interpolation
of 
�, fixed to unity at the phase transition point. The shadings
give the standard deviation obtained from five simulation runs. The
vertical line corresponds to the phase transition point. (c) Phase cuts
corresponding to the simulation shown in (a).

have checked the scaling with τ and V [34]. Figure 2 shows
examples of the Bragg-excitation spectrum for various as. In
the BEC regime until the onset of the SSP, we observe a down-
ward shift of the resonance frequency without a significant
change in F [34]. In contrast, as we enter into the SSP regime,
F undergoes a stark reduction. In the ID regime, the resonance
peak completely vanishes.

Figure 3 shows the evolution of F across the BEC-SSP-ID
phase diagram. The as extension of the three phases (see back-
ground colors), has been determined from independent mea-
surements of the phase coherence and density modulation of
the states [3,34]. When reducing as, F first slightly increases
in the BEC phase, continuously crosses at the BEC-SSP tran-
sition, and then drastically reduces to �1%, close to our
detection level, when lowering as further by ∼0.5 a0. Finally,
for as < 54 a0, we do not observe any resonant response.

We compare the experimental results with our BdG theory
for the stationary, trapped gas. While in the BEC regime, ex-
periment and theory show a good agreement, in the SSP they
start to substantially deviate from each other. The data shows a
much faster reduction of F than the one predicted by the BdG
theory. This suggests that an important ingredient is missing
in the ground-state theory. Our DAA model provides a first
intuitive explanation, showing that, not only the increasing
crystalline modulation but also phase variations can lead to
a reduction of the system response. We envision two sources
of phase variations. First, quantum and thermal fluctuations,
which are expected to dominate in the ID regime, yield phase
patterns varying from shot to shot. Second, coherent dynam-
ics, as, e. g., induced by the crossing of the BEC-SSP phase
transition, leading to reproducible phase patterns. Neither
phenomena are accounted for in the BdG calculations.

To investigate these effects, we simulate the system real-
time evolution (RTE) [44]. Our calculations reproduce the full

experimental sequence [34]. Random shot-to-shot variations
are included by adding an initial population of BdG modes
from quantum and thermal noises [34]. From the simulated
momentum distributions, we extract the excited fractions, as
done for the experimental data. Contrary to the BdG results,
the RTE simulations describe remarkably well the data both
in the BEC and SSP phase; see Fig. 3.

The impact of the changing contrast and phase variations
across SSP-ID phase can be seen from RTE without a Bragg
excitation for different holding times. As shown in Fig. 4(a),
the density profiles n(y) exhibit only a slight reduction of
the contrast with time due to atom loss. As expected, the
calculated 〈C〉τ , time averaged over the Bragg scattering du-
ration, increase with decreasing as. However, for each as, we
observe a 10–30 % lower contrast than the one extracted from
the ground-state calculations. Since a reduced contrast would
mean an increase in F , the varying contrast cannot explain the
mismatch between the BdG theory and both the experimental
and RTE results; see Fig. 3.

The RTE calculations also reveal that the phase of the wave
function, θ (y), develops a nonuniform profile. For instance
at as = 54.04 a0, θ (y) exhibits a stairlike profile with fairly
constant values within the density peaks and discrete phase
steps in between them; see Fig. 4(c). This behavior suggests
that each density peak acquires an independent phase, despite
their density links. We also observe that the phase pattern
is fairly reproducible between simulation runs and mainly
affected by the coherent dynamics arising by the crossing of
the phase transition [34].

Following the DAA model, phase variations are expected
to reduce S(k) by a factor 
� ≈ | 1

ND

∑ND
j=1〈eiθ j 〉τ |2 [28,34].

As shown in Fig. 4(b), 
� is almost unity close to the BEC-
SSP phase transition and significantly drops when lowering as

towards the ID regime, where it starts to flatten. The standard
deviation of 
� relates to the shot-to-shot reproducibility of
the phase pattern. In the SSP, the deviation remains small,
confirming that the phase variations originate from coherent
dynamics. In contrast, the deviation increases when reaching
the ID regime. This highlights the increasing effects of fluctu-
ations, showing that the phase variations ultimately become
incoherent. We empirically account for the effect of phase
variations in the BdG theory by scaling the DSF with 
� over
the whole SSP-ID regimes. As shown in Fig. 3, this simple
inclusion of 
� shows the pronounced impact of the coherent
phase variations for the experimentally observed response.

In conclusion, we demonstrate high-energy two-photon
Bragg scattering spectroscopy as a sensitive probe of density
modulations, and coherent and incoherent phase variations
in a quantum system. Accounting for the phase variations
is crucial to fully capture the behavior of supersolid states
created in experiments via a dynamical tuning of the interac-
tions. Our work provides important steps to a more complete
vision of the dipolar supersolid, including out-of-equilibrium
phenomena, and opens the door for future exploration of
critical phenomena induced by the dynamical crossing of the
BEC-SSP phase transition [45–47].
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A. Preparation of the BECs

We prepare a BEC of 166Er by loading about 3 × 106

thermal atoms into a crossed optical dipole trap (ODT)
and subsequent evaporative cooling, see Ref. [1, 2]. Dur-
ing the evaporative cooling, a homogeneous magnetic
field of 1.9 G is present to ensure high enough rethermal-
ization rates to obtain ultracold temperatures. After the
evaporation, we adiabatically modify the corresponding
ODTs laser powers and beam waists, to shape the con-
fining potential Vtrap(r) = m(ω2

xx
2 +ω2

yy
2 +ω2

zz
2)/2 to a

cigar-shaped geometry with harmonic trapping frequen-
cies ωx,y,z = 2π × [250(1), 31.7(13), 156(2)] Hz. Consec-
utively, the magnetic field is lowered to a value corre-
sponding to 64.9 a0. After this preparation procedure,
we obtain a BEC with a total atom number of 1.2× 105

atoms and a condensed fraction of 70 %. The temper-
ature of 95(5) nK is obtained from time-of-flight (ToF)
expansion measurements.

To enter the BEC-SSP-ID regimes, we lower down as
linearly in 20 ms to the corresponding values given in the
main manuscript. We then let the system equilibrate for
10 ms and consecutively apply a Bragg pulse of 7 ms du-
ration. In order to access the momentum distribution
of our atomic cloud, we perform a ToF expansion, by
abruptly switching off all trapping potentials directly af-
ter the Bragg excitation. After 30 ms of free expansion,
we take an absorption image of the cloud along the dipole
direction. We note that, due to residual magnetic field
drifts in the experiment (estimated to be ±2 mG), the un-
certainty on as, during the Bragg pulse, ranges between
±0.1 a0 and ±0.2 a0, increasing for lower as. This uncer-
tainty is represented by the corresponding error bars on
our data in the main manuscript.

SSP BEC
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FIG. S1. Fraction of atoms in one side peak of the atomic
cloud’s interference pattern across the BEC-SSP phase tran-
sition. Error bars denote one standard error obtained from
about 30 measurements. The vertical line shows the obtained
phase transition point. The different grey shadings corre-
spond to the different uncertainties that are taken into ac-
count to obtain the total uncertainty, ∆a∗s , of a∗s (see text).

B. Determination of experimental BEC-SSP phase
transition

In order to determine a∗s for our experimental param-
eters, we perform a time-of-flight expansion of the sys-
tem in the BEC or SSP regime after the equilibration
time. Here, no Bragg pulse is applied. We find either
an expanded ordinary BEC or an interference pattern
of the expanded supersolid, where a part of the atoms
appear in two side peaks around ky ≈ ±kc. The atom
number in these two side peaks is directly related to the
modulation contrast of the in-situ cloud [2–4]. We mea-
sure the fraction of atoms in a single side peak, fside,
and monitor its evolution versus as; see Fig. S1. In the
BEC regime, where no density modulation is present, we



2

find fside = 0 down to as,1 = 55.00 a0. After crossing
the BEC-SSP phase transition, we observe fside > 0 for
as ≤ 54.88 a0 = as,2, which increases with lower as. Tak-
ing the mean, (as,1−as,2)/2, we find a∗s = 54.94 a0 with an
uncertainty of ∆a∗s,P = 0.05 a0, coming from our resolu-
tion in as; see shadings in Fig. S1. We include a magnetic
field uncertainty corresponding to 2 mG (±0.12 a0 at a∗s ),
which increases the uncertainty to ∆a∗s,B = ±0.13 a0.
Furthermore, we take a finite resolution of fside ≈ 0.2 %
into account and obtain the final estimate of the critical
point of the BEC-SSP phase transition a∗s = 54.94+28

−13 a0.

C. Transition from SSP to ID
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FIG. S2. Amplitudes Aφ (red circles) AM (blue squares)
versus as. Error bars denote the standard error from about 30
experimental realizations [2]. Non-zero values of AM enable
us to identify modulated states and confirms the BEC-SSP
transition point (vertical line, gray shaded area). The SSP is
identified by AM ≈ Aφ > 0 and extends down to as = 53.9 a0.
For lower as an ID state is observed (Aφ < AM > 0).

We use the same analysis of Aφ and AM as in Ref. [2]
to distinguish in the experiment the SSP and the ID
regime. In brief, Aφ relates to a reproducible interfer-
ence pattern in time of flight and thus reveals a coherent
and modulated state. AM relates only to the presence
of an in-situ density modulation (structures in the ToF
images). By combining both observables, one can dis-
tinguish the SSP (Aφ ≈ AM > 0), the ID (Aφ < AM)
and the ordinary BEC regimes (Aφ = AM = 0) in the
experiment, see Fig. S2. We find that for as < 53.9 a0
the system is in the ID regime. The measurements are
performed directly after the equilibration time and with-
out a Bragg excitation (same timings as in Sec. B). We
note that the ratio Aφ/AM is mostly sensitive to phase
fluctuations, which lead to different interference patterns
in different experimental runs and is insensitive to repro-
ducible phase variations in the system. The latter could
affect the structure of the interference patterns, yet in
a reproducible way. Therefore, Aφ/AM is an observable
that is adapted to describe the coherence of the system
but does not measure the phase variations, investigated
in the main manuscript, which are induced by diabatic

dynamics.

D. Calibration of atom loss and atom number for
BdG theory
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FIG. S3. Atom number in the BEC versus as for different
times in the experiment, corresponding to the beginning (cir-
cles), middle (triangles) and end (squares) of the Bragg pulse.
Error bars denote the standard error from 5 measurements.
The lines are spline interpolations to the corresponding data.
The measurements were obtained without applying a Bragg
pulse. The vertical line indicates the measured phase transi-
tion point.

Due to three-body recombination losses, the atom
number, N , in the condensed part is decreasing during
the 7 ms of the Bragg pulse by typically 10-30 %. There-
fore, the atom number in the experiment varies with
as, which we include in our BdG theory of the three-
dimensionally trapped system. We note that we do not
observe additional atom loss due to the presence of the
Bragg excitation, as the wavelength of the used laser light
is far enough detuned from any atomic resonance (see
Sec. E).

To extract N we perform an additional set of measure-
ments in which we do not apply a Bragg pulse and, after a
given hold time in trap, take absorption images after a 30
ms ToF expansion. From these images, the thermal com-
ponent is fitted by an isotropic 2D Gaussian function and
subtracted. A final numerical integration over the image
yields N without the need of an additional fitting of the
condensed part itself. In Fig. S3, we show N across the
phase diagram for different timings in the experiment,
corresponding to the beginning, the middle and the end
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of the Bragg pulse. Each timing is interpolated with a
spline fit. The fitted values of the intermediate timing
(orange line in Fig. S3) is used as the atom number in
our BdG theory.

E. Bragg spectroscopy

The Bragg excitation beams are realized holographi-
cally with a digital-micromirror device (DMD), as de-
tailed in Ref. [5]. In short, the setup uses a near-resonant
laser light, red-detuned by 71(1) GHz from the 401 nm
transition of 166Er. These two Bragg beams interfere un-
der an angle on the atoms’ position, giving rise to an in-
terference pattern. In our setup this angle can be tuned,
but for this current work we keep it fixed to obtain an
interference pattern with a wave vector k = 4.2(3)µm−1

along y. The value and uncertainty on k is deduced
from offline measurements of the angle between the two
Bragg beams. To excite the system, the Bragg scattering
needs to supply energy, h̄ω, which is introduced with a
frequency difference, ω, between the two Bragg beams.
Here, we use a sequence of holographic gratings that is
uploaded on the DMD and continuously shifts the phase
of one beam in 9 steps from 0 to 2π. Depending on the
frame-rate of the uploaded sequence, we can vary ω from
0 Hz to 1000 Hz.

To calibrate the depth V of our Bragg potential,
we perform Kapitza-Dirac-diffraction measurements [6].
For these measurements, we tune the laser light
closer to the atomic transition (20.6 GHz) and use
the maximally available power for our Bragg beams.
By doing so, we achieve a maximum optical depth
of Vmax/h = 430(50) Hz, corresponding to 3.2(4)Erec,
where the recoil energy Erec = h̄2(k/2)2/(2m) = 135 Hz.
In order to extract the potential depth V of our Bragg
scattering probe, we rescale this calibrated value ac-
cording to the corresponding laser light detuning and
power used for the Bragg scattering [7]. We obtain
V = 42(5) Hz, which is well inside the linear scatter-
ing regime (see Sec. F and Fig. S6). The exact calibra-
tion of the potential depth does not include systematic
effects, as for example inhomogeneities of V cross the
atomic cloud or in-trap dynamics of the atoms during
the Kapitza-Dirac-diffraction measurement. Neverthe-
less, we note that the estimation of the linear response
regime is insensitive to the exact calibration of V . We
furthermore note, that a direct comparison of F from the
experiment with the one from the RTE suggests that V
needs to be rescaled by about 1.7.

Figure S4 gives examples of our images for a resonant
and an off-resonant Bragg scattering frequency. For the
resonant case (Fig. S4, left panel) we find scattered atoms
at a high momentum around ky ≈ k. As they appear out-
side of the interference patterns, observed from the un-
perturbed system, they constitute a clean signal for the
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FIG. S4. Examples of momentum distributions of a super-
solid at as = 54.59(13) a0 after an applied Bragg excitation
(a) on resonance at 1.7 h̄ωz and (b) off resonance at 3.7 h̄ωz.
The two side peaks appearing around ky ≈ ±2.4µm−1 con-
stitute, together with the central peak at k ≈ 0µm−1, the
interference pattern obtained when expanding a supersolid
state. The black box indicates the region of interest from
which Nexc is extracted. Each image is an average of 15 ex-
perimental realizations.

analysis of the excited fraction. We count the number
of atoms, Nexc, in a region of interest (ROI), indicated
by the black boxes in Fig. S4. We note that we carefully
checked that neither F , nor ωk, changes within the un-
certainties when increasing the ROI size by 30%.. We
measure the total atom number, N , for each measure-
ment individually, by performing a similar count on a
rectangle of 12µm−1 by 14µm−1, covering all condensed
and scattered atoms. By measuring Nexc/N for different
excitation frequencies, we obtain a spectroscopy of the
Bragg scattering. We note that due to thermal atoms,
present in the analyzed region of interest, all Bragg res-
onances show a small offset, which is extracted from the
offset of the Gaussian fit to the resonance and then sub-
tracted.

From the Bragg excitation spectra, we extract the
resonance peak’s amplitude, as discussed in the main
manuscript, and a resonance frequency, ωk. The latter
is shown in Fig. S5 as a function of as. We observe that
ωk decreases monotonically from high to low as, across
the BEC-SSP phase transition. This behaviour is consis-
tent with the extracted ωk from the RTE theory. Fur-
thermore, we calculate the expected resonance frequency
from the BdG calculations. In the BEC regime, the BdG
theory predicts a softening of the measured excitation
modes that relates to the roton softening (see Section
G). This equilibrium BEC expectation agrees with the
experimental results and the dynamical simulations. In
contrast, a disagreement arises after crossing the BEC-
SSP phase transition with lowering as. Here, the BdG
theory predicts a hardening of the measured excitation
modes in the supersolid regime, which is not observed
neither in the experiment, nor in the RTE simulations.
This qualitative difference can stem from the increased
phase variations that develop in the system. Indeed, the
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phase variations intrinsically connect to finite velocity
fields in the system that effectively make the excitation
modes softer.

ω
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FIG. S5. Extracted resonance frequencies, ωk, versus as (cir-
cles) and their comparison with the expected resonance posi-
tion from the BdG theory (gray line) and ωk from the RTE
(connected dots). The vertical line indicates the BEC-SSP
phase transition point and its shading the uncertainty on a∗s .

F. Variations of the excited fraction with the Bragg
pulse duration
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FIG. S6. Evolution of F during the Bragg pulse for three ex-
emplary as = [55.5(1), 54.0(1), 53.3(1)] a0 (black, red, blue),
corresponding to the BEC, SSP, ID regimes, respectively.
Each data point corresponds to an average of 5 to 15 mea-
surements and its uncertainty to the standard error. The
solid lines correspond to a linear fit and its shading to the
fit’s 68 %-confidence bound. The inset shows the evolution
of F with the applied potential depth, V , of the Bragg pulse
for τ = 7 ms for a supersolid state at as = 54.28(14) a0. The
solid line corresponds to a quadratic fit up to V = 80 Hz, the
dashed line is the extension of the fitting.

In Figure S6, we present the measured evolution of F
with the Bragg pulse duration from 0 to 7 ms for a fixed ω.
Across the BEC-SSP-ID regimes, we find a linear scaling

of F with τ , which is consistent with the expected scaling
from BdG theory, F ∝ V 2τS(k) [8]. Furthermore, we
probe the quadratic scaling of F with V in the SSP and
find also here an agreement up to V = 80 Hz (see inset).

G. Evolution of the excitation spectrum with as for
the infinite cigar-shaped gas

We calculate the excitation spectrum and the dynamic
structure factor (DSF) of an infinitely elongated, cigar-
shaped dipolar supersolid in Fig. 1(a, b) of the main
manuscript. In Figure S7 we present the evolution of
the excitation spectrum across the BEC-SSP-ID regimes.
Figure S7 (a1-a5) shows the integrated density profiles of
the ground state along the unconfined direction for dif-
ferent values of as and a fixed mean axial density of
4.7× 103 µm−1. Figure S7 (b1-b5) shows the correspond-
ing excitation spectrum. At large enough as, the ground
state has a uniform density along the unconfined direc-
tion (a1, a2 - BEC phase) and its excitation spectrum
shows the typical phonon-maxon-roton spectrum, first
predicted in [9, 10]. When decreasing as below a criti-
cal value, the ground state becomes density modulated
(a3, b3 - SSP phase) with a modulation wave number
kc = 2.3µm−1 close to the BEC’s roton momentum (b2),
underlying the connection between roton softening and
crystallization. The density modulation has a finite con-
trast and its value increases when lowering as further
down (a4, a5).

When crossing the BEC-SSP phase transition, the ex-
citation spectrum changes dramatically, becoming pe-
riodic, with the appearance of two gapless Goldstone
branches associated with phase (lower energy branch)
and density (higher energy branch) excitations, respec-
tively [11–13]. In addition to these gapless branches, one
observes gapped parabolic branches of excitations with
energetic minima at integer multiples of kc. The one
branch at ky = kc is the one investigated in the main
manuscript. For decreasing as, the energy minimum of
this parabolic branch increases towards the ID regime
[Fig. S7 (b3-b5)].

As described in the main paper, we use the norm of
the calculated Bogoliubov amplitude ‖uj‖ =

∫
|uj(r)|2dr

to distinguish whether a mode j is a collective excitation
or has a single-particle character [14, 15]. Collective ex-
citations feature ‖uj‖ � 1 whereas single-particle excita-
tions have ‖uj‖ ' 1. In Figure S7 (b1-b5), we color each
excitation mode according to ‖u‖. We find that lower
energy modes, such as the roton mode in the BEC and
the Goldstone modes in the SSP have a clear collective
nature. The energetically higher modes (h̄ω >∼ 0.5 h̄ωz),
of the parabolic branch in the SSP and the ky > kc-
branch in the BEC, have ‖uj‖ ' 1 across the BEC-SSP
phase transition. We note that the condition ‖uj‖ ' 1
does not directly identify an excitation mode as a free-



5

momentum (kc)

0

0.5

1.5

ω
 (u

ni
ts

 o
f ω

z)

0 0.5 1 1.5 2
ky (units of kc)

ω
 (u

ni
ts

 o
f ω

z)

0 0.5 1 1.5 2 0 0.5 1 1.5 2

y (μm)

0 0.5 1 1.5 2
ky (units of kc) ky (units of kc) ky (units of kc)

0 0.5 1 1.5 2
ky (units of kc)

-2 0 20

1.5

n 
(x

10
4 
μm

-1
)

y (μm)
-2 0 2

y (μm)
-2 0 2

y (μm)
-2 0 2

(a2) (a3) (a4) (a5)

(b2) (b3) (b4) (b5)

(c2) (c3) (c4) (c5)

y (μm)
-4 -2 0 2 4

(a1)

(b1)

(c1)

1.0

0

0.5

1.5

1.0

0 0.5 1 1.5 2
ky (units of kc)

0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2
ky (units of kc) ky (units of kc) ky (units of kc)

0 0.5 1 1.5 2
ky (units of kc)

1 3 >5||u||

1 2 >2.6
S (k, ω) 

0

FIG. S7. Axial excitation spectra of the infinitely, extended gas across the BEC-SSP-ID regimes in a ωx,y,z = 2π(250, 0, 160) Hz
trap with fixed axial density n0 = 4.7 × 103µm−1. (a1-a5) Integrated density profiles along the unconfined direction, for
as = (52.00, 51.40, 51.25, 51.00, 49.75) a0. (b1-b5) Transverse symmetric modes of the corresponding excitation spectrum
colored according to ‖u‖. (c1-c5) The corresponding S(k, ω). For visibility, the DSF is broadened with a Gaussian function.

particle. To obtain a free-particle excitation, the mode
needs to be of single particle character and additionally
its energy needs to be mainly given by the kinetic energy.
Therefore, free-particle excitations have a wave function
that is a plane wave [15]. We note that for our exper-
imentally relevant energy regime, the probed excitation
modes are described well by a plane wave, as shown in
Sec. I. and Fig. S10 (b).

From our simulations, we also calculate the DSF. In
the BEC phase [Fig. S7 (c1, c2)] the DSF is dominated
by the roton mode at ky = kc. Moreover, the deeper
the roton minimum, the stronger is its response to small
density perturbations. We note that, in the BEC phase,
this affects also the density response and the energy even
for momenta higher then the roton momentum. After
crossing the phase transition into the SSP, we find that
the DSF of the parabolic branch [Fig. S7 (c3)] smoothly
connects to the free-particle branch of the BEC phase.
For decreasing as, the DSF of the free particle branch
becomes smaller [Fig. S7 (c4, c5)].

H. BdG theory for the three-dimensional trapped
gas

For the current manuscript, we employ similar BdG
and ground state calculations as already described in
Refs. [5, 13, 16]. In this theory the gas is trapped in
all three dimensions. For calculating the ground states,
we use the experimentally extracted atom number at
the intermediate timing of the Bragg pulse (presented in
Fig. S3, triangles). The radially integrated density pro-
files of the ground states in the SSP regime are presented
in Fig. S8. We note that in this theory, the BEC-SSP
phase transition lies at 3.79 a0 below the experimentally
determined one. This shift in as between theory and
experiment has also been found in Refs. [2, 5, 17]. There-
fore, throughout the manuscript, the BdG theory and the
ground state calculations are presented with an up-shift
of 3.79 a0 for as.

The presence of an axial trapping potential, leads to
discrete excitation modes in the spectrum, see Fig. S9 (a).
Furthermore, each mode is broadened in ky. The finite
duration of the Bragg pulse gives an energy broadening
of each excitation mode (Fourier broadening ∼ h×130 Hz
full width at half maximum) which is much bigger than
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triangles).

the energy spacing between the modes in the spectrum.
Therefore, in the Bragg spectroscopy only a single res-
onance is visible, which is constituted of multiple exci-
tation modes. To account for this, we calculate S(k, ω)
while broadening each mode in energy according to the
Fourier-broadening, expected from a 7 ms Bragg pulse,
see Fig. S9 (b). After calculating the broadened S(k, ω)
and evaluating it at the experimental k, we also find in
the BdG theory a single resonance in energy. To compare
with the experiment, we extract S(k) from a Gaussian fit
to this resonance; see also [5].

I. Free particle regime in the BdG theory for a
trapped gas

To transfer the insights from the BdG calculations of
an infinitely extended system (see Sec. G) to the experi-
mentally trapped case, we also analyze ‖u‖ and ‖v‖ of the
excitation modes obtained from the BdG calculations of
a three-dimensional trapped gas. Similar to the infinitely
extended system, we find that modes with h̄ω >∼ 0.5 h̄ωz
have ‖u‖ ≈ 1 and therefore a single-particle character
across the BEC-SSP-ID regimes. This is exemplified in
Fig. S10 (a) where we show, for an exemplary state in the
SSP, the norm of the obtained Bogoliubov amplitudes
versus the energy of the corresponding mode.

As mentioned already in Sec. G, to further identify a
single particle excitation as a free particle one, the ex-
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FIG. S9. Dynamic structure factor calculations for the 3D-
trapped system in the SSP at 54.4 a0. (a) DSF with a small
broadening of each excitation mode, showing the discreteness
of the spectrum. Here, lz =

√
h̄/mωz ≈ 0.6µm denotes

the harmonic oscillator length along z. (b) DSF after ap-
plying a broadening, corresponding to a 7ms long Bragg ex-
citation pulse (square-shaped pulse, sinc-squared broadening
function). Note that the lowest energy mode at kylz ≈ 1.5
has a very strong contribution to the DSF, giving rise to vis-
ible harmonic components at higher energies. The vertical,
dashed lines indicate the experimentally probed momentum.

citation’s wave function needs to be a plane wave. To
investigate this aspect, we study the excitation modes’
density profiles and find for modes in the experimentally
relevant energy regime a clear plane wave character. Fig-
ure S10 (b) shows the radially integrated density profile of
an exemplary excitation mode of a supersolid and com-
pares it to the integrated density of the ground state.
The plane wave character is clearly visible as a modu-
lation with k ≈ 4.1µm−1 across the whole system. We
only find a mild reduction of the plane wave’s amplitude
towards the outer region of the system. As a comparison,
we show in Figure S10 (c) the integrated density profile
of an excitation mode at lower energy, 0.55 h̄ωz, which
also has ‖u‖ ≈ 1, but is clearly not a plane wave.

We note that, from the theory of infinite systems,
the low-energy low-momentum scattering response is ex-
pected to directly relate to the superfluid density, via the
stiffness of the lowest-energy branch [15, 18]. However,
such a relation is difficult to establish for the finite-sized
experimental systems and measurements in this regime
are thus expected to be hard to interpret. Therefore,
our measurements in the high-energy high-momentum
regime circumvent this issue and offer an alternative
probe scheme, less affected by finite-size limitations.

J. Comparison of the finite-size BdG theory to the
self-consistent SIA and DAA model

From the ground state profiles of the three-dimensional
trapped BdG theory in Fig. S8, we numerically evaluate
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FIG. S10. (a) Bogoluibov amplitudes, ‖v‖ (crosses) and ‖u‖
(circles), for the excitation modes of a trapped supersolid at
as = 54.49 a0. (b) Integrated density profile, nexc, of an exem-
plary excitation mode with an energy of 1.7 h̄ωz (red line) and
k ≈ 4.1µm−1 and a comparison with the integrated ground
state density, nGS, (grey line). (c) The same as in (b) but for
an excitation mode at 0.55 h̄ωz.

our SIA and DAA model on the corresponding ground
states. To self-consistently evaluate the SIA result from
the ground state, we need to estimate the contrast of the
density modulation, C = (nmax − nmin)/(nmax + nmin).
We determine nmin from the minimum density at y = 0
and nmax from the density of one of the two most-central
density peaks. To evaluate the DAA model, we numeri-
cally extract the 1/e-size, σ, of the two central droplets
and the distance d between them. To estimate the den-
sity, we calculate the mean density in the central region
between the two central droplets. Therefore, our model
comparison takes only the central part of the system into
account and neglects the outer density regions. Further-
more, as our models extract only the scalings of the DSF

with the ground state properties and not its absolute
value, we renormalize the SIA and the DAA. For the
comparison in Fig. 1 of the main manuscript we show the
finite BdG and the SIA rescaled to unity for the point at
the phase transition. The DAA is rescaled directly on the
BdG theory to match its values in the lower as regime.
Over the investigated as range, we find that both, the
SIA and the DAA, describe the BdG theory well for low
and large C, respectively (see main text), and for mo-
menta k ≥ 4.0µm−1. This gives an estimate for which
momenta the impulse approximation becomes valid.

K. Real time evolution of the Bragg scattering

Our theory for the RTE simulations was already pre-
sented in Ref. [16]. For the current manuscript, the sim-
ulations start with the ground state wave function with
N = 8.5 × 104 atoms at as = 60.9 a0. We add a ther-
mal population, corresponding to a randomly drawn oc-
cupation of the system’s excited states (incl. a ran-
dom phase) with a Poisson distribution, whose mean is
given by the Bose distribution (+1/2 to simulate quan-
tum fluctuations) for the mode’s energy at a temperature
of 100 nK [19]. This increases the total atom number to
about 1×105 (similar to the experimental situation) and
simulates thermal and quantum fluctuations in the sys-
tem.

In the time evolution, we reproduce the experimental
sequence, including a 20 ms long linear as ramp, followed
by a 10 ms holding at the final as and a consecutive 7 ms
Bragg excitation along y. In order to obtain the system’s
momentum distribution, we perform a Fourier-transform
of its wave function. On this momentum distribution, we
perform the same analysis as on the experimental data,
i. e. we analyse the fraction of excited atoms in a region
of interest around k ≈ 4.2µm−1 for various ω. The res-
onances are fitted with a Gaussian function to obtain F
from the RTE simulations. For the same reasons as men-
tioned for the BdG calculations (Sec. H.), the crossing
of the BEC-SSP phase transition in the RTE happens
3.34 a0 below the experimental phase transition. There-
fore, throughout the manuscript, the RTE theory is up-
shifted in as by 3.34 a0. We note that, when perform-
ing the RTE directly on the corresponding ground states
from the BdG theory, i. e. we do not include thermal
noise, the as-ramp and atom loss, we recover an excited
fraction that is well described by the BdG theory. This
indicates that the chosen analysis in ToF gives a reliable
measurement of S(k) and in particular a consistent result
with the 3D-trapped BdG calculations.
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L. Real-time evolution and characteristics of the
state’s wave function

To study the time evolution of the contrast and the
phase of the dynamically created supersolid states, we
perform RTE simulations without applying a Bragg ex-
citation and monitor the axial density and the phase pro-
files from the calculated wave functions [see Fig. 4 (a, c)
in main manuscript]. Typically, in the RTE we observe
ND = 4 − 6 droplets, containing a variable atom num-
ber across the system. We evaluate the time-dependent
central contrast, C, between the two central density
peaks numerically. The phase-variation factor ∆Θ =
| 1
ND

∑ND

j=1〈eiθj 〉τ |2 is calculated by extracting the mean
phase, θj , of each single density peak over its full-width
at half maximum.

0
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FIG. S11. RTE simulations with V = 0 (no Bragg excita-
tion applied). (a) The time evolution of the extracted central
contrast of the integrated in-situ density distributions for dif-
ferent as (see legend). (b) The extracted phase incoherence
of a central cut through the wave function (see text). The
shadings represent the standard deviation from 5 simulation
runs with different statistical draws of the thermal popula-
tion. The data presented in Fig. ?? (a, b) corresponds to the
time window of [0, 7] ms.

Figure S11 (a) shows C(t) over the whole simulation
time. For early times, we observe a small, but finite C
due to density noise in the simulations, which is com-
ing from the included thermal fluctuations. During the
holding time ([−10, 7] ms), for as < a∗s , we observe that
C first increases and consecutively slightly decreases due
to atom loss. Only for as < 54.2 a0 we find an oscillating
behaviour of the contrast in time. We note that there
is a time delay between the development of the density

modulation in the system and the timing of the as ramp
(which occurs during [−30, −10] ms).

To give another insight into the time evolution of the
system’s phase profile, we extract the global phase vari-
ation, α = 1

L

∫
L
|φ(0, y, 0) − 〈φ〉L |dy, of the wave func-

tion, which is extracted along a cut of φ along y. Here,
〈φ〉L denotes the averaged phase over the central region
L = [−7, 7]µm, see also [3]. In Figure S11 (b), we show
the time evolution of α for the whole simulation time.
For all as one sees a first local maximum in α (around
−20 ms), coming from an axial breathing mode which is
excited due to the as ramp. At longer times, we find for
54.5 a0 <∼ as ≤ a∗s , that α remains small while the density
contrast is finite. For as < 54.5 a0, we find that α seems
to approach a constant value, which increases with lower
as.
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L. Santos, and F. Ferlaino, Phys. Rev. X 6, 041039
(2016).

[2] L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Traut-
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Upgraded distribution for the
light at 532 nm

At the time, when the experiments in Chapter 3 have been performed, our green lattice
laser was simultaneously used to pump the dye laser for generation of the 583-nm light. In
practice, this lead to two disadvantages: As the laser system provides maximum 10W and
half of the power was necessary for the dye laser, the power available for our lattice setup
was limited. Second, to cover the distance from the laser to the experiment relatively long
fibers of 8m were required. For such long fibers, Brillouin scattering plays a significant role
because it limits the maximally transmittable power. Moreover, Brillouin scattering leads
to undesired intensity noise.

Thanks to the switching to a diode laser system at 583 nm (see Chapter 2.2), we have
more power at 532 nm available and we have been able to upgrade the light distribution.
To reach higher powers for each lattice beam, within this thesis, we rebuilt the optical
setup closer to the experimental table. The implementation of shorter high power fibers1

increased the available power for each lattice beam from maximally 1.2W per beam to about
2.5W per beam, limited by the maximum laser power and not by Brillouin scattering. This
improvement will allow us to realize larger lattice beams and deeper lattice depths in future
experiments; see also Chapter 6.

Figure A.1 shows a drawing of the new lattice setup. The full power of 10W is divided into
two paths, one for each lattice beam. Both lattice beams are controlled individually using
an acousto-optic modulator (AOM) made of crystalline quartz2 to minimize thermal lensing
effects as they occur for example with TeO2 [Sim19]. The AOMs are used simultaneously as
switches as well as to stabilize the beam intensity.

The laser power gained on the experimental table allows us to make a few design consideration
for an upgrade of the optical lattice. Generally, two aspects are of major interest:

(i) To observe thermalization behavior due to spin-exchange dynamics, it is important to
reduce the tunneling rate in the system. The observed exchange dynamics occur on the

1 Schaefter-Kirchhoff, PMC-E-460Si-4.0-APC.EC-300-P, 3 m length.
2 Gooch & Housego, I-M110-2C10B6-3-GH26.
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Figure A.1.: Schematic drawing of the upgraded distribution for the light at 532 nm used for the
optical lattice. The light is obtained from a 10W-Verdi laser system and split in two paths. The
light is transmitted to the experimental table with two optical fibers with a length of 3m. For each
lattice beam the intensity is controlled with an AOM.

timescale of several 100ms. With a lattice depth of 60Erec the tunnel rate corresponds
to about 0.036Hz, which means that only after 25 s every atom has tunneled approx-
imately once. With this lattice depth, we can ensure that only a negligible number of
atoms are tunneled during thermalization up to a few seconds.

(ii) The energy difference between neighboring lattice sites due to the harmonic confine-
ment of the laser beams should be as small as possible to reduce inhomogeneities; see
Chapter 2.3.2. This can be reached by using large lattice beams.

It quickly becomes clear that the two requirements are strongly correlated. A deeper lattice
depth can be achieved either by a smaller laser beam or an increased power. However, both
lead to a stronger harmonic confinement. Since in our system, due to the larger lattice spacing
in the third dimension (see Chapter 2.3), the dipolar exchange interactions are dominantly
occurring in the horizontal planes of our three-dimensional lattice, we can reach an larger
lattice depth combined with a lower confinement by changing the aspect ratio (AR) of the
lattice beams.

Figure A.2 shows calculations of the lattice depth s and the harmonic radial confinement
νr as a function of the beam waist for AR = 1, 2, 3. Due to expected losses caused by an
additional optical isolator, we have assumed a power of 2W. For the polarizability, we used
the theoretical value of 317 a. u. as determined in Ref. [Bec18].

As expected, a larger AR is advantageous to reach a deeper lattice depth while reducing
simultaneously the harmonic confinement along the weaker dimension of the trapping beam.
Keeping a lattice depth of 60Erec as a minimum requirement, the harmonic confinement
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Figure A.2.: Lattice depth (a) and harmonic confinement (b) as a function of the beam waist for
laser beams with AR = 1 (blue dashed line), AR = 2 (red dotted line), and AR = 3 (green solid
line). For AR > 1, the beam waist corresponds to the larger dimension. The calculations are done for
a laser power of 2W and a dynamical polarizability of 317 a. u. [Bec18]. The horizontal dashed line
in (a) corresponds to 60Ered and the vertical dashed lines denote our current beam waist of about
160 µm.

could be reduced by about 25% for AR = 2. Interestingly, the condition of AR = 3 brings
only a slight improvement compared to the AR = 2 case (≈ 5%− 10%).

In conclusion, for our experimental system this means that with an increased lattice beam
power of 2W, a larger lattice depth and at the same time a reduced harmonic confinement
can be achieved for a trapping beam with AR = 2.
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Laser system at 1299 nm

The light at 1299 nm is generated by a diode laser from Toptica1, based on an external cavity
diode laser and a tampered amplifier. The laser system reaches a maximum output power
of 1.5W. This relatively high output power will allow us to provide all labs of the Dipolar
Quantum Gas-group with ultra-stable light at 1299 nm in the near future.

For frequency stabilization of the laser light, we use a commercial system from Stable Laser
Systems2. The non-amplified laser light of the external cavity diode laser is locked to a high-
finesse cavity following the Pound-Drever-Hall technique [Bla01]. We use a fiber-coupled
electro-optical modulator3 to introduce frequency side-bands on the laser light. In the
frequency-locked configuration, the laser systems possesses a measured coherence time of
96ms and an Allan deviation of 3.1× 10−15 over 1 s. Note that, the coherence time as well
as the Allan deviation have been characterized by Stable Laser Systems Inc..

Cavity characteristics

To accurately determine the free spectral range (FSR) of the cavity, which describes the
frequency difference between two fundamental cavity modes, we perform two high resolution
spectroscopy measurements. For each measurement, the laser is frequency stabilized to one
of two adjacent fundamental modes of the cavity. We use the fiber-coupled EOM to overcome
the frequency offset resulting from the difference between the atomic transition to the cavity
mode. We record the frequency difference between the fundamental cavity modes and the
center position of the transition and by summing these frequency shifts we directly obtain
the FSR as

FSR = 1.497 246 2(3)GHz. B.1

Obviously, as the cavity contracts over time, a minimal increase of the effective FSR can be
expected.

A characteristic quantity that describes the quality of a cavity is given by the finesse F ,

1 DLC TA Pro, TOPTICA Photonics AG, www.toptica.com.
2 Stable Laser Systems Inc., www.stablelasers.com.
3 Integrated Optical Phase Modulator, Jenoptik AG, www.jenoptik.com.
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Figure B.1.: Cavity ring-down measurement to determine the photon-storage time of the high-finesse
cavity. The blue line represents the light intensity measured by a photodiode in transmission of the
cavity. We extract the photon lifetime τph from an exponential fit of the form U(t) = A + Be

t/τph .
The red line denotes the fit result.

which corresponds to the ratio between the Lorentzian linewidth of the cavity transmission
and the free spectral range (FSR). The Lorentzian linewidth is directly related to the photon
lifetime in the cavity, which we extract from a ring-down measurement. While the laser is
frequency stabilized, we suddenly shift the laser frequency with respect to the cavity mode
and monitor the cavity transmission UPD using a photodiode. Figure B.1 shows the recorded
signal. We fit UPD with an exponential decay function to extract the photon lifetime and
determine the finesse to

F ≈ 173 000. B.2

A special feature of this cavity is that the coating of the resonator mirrors is in addition to
1299 nm also highly reflective at 1001 nm. The reason for this is that dysprosium shares a
similar transition to erbium at this wavelength [Pet20a]. Since the Er-Dy experiment within
our group works in dual species operation, it will be advantageous if a second laser system
running at 1001 nm can be added in the future to enable the tool of a narrow transition also
for dysprosium.

Frequency conversion for wavelength meter monitoring

To monitor the laser frequency over a wide range, for example to find the correct cavity
mode, we need to overcome the disadvantage that our wavelength meter works only in a
range up to 1100 nm. This makes it impossible to directly measure the laser wavelength at
1299 nm. We resolve this problem by doubling the frequency of the laser light to 649.5 nm
using second harmonic generation using a periodically poled lithium niobate (PPLN) crystal4

with a periodicity of 12.45 µm.

To hold the crystal, we use a self-designed mounting system that directly includes a tem-
perature stabilization based on two Peltier devices to ensure that the condition for phase
matching is satisfied; see Fig. B.2. The lower of the two Peltier devices5 runs at a constant

4 SHRED-MB, HC Photonics Corp., www.hcphotonics.com.
5 Peltier Cooler Module MPADV-127-140170-S, 40 mm × 40 mm × 3.9 mm,15.4 V DC, 42.8 W.

www.hcphotonics.com
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Figure B.2.: Schematic image of the holder for the PPLN crystal including temperature stabilization.
The cooling plates as well as the crystal mount are done out of copper. The crystal can be clamped
down using copper sheets and M4-screws.

power of 2W to improve the heat dissipation. The upper, smaller Peltier device6 is used
to actively stabilize the temperature of the crystal holder. The temperature of the crystal
holder is monitored via a negative temperature coefficient thermistor, that is glued into a
hole of the crystal holder. Finally, operating at a temperature of about 48 °C, the frequency-
doubling setup allows us to generate several 100 µW with a few mW of pump power which
is sufficiently large for the sensitivity of the wavelength meter.

6 Peltier Cooler Module MCPE1-12704AC-S, 30 mm × 30 mm × 3.65 mm,15.7 V DC, 35.2 W.
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Magnetic field sensitivity of the
atomic state at 1299 nm

The influences of external magnetic fields on the atomic energy level and thus on the tran-
sition frequency between atomic states are two-fold. Constant magnetic fields lead to an
energy shift of the involved Zeeman levels and consequently to a variation of the absolute
transition frequency. In contrast, magnetic field noise at high frequencies, which occurs on
timescales faster than the probing time, leads to a broadening of the effectively observed
linewidth of the transition. In addition, magnetic field noise translates to decoherence in
excited state atoms. Therefore, it is important to know the behavior of atoms in magnetic
fields.

The response of the atomic state to an external magnetic field follows the same behavior
as it has it been discussed for the ground state in Chapter 2. For the bosonic isotopes,
the excited state has a total angular momentum of J ′ = 7 and therefore the energy level
splits up in 15 magnetic sublevels that range from mJ ′ = −7 to mJ ′ = 7. As described by
Eq. 2.13, the response of an energy level to an external magnetic field is proportional to the
mJ ′ quantum number and the gJ ′-factor. Within this thesis, the gJ ′-factor of the excited
state was determined to be gJ ′ = 1.2599(2); see Sec. 4.2. A similar behavior occurs for the
fermionic isotope, however, here the nuclear spin I = 7/2 needs to be accounted for, leading
to a total angular momentum quantum number F ′ = 21/2 and 21 magnetic sublevels, ranging
from mF ′ = −21/2 to mF ′ = 21/2. FigureC.1 shows the splitting of the energy levels for
bosons and fermions at low magnetic fields. Note that, for the fermionic case the quadratic
contribution that arises from the coupling of the nuclear spin to the angular momentum is
not included.

For various experimental conditions and to exploit the full capacity of the narrow transi-
tion it is important that the frequency broadening of the latter, induced by magnetic field
fluctuations, is smaller than any other relevant energy scale of the system. As an example,
for an efficient addressing of the mJ = −6 → mJ ′ = −7 transition, the broadening of the
transition frequency needs to be smaller than the energy difference to neighboring sublevels.
For example, as shown in Fig. C.2, the energy differences ∆E(mJ ,m

′
J) and ∆E(mJ ′ ,m′

J ′)
need to be larger than the transition linewidth ∆ν. The sensitivity of the observed transition
linewidth to external magnetic field noise depends on the starting and final mJ(mF )-levels
of the involved states and therefore on the corresponding transition being used. To fullfill
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Figure C.1.: Zeeman splitting for the magnetic sublevels of the excited state at 1299 nm for (a)
bosons and (b) fermions in the range from 0G to 10G. The energy shift corresponds to (a) EB

Z =
mJ′ × 1.7634(3)MHz/G and (b) EF

Z = mF ′ × 1.1756(2)MHz/G.

the conservation of angular momentum, only three transitions are allowed, i. e. , σ−-, π-, or
σ+-transitions that corresponds to an angular momentum difference of mJ − mJ ′ = 0,±1
(see Fig. C.3(a)).

Figure C.3(b) shows the transition broadening for the case of bosonic erbium as a function
of the starting mJ state for a magnetic field noise of 1mG, which is the current magnetic
field stability in our experiment without active field stabilization. The largest broadening of
about 2.5 kHz can be observed for the σ−- and σ+-transitions at the edge-levelsmJ = −6 and
mJ = 6, respectively. In contrast, the transitionmJ = 0 → mJ ′ = 0 is insensitive to magnetic
field noise and therefore ideal for high-precision applications. Note that, the insensitivity to
magnetic field noise goes along with a sacrifice of the magnetic dipole moment. Therefore,
depending on the specific application, a compromise must be found between the magnetic
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Figure C.2.: (a) Zeeman sublevels with mJ ≤ 0 for the ground state and the excited state. (b)
Relevant energy differences for the efficient addressing of magnetic sublevels.
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Figure C.3.: (a) Schematic illustration of the σ−-, π-, and σ+-transitions. (b)-(c) Broadening of
the transition linewidth assuming a magnetic field noise of 1mG in dependence of the starting state
for (b) bosons and (c) fermions. The broadening is shown for the π- (red circles), the σ−- (green
squares), and the σ+-transition (blue diamonds), respectively.

moment and the sensitivity to magnetic field noise. In the fermionic case (see Fig. C.3(c)),
interesting conditions appear for σ−- ( σ+-)transitions at mF = −17/2 and mF = −15/2
(mF = 17/2 and mF = 15/2) and for π-transitions at mF = ±1/2. This has the advantage that
a large magnetic moment can be combined with a high spectroscopic precision.
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