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Abstract

This thesis describes the work performed during my master thesis in the ERBIUM ex-
periment. The first part explains the steps toward the observation of Bloch oscillations
with a dipolar gas of 166Er. We studied Bloch oscillations with ultracold dipolar erbium
atoms confined in a one-dimensional lattice. We performed measurement at different
scattering lengths, from the contact-dominated regime to the dipolar-dominated one.
By combined theoretical and experimental efforts, we emphasize the effect of quantum
fluctuations in the dephasing time of Bloch oscillations. In the regime of small mean-
field interactions, we observed that the dipole-dipole interactions play an important
role in determining the number of occupations of the lattice sites. Special emphasis
is given to describe the experimental realization and the method used to analyse the
raw data.

The second part of this thesis describes, characterizes, and details the implementation
of a sub-micron resolution imaging system. Imaging systems are essential components
of ultracold gases experiments, and achieving a high-resolution imaging system enables
to probe in-situ spatial density distribution. We performed tests on an objective
produced by Special Optics. We detail the way to obtain the point-spread function
and found an experimental resolution of 0.85(2)µm. We designed a mechanical holder
including all degrees of freedom needed to align the objective with the atoms. Finally,
we highlight a very flexible optical path using four different optical wavelengths that
will enable us to use the objective not merely to image the density distribution but
also to apply arbitrary potentials to the atoms.
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1
Introduction

1.1. Motivation

The beginning of the 20th century saw the emergence of quantum mechanics to describe
the microscopic world. One core concept of wave-particle duality was proposed by
Louis de-Broglie [dB25], stating that a microscopic object, such that electrons or
atoms, can behave like a wave or a particle at the same, depending on the experimental
environment. Quantum mechanics appears to be the key to describe atoms, subatomic
particles and light-matter interaction, and succefully describe, e.g., the photo electric
effect or the electron structure of atoms.

Nevertheless, one question remained: how to describe macroscopic objects like a metal,
composed of 1023 atoms and electrons, all interacting with each others? The intrin-
sic mathematical construction of quantum mechanics causes classical computer to be
very inefficient to simulate those systems, and systems with large number of particles
are impossible to solve exactly even with supercomputers. In 1982, Richard Feynman
proposed to use an analogue quantum system where it is possible to isolate, control
and detect quantum states to simulate a more complex system [Fey82]. The concept
of a quantum simulator was born. In the past decades, many platforms, capable of
performing qunatum simulation, have been developed, from trapped ions to supercon-
ducting circuits and photonics systems [Tra12].

In 1995, remarkable progress in the field of experimental quantum physics, quantum
optics, and lasers enabled the first realization of a Bose-Einstein condensate (BEC)
[Dav95] [And95] [Bra95]. Eric A. Cornell, Carl E. Wieman and Wolfgang Ketterle
were rewarded for this breakthrough with the Nobel price in 2001 [Kru01]. A BEC
is a macroscopic metastable state of matter formed when a gas of bosons condenses
to the lowest state of energy. A pure BEC is zero entropy and then fully governed
by quantum physics. The phase coherence guarantees that a BEC can be described
by a single wave function. The early studies of this new state of matter were focused
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2 1. Introduction

on macroscopic quantum phenomena, such as matter-wave interference [And97] or
vortices [Mat99].

But rapidly, ultracold gases have revealed themselves to meet all the requirements
for quantum simulations [Blo12]. The system is very well isolated from its environ-
ment, it is possible to control the interactions, e.g., via a magnetic Feshbach resonance
[Chi10], and direct imaging techniques have been developed, pushing the resolution to
a single atom [Bak09]. Furthermore, early theoretical [Jak98] and experimental works
[Hem93] proposed to create crystals of light to mimic the periodic structure of solids,
so-called optical lattices. They enabled the first experimental of the Bose-Hubbard
model [Hub63] and the first observation of the Mott insulator phase [Gre02].

At the early stage of BEC, most of the experiments were working with alkali atoms
and only contact interaction was present in the systems. The last decade marked a
turning point with the production of the first BEC of lanthnides atoms, dysprosium
[Lu11] and erbium [Aik12]. Those magnetic atoms add a new interaction to the ul-
tracold toolbox, the dipole-dipole interaction [Lah09] [Bar08]. The long-range and
anisotropy characters allow accessing new quantum phases, e.g., macrodroplets or su-
persolid [Cho22]. Furthermore, magnetic atoms combined with optical lattices form a
paradigmatic platform for the study of strongly correlated systems [Bar12] [Bai16].

Until now, most of the theory of ultracold gases uses the framework of mean field ap-
proximation. More recently, beyond mean-field contributions have been the key to the
understanding of stabilization mechanisms in dipolar gas, e.g with the macrodroplet
[Cho16]. Ref. [Lim12] showed that beyond mean-field contributions have to be taken
into account with the so-called Lee-Huang-Yang (LHY) term. If in the theory, beyond
mean field effects are now well understood and their important role undisputed, the
exact mathematical expression is still subject to intense debate, and a quantitative
experimental measure of its exact form is still missing.
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1.2. Thesis outline

This thesis is divided in two parts essential on ultracold experiments, controlling and
imaging. The first part deals with the study of a dipolar gas of erbium confined in
a one-dimensional lattice. In particular on the use of Bloch oscillations (BOs) as an
interferometric tool to asses the role of beyond mean-field contributions. The second
part relates the implementation of a new high-resolution imaging system for erbium.

Chapter 2 reviews the relevant properties of erbium used during this thesis.

Chapter 3 is devoted to the physics of ultracold gases loaded in a 1-dimensional lat-
tice. We review in detail the emergence of the band structure and BOs in presence
of an externalforce. We present the effect of interactions on BOs and introduce the
theoretical model used for this project.

Chapter 4 is the heart of this project and addresses the experimental procedure to
observe BOs with a dipolar gas of erbium as well as the method to analysis to row
data.

Chapter 5 presents the new imaging setup which will be implemented in the ERBIUM
experiment. In the first section, we briefly review the diffraction theory to understand
how imaging systems are described. In the second section, we present the optical
design and the test realized on the new objective. We provide to the reader details on
the numerical analysis of the point spread function. The last section deals with the
implementation of the objective in the experiment as well as the planification of the
laser distribution.
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2
Properties of erbium

2.1. Erbium at glance

Erbium(Er) is a rare-earth element belonging to the lanthanide family. In its solid
form, it is a soft and silvery metal. It is used in the industry mix with other material
to increase the workability of an alloy, for example in reducing the stiffness of the
material [Gup05]. Erbium has a high melting point at 1529° and a boiling point at
2900°. Its mostly known form, Er3+, finds applications in doped fiber and glass where
it is used, for instance, to amplify laser light [Bec99].

Er has an atomic number of Z=68 and presents five bosonic isotopes and one fermionic
isotope. Tab. 2.1 gives the number of nucleons, the abundance of each isotope, and
the statistic associated.

Isotopes Natural Abun-
dance

Statistics

162Er 0.14 Boson
164Er 1.61 Boson
166Er 33.6 Boson
167Er 23.0 Fermion
168Er 26.8 Boson
170Er 15.0 Boson

Table 2.1.: six stable isotopes of erbium, five bosonic and one fermionic. For each isotope,
the abundance is reported. Table extracted from [M11a]

All the work of this thesis has been realized with 166Er , presenting advantageous
scattering properties and a substantial abundance.
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6 2. Properties of erbium

2.2. Electron configuration and energy level structure

The electronic shell of erbium atom is composed of 68 electrons, filling the atomic
orbitals following the Madelung rule. Among these electrons, 14 are valence electrons,
giving rise to the electronic configuration in the ground state,

[Xe]4f 126s2, 2.1

where [Xe] refers to the electron configuration of Xenon.

For neutral erbium in the ground state, the 6s shell is completely filled before the 4f .
This partially filled inner shell 4f gives a structure called submerged-shell. The two
vacant electrons of the 4f shell results in large orbital anisotropy and a large orbital
and spin quantum number.

The submerged-shell structure also gives rise to a very rich energy spectrum in the
optical range. Indeed, the electrons of the 4f shell can be excited easily to the unfilled
positions within the optical transition range. [Kra18] reports 672 transitions from the
ground state with J ranging from 2 to 12. Figure 2.1 reports all the energy levels as
well as the transitions used in our experiment; see Chap. 4 or [Fri14a].

The broad 401 nm transition in combination with the one at 583 nm makes erbium
suitable to be laser cooled. More details are presented in Chap. 4. Furthermore, it
offers transitions with narrow linewidth, particularly advantageous for coherent light
manipulation.

2.3. Magnetic moment

Another important property of erbium is the large magnetic moment µ in the ground
state. It is a direct consequence of the submerged-shell structure, as the electron spin-
orbit coupling leads to a large total angular momentum J . The magnetic quantum
number mj can range from −J to +J and is related to the magnetic moment as
follow:

µ = mjµBgJ , 2.2

where µB is the Bohr magneton and gJ the landé factor. In the case of only spin-orbit
coupling gJ can be written:

gJ = 1 + (1− gS)
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
, 2.3

with gS ≈ 2.002. L and S are respectively the orbital momentum number and the
total spin number. For erbium, jj-cpoupling between electrons has to be taken into
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Figure 2.1.: Energy level spectrum of erbium. Energy levels are represented in the relevant
range for trapping and cooling. Even and odd parity are shown in blue and red, respectively.
401 nm is used for the Zeeman slower, the transversal cooling and imaging. The narrow
line at 583 nm corresponds to the magneto-optical trap transition. The transition at 1299nm
features an ultra-narrow linewidth of 2 Hz, making it suitable for coherent spin manipulation.
The light at 1064 nm and 532 nm is used to create far detuned optical potentials [Gri00]

consideration and one finds gJ=1.163801(1) [Con63]. One finds that for 166Er in its
ground state (mj = −6), the magnetic moment is,

µ = −6.982806(6)µB. 2.4

We can notice that when the spin state is changing, the magnetic moment changes
accordingly.

2.4. Interactions between erbium atoms

2.4.1. Contact interaction

Despite the very dilute character of ultracold gases, atoms can interact with each other.
In quantum mechanics, the interaction between particles is covered by the scattering
theory. When two atoms are close to each other, they interact by the so-called Van
der Waals (vdW) interaction. This interaction can be described in the first order by
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Figure 2.2.: Feshbach resonance around 1.9G. Green circles: Atom number versusmag-
netic field. Blue diamond: scattering length obtained by cross-thermalization. Black trian-
gle: Scattering length obtained by lattice modulation spectroscopy. Black solid line:fir of
asconsidering 5 resonances. Figure adapted from [Cho16].

a potential with the form,

UV dW (r) =
C6

r6
, 2.5

with C6 is the vdW coefficient and r is the relative distance between the atoms. This
potential, responsible for the contact interaction at very low temperature, is short-
range and isotropic. For low temperature (i.e. low collision energy) scattered by a
short-range scatterer cannot be resolved the exact structure of the potential since the
De Broglie wavelength is very long. The scattering of two particles is fully characterized
by the s-wave scattering length as. The interaction potential can be rewritten,

U(r) =
4πℏ2as
m

δ(r) = gδ(r), 2.6

with m the mass.

Addtionnaly, when two atoms collide, a twol-atom level can be resonnantly coupled
to a dimer level, this phenomenon is called Feshbach resonance [Chi10]. It is observed
experimentally by a sudden loss of atoms. More precisely, this happens when the
bound energy of a molecular potential coincides with the bound energy of the scattering
potential. The difference in energy can be controlled by an external magnetic field,
resulting in a modification of the scattering length as. Typically, this dependence can
be discribed in term of simple formula, which for isolated resonances reads,

as(B) = abg(1−
∆

B −B0

), 2.7

With abg the background scattering length, ∆ the width of the resonance and B0 the
position of the Feshbach resonance.

Due to the orbital anisotropy making the contact scattering chaotics, lanthanides
atoms and in particular 166Er exhibit many Feshbach resonances [Fri14b]. In presence
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of many resonances, the depedance of asin B is more complex,

as(B) = aBg

∏

i

(1− ∆i

B −Bi

), 2.8

with i labelling a resonance.

During this thesis, we use a comparatively broad Feshbach resonance around 1.9G;
see Fig. 2.2. This allows to tune the scattering length from 55 a0 to 100 a0 without
suffering from too much atom loss.

2.4.2. Dipole-dipole interaction

The strong magnetic moment of erbium induces a dipole-dipole interaction (DDI)
between the atoms. With an external polarizing magnetic field, this interaction can
be described by a potential with the folowing mathematical expression,

Udd =
µ0µ

2

4π

(
1− 3 cos2(θ)

r3

)
, 2.9

with µ0 the vacuum permeability, µ the magnetic moment, r the relative distance
between the two atoms and θ the angle between the magnetic field direction and
direction of r. The notations are resumed in Fig. 2.3. The two striking properties
of the dipole-dipole potential are the long-range character in 3 dimensions and the
anisotropy.

Furthermore, by utilizing an external field, it is possible to go from an attractive
potential in the head-to-tail configuration (θ = 0) , to a repulsive interaction when the
dipoles are aligned side-by-side (θ = π/2).

As the DDI is anysotropic, the many-body properties of an ensemble of erbium atoms
are drastically affected by the shape of the trapping potential. For an elongated trap
with the weak axis aligned with B, the dipoles are mostly head-to-tail and the system
is attractive. On the other hand, for a ”pancake” trap, where the strong confinement
is align with B, the dipoles sit side-by-side and the system is mainly repulsive.

To quantify the absolute strength of dipole-dipole interaction, it is usual to define the
dipolar length,

add =
Cdd

12πℏ2
, 2.10

with Cdd =
µ0µ2

4π
.
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Figure 2.3.: Schematic representation of dipole-dipole interaction. r is the distance between
the two atoms and θ the angle with the magnetic field direction. The external magnetic field
B is used to control the orientation of the dipoles.

The dipolar length can be directly compared with the s-wave scattering length and we
introduce the ratio

ϵdd =
add
as

2.11

When ϵdd << 1, the contact interaction is much stronger and DDI doesn’t play a
significant role in the properties of the system. On the other hand, for ϵdd > 1, DDI
dominates and exotic behaviours appear. Tuning the s-wave scattering length through
Feshbach resonance makes it possible to study the crossover at ϵdd ≈ 1. For 166Er the
dipolar length is fixed at add = 66.5 a0 and with the Feshbach resonance in Fig. 2.2,
ϵdd can be varied from approximately 1.2 to 0.7.
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3
Theory: quantum gas in a
one-dimensional lattice

Already before the creation of the first Bose-Einstein condensate, physicists proposed
to engineer periodic potentials and study the emerging properties with a system of
ultracold atoms [Hem93]. Loading a BEC in a periodic potential represents a very
robust system to tackle solid-state and condensed matter physics problems [Blo05].
Indeed, those systems feature a very high degree of controllability, in particular, the
potential landscape and the interactions between particles.

For instance, ultracold gases permitted the observations of Bloch oscillations (BO).
BO were originally predicted by Felix Bloch in the framework of solid-state physics
[Blo29], they describe the movement of a non-interacting electron confined in a peri-
odic potential and subject to an external force. Because of the very high oscillation
frequencies and the difficulty to image the electron motion, physicists had to wait for
the arrival of BEC to observe the first signs of BO [Niu96] [Wil96].

In this Chapter, we review the theoretical tools necessary to understand how BO arise
with a BEC and the equations used to describe BO with a gas of 166Er .

3.1. One-dimensional optical lattices

In presence of an optical field (typically laser beams) described by
−→
E (ω, r), with ω

the frequency, the atoms experience two forces, the radiation pressure, dissipative
and used to cool, and the dipole potential. While the radiation pressure is related
to light scattering and is therefore a dissipative process, used for laser cooling, the
dipole potential is created by the energy shift of the atomic state in the light field, the
so-called AC Stark shift [Gri00].

11



12 3. Theory: quantum gas in a one-dimensional lattice

When induced by far-detuned light, the latter creates an external potential for the
atoms. For alkali atoms, the potential created scales as follows,

V (r) ∝ Re(α(ω))|−→E |2 3.12

where α(ω) is a complex number called the polarizability and |−→E |2 the intensity of the
field at a position r. However, due to the orbital anisotropy erbium has a tensorial
polarizability ᾱ. The dipolar force depends on the polarization of the light and advance
theoritical methods are needed to predict ᾱ [Li17] [Bec18]. For more details about
dipolar potential in general, the reader can refer to [Gri00].

To engineer a stationary periodic potential, so-called optical lattice, we can counter-
propagate two laser beams with the same frequency and create a standing wave. The
strength of the potential, or potential depth, can be controlled by the power of the
lasers. In the ERBIUM experiment, the laser beams are propagating along the gravity
axis z, which results in a periodic potential along z, see Fig. 3.1.

𝜔, 𝑘 𝜔, െ𝑘 λ 2⁄𝑉௟௔௧௧

𝑧

g

Figure 3.1.: 1D optical potential created by 2 counter-propagating beams with the same
frequency. The atoms will experience a periodic potential Vlatt with period λ/2. ω is the
frequency and k the wave vector

The potential created has the mathematical expression,

Vlatt(z) = sErec sin
2(
2πz

λ
). 3.13

Here, we express the potential depth as a multiple s of the recoil energy Erec =
ℏ2k2/(2m), with k = 2π/λ, the recoil momentum, or the momentum gain after ab-
sorbing one photon and m the mass of the particle. λ is the wavelength of the lattice.
The minima of potential are often called lattice sites, they are separated by a distance
d = λ/2.

In the experiments, this creates an array of two-dimensional BECs. Additionaly, the
laser beams used to create the standing waves have a transverse gaussian profile,
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creating harmonic confinement along the transverse directions x and y. It is very
weak in comparison with standard dipole traps (only a few hertz) but has to be taken
into consideration during the numerical simulations.

3.2. Non-interacting quantum gas in a one-dimensional
lattice

3.2.1. Single particle in an optical lattice

In order to understand the physics of a BEC loaded into an optical lattice, we first
have look at the effect of a periodic potential on the wavefunction of a single particle.
In the most simple case, we ignore the two transversal directions, which is supposed
to give only a small correction. For non-interacting systems, the ground-state and
the energy associated can be calculated by solving the 1D stationnary Schrödinger
equation, [−ℏ2

2m

d2

dz2
+ Vlatt(z)

]
ψn(z) = Enψn(z). 3.14

En and ψn(z) correspond respectively to the eigenenergies and eigenfunctions that
have to be determined.

To find the ground state, we apply the Bloch band theory [Blo29], developed in the
field of solid-state physics and described in detail in [Asc76] and [Kit05]. In presence of
a periodic potential, the Bloch theorem states that we can find solutions of Eq. (3.14)
with the form,

ψn,q(z) = eiqzun(z, q). 3.15

Here, q is a continuous variable called quasimomentum and un(z, q) an unknown pe-
riodic function with the same periodicity as the external potential. Thanks to the
periodicity, we can without loss of generality restrict q ∈ [−k, k], called the Brillouin
zone(BZ).

As un(z, q) is a periodic function, we can further decompose it in a sum of plane
waves,

un(z, q) =
∑

j

cn,je
−iqjz, 3.16

with the complex coefficients cn,j. This corresponds to the Fourier transform.

By inserting Eq. (3.15) and Eq. (3.16) in Eq. (3.14), we can derive the following discrete
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equation,

[
(2j +

q

k
)2 +

s

2

]
cn,j −

s

4
(cn,j−1 + cn,j+1) =

En

Erec

. 3.17

This is a basic eigenvalue problem which can be solved numerically for an arbitrary
q.

For any value of q, we retrieve the different energy levels En(q) and the coefficient cj
of the Bloch function associated Ψn,q. For a given n, En(q) is a continuous function
and is often refered as a band. Figure 3.2 shows En(q) for n = 1− 3 ans s=1,3 and 8.
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Figure 3.2.: Energy bands from 3 different values of s, from left to right, s = 1, s = 3 and
s = 8. The first 3 bands are represented with different colours, in blue E0(q), in yellow E1(q)
and in red E2(q). the gap between the different bands increases with the potential depth.

The dispersion relation En(q) is an essential characteristic of particles confined in a
periodic potential. For instance, in solid-state physics, this band structure explains
the conduction of electrons in a metal.

The Bloch functions form a complete orthogonal set for Eq. (3.14) and are completely
delocalized over the lattice sites. For a deep lattice, it is more convenient to introduce
the Wannier-functions as a basis [Wan37]. They have the property to be localised at
a single lattice site and are mathematically defined as the inverse Fourier transform of
the Bloch functions,

wn(z − zj) ∝
∫ ℏk

−ℏk
dqe−iqzjψn,q(z), 3.18

where zj corresponds to the position of the jth lattice site.
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The concept of localize particle in a lattice site leads to the interpretation of a delo-
calized state as a state with particles tunnelling between neighbouring lattice sites at
a rate J,

J = −
∫ ∞

−∞
wn(z − zj)Ĥwn(z − zj+1)dz. 3.19

When the lattice is deep enough(Vlatt > 5Erec), we can considere the lattice as an array
of of harmonic potential and use the so-called tight biding approximation. We then
find (ref. [Mor06]),

J =
4√
π
Erecs

3/4 exp(−2
√
s)/h. 3.20

3.2.2. Bloch oscillations

When confined in a periodic potential, a particle subject to an external Force will
start to oscillate, this phenomenon is known as Bloch oscillations. The period of the
oscillations can be calculated by a simple semi-classical approach that we will detail.
In presence of an external force F , the time dependence of the quasimomentum can
be written,

q(t) = q0 + Ft/ℏ, 3.21

with q0 the initial quasimomentum. Due to the k periodicity of the BZ, after a time,

TBO = 2kℏ/F, 3.22

the states are again equivalent and the wave functions are the same, besides a global
phase factor.

A more rigorous approach to the BO is the so-called Wannier-stark ladders. We will
now discuss briefly this approach which will be useful in presence of interactions. As
seen in the previous section, it is possible to express the wave function as a superpo-
sition of Wannier states.

ψ(z, t) =
√
N
∑

j

cj(t)w(z − zj) , 3.23

with cj(t) complex coefficients and w(z − zj) a function localized around each lattice
site labelled by zj = jd, with d = λ/2, the distance between each lattice site. When
the tunnelling rate J between neighbouring lattice site is small enough in comparison
with the external force, the on-site occupation number ∥cj∥2 can be approximated
constant and we can write cj(t) = cj(0)e

−iϕj(t), where ϕj(t) corresponds to a phase.
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All the physics is encapsulated in the phase difference between the Wannier functions.
In presence of gravity, the phase evolution is governed by the Schrödinger equation
with an additional term accounting for the gravity. The Hamiltonian associated is,

Ĥ =
p̂2

2m
+ Vlatt(z) +mgz, 3.24

With g the gravity acceleration andm the mass of the particle. Solving the Schrödinger
equation gives us,

ϕj(t) = (q −mgt)jd/ℏ. 3.25

We see that gravity has the effect to translate with time the wave function in the
quasimomentum space, and due to the periodicity of the quasimomentum, the wave
function will undergo oscillations in momentum space. When the wave function reaches
one edge of the BZ, it reappears at the other edge by a sudden jump. This sawtooth
behaviour, in momentum space, is characteristic of BO.

The first observation of BO with ultracold gases has been done in 1996, in the group
of Christoph Salomon [BD96] and Mark Raizen [Niu96] [Wil96]. Nevertheless, they
observed damping of the oscillations, which is not included in Eq. (3.25) and prevented
the of BO for precesion measurement. As we will see below, this behaviour is due to
the actual interactions between particles in a real BEC.

In presence of an external force Fext, a particle initially in the lowest band has a
probability to jump to a higher band. The jump probability between E0 and E1 is
given by [Mor06],

Pt = e−Ft/Fext , Ft =
s2Erec

d

π2

32
, 3.26

with d = λ/2 , the distance between 2 lattice sites. If this probability is too high,
the atoms will get excited and lost. For typical ultracold experiments with s > 1 and
atoms subject to gravity, Pt << 1 and the excitation to a higher band can be omitted
for the rest of the thesis.

3.3. Bloch oscillations with a Bose-Einstein condensate

3.3.1. Gross-Pitaevskii equation

A BEC is a gas of bosons in the same quantum states. Therefore, it is possible to
describe them by a single complex wave function Ψ(r, t), product of the individual
wave functions ψi(r, t),

Ψ(r, t) =
∏

i

ψi(r, t). 3.27
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Here, r is the 3D position vector, r = (r1, r2, r3) = (x, y, z). This wave function
obeys the so-called Gross-Pitaevskii equation(GPE) Eq. (3.28), derived independently
by Gross and Pitaevskii in 1961. The GPE makes use of the Hartree-Fock and pseudo-
potential approximation to describe the ground state of a system of identical bosons.
In the case of only contact interacting particles, the time-dependant GPE reads,

iℏ
∂

∂t
Ψ(r, t) =

[ ℏ2
2m

∇2 + Vext(r) + g|Ψ(r, t)|2
]
Ψ(r, t). 3.28

The first term of the right part accounts for the kinetic energy, Vext(r) corresponds
to the external potential and g = 4πℏ2as

m
the contact interaction, with the m mass of

166Er and as the s-wave scattering length. Eq. (3.28) represents the Schrödinger equa-
tion counterpart for many-body bosons and all the results presented in Sec. 3.2.1 can
be derived for an assembly of bosons. We consider them unchanged if the interaction
term g = 0. However, as we will see, neglecting the interaction is in most cases a too
strong approximation to describe Bloch oscillations with a BEC.

3.3.2. Interaction-induced dephasing

As we saw in Sec. 3.2.2, in absence of interactions between particles, the phase evolution
will only be governed by the external potential, i.e gravity, and Bloch oscillations will
go on forever. But, when the atoms interact with each other, a dephasing between the
lattice sites occurs, resulting in a broadening of the momentum cloud and a limited
observation time of the BO. This phenomenon can be formally understood with the
Wannier-stark Ladder presented before. When the atoms interact, an additional term
needs to be added to the phase Eq. (3.25) and we now have,

ϕj = (q − Ft)jd/ℏ+ gµjt, 3.29

with µj =
∫
g|Ψ|4, the chemical potential at lattice site j. As the phase depends now

on the local chemical potential, the different Wannier components dephase from each
other. This is clear when considering the phase velocity,

dϕj

dt
= Fjd/ℏ+ gµj. 3.30

While without interactions the phase velocity between neighbouring lattice sites is a
constant, with interactions it depends on the local chemical potential. From 3.30, we
can expect the minimum of dephasing arises when the variance of the phase velocity
is the minimum, which corresponds to minimising g.

Groups of Florence managed to overtake this dephasing limitation with non-interacting
fermions [Roa04] in 2004 and with bosonic 88Sr [Fer06] in 2006. They used BO as an
interferometric tool to measure gravity acceleration. 88Sr presents an s-wave scattering
length substantially close to 0, allowing the observation of up to 5000 oscillations.
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Following the proposal in Ref. [Car05], they could deduce the value of g with a precision
of 6× 10−6.

However, this sensitivity to interactions allows to use BO as an interferometric tool.
Aditionnaly with BEC, Feshbach resonance gives the ability to control the contact
interaction, which, together with BO, to probe interactions effects. By tunning the
scattering length with cesium atoms, in Ref. [Gus08] they could study the transition
from non-interacting to interacting BEC. They observed up to 20000 oscillations and
associate this minimum of dephasing with the zero-crossing of the Feshbach resonance.
Furthermore, they observed a revival of the BO after a certain time, indicating that
the broadening and the apparent loss of oscillations is a purely dephasing effect.

3.3.3. Dipole-dipole interaction

It is possible to imagine that the attractive character of DDI can be used to compensate
for the dephasing induced by the repulsive contact interactions. But, due to the long-
range property, the DDI contributes to both on-site and intersite. Although the on-site
attractive DDI can fully compensate for the on-site contact interaction and shift the
minimum of dephasing to a higher scattering length, the intersite DDI becomes the
limiting factor to the BO. The DDI effect has been first highlighted in Ref. [Fat08],
with a weakly dipolar gas of 39K (µB = 0.96). This experiment points for the first time
to the effect of intersite DDI in optical lattices and addresses the problem of stability
of a dipolar gas in a lattice, further studied in [M1̈1b].

From a naive point of view, we can imagine that when the attractive DDI is stronger
than the total contributions, from the trap and the contact interaction, the BEC will
shrink in size and after a certain time collapse. However, it has been shown recently
that strongly dipolar gas can remain stable and form self-bound ensembles of ultracold
atoms, so-called macro droplets [Sch16] [Cho16]. BO in this regime has not yet been
studied and calls upon numerical methods.

3.4. Numerical model

To compare our experimental data, we developed a quasi 1-dimensional numerical
scheme. The following paragraph details the equations used to describe our BEC and
how we include dynamical effects created by gravity.
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3.4.1. Extended Gross-Pitaevskii equation

Even though the GPE equation has been proven to be a very powerful tool to accu-
rately describe the contact interacting BEC, when considering dipolar 166Er , one has
to add some terms taking into account the dipolar nature of 166Er . The full extended
Gross-Pitaevskii equation (eGPE) used in this work reads,

iℏ
∂

∂t
Ψ(r, t) =

[
− ℏ2

2m
∇2 + Vharm(r)

+ Vlatt(z)− Fextz + g|Ψ(r, t)|2

+

∫
d3r′ Udd(r− r′)|Ψ(r′, t)|2

+ γQF|Ψ(r, t)|3
]
Ψ(r, t) . 3.31

Vext(r) has been separated into 3 different contributions, the 3-dimensional harmonic
external potential, Vharm(r) =

∑
i=1,2,3

1
2
riωi, the potential created by the lattice,

Vlatt(z) (Eq. (3.13)), and the potential created by the gravity Fext = mg. The third line
accounts for the long-range DDI, with Udd(r) = 3ℏ2add/m (1− 3 cos2 θ) /|r|3, where θ
is the angle between the polarization axis (y-axis) and r. The last line is the second-
order correction to the mean-field approximation, the so-called Lee-Huang-Yang term.

In the local density approximation, γQF = 32
3
g
√

a3s
π

(
1 + 3

2
ε2dd
)
[Lim11].

3.4.2. Our 1-D model

Due to the non-linear behaviour of the eGPE (Eq. 3.31) one has to use numerical meth-
ods. Even with a very powerful computer, solving Eq. (3.31) in its more general form
is hardly achievable. In this context, we developed a quasi-1-dimensional approach
based on Ref. [Bla20], allowing us to probe the dynamic and scan a large range of
parameters at a reduced cost.

We start by reducing the wave function to one dimension (1D) by applying the
ansatz,

Ψ(r, t) = Φ(x, y, l, η)ψ(z, t) ≡ 1√
πl
e−(ηx2+y2/η)/2l2ψ(z, t) , 3.32

where l and η are variational parameters corresponding respectively to the width and
the anisotropy of the radial wave function. We now insert the above ansatz into the
(3.31) and obtain a quasi 1-dimension eGPE.
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To solve numerically this equation, we need to discretize it over the lattice sites. For
that, we decompose the longitudinal wave function in Wannier functions over every
lattice sites.

ψ(z, t) =
√
N
∑

j

cj(t)w(z − zj) , 3.33

with the complex amplitudes cj, and the positions of lattice minima zj = (λ/2)j.
When the lattice is deep enough, it is possible to approximate the Wannier function

by Gaussian of the form w(z) = (πl2latt)
−1/4

e−z2/2l2latt , where we defined llatt = (k 4
√
s)−1.

Those manipulations lead us to the discrete equation

iℏ
∂cj
∂t

=− J(cj+1 + cj−1)

+
{
− Fextzj + Vharm(z) + g1DN |cj|2

+N
∑

k

Udd
|j−k||ck|2 + γ1DQFN

3/2γQF|cj|3
}
cj , 3.34

Here, J is the tunnelling rate between two neighbouring lattice sites and the reduced
parameters, γ1DQF = 23/2/(5π3/2l2llatt)

3/2γQF and g1D = g/((2π)3/2l2llatt). The DDI in
1D can be rewritten,

Udd
|j−k|(l, η) =

∫
d3x⃗
{
|Ψ0(x⃗− z|j−k|êz, l, η)|2
∫

d3x⃗′ Udd(x⃗− x⃗′)|Ψ0(x⃗
′, l, η)|2

}
, 3.35

with Ψ0(x⃗
′, l, η) = Φ(x, y, l, η)w(z)

The computation of the wave function Ψ(r, t) is done as followed . First, Eq. (3.34) is
evolved in imaginary time without the gravity potential to find the ground state to-
gether with the minimization of the energy functional. After each step of the imaginary
time evolution, l and η are found by a variational approach and the new parameters
are used to run the next iteration of imaginary-time evolution. Secondly, the ground
state wave-function ψ(z, t) computed is evolved in real-time with Eq. (3.34). Typical
results from the simulations are presented in Fig. 3.3.
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Figure 3.3.: Real time evolution of ∥ψ(q, t)∥2 for two different scattering lengths. The
upper (resp. lower) plot corresponds to 60 a0 (resp. 83 a0) with a total atom number of
20000. In both cases observe a saw tooth behaviour. At 83 a0, ∥ψ(q, t)∥2 is broadened due
to interactions. The parameters of those simulations are ωx,y,z = 2π× (240(3), 30(3), 217(1))
Hz, s = 8 and with the dipoles align along the weak axis of the trap.
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4
Observation of Bloch
oscillations and ground
state properties in a lattice

Given the essential theory to understand the phenomenon of BO in dipolar gases, we
detail, in this Chapter, the experimental aspects to observe BO with a dipolar gas of
166Er .

4.1. Producing a Bose-Einstein condensate of erbium

The ERBIUM experiment is a fully operating set up to study ultracold gases of srbium.
Designed and built from 2010 to 2012, it aims at producing BEC of bosonic 168Er
isotopes [Fri12] and degenerate Fermi gas [Aik14].

The main elements are, the high temperature oven, the Zeeman slower (ZS), high
vacuum chamber, narrow line magneto-optical trap (MOT), the optical dipole trap
(ODT) and the absorption imaging. We will now resume the process to reach a dipolar
BEC of erbium. For an extensive description, the reader can refer to [Fri14a].

The high temperature oven is composed of 2 cells, operating at respectively 1100 °C and
1200 °C. Those temperatures are high enough to create an atomic flux with a velocity
of 450m s−1. The first steps to slow down the atoms are the transversale cooling
and the ZS, both operating on the broad transition at 401 nm. After the ZS, the
atoms have a velocity of 5m s−1 and are slow enough to be captured in the MOT. The
MOT uses the narrow transition at 583 nm, corresponding to a doppler temperature
of 4.6 µK. The MOT stage prepares aroud 2 × 107 atoms, in their lowest zeeman
spin states, at a temperature of 10µK. To further reach the quantum degeneracy and
BEC regime, a last step is necessary. Subsequently to MOT cooling, the atoms are

23
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loaded in the ODT. By lowering the trapping potential progressively, it is possible to
perform evaporation cooling and reach BEC regime [Ket96]. An optimized sequence
takes approximately 17 s and produce 105 atoms of 166Er with ≈ 60% of BEC fraction.
During the evaporation, the contact interaction is set to as=90 a0 by an external
magnetic field B. The orientation of B polarizes the dipoles along z. After obtaining
the BEC we change the magnetic field along y and go to the final scattering length
value in 50ms.

To image the atomic cloud, we perform absorption imaging. Absorption imaging is a
standard technique that consists in shining resonant light and recording the ”shadow”
created by the atoms on a charge-coupled device (CCD) [Smi11]. In the Erbium
experiment, we use 401 nm resonant light. By comparing two pictures, one with atoms
and one without, we can deduce the intensity absorbed and map it to an atomic density.
The total atom number is obtained by summing the atomic density over all the pixels
of the CCD. If we want to extract the number of atoms condensed, we utilize a double
gauss fit to separate the thermal part of the condensed part.

Due to the high density, BEC can only be imaged after ballistic expansion, refers as
time-of-flight (TOF). This also allows to directly access the BEC in the momentum
space. In the Erbium experiment, we use a TOF of 30ms. In addition, after 15ms we
change the direction of B toward the camera axis, this modifies the polarizability and
increases the scattering of incoming photons.

4.2. Preparation of the Bose-Einstein condensate in a
1D-lattice

We adiabatically load the BEC in the vertical lattice by exponentially ramping up for
20ms the lattice beams. The lattice is created by a retro-reflected 1064 nm laser beam
with a waist of 30µm, resulting in a spacing of 532 nm between the lattice sites.For
166Er in the ground state and a lineary polarized 1064 nm light we have a polarizability
Re(α) = 176 a.u. (atomic units) [Bec18], corresponding to a potential depth of Vlatt =
527 kHzW−1. The beam is provided by an high power and narrow line-width MOPA
laser, also used for the horizontal dipole trap. With the available power, we can reach
a lattice depth of 80Erec. With 166Er , we estimated Erec = h × 10.5 kHz. For our
experiment, we fixed the lattice depth to 8Erec. This corresponds to a tunnelling rate
(Eq. 3.20) of J = h × 33Hz. In the remaining part, the tunnelling can be omitted
because of the small value compared to the gravity. The resulting system is presented
in Fig. 4.1(a).

When all the laser beams are switched off, the clouds confined in each lattice site
will start to expand and interfere. This gives rise to matter-wave interference pat-
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B

Figure 4.1.: (a) Schematic representation of the final system. A 1D optical lattice is loaded
with an Erbium BEC, confined in a dipole trap with frequency from an optical dipole trap
with trapping frequencies ωx,y,z = 2π× (240(3), 30(3), 217(1)) Hz. Gravity acts along z. The
dipoles are polarized along y by an external magnetic field. (b) absorption imaging after
30ms TOF for as=58.8 a0. The two interference peaks sits at a distance ℏk from the central
peak.

terns, represented in Fig. 4.1(b). In absence of interactions during the expansion, the
momentum distribution directly represents the Fourier transform of the initial wave
function in the lattice. The first-order diffraction appears at a distance of ℏk from the
central peak. The occupation of the diffracted peak gives information on lattice depth
and the extension of the ground state. It can be used to calibrate the lattice depth,
with for instance the Kapitza-Dirac method [Gad09].

4.3. Observation of Bloch oscillations

To initialize the Bloch oscillations, we switch-off abruptly the dipole trap and let the
system evolve for a defined time th. The entire sequence is resumed in Fig. 4.2. the
lattice beam creates a residual lateral confinement along x and y of 4Hz. However,
our system presents an angle of 9(1) degrees between the gravity axis and the lattice,
which is too important for the atom to be laterally confined.

We then hold for a variable time th and perform TOF imaging. We take 4 to 6
pictures for many th, separated by 0.1ms time step. Figure. 4.3 shows typical pictures
obtained for as=83 a0 and 58.8 a0 . We observed the sawtooth behaviour, a feature
of BO. When the contact interaction is small (58.8 a0), no dephasing occurs and the
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Time

Figure 4.2.: Graphic representation of the parameters of the experiment as a function of
time. In grey, the lateral harmonic confinement. The lattice induces a latteral confinement
of 4Hz, remaining during the BO. In blue, the optical lattice depth. In red, the vertical
confinement and in green the scattering length. th is a variable time and TOF corresponds
to 30ms.

width of the momentum distribution remains the same. On contrary, with strong
contact interactions (83 a0), the oscillation dephases, indicated by the broadening of
the momentum distribution.

To analyse the BO more quantitatively, we start by integrating the density profile
along x to obtain a 1D momentum distribution that we named for the following n(qz).
First, we looked at the position of the maximum of n(qz), qmax as a function of the
holding time th, represented in Fig. 4.4 for as=58.8 a0 and 83 a0. Due to the angle
between the gravity and the lattice, the atoms slide on the side and eventually fall
out of the lattice potential and this limits our observation time to 12ms. The pictures
are recentered by fitting a 2nd order polynomial function to qmax and removing the
offset.

To ensure that our observations are indeed BO, we fit the maximum positions qmax(th)
at as=58.8 a0 with the sawtooth function as done in Ref. [Roa04],

f(t) = −1 + 2mod(
t−O

T
+ C, 1), 4.36

where O, T and C are the fitting parameters. T directly corresponds to the period of
the oscillation and yields T = TBO = 0.469(4)ms, in agreement with Eq. 3.22 yielding
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Time

Figure 4.3.: Absorption imaging after TOF for different holding times in the lattice, for
as=58.8 a0(a) and 83 a0(b)

T theory
BO = 0.469ms.

In the contact-dominated case (83 a0, Fig. 4.4(a)), the amplitude of the oscillations of
qmax decays rapidly and no oscillation is observed after a few periods. We further tried
to include a decay in Eq. (4.36) but the fit didn’t converge to acceptable results as too
many fit variables are needed.

This first analysis already points out the clear effect of interactions in the dephasing of
BO. However, a more robust method is needed to have a quantitative understanding.

4.4. Analysing the interaction-induced dephasing

One of the main challenges of this thesis was to find and implement a method to
quantify the dephasing of BO as a function of as. As seen in Chap. 3, when BO
dephases, the width of the momentum distribution increases. By studying the width,
we could systematically quantify the dephasing of both theoretical and experimental
data. This method relies on finding the right observable for the width. In this section,
we review step by step, how the analysis of the dephasing was done and the main
results obtained. We show example for two as.



28 4. Observation of Bloch oscillations and ground state properties in a lattice

0 2 4 6 8 10 21 23 25

-1

-0.5

0

0.5

1

q
m

ax
 (

hk
)

0 2 4 6 8 10 21 23 25

hold time t
h
 ( T

BO
 )

-1

-0.5

0

0.5

1

q
m

ax
 (

hk
)

Figure 4.4.: Evolution of the peak position for as=83 a0(a) and 58.8 a0(b). In grey, saw-
tooth fit. The error bars correspond to the standard error on the mean over 4-6 repetitions.
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Figure 4.5.: ⟨|qz|⟩ as a function of time th for as=58.8 a0(a) and 83 a0(b). With blue edges,
the points selected for the fit. The blue line corresponds to the fit result A(t− τ) + 0.5

We start with the 1D distribution n(qz), from it we extract the quantity ⟨|qz|⟩ , given
by the mathematical expression,

⟨|qz|⟩ =
∑

qz

n(qz) |qz − qmax
z | , 4.37

with qmax, the position of the maximum. This quantity is proportional to the width of
the distribution and is less sensitive to noise than the conventional ⟨q2z⟩.We consider
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that BO are fully dephased when the cloud is spread among all the Brillouin zone,
this corresponds to ⟨|qz|⟩= 0.5 ℏk. We can easily convince ourselves by taking a fully
dephased normalized wave function in theory and calculate ⟨|qz|⟩ .

To evaluate the spreading of ⟨|qz|⟩ , we fit the first 8ms with the non-linear model,

g(t) = A(t− τ) + 0.5, 4.38

with A and τ the fitting parameters. We define the dephasing time τ it takes to g(t) to
reach 0.5 ℏk. Thus, the above parametrization allows to directly extract the dephasing
as a fitting parameter. At the edge of the Brillouin zone, the cloud is split in two and
⟨|qz|⟩ is artificially increased which will lead to underestimation of the dephasing time.
Furthermore, we don’t want to consider, for the fit, the points when ⟨|qz|⟩ saturates.
To take into account all those constraints we select only particular points, following
the condition,

qmax ∈ [−0.2 ℏk, 0.2 ℏk] and ⟨|qz|⟩ <0.9 ⟨|qz|⟩ 5, 4.39

where ⟨|qz|⟩ 5 is the average value of the last five ⟨|qz|⟩ for a given scattering length.
⟨|qz|⟩ and the fit associated for two scattering lengths are presented in Fig. 4.5.

0

0.2

0.4

0.6

0.8

1

12 13 14 15 16 17
0

1

2

3
10-3

2.4 2.6 2.8 3 3.2 3.4
0

1

2

3
10-3

Figure 4.6.: (a,b) χ2 as a function of the fitting parameters A and τ . (c,d) Probability
distribution of τ for as=58.8 a0 and as=83 a0
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To find the best fitting values, we used the maximum likelihood method presented
in Ref. [Ifa10]. Close to the standard least-squares fitting, this method is based on
the minimization of the quantity,

χ2 =
∑

i

(yi − g(xi))
2

α2
i

, 4.40

with the data points labelled by (xi, yi) and αi the uncertainty associated. To be
consistent with the theoretical data, we fix αi = α by assuming equal statistical
fluctuation around the fitting model and use the expected value ⟨χ2⟩ = Ndata − 2.
This implies,

α =

√∑
i(yi − g(xi))2

Ndata − 2
4.41

χ2(A, τ) is calculated numerically for many values of A and τ and shown in Fig. 4.6 for
as=58.8 a0 and as=83 a0. In both cases, χ2 shows a clear asymmetric shape due to the
non-linear fitting model. one consequence of the shape of χ2 is that the uncertainties
associated with τ will also be asymmetric and the linear approximation to calculate the
uncertainties can’t be applied. A general method to extract uncertainties on multi-
variable fits consists in integrating, over all the parameters but one, the function
exp(−χ2/2), and after normalization, we obtain a probability distribution. Thus, we
get the probability distribution for τ ,

Pχ2(τ) =

∫
A
dAe−χ2(A,τ)/2

∫
A,τ

dτdAe−χ2(A,τ)/2
. 4.42

We define the uncertainties of τ as the 68% confidence interval. We then convert the
dephasing time τ into a dephasing rate γ = 1/τ .

To compare the experimental data with the theory predictions, we run the same anal-
ysis with the theory data. Due to a variable atom number at different scattering
lengths, we vary accordingly the atom number used for the theory.

In the experiment, we estimate the atom number as a function of aswith a linear fit.
We account for the fluctuation by taking an interval of ±20% of the experimental BEC
atoms number for the theory. For every theory data, we determine the upper (resp.
lower) value of τ in the ±20% range. We expand those values with upper (resp. lower)
uncertainties on the parameter τ . Thus, we obtain an upper and lower bound of τ as
a function of as, that we use to create the shaded area in Fig. 4.7.

We also analysed the theory when the Lee-Huang-Yang (Eq. 3.31) is turned to 0 and
we obtain the blue dash line in Fig. 4.7.
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Figure 4.7.: Dephasing rate as a function of as. In grey, experimental points with uncer-
tainties. The green line represents the numerical simulations results and the shaded area
the uncertainties associated. In blue dashed line, theory prediction without quanum fluctu-
ations.

We observe a minimum of dephasing in agreement with the theory around 60 a0. It
is shifted in comparison with the expected mean-field cancellation at add ≈ 66 a0.
This can be explained by first, the LHY contribution which adds a repulsive term
and secondly by the inter-site contribution of the DDI. In fact, we understood that
the minimum of dephasing occurs when the variance of chemical potential between
each lattice site is the smallest. Nevertheless, if we expect a purely interaction-driven
dephasing we would expect a symmetric shape in the dephasing rate, but at a low
scattering length (<57 a0) the BO disappear suddenly. This behaviour can’t be ex-
plained by the effect of the interactions and necissitate a more precise analysis of the
initial momentum distribution.

4.5. Ground state: localization in a single lattice plane

As seen previously, for high as, the lattice induces two sidepeaks at a position ±k.
Nevertheless, when ascrosses 57 a0 the interference patterns desappear suddenly. This
behaviour indicates a structural change of the ground state wave function, which can
be explained by the localization of the BEC to one lattice site. Figure 4.8 shows
the transitions around 57 a0. For as=56.7 a0 and 51.7 a0, the ground state already
occupies the full Brillouin zone and no BO can be observed. To confirm the localization
hypothesis we analyse the interference patterns at th = 0 as a function of as. We
associate the absence of sidepeaks with the localization to a single lattice plane.
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Figure 4.8.: TOF images for 5 scattering lengths around the transition as=57 a0

To quantify the intensity of the sidepeaks, for each picture, we perform a Fourier
transform (FT) of the density profile n(qz). This is done numerically by the fast
Fourier transform algorithm (fft). Figure 4.9 (a,b) shows two density profiles for as=
56.7 a0 and 58.9 a0 and Figure 4.9 (c,d) the Fourier transform associated. fft[n(qz)]
shows many peaks at separated by a distance of z∗ = λlatt/2. We define the contrast
C,

C =
fft[n(qz)](0)

fft[n(qz)](z∗)
4.43

When no interference is observed, Fig. 4.9 (b,d), C drops to zero. To compare the
results with the theory, we evolve the extended Gross-Pitaevskii equation Eq.(3.31)
in imaginary time and apply twice the Fourier transform on the ground state wave
function obtained. We then calculate the contrast C in the same way and multiply it
by 0.7 to account for the thermal part only present in the experiment.
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Three-dimensional quantum gases of strongly dipolar atoms can undergo a crossover from a dilute
gas to a dense macrodroplet, stabilized by quantum fluctuations. Adding a one-dimensional optical
lattice creates a platform where quantum fluctuations are still unexplored, and a rich variety of new
phases may be observable. We employ Bloch oscillations as an interferometric tool to assess the role
quantum fluctuations play in an array of quasi-two-dimensional Bose-Einstein condensates. Long-
lived oscillations are observed when the chemical potential is balanced between sites, in a region
where a macrodroplet is extended over several lattice sites. Further, we observe a transition to a state
that is localized to a single lattice plane–driven purely by interactions–marked by the disappearance
of the interference pattern in the momentum distribution. To describe our observations, we develop
a discrete one-dimensional extended Gross-Pitaevskii theory, including quantum fluctuations and
a variational approach for the on-site wavefunction. This model is in quantitative agreement with
the experiment, revealing the existence of single and multisite macrodroplets, and signatures of a
two-dimensional bright soliton.

The dipole-dipole interaction (DDI) between magnetic
atoms in an ultracold quantum gas has been key to
the discovery of supersolids [1–3] and macrodroplets
[4, 5], new states of matter with extremely intriguing
and counter-intuitive properties [6, 7]. Macrodroplets
are macroscopic quantum states that behave in many
ways like liquid droplets [4, 5, 8, 9]. They are at least
an order of magnitude denser than normal Bose-Einstein
condensates (BECs), and can be self-bound. They exist
in a parameter regime in which mean-field theories pre-
dict the collapse of the entire system when the attrac-
tive dipolar interactions overcome the repulsive contact
interactions. Instead, the system remains surprisingly
stable thanks to the so-called quantum fluctuations, thus
providing one of the rare examples where beyond-mean-
field interactions substantially change the ground state
of the system [10, 11]. Although the functional form of
the beyond-mean-field term, otherwise known as the Lee-
Huang-Yang (LHY) correction [12], is still subject to in-
tense study and debate [13, 14], its importance is now un-
doubted. Isolating beyond-mean-field effects may be cru-
cial to settle disputes on its validity, particularly in dipole
dominated systems; however, it is very difficult to have
access to individual interaction contributions. Though,
the differing atom number scaling between mean-field
and LHY contributions provide a promising method to
differentiate between them.

Optical lattices enable powerful interferometric ap-
proaches to, e.g., measure with high precision the zero-
crossing of the scattering length or of the mean-field in-
teraction with the so-called Bloch oscillation (BO) tech-
nique [15–18], and to achieve an accurate determina-
tion of the background scattering length via lattice spec-
troscopy in Hubbard models [4, 19, 20]. Moreover, the
presence of the lattice itself may change completely the

phase diagram of the system, as shown in seminal exper-
iments with contact interacting gases [21–23]. Unique
phenomena are predicted with the addition of long-range
DDIs [24, 25]. Experiments with lattice-confined atomic
dipolar gases have already shown important results, e.g.,
the realization of extended Bose-Hubbard models [26]
and spin models [27–30] in three-dimensional (3D) lat-
tices. In 2D lattices, forming quasi-1D tubes, suppression
of dipolar relaxation [31] and the controlled breakdown
of integrability [32] have been observed. Instead, up to
now, 1D lattices, forming an array of quasi-2D layers,
have been used with large wavelengths to load a single
pancake trap [33], or multi-layer traps to study the role of
DDI in the stability against collapse [34]. Further, theo-
retical proposals have suggested that the DDI between
layers not only can lead to modifications within each
layer [35–38] but also to inter-layer bound states [39–41].
Other works predict the existence of bright-soliton struc-
tures along the lattice [42] or anisotropic on-site solitons
[43, 44]. However, those proposals lack the important sta-
bilization mechanism given by the LHY term, which is
known to provide many new phases in continuous systems
(e.g. harmonically trapped), opening up many questions:
What is the ground state of an attractive dipolar gas in
a 1D lattice potential? Can droplets be delocalized over
many lattice planes? Will solitonic solutions continue to
exist?

In the present work, we study an erbium dipolar gas
in a 1D optical lattice with dominantly attractive DDI.
We employ BOs as an interferometric tool to probe the
interaction contributions of the system, and to isolate
the role of beyond-mean-field effects. We find long-lived
oscillations, associated with a minimum in the dephas-
ing rate, close to the cancellation point between mean-
field and beyond-mean-field interactions, and at scatter-
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FIG. 1. Bloch oscillations of a dipolar BEC in a one-
dimensional optical lattice. (a) Sketch of our experiment,
consisting of a 1D optical lattice in the z-direction, loaded
with an erbium BEC from an optical dipole trap with trapping
frequencies ωx,y,z = 2π × (240(3), 30(3), 217(1)) Hz. Gravity
acts along z. (b) Absorption images after TOF showing the
momentum distributions during one Bloch cycle. (c,d) Evo-
lution of the peak position of the momentum distribution for
as = (71.6(1.0), 59.8(1.0)) a0, respectively. A sawtooth fit
(solid grey) to the data yields TBO = 0.469(4) ms, consistent
with the expected value TBO = 2k/(mggrav). The error bars
represent the standard error on the mean over 4-6 repetitions.

ing lengths significantly shifted from the expected mean-
field result. We develop a discrete effective 1D extended
Gross-Pitaevskii equation (eGPE) with variational trans-
verse widths [45, 46]. We find that this minimum occurs
when the chemical potentials on each site are equal, not
the energies–as has been employed successfully in con-
tact interaction dominated systems [17, 18]–due to the
difference in density scaling between the interactions.
The close correspondence between theory and experiment
shows the validity of the LHY prediction, even while
highly inhomogeneous densities are expected to break the
local density approximation [12]. Moreover, we see that
for low scattering lengths the system undergoes a struc-
tural transition to a single localized 2D plane, signifying
an important new way to generate systems in reduced ge-
ometries through varying the interactions alone. Finally,
using our theoretical model we produce a full phase di-
agram of the system, revealing the impact of the LHY
contribution to the predicted 2D anisotropic soliton state
[43], which is instead morphed into a droplet solution at
high atom numbers. Though, promisingly, we still find
soliton-like solutions exist.

In the experiment, we prepare a degenerate dipolar gas

of erbium atoms in a one-dimensional optical lattice as
follows. We start with a dipolar quantum gas of 5× 104

spin-polarized 166Er atoms confined in a cigar-shaped op-
tical dipole trap [47] elongated along y. Typical BEC
fractions range from 60% to 80%. The dipolar length for
166Er is fixed at add = 66.5 a0, where a0 is the Bohr ra-
dius. We tune the contact interaction between atoms and
therefore the s-wave scattering length, as, via Feshbach
resonances [4, 48–50] by changing the absolute value of
a bias magnetic field |B|. We fix the orientation of B to
be along the weak axis (y) of the trap, making the DDI
dominantly attractive [4, 7].

Once the harmonically-trapped cloud is prepared at
the desired as, we switch on a 1D optical lattice, aligned
along the gravity direction (z); see Fig. 1(a). The verti-
cal lattice is created by retro-reflecting a λ = 1064 nm
laser beam. We load the planes by exponentially in-
creasing the lattice depth V0 to 8Erec in 20 ms, where
Erec = ~2k2/2m = h × 10.5 kHz. Here, ~ = h/2π is the
reduced Planck’s constant (h), m is the mass of 166Er
atoms and k = 2π/λ is the wave-vector of the lattice.
The 1D lattice forms an array of tightly confined quasi-
2D planes with a trap frequency along the tight direction
ωz ' 2π × 6 kHz, corresponding to an harmonic oscilla-
tor length zho = 100 nm. The tunnelling rate, J , between
planes is about h × 33 Hz. For these 1D lattice param-
eters, ~ωz > kBT and the system is kinematically 2D
[51].

We first aim at inducing Bloch oscillations to interfer-
ometrically assess the role of beyond-mean-field effects
and test the validity of the LHY term. We thus sud-
denly switch off the dipole trap and let the system evolve
in the combined lattice and gravitational potential for a
variable hold time th. Finally, using standard absorption
imaging after 30 ms of time-of-flight (TOF), we record
the evolution of the momentum distribution and extract
the position of the main peak, qmax, as a function of th.
Figure 1(b) shows an exemplary set of absorption images
during a single Bloch period TBO. We observe the key
paradigm of BOs, i.e. the linear increase of the mean mo-
mentum due to the acceleration and the Bragg reflection
occurring at the border of the Brillouin zone [52], well
described by fitting a sawtooth function to qmax.

The high sensitivity of BOs to interactions [17, 53]
clearly appears by tracing the evolution for two different
as (see Fig. 1(c,d)), as the interaction dependence is en-
coded into the dephasing rate. For a contact-dominated
gas (add < as = 90 a0, Fig. 1(c)), we see that the BOs
vanish within a few TBO. On the contrary, decreas-
ing as, and thereby going into the regime where con-
tact interactions and DDI nearly compensate each other
(as = 60 a0, Fig. 1(d)), we observe persisting oscillations
for more than 25 Bloch cycles, set by our limited ob-
servation time [50]. To systematically study this effect,
we repeat the BO measurements for different values of
as, and extract the corresponding dephasing rate γ [50].
As shown in Fig. 2(a), we observe a resonant-type behav-
ior with γ showing a pronounced dip with a minimum at
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FIG. 2. Dephasing rate and chemical potential dis-
tributions. (a)Experimental dephasing rate γ (circles) as a
function of scattering length as. The green solid line shows
the theory result, with an uncertainty region (shaded area)
accounting for 20% atom number variation. The blue dashed
line shows the theory expectation without LHY. The gray dot-
dashed line gives the prediction of the semi-analytic approx-
imation for γ. Error bars show the 68% confidence interval
[50]. (b)Chemical potential per lattice site µj extracted from
the discrete model for as = (59, 60, 65.5, 70) a0 (1, 2, 3, 4).
The green area depicts the LHY contribution to µj .

as = 61 a0. This minimum is clearly different to the point
as ≈ add, where the variance of the mean-field energies
across different lattice sites cancel [18], which would be
expected from previous observations [17, 53].

To get further insight on the origin of the minimum,
we develop a discrete effective 1D eGPE, inspired by the
close correspondence between predictions from discrete
models and experimental observations in non-dipolar
[54, 55] and weakly dipolar [18] BECs. We separate
the 3D wavefunction into radial and axial contributions,
allowing for a variational anisotropic radial width and
thus maintaining the 3D character [45]. Along the lat-
tice direction (z), we further decompose the wavefunc-
tion, ψ(z, t), as a sum of Wannier functions w(z) of
the lowest energy band over all lattice sites: ψ(z, t) =√
N
∑
j cj(t)w(z− zj), where N is the atom number and

cj(t) the complex wavefunction amplitude on lattice site
j, leading to a set of discrete effective 1D eGPEs, each
including mean-field and beyond mean-field interactions.
For the beyond-mean-field interaction, the 3D form of the
LHY still fully applies since the contact interaction en-
ergy exceed the confinement energy scale [50, 56]. How-
ever, our system may also open to further studies on the
2D to 3D crossover of the LHY. We solve these equations

coupled to a minimization of the energy functional with
respect to the variational parameters to determine the
ground states, benchmarking them against the full 3D
theory. We then perform dynamic simulations of the ex-
pected time evolution [50], giving an accurate dephasing
rate (solid line) in Fig. 2(a) without free parameters.

In previous studies, the point of minimum dephasing
was found to occur when the mean-field interaction en-
ergies vanish or cancel. We isolate the mean-field contri-
bution by removing beyond-mean-field effects from our
simulations (dashed line in Fig. 2(a)), predicting a min-
imum at as ≈ add. However, this is in clear contra-
diction with our experimental observations by a shift
of 6a0 and a different overall shape due to the differ-
ent scaling of the LHY term with the density. With-
out LHY, the cancellation of mean-field energies, EjMF,
is equivalent to the cancellation of onsite chemical po-
tentials, given by µj = 2EjMF/|cj |2. Note, µj dictates
the wavefunction phase winding on each site through
cj = |cj |e−iµjt/~. Reintroducing quantum fluctuations,

we obtain µj = (2EjMF + 5/2EjBMF)/|cj |2, where the 5/2
appears due to the |cj |5 density scaling in the beyond-

mean-field energy (EjBMF). Figure 2(b) shows µj from
the ground state calculation for four scattering lengths,
additionally indicating the contribution of the LHY cor-
rection.

We observe that the point of minimal dephasing in the
experiment is close to the point where the variance of
µj is minimized [57]. Indeed, within a semi-analytic ap-
proximation (see Ref. [50] for details), we find a direct
relationship between γ and µj , which reads γ ∝ |µ1−µ0|
when 3 lattice sites (j = −1, 0, 1) are occupied. This
model can be extended to 5 lattice sites, giving the dot-
dashed line (Fig. 2(a)) which reproduces very well the
system behaviour [50]. Interestingly, measuring the de-
phasing rate through the chemical potential is ubiquitous
to systems with arbitrary interaction potentials.

Surprisingly, by further decreasing the scattering
length below 57 a0, no BOs nor interference peaks are
visible anymore. We observe at the initial instant (th =
0 ms) that the momentum distribution is already spread
over the entire first Brillouin zone. To quantify this, we
study the contrast, C, of the interference pattern of the
initial momentum distribution as a function of as, see
Figure 3(a). We extract C, defined as the amplitude of
the momentum peaks at ±2~k relative to the zero mo-
mentum peak, from the Fourier analysis of the TOF im-
ages [50]. For large as, we observe the typical matter-
wave interference pattern, as expected from a coherent
state populating several lattice planes (see inset) [55]. As
we lower as, C first remains fairly constant. For as below
a certain critical value a∗s ≈ 57 a0, we observe a sudden
loss of the interference pattern with a sharp decrease of
C to almost zero.

Remarkably, we observe that this interaction-driven
process is reversible. To test the restoring of the interfer-
ence pattern, we employ the following protocol [50]: In
brief, we first prepare the system in the lattice at constant
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FIG. 3. Interaction-induced localization. (a)Contrast
of the interference pattern after loading the lattice at differ-
ent as. The green dot-dashed (black solid) line represents the
result of the 1D discrete model (3D eGPE) multiplied by 0.7.
The insets show the respective density distributions along z
of the 1D discrete model (bars) and 3D eGPE (lines) and cor-
responding experimental averaged interference patterns after
TOF expansion (1,2). (b)Dynamic evolution of the contrast
quenching back (filled circles) or holding as (open circles); see
text. The error bars represent the standard error on the mean
over 4-6 repetitions.

and large as (as = 69(2) a0). We then ramp down as be-
low a∗s (as = 56(2) a0) in 20 ms and wait until C stabilizes
to a small value; see Fig. 3(b). Note that the interference
pattern disappears after about 10 ms, which is on the or-
der of the tunneling time h/J between two neighboring
lattice sites. At this point, we quench as back to its initial
value and probe the time evolution of the system towards
its new equilibrium state. On a similar timescale, we ob-
serve the reappearance of the interference pattern with
an increase of C, which then saturates to about 60% of
its initial value [58]. For comparison, we also show the
data without inverting the field ramp.

The observed broad distribution in reciprocal space
suggests that the system ground state has undergone a
structural change, with the macroscopic wavefunction lo-
calized in one lattice plane. To verify this interpretation,
we calculate the ground state of the system as a function
of as. When the repulsive contact interaction dominates
(as > add), we find an array of BECs occupying approx-
imately three to five lattice planes; see insets Fig. 3(a).
In contrast, when the relative strength of the attractive
dipolar interaction with respect to the other terms in the
Hamiltonian is increased, the system reaches a critical
point. Here, it undergoes a phase transition to a quasi-2D
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FIG. 4. Phase diagram and energy landscapes.
(a)Phase diagram as a function of as and atom number. The
white region denotes a trap-bound BEC extended over sev-
eral lattice sites. The colored regions denote quasi-2D self-
bound solutions: a droplet (green), a soliton (blue), each ei-
ther extended over several lattice sites (lighter shade) or lo-
calized (darker shade, >95% of the atoms are localized in
the central lattice plane). Circles show our experimental
data points from Fig. 3(a). Inset (a), (b-c)Energy land-
scapes as a function of the radial widths lx and ly, in units
of the radial harmonic oscillator lengths xho = 0.50(1) µm
and yho = 1.42(1) µm, respectively, with (left) and without
(right) the radial harmonic trap, for (inset (a)) BEC (as, N) =
(70 a0, 1.5×104), (b) droplet (as, N) = (65 a0, 1.5×104) and
(c) soliton (as, N) = (51.5 a0, 0.4× 104) regimes, with darker
shading at the minima. (d)Radial width lx versus N for
as = 51.5 a0. The dashed line indicates the soliton-to-droplet
transition point, and the circles indicate the position of (b-c).

state, in which all atoms are localized into a single lattice
plane to minimize their energy. This purely interaction-
driven phase transition–somewhat reminiscent of a con-
tinuous version of a superfluid to Mott insulator tran-
sition [59]–is stabilized by quantum fluctuations (LHY),
preventing the subsequent collapse of the system [42, 60].
The predicted critical point occurs exactly where we ob-
serve the disappearance of the interference pattern in the
experiments. We find an overall excellent agreement be-
tween the measured and the calculated C from both the
discrete 1D model and the 3D theory without any free
fitting parameters, except for a rescaling factor to the
contrast amplitude to account for the thermal atoms in
the experiment.

The observation of this phase transition to a quasi-2D
localized state driven by interactions points to the ex-
istence of a rich variety of phases. The importance of



5

the LHY correction and its peculiar density scaling mo-
tivate us to investigate the properties of the ground state
as a function of as and atom number to identify distinct
phases in this unique setting. For this, we employ our dis-
crete model to derive a full phase diagram; see Fig. 4(a).
To investigate the boundness of the states, we assess the
impact of the radial harmonic trap on the minimum of
the variational energy, which is a function of the radial
widths lx and ly. At large scattering lengths, as expected,
we find a stable delocalized BEC phase, where the total
interaction energy (mean-field + LHY) is positive. The
state is trap-bound, meaning that there is no energy min-
imum without the radial harmonic confinement; inset of
Fig. 4(a).

Reducing as, we find an energy minimum even without
the radial harmonic trap (colored region in the phase di-
agram). These quasi-2D self-bound solutions (the lattice
still provides axial confinement) are either extended over
several sites (lighter color) or localized to a single plane
(darker color). In the literature, there are two paradig-
matic examples of self-bound objects with attractive
mean-field energy: droplets and solitons. Droplets can
exist in one, two or three dimensions and are stabilized
through the LHY correction [7]. Stable bright solitons
only exist in quasi-1D systems with attractive contact
interactions and are stabilized against collapse purely by
kinetic energy. In the search for solitons in higher dimen-
sions, theoretical studies have suggested that the DDI
could stabilize such 2D solutions [43, 44]. To the best of
our knowledge, there have been no studies on the effect
the LHY correction has on this prediction, nor exper-
imental observation. In the present case, where many
interactions and kinetic energy compete, a classification
of self-bound solutions is much less straightforward. As
a crucial distinction between a soliton and a droplet, we
use the scaling of the system width with atom number.
The soliton width (along the collapse direction) scales in-
versely with increasing atom number [61], while in con-
trast, the droplet size increases in all directions with N
[62], as predicted in a quasi-1D setting [63]. We use this
distinction to draw a boundary between the two phases,
observing a phase transition at around 5000 atoms, for
both single-site and multi-site solitons. The overlaying
of our measurements (Fig.3(a)) onto the phase diagram

suggests that the experiments have already reached the
interesting regimes of both 2D self-bound droplet and
dipolar solitons. This opens the door to future experi-
mental investigation on the self-bound nature and prop-
erties of these new 2D phases.

In conclusion, we theoretically and experimentally in-
vestigate the behavior of a strongly dipolar quantum gas
in a 1D optical lattice. We employ BOs and character-
ize their dephasing rate as a function of as. We observe
a minimum in the dephasing shifted 6 a0 away from the
purely mean-field prediction, providing an interferomet-
ric measure of the beyond-mean-field contribution. For
low enough as, the system enters into a quasi-2D state
which is localized onto a single lattice plane, providing a
genuine interaction-driven path to reach reduced dimen-
sions in dipolar gases. Using our developed discrete the-
ory model, we derive a full phase diagram which confirms
the observed localization transition. This also reveals sig-
natures of quasi-2D self-bound dipolar droplet solutions,
and the long sought-after 2D anisotropic dipolar soliton,
first predicted in Ref. [43] (see also [44, 64]). Our work
paves the way for future studies of the soliton-to-droplet
crossover in a dipolar gas, as observed in a Bose-Bose gas
[65], and of the “solitonic” nature [66] of dipolar solitary
waves [67–71].
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Huckans, P. Pedri, L. Santos, O. Gorceix, L. Vernac, and
B. Laburthe-Tolra, Phys. Rev. Lett. 111, 185305 (2013).

[28] S. Lepoutre, J. Schachenmayer, L. Gabardos, B. Zhu,
B. Naylor, E. Marechal, O. Gorceix, A. M. Rey,
L. Vernac, and B. Laburthe-Tolra, Nature Communica-
tions 10, 1714 (2019).

[29] L. Gabardos, B. Zhu, S. Lepoutre, A. M. Rey,
B. Laburthe-Tolra, and L. Vernac, Phys. Rev. Lett. 125,
143401 (2020).

[30] A. Patscheider, B. Zhu, L. Chomaz, D. Petter, S. Baier,
A.-M. Rey, F. Ferlaino, and M. J. Mark, Phys. Rev. Re-
search 2, 023050 (2020).

[31] B. Pasquiou, G. Bismut, E. Maréchal, P. Pedri,
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Supplemental materials: Strongly dipolar gases in a one-dimensional lattice: Bloch
oscillations and matter-wave localization

G. Natale, T. Bland, S. Gschwendtner, L. Lafforgue, D. S. Grün, A. Patscheider, M. J. Mark, and F. Ferlaino

THEORETICAL MODEL

In this work, we use an extended Gross-Pitaevskii the-
ory for direct comparison to our experimental results. We
employ both the standard three-dimensional form of the
extended Gross-Pitaevskii equation (eGPE) and derive
a discrete effective one-dimensional eGPE. Starting with
the three-dimensional case, our system can be described
by the 3D eGPE of the form [4, 72–74]

i~
∂

∂t
Ψ(~x, t) =

[
− ~2

2m
∇2 + Vharm(~x)

+ Vlatt(z)− Fextz + g|Ψ(~x, t)|2

+

∫
d3~x′ Udd(~x− ~x′)|Ψ(~x′, t)|2

+ γQF|Ψ(~x, t)|3
]
Ψ(~x, t) , (S1)

where the wavefunction Ψ is normalized to the total
atom number N =

∫
d3~x |Ψ|2. The atoms are con-

fined in a harmonicpotential Vharm =
∑
ξ=x,y,z

1
2mω

2
ξξ

2

with single particle mass m and trap frequencies ωξ, to-

gether with the lattice potential Vlatt = sErec sin2 (kz)
where s is the tunable lattice depth in multiples of the
recoil energy Erec and k = 2π/λ is the lattice spac-
ing in reciprocal space. The mean-field interaction con-
tributions are g = 4π~2as/m for the contact interac-
tion, governed by the s-wave scattering length as, and
the long-ranged anisotropic dipolar interaction poten-
tial Udd(~x) = 3~2add/m

(
1− 3 cos2 θ

)
/|~x|3, where add =

µ0µ
2
mm/12π~2 with magnetic moment µm and θ is the

angle between the polarization axis (y-axis) and the vec-
tor between neighboring atoms. We also include beyond-
mean-field effects through the quantum fluctuations term

γQF = 32
3 g
√

a3s
π

(
1 + 3

2ε
2
dd

)
[12], which depends on the

relative strength between the dipolar and short-ranged
interactions εdd = add/as. Finally, Fext = ggravm de-

notes the external force exerted on the system by gravity.
In this work, we employ the imaginary time-evolution

technique on Eq. (S1) in order to find stationary solutions
for the wavefunction in the lattice, without gravity. For
various atom numbers and scattering lengths, we use a
numerical grid of lengths (Lx, Ly, Lz) = (6, 33.3, 6)µm,
with corresponding grid points 128 × 256 × 128. The
dipolar term is efficiently calculated in momentum space,
and we use a cylindrical cut-off in order to negate the
effects of aliasing from the Fourier transforms [75].

To derive the effective one-dimensional model, we fol-
low Ref. [45] by assuming a wavefunction decomposition

Ψ(~x, t) = Φ(x, y, l, η)ψ(z, t) ≡ 1√
πl
e−(ηx

2+y2/η)/2l2ψ(z, t) ,

(S2)
with variational parameters l and η representing the
width of the radial wavefunction and the anisotropy of
the state, respectively. Integrating out the transverse di-
rections (x, y) in Eq. (S1) upon substitution of the ansatz
above gives the continuous quasi-one-dimensional eGPE,
which when combined with a variational minimization of
the energy functional to find (l, η) gives close agreement
to the full 3D eGPE [45]. We further decompose the
longitudinal wave function ψ(z, t) into a sum of Wannier
functions w(z) of the lowest energy band over all lattice
sites

ψ(z, t) =
√
N
∑

j

cj(t)w(z − zj) , (S3)

for complex amplitudes cj , and positions of lattice min-
ima zj = (λ/2)j. For deep enough lattices, the Wannier
functions are well approximated by Gaussians of the form

w(z) =
(
πl2latt

)−1/4
e−z

2/2l2latt , with llatt = (k 4
√
s)−1. Af-

ter multiplying on the left by c∗j and integrating over z,
we obtain a set of discrete effective one-dimensional eG-
PEs

i~
∂cj
∂t

= −J(cj+1 + cj−1) +

(
−Fextzj + Vharm(z) + g1DN |cj |2 +N

∑

k

Udd
|j−k||ck|2 + γ1DQFN

3/2γQF|cj |3
)
cj , (S4)

with the reduced effective one-dimensional parame-
ters γ1DQF = 23/2/(5π3/2l2llatt)

3/2γQF and g1D =

g/((2π)3/2l2llatt). Here, J denotes the tunneling rate be-
tween two neighboring lattice sites. The dipolar inter-
action coefficients between lattice sites j and k depend
both on the separation |j − k|, and non-trivially on the

size l and anisotropy η of the transverse cloud. For the
variational minimization, we generate an interpolating
function for a sensible range of (l, η) and separations up
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to |j − k| = 6 via

Udd
|j−k|(l, η) =

∫
d3~x
{
|Ψ0(~x− z|j−k|êz, l, η)|2
∫

d3~x′ Udd(~x− ~x′)|Ψ0(~x′, l, η)|2
}
,

(S5)

where Ψ0(~x′, l, η) = Φ(x, y, l, η)w(z) [see Eqs. (S2) and
(S3)]. This allows us to simply look up the values of
Udd
|j−k| without having to recalculate for every time step

during the energy minimization. We note that the en-
ergy contribution rapidly declines for separations larger
than 2 sites, and find that 6 is more than sufficient to
quantitatively describe the physics.

To find the stationary state solution of Eq. (S4) (with-
out gravity) we employ an imaginary time-evolution in
combination with an optimization scheme, aiming to find
the state which minimizes the total energy functional

E [c; l, η] = E⊥[l, η] + E‖[c; l, η] , (S6)

where c = (c1, c2, . . . , cn) for n total lattice sites. Here,
E⊥[l, η] gives the energy contribution from the transverse
variational wave function, which reads

E⊥[l, η] =
~2

2ml2

(
η +

1

η

)
+
ml2

4

(
ω2
x

η
+ ηω2

y

)
. (S7)

The latter term of Eq. (S6) gives the discrete energy func-
tional for the amplitudes cj , which includes the tunneling
and all interaction terms

E‖[c; l, η] =−
∑

j

J(cj+1 + cj−1)cj

+
1

2
Ng1D

∑

j

|cj |4 +
1

2
N
∑

j,k

Udd
|j−k||ck|2|cj |2

+
2

5
N3/2γ1DQF

∑

j

|cj |5 . (S8)

Starting from an initial distribution of the amplitudes
cj we first determine the variational parameters (l, η),
which is done via an optimization scheme minimizing
Eq. (S8). Subsequently, we evolve the amplitudes in
imaginary time using Eq. (S4) and repeat this process
until we find the minimum of the total energy function
Eq. (S6).

In Fig. S1 we assess the different interaction energy
contributions to Eq. (S6) for a range of scattering lengths.
For as > add the total interaction energy is positive, and
it corresponds to a dilute BEC. Following as to smaller
values all interaction contributions are almost constant,
until at around as = 60 a0 there is a phase transition
from the BEC to droplet state, as identified in Fig. 4
of the main text. This sharp gradient ceases at around
as = 55 a0, where the atoms are localized to a single
lattice plane. Note that although the DDI offsite en-
ergy is typically only 10% of the onsite counterpart, it

50 55 60 65 70 75
scattering length  a

s
 (a

0
)

-300

-200
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200
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rg
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QF

DD
offsite
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onsite

Contact

FIG. S1. Interaction energy contributions. Scattering
length dependency of the individual interaction contributions
of the ground state solutions from the 1D model, calculated
for N = 104 atoms.

constitutes a significant contribution to the total inter-
action energy in the system, shifting the BEC to droplet
crossover and localization transitions by a few a0.

Once we have the ground state of the system, we em-
ploy the discrete effective one-dimensional eGPE in real-
time to simulate the Bloch oscillations in the presence of
gravity.

2D TO 3D CROSSOVER

The dimensionality of the system is known to highly
influence the size and even the sign of the beyond-mean-
field contribution, in both Bose-Bose [76–78] and dipo-
lar [56, 79, 80] gases. Here, we assess the validity of
employing the full 3D LHY correction to our system.
Following Ref. [56], we define the dimensionless param-
eter ξ = gn/ε0–dependent on the contact interactions
g, peak 3D density n, and the confinement energy scale
ε0 = ~2π2/2mz2ho–that indicates which dimensionality
regime our system is in. If ξ & 1 we are safe to use the
3D LHY term, whereas if ξ � 1 the 2D solution deviates
from the 3D one. Deep in the localized droplet regime,
where the peak density is on the order of 1022m−3, we
find ξ ≈ 2, and the 3D LHY as used throughout this work
is valid. Even at large scattering lengths, where the peak
density is closer to 5 × 1020m−3, we find ξ ≈ 0.5, which
introduces an error of less than 5% between the 2D and
3D LHY terms [56]. In this limit, the 2D LHY term may
be more appropriate, however in the dilute BEC phase
the impact of the LHY is minimal.

ANALYTIC MODEL OF DEPHASING

Starting from the discrete 1D eGPE we decompose
the coefficients cj into amplitude and phase as cj =
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|cj | exp(−iφj), and then integrate Eq. (S4) in time to give

φj(t) =

(
− Fextzj + g1DN |cj |2 +N

∑

k

Udd
|j−k||ck|2

+ γ1DQFN
3/2γQF|cj |3

)
t

~

≡ (−Fextzj + µj)
t

~
, (S9)

with onsite chemical potentials µj , and where we have
also assumed that Fextd � J such that the amplitudes
|cj | are frozen.

Following Ref. [81], we write the Fourier transform of
the quasi-1D wavefunction as

ψ(k, t) = w(k)
∑

j

|cj | exp[−i(kzj + φj(t))] = w(k)C̃(k, t) ,

(S10)

where w(k) is the momentum space Wannier function,
and phases φj are given above. If all interactions are
set to zero this function is initially a delta function situ-
ated at k = 0 and moves in k-space as k̃ = k − Fextt/~.

Interactions broaden C̃(k, t), leading to a dephasing of

coefficients cj . Fig. S2(a) depicts |C̃(k, t)|2 as a function

of k at different times t, normalized to |C̃(0, 0)|2.
We extract an analytic approximation to the dephas-

ing time by considering the temporal behaviour of the
point |C̃(0, t)|2, i.e. at k̃ = 0. During dephasing this point
rapidly decreases through interference between neighbor-
ing sites. This quantity is plotted in Fig. S2(b) for a
few example scattering lengths. It reaches the thresh-
old α/C̃(0, 0) = 0.5 at the dephasing time t = td, where
many k-modes are now highly occupied. This time can
be found through the smallest positive solution of

α =

∣∣∣∣∣∣∣


∑

j

|cj | cos

(
µjtd
~

)


2

+


∑

j

|cj | sin
(
µjtd
~

)


2
∣∣∣∣∣∣∣
.

(S11)

Exact solutions to |C̃(0, td)|2 = α can be only found in
limiting cases. For the three lattice site case, with j =
−1, 0, 1 and noting the symmetry of |cj | = |c−j | we obtain

td =

∣∣∣∣arccos

(
4|c0c1|

α+ |c0|2 − 2

)
~

(µ1 − µ0)

∣∣∣∣ , (S12)

This relation is expected to give an accurate prediction of
the dephasing time for all states where only 3 lattice sites
are dominant. From this equation, one can see how the
dephasing time tends to infinity in the limit of equally
distributed chemical potentials, as observed in Fig. 2 of
the main text. We can extend this to 5 sites, but it is
not as trivial. One needs to numerically solve the tran-

FIG. S2. Analytic dephasing rate. (a)Evolution of

the function C̃, with k̃ normalized to the Brillouin zone in
the moving frame, and as = 60.5 a0. Here, the solution of
Eq. (S12) is td = 0.59s. (b)Time evolution of the central

point of C̃, showing when |C̃|2 crosses α = 0.5. The function

C̃ is scaled to the value at C̃(0, 0). (c)Analytic dephasing
rate (γ = 1/td) obtained for the 3 lattice site approxima-
tion Eq. (S12) and the 5 lattice site approximation Eq. (S13),
compared to the numerically obtained value from a real-time
simulation of the discrete model, Eq. (S4).

scendental equation

α =
∣∣∣2− |c0|2 + 4|c0c1| cos

(
(µ0 − µ1)td

~

)

+ 4|c0c2| cos

(
(µ0 − µ2)td

~

)

+ 8|c1c2| cos

(
(µ1 − µ2)td

~

) ∣∣∣ , (S13)

for the smallest non-zero root td. We compare the results
from Eqs. (S12) and (S13) to the numerically obtained
dephasing rate, γ = 1/td, in Fig. S2(c), as presented in
Fig. 2 of the main text, and find excellent agreement.

EXPERIMENTAL PROTOCOL

We prepare a 166Er spin-polarized BEC similar to
Ref. [4]. The magnetic field during the evaporation is
along the z-axis with absolute value |B| = Bz = 1.9 G
(as = 80(1) a0), see Fig. 1(a). The B-to-as conversion
has been precisely mapped out in previous experiments
[4, 20]. Before loading the lattice, we rotate the magnetic
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FIG. S3. Evolution of the 〈|qz|〉 . In the figure 〈|qz|〉 as
a function of time for as=58.8 a0. The points with red edges
are the one selected for the fit. The red line corresponds to
the fit result A(t− τ) + 0.5

field direction along the y-axis in 50 ms and change its ab-
solute value to set the scattering length. At this step, we
typically achieve 5×104 atoms with more than 60 % con-
densed fraction in a cigar shape dipole trap with trapping
frequencies ωx,y,z = 2π (240(3), 30(3), 217(1)) Hz. For
our experiments, the atoms are then loaded in a 1D lat-
tice by a 20 ms exponential ramp of the lattice depth.
This is the experimental protocol used in Fig 1, 2, and
3(a).

To study the reversibility of the interaction-induced
transition to a single lattice site (3(b)), i.e. the evolution
of the contrast due to a change of the scattering length,
we employ a different protocol from the one above. In
fact, in our experiment, the magnetic field along the y-
direction can be changed on a timescale of' 20 ms, which
is slower compared to the z-direction (' 1 ms). For this
dataset, we prepare the BEC with B = (0, 0.25, 1) G and
then we load the lattice as described above. We then
linearly ramp the field in 20 ms to B = (0, 0.25, 0) G and
record the time evolution. In Fig. 3(b), we study the
contrast evolution after the ramp. For the black dataset,
the magnetic field is quenched back to the initial value
after 10 ms.

For Fig 4, we extract the atom number condensed in
the lattice by releasing the cloud from the combined
ODT-lattice trap and by performing an absorption imag-
ing after 30 ms of TOF. We integrate the density along
the lattice axis and use a double Gaussian fit on the inte-
grated density profile. We repeat the sequence 4-8 times
for every scattering length. At low scattering lengths, we
find a decreased number of condensed atoms, see Fig.4.
We attribute this to an increase of three-body loss in the
vicinity of a Feshbach resonance [4] and the increased
density of the groundstate.
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FIG. S4. Uncertainties χ2 analysis. (a)χ2 as a function
of A and τ . The black dash lines correspond to the value
χ2
min + 1. Below, (b)probability distribution of τ , given by

numerical integration of
∫
A
dAe−χ

2(A,τ)/2 and normalization
to 1. as=58.8 a0. The dashed line indicates the fit result and
the shaded area the 68% confidence interval.

ANALYSIS OF MOMENTUM DISTRIBUTION
DURING BLOCH OSCILLATION

When the Bloch oscillation dephases, the width of the
momentum distribution increases with time [82]. To eval-
uate the dephasing rate we analyze the 1D momentum
distribution along z, n(qz), as a function of the holding
time. Because of our limited vertical optical access, the
1D lattice is not perfectly aligned with the z (gravity) di-
rection. We measure a tilt of 9(1)°. Such a tilt effectively
weakens the radial trapping strength, limiting our obser-
vation time to 12 ms, which anyhow allows us to observe
up to 25 BO period.

From n(qz), we can extract the maximum position
(qmax
z ) and the quantity 〈|qz|〉 , given by

〈|qz|〉 =
∑

qz

n(qz) |qz − qmax
z | .

This quantity is proportional to the width of the distri-
bution. In Fig. S3, we report 〈|qz|〉 for as= 65.7(1.0) a0.
To quantify the dephasing rate γ, we apply a linear fit to
〈|qz|〉 . For the fit, we select only the points at the center
of the Brillouin zone, up to the time when 〈|qz|〉 is reach-
ing the fully dephased configuration, 0.5~k. Indeed, when
the cloud is at the edge of the Brillouin zone, 〈|qz|〉 is arti-
ficially increased and it does not represent the dephasing,
as shown in Fig. S3. We define the dephasing rate γ as
the inverse of the time τ that the fitted function needs to
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reach the value 0.5 ~k. Thus, using the fit parametriza-
tion A(t−τ)+0.5, where A and τ are the fitting variables
and t is the time, we can directly extract τ and its inverse
γ.

To determine the uncertainties with our non-linear
parametrization, we analyze the χ2(A, τ). We estimate
the uncertainties on our data points by assuming equal
statistical fluctuations around our fitting model and us-
ing the expected value

〈
χ2
〉
= Ndata − 2. Figure S4

shows a clear asymmetric shape for χ2, indicating asym-
metric uncertainties on our fit parameters. As we are
only interested in the uncertainties on τ , we consider

Pχ2(τ) = 1
N

∫
A
dAe−χ

2(A,τ)/2, with N a normalization
constant. Pχ2(τ) corresponds to the probability distri-
bution of τ for our fitting model. Finally, from Pχ2(τ),
we define the 68% confident interval of our dephasing
rate γ shown in Fig. S4.

In order to compare our experimental data with the
theoretical predictions, we repeat the same analysis with
the data from the 1D discrete model. Since in the ex-
periment the condensed atom number changes with the
scattering length, see Fig. 4, the atom number consid-

ered in the theoretical simulations varies accordingly. In
Fig. 2, we account for the experimental fluctuations by
taking an interval of ±20% of the BEC atoms number.
For each scattering length, we determine the extreme val-
ues of γ in the ±20% range, which we use to create the
shaded area.

CONTRAST OF THE INTERFERENCE
PATTERN

The density modulation that usually characterizes a
BEC loaded into a 1D lattice can be experimentally ex-
tracted from the matter-wave interferometry after a TOF
expansion [59]. To study the transition to one single
occupied lattice site, we record the density distribution
as a function of as. In more details, for each picture
we perform a Fourier transform (FT) of the integrated
momentum distribution, n(qz). In the contact domi-
nated regime, the lattice induces two sidepeaks at ±q∗z
in n(qz). Consequently, in the FT analysis the peaks are
at z∗ ' λlattice. The visibility of the interference pattern
is then estimated as nFT(|z∗|)/nFT(0).
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5
New imaging setup for the
Erbium experiment

5.1. Motivation and challenges

In 2019, a new state of matter has been observed featuring the density modulation
of solid and the phase coherence of a superfluid, called supersolid [Cho19] [Tan19]
[B1̈9]. The density modulations have typically a spacial period of λ∗ = 2.5 µm. To
distinguish the modulation maxima and minima it is thus needed to have an imaging
with a resolution smaller than λ∗, but typical absorption imaging does not fulfil such
a requirement. This is the reason why, in our lab (the ERBIUM experiment), we have
rather probed the momentum distribution showing peaks at k = 2π

λ∗ . In the last two
years, supersolid has been subject to intense interest and the importance of in-situ
imaging became increasingly large. More recently, theorists predicted the presence of
a domain supersolid (DSS) in a spin mixture of 166Er with a mj = 0 and mj = −6
[Bla22]. As the domain supersolid is long-lived and the spacial extension is predicted
to be of more than 40 µm for 3× 104 atoms, observing it experimentally would allow
gaining further understanding of supersolid states in general. Moreover, The ERBIUM
experiment has also the ability to use the narrow transition at 1299 nm [Pat21] for state
preparation of DSS.

Part of my master project was to build a new imaging setup allowing to reach the
target high-resolution of 532 nm. The core of such setup is an objective, customized
by the company Special Optics, it allows to use all the numerical aperture (NA) given
by the current vacuum chamber. Thanks to the 5 beams MOT [Ilz18], the objective
can be implemented without tremendous effort.

An objective brings also new optical engineering solutions. The rich spectrum of
erbium gives many tools to control the atoms. It is in principle possible to focus a
1299 nm laser beam to locally address atoms confined in a 1064 nm optical lattice.

49
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Combined with a digital micro-mirror device (DMD) this will allow the creation of
local perturbations in the spatial plane or the realization of box potentials.

Implementing a new high-resolution imaging system in the erbium experiment presents
many opportunities and challenges that will be discussed in this chapter. The first
part is devoted to the design and the testing of a high-resolution objective designed
to work with a 401 nm imaging light. In the second part, we describe the challenges
regarding the implementation in the experiment and the future projects to use the
objective.

5.2. Objective design

Let us first briefly review the key formulas and useful notions to understand the basis
of the imaging theory. We place ourselves in the framework of diffraction theory and
study the optical field after an aperture. This permits to set the definitions of the
numerical aperture (NA), the resolution and the point-spread function (PSF). We will
discuss briefly aberrations in optical systems and how to characterize them via the
Intensity Strehl ratio. Finally, we present the objective designed and produced by the
company Special optics.

5.2.1. Basics of optical design

Numerical aperture

In general, an object emit light in every direction. Nevertheless, any practical optical
system features a finite size can only collect a limited amount of light. The angle over
which a system can collect light is quantified by the numerical aperture (NA), defined
as,

NA = n sin(θ), 5.44

with n the refractive index of the medium and θ the angle of the last incoming beam
with the optical axis. The notations are presented in Fig. 5.1. The presence of n assures
that the NA is conserved when the light is propagating through different materials.
This is an important property since most ultracold experiments present high vacuum
setups and the light is travelling through a viewport before being collected by the
imaging system. Equivalently, one can introduce the numerical aperture on the image
plane and define the magnification M as,

NAo = |M |NAi. 5.45
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Figure 5.1.: . Light emited by a point source through an aperture. θ is the angle of the
last ray with the optical axis and n the refractive index.

In rays optics, the magnification is often considered as the scaling factor between the
object and the image.

Diffraction theory

We are now interested in what happens when light travels through an aperture. If
one considers light as rays and records the image on a screen, only a shadow with
the same shape as the aperture will be observed. However, in practice, depending on
the wavelength of the incident light or the size of the aperture, more exotic patterns
appear. In the scalar approximation, the light field at a position r is described by a
complex field u(r) =

√
I(r)eiϕ(r). A plane formed by ϕ(r) =const. is called wavefront.

The field distribution obeys the scalar wave equation or Helmholtz equation,

(∇2 + k2)u = 0, 5.46

with the wave vector k = n2π
λ
, λ the wavelength of the light and n the refractive index of

the medium. Equation (5.46) is linear and if u1 and u2 are solutions, then u1+u2 is also
a solution. We will use this property later to calculate the field distribution after an
aperture with any shape. In the following, we give a brief review of diffraction theory,
based on Ref. [Goo05] and Ref. [Tei07]. The simplest theory of diffraction is based
on the assumption that an aperture lets a wave travel through without modification
through and reduces it completely outside. An aperture is therefore described by the
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Figure 5.2.: Sketch of the coordinate system. x, y (resp. x2, y2) correspond to the diffrac-
tion or object plane (resp. the observation or image plane). z is the distance between the
two planes and r is the relative distance between P1 and P2, the field distributions at (x, y)
and (x2, y2)

function A(x, y), where,

A(x, y)

{
1 inside the aperture
0 outside the aperture

5.47

We consider in the following, P1(x, y) the incoming complex wave in the aperture and
P2(x, y) the outgoing complex wave at a distance z from the aperture plane. P1 and
P2 are also called light field distribution. The notations are resumed in Fig. 5.2.

According to the Huyghens-Fresnel principle and the linearity of Eq. (5.46), the field
P2(x, y) at a distance z can be calculated by summing over all diverging spherical
waves coming from the aperture,

P2(x2, y2) =
i

λ

∫ ∫
dxdyP1(x, y)

exp(−ikr(x, y))
r(x, y)

, 5.48

where r is the distance between P1 and P2. In the Fraunhofer approximation (
x2/λ, y2/λ << z), Eq. (5.48) becomes,
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P2(x2, y2) =
ie−ikz

zλ
exp(−ik

z

[
x22 + y22

]
)

∫ ∫
dxdyP1(x, y)e

−i 2k
z
[x2x+y2y] 5.49

It is now very easy to calculate the outcoming field as the Fourier transform of the
aperture distribution evaluated at the frequencies fx = x

λz
and fx = y

λz
.

Lets now consider a particular example of the diffraction intensity pattern from a
circular aperture, described by A(x, y) = circ(x0, y0, R), the circle of centre (x0, y0)
with a half diameter R. If we insert P1 in Eq. (5.49) we obtain,

P2(r) =
i exp(−ikz)

zλ
exp(

ikzr2

2z
)B[P1]|r, 5.50

where we used the r =
√
x22 + y22 and the circular symmetry to replace the two-

dimensional integral by the Fourier-Bessel transform B[...]. The Fourier-Bessel trans-
form of a circular function is given by,

B[circ(R)] = A
J1(2πRρ)

πRρ
, 5.51

where we introduced the reduce variable ρ =
√
f 2
x + f 2

y and J1 represents the first-
order Bessel function.

Experimentaly, only the intensity of the diffracted light can be observed. The intensity
is defined as the modulus squared of the field and we thus obtain,

I(r) = (
1

λz
)2A(2

J1(kRr/z)

kRr/z
)2. 5.52

This intensity pattern is known as the Airy pattern or Airy disk and is schown in
Fig. 5.3. The first minimum occurs at,

r0 = 0.61
λz

R
. 5.53

This points out a major difference between ray optics and wave optics. Indeed, an
image of an infinitely small point by an aberration-free system is of finite size. As
consequence, two points at a distance smaller than r0 will not be differentiable by
common means. This gives the diffraction limit of resolution for an optical system.
By approximating R/z ≈ NA we can write,

r0 = 0.61
λ

NA
. 5.54

We define the diffraction-limited resolution of an optical system as the distance r0.
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Figure 5.3.: Airy distribution. Left, 2D Airy distribution. Right, cut at y = 0 of the Airy
distribution. the dashed line correspond to the first minimum

Image formation and point-spread function

Thanks to the linearity of the wave equation, one can use the image of a point source to
calculate the light field distribution of a more complex object. Using the supperposition
principle we find,

P2(x2, y2) =

∫ ∫
dxdy h(x, y, x2, y2)P1(x, y), 5.55

where h(x, y, x2, y2) represents the image at (x2, y1) of a point source at (x, y) in the
object plane. Using the isoplanatism property in the object plane we can write,

h(x, y, x2, y2) = h(x2 − x, y2 − y) 5.56

and reduce Eq. (5.55) to,

P2(x2, y2) =

∫ ∫
dxdy h(x2 − x, y2 − y)P g

1 (x, y) = h(x, y) ∗ P g
1 (x, y), 5.57

with P g
1 (x, y) = P1(x, y)/∥M∥ the geometric image of the P1(x, y) and ∗ stands for

the convolution product. One can apply the same procedure to calculate the intensity
distribution,

I2(x2, y2) = ∥h(x, y)∥2 ∗ Ig1 (x, y). 5.58

The function ∥h(x, y)∥2 is referred to as the point spread function(PSF) and represents
the impulse response of an optical system. For an ideal system ∥h(x, y)∥2 is an Airy
function (Fig. 5.3).
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Aberrations and Strehl ratio

In practice no imaging system is perfect and aberrations occur. Aberrations can have
many origins, misalignments of optics or surface imperfection of the optical compo-
nents. They are characterized by the deformation of the wavefront from the reference
spherical wave [Mah98]. The most common ones are the five Seidel aberrations [Smi07]:
The tilt, the defocus, the coma, the astigmatism and spherical aberrations.

To quantify the aberrations, one method consists in reconstructing the wavefront as
a superposition of the Zernike polynomials [Mah13]. This method is very efficient to
get an expression of the aberrations as each polynomial can be associated with one
type of aberration. Nevertheless, accessing experimentally the wavefront is difficult.
It is either asking for many images of PSF at different distances to scan through the
focal point of the optical system [Öt19] [Mar17], or using a Shack-Hartmann wavefront
sensor like the WFS20-5C/M from thorlabs [Kle17]. In the work of this thesis, the
size of the beam going out of the objective has a diameter of 60mm and a standart
wavefront sensor could not be used, as it would only probe a very small area of the
beam. With the setup employed in the thesis, collecting many PSF at different distance
is also imposible.

Another method to quantify aberrations is to calculate the so-called intensity Strehl
ratio S. In presence of aberrations, the intensity maximum of the Airy peak is reduced
since the spot is bigger than the diffraction-limited one. S is then defined as the ratio
between the peak intensity between the PSF measured and the peak intensity of the
corresponding perfect PSF. This gives a value to S between 0 and 1, where S = 1
corresponds to an ideal system. According to the Marechal criterion [Goo05], we
considere that an optical system is diffraction-limited if S > 0.8.

5.2.2. Design considerations

As seen previously, the resolution of an imaging system depends on the NA and the
wavelength λ used. In our experiment, the imaging wavelength λ is 401 nm [Fri14a],
which corresponds to a strong transition and allow enough scattering events with
atoms. No transition at lower wavelength is available in the optical range for erbium
and therefore λ can’t be reduced to gain further resolution. One other solution to
improve the resolution is to increase the NA. Here we are ultimately limited by the
opening angle given by the size of the viewport, which is fixed for the existing vacuum
chamber. Due to the relatively large distance of the first possible position of the
objective to the object (the atoms themselve), the diameter of the objective has to be
large enough to capture the full angle available. Nevertheless, the bigger the objective
is, the bigger the aberrations and this necessitates a complex optical design.
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Figure 5.4.: Design of the objective with the software OpticsStudio. (a) Schematic of the
design from the company Special Optics.(b) Ray spot diagram for a wavelength of 401 nm
for different incidence angles. (c) Theoretical PSF, featuring a resolution of 532 nm
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We finally chose the design proposed by the compagny Special Optics, which offers
an objective with NA= 0.46, with an effective focal length (EFL) of 60.1 nm and
an aperture of 60mm. This corresponds to a resolution of Res = 532 nm. The
characteristics of the objective are shown in Fig. 5.4. The design produced includes
a compensation for the spherical aberrations introduced by the viewport. The spots
diagram in Fig. 5.4(b) shows the sensibility of the objective to angle of the incomming
beam.

Additionally, the design from Special Optics features an interchangeable front glass
plate, allowing to change the reflection coating of the objective according to the pur-
pose of the current project. Extra documents on the objective are presented in Ap-
pendix. B.

5.3. Testing the performances of the objective

5.3.1. Test target and Magnification

25.4× Magnification

Objective

USAF1951Iris

CCD

401nm

Mirror

L

Figure 5.5.: Test target imaging setup. A test target USAG 1952 is illuminated by a colli-
mated beam. The collimated light after the objective is focused by 1524mm FL Achromatic
lens to CCD camera.

Before setting up a new objective in an experiment, we have carried tests of the
performance. We experimentally determined the characteristics of the objective and
compared them to the specifications sold by the company Special Optics.

To get a first measurement on the resolution we try to image the smallest object
possible. For that, we use the standard test target USAF 1951 and try to resolve the
smallest feature possible. Images of groups 7,8 and 9 are given in Fig. 5.6(a,b). We can
resolve easily the bars up to group 8, separated by a distance of 1.1 µm. The group 9
presents a maximum distance of 0.98µm between the bars. At this scale, aberrations
arise and it is not possible to clearly differentiate the bars. This first test indicates
that the resolution of the objective is inferior to 1 µm but an exact value cannot be
extracted.
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Figure 5.6.: Image of a test target UASF1951. (a)(b) group 7-8-9. the red square indicates
the object used to determine the magnification (b) in green, the position of the square in
the image plane versus position in the object plane. In blue, linear fit.

Measure on the test target also permits to determine the magnification of an optical
setup. Indeed, we know the size of the camera pixel and the one of a bar and we
find M = Object

Image
. This gives a good approximation of M , but to have a more precise

value, one method consists in moving an object of a known distance and recording
how much the image has moved. We can directly extract M with the slope of a linear
fit. We applied this method with the square in Fig. 5.6(c) and obtained the result in
Fig. 5.6(b). We found a magnification of,

M = 24.4(3). 5.59

A single pixel of our CCD used has a size of 2.2 µm× 2.2 µm, which corresponds to a
region of ≈ 0.09 µm× 0.09 µm on the object.

5.3.2. Determination of the point spread function

Once we know the magnification of the experimental setup, we can try to image the
point spread function of the objective. This is not an easy task since we need to create
a point source smaller than 532 nm, the resolution of the objective.

The easiest method consists of shining light through a small pinhole [Kle17]. However,
for our objective we would need a pinhole with a diameter smaller than 500 nm and
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Single‐mode fiber

Objective

Mirror
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401nm

L
Figure 5.7.: Sketch of the testing setup. A 401 nm light beam is emitted from a single
mode fiber with a mode-field diameter of 3.6 µm and expands freely up to a collimation lens
(L). The collimated beam is focussed through the objective and reflected back by a mirror.
The light is focused by L and sent to a CCD camera recording the PSF

very advanced engineering technics not present at the University of Innsbruck are
needed. Other methods can be used like, imaging gold nanoparticles or light emitted
from a SNOM fiber [Kle17].

We modified the setup of Fig. 5.5 to the one presented Fig. 5.7. Here, the point source
is self-created by the objective, retro-reflected by a mirror and imaged by the objective.
More in detail, a 401 nm beam goes out a single-mode fiber with a mode-field-diameter
of 3.6 µm and expands for 1524mm. A 4-inch achromatic lens is used to create a 60mm
collimated beam. The beam diameter can be controlled by an iris. The beam is then,
focused by the objective onto a mirror and retro-reflected until a 50:50 plate beam
splitter, sending one part of the light to a CCD, where the PSF is imaged.

In this configuration, the objective is probed twice and every aberrations is multiplied
by two. Therefore, it is a good way to get an upper bound for the resolution but it
is very hard to reach the specifications delivered by Special Optics. The point spread
function obtained is presented in Fig. 5.8.

5.3.3. Analysis of the point spread function

Once we obtained the PSF, we developed a Matlab routine to extract the resolution
and the Strehl ratio. We start by recentering with a 2D gaussian the PSF obtained on
the CCD (Fig.5.8(a)). As seen with Eq. (5.52), the image of a point source presents
a circular symmetry and to reduce the local disturbance we integrate radially the 2D
PSF. This is done by summing over all the pixels of (Fig.5.8(a)) and, calculating the
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Figure 5.8.: Experimental point spread function of the objective. (a) 2D centred PSF. (b)
In grey, experimental integrated PSF. A fit ∝ sinc2 is represented in blue.

distance between the centre of the pixel and the centre of image, ρobj. We convert
the distance from the image plane to the object plane with the magnification M and
obtain the radial PSF presented in Fig. 5.8(b).

To determine the resolution of the objective, we extract the first zero crossing by fitting
a sinc2 function to the data in Fig. 5.8(b). The exact mathematical expression of the
fit is given by,

I0(
sin(Aρ)

Aρ
)2, 5.60

where I0 and A are the fitting parameters. The result of the fit is represented by the
blue line in Fig.5.8(b). The resolution is simply given by Res=1/A and we find,

Res = 0.85(2) µm

The error corresponds to the uncertainties on the fit parameter A. The resolution is
satisfying for future projects and will allow resolving density modulations of a domain
supersolid.

Before calculating the Strehl ratio, the data are transferred to bins with a width of
0.05 µm and shown in Fig. 5.9 in blue. This reduces the local fluctuations and the
statistical uncertainties on the maximum. To determine the Strehl ratio, one needs to
normalize the PSF by the area of the Airy disk (Eq. (5.52)). Mathematically, this is
equivalent to write,

Inorm = C × IPSF , 5.61

with,

C =

∫ ∫
A(x, y)dxdy∫ ∫
IPSFdxdy

. 5.62
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Figure 5.9.: Binarized and normalized PSF. In blue, binarized point spread function with
right axis. In green, normalized PSF, left axis and in red perfect PSF. The error bars
correspond to the standart deviation over the bins.

A(x, y) is the airy function with a radius set to the experimental resolution. The
denominator corresponds to the sum over all the pixels of the local intensity multiplied
by the pixel area. We find C = 5.9(3) × 10−3 and dispaly the normalized signal PSF
in green in Fig. 5.9.
It is now possible to directly read the Strehl ratio as the peak intensity of Inorm and
we find,

S = 0.88(4). 5.63

The error is evaluated by the propagation of uncertainties with the peak intensity,
the calculated resolution and the magnification. S is over 0.8, indicating that in
principle the imagining is diffraction limited. Nevertheless, we don’t reach the expected
resolution, meaning that the full aperture is not used. This can come from a slight
defocus of the reflecting mirror and therefore creating a point source bigger than
532 nm. Furthermore, if the aberations are coming from the tilt of the objective,
the spherical asymetry of the PSF is reduced during the spherical integration and by
consequence will have smaller weight in the calculation of S.

5.3.4. Aperture

As we saw, the resolution of an optical system is directly proportional to the NA,
which is proportionnal to the aperture size of the objective. To experimentaly study
how the PSF changes with the aperture size, we vary the aperture size with the
iris in Fig. 5.7 and analyse the PSF. The results obtained are presented in Fig. 5.10.
The theoretical resolution as the function of the iris diameter D can be expressed by
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Figure 5.10.: (a) Resolution with the aperture diameter. In green, the data points. The
blue line represents the theory calculation based on Eq. (5.54). The dark line represents
the aperture limitation due to the mirror size. The dashed line indicates the point where
we expect the theory to differe from the experiment due to aberrations. The errorbars are
smaller than the symbole size. (b) Strehl ratio S versus the aperture. In green, S calculated
with the resolution measured and in blue with the theoretical resolution. The dashed line
indicates the diffraction limit at S = 0.8.

inversing Eq. (5.54) and yields,

Res(R) =
0.61λ

sin(atan( R
EFL

))
. 5.64

For small apertures, the experimental data are in good agreement with the theory but
from, D ≈ 40mm start to deviate. As the maximum resolution obtained is 0.85 µm,
we expect the resolution to saturate from D = 38mm, corresponding to a resolution
of 0.85µm in Eq. (5.64). This is represented by the dashed line in Fig. 5.10(a). The
black line corresponds to the limitation of D due to the plastic mount and the size
of the objective. We also see that the Strehl ratio S decreases with the size of the
aperture. This is caused by an increased sensitivity to aberrations. We calculate
S for the measured resolution and theoretical resolution. From D = 38mm the two
calculations diverge drastically, indicating that the actual aperture is somehow limited
to 38mm. This can come from the testing setup where the alignment is crucial, and
a defocus of less than a µm will cause this deviation.

Another characteristic essential to know is the depth of focus (DOF) as a function
of the aperture. Indeed, during TOF, the atomic cloud expands in 3 dimensions and
one part will then be out of focus. To the price of losing resolution, by reducing the
aperture, it is possible to increase the DOF and image the cloud. The theoretical
calculations are presented in Fig. 5.11. Unfortunately, it is impossible with the current
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Figure 5.11.: Depth of focus (blue line) and resolution (red) as a function of the iris
diameter D.

testing setup to see the influence of a defocus in the resolution and the Strehl ratio.

5.4. Experimental implementation

The last challenge of this thesis was to implement the new objective in the ERBIUM
experiment. In the current setup, additionaly to the imaging beam, two laser beams
are travelling in the vertical directions, a 401 nm beam for Bragg spectroscopy and
1064 nm for the vertical dipole trap. The new objective would allow to focus a 1299 nm
laser beam and use a DMD directly in the image plane. In this section, we present the
new design to implement the objective and the plan for the distribution of the laser
beams.
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Dichroic mirror D1

Step motor
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XY‐translation stage

XY‐tilt stage

Objective holder

Objective

Figure 5.12.: Drawing of the holding tower of the objective realized with Solidworks 2020.
Design adapted from Maximilian Sohmen thesis [Soh21].
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5.4.1. Implementing the imaging setup

High-resolution imaging setups are very sensitive to misalignment on the micrometer
scale. The imaging beam pointing on the atoms must be perfectly centred and aligned
with the objective and the viewports if one wants to reach the 532 nm resolution
specified by the company Special Optics.

Our Er-Dy experiment developed a support for the objective which we modify to
obtain the one presented in Fig. 5.12. It features all the degrees of freedom needed to
align the objective with the atoms. The angle alignment of the imaging beam with the
objective is tuned via a self-made XY-tilt stage. An XY-translation stage KT150 from
Owis is used to centre the beam with the objective. In the current configuration, it
offers a travel range of 20mm. Finally, the height of the objective is controlled by a Z-
translation stage MT60 also from Owis, featuring a travel range of 50mm. To be able
to change the height of the objective in a controllable way, we have mounted on the
Z-translation stage a high-resolution linear actuator M-228 from Physical Instrument
with a 25mm range. We found that the M-228 presents a resolution of 1 µm with a
speed of 0.1mms−1 over a 10mm range (corresponding to the range between in-situ
to TOF ) but features a bigger error when going back to its inital in-situ position.
We, therefore suggest, when going from TOF to in-situ, to go further and come back
to the in-situ position. In that way, the error for both, TOF to in-situ and in-situ
to TOF is of 1 µm, which is low enough to be used in a reliable way. The objective
is screwed on a self-made holder out of fiber-enforced plastics PAS-PEEK-GF30 from
Faigle Gmbh with a thermal expansion coefficient of 22 µm/(Km). The support also
presents a holder for a 100mm diameter dichroic mirror which can be rotated by ±20◦.
A picture of the objective and the holder mounted in the experiment is presented in
Fig. 5.15. The breadboards are standard 3/4 of inch breadboards from thorlabs that
were cut by the University workshop.

5.4.2. Laser distribution for further implementations

This last section is devoted to the future plans for the ERBIUM experiment. As we
mentioned in Sec. 5.1, we want to use the objective for different purposes other than
imaging. Using lasers with different wavelengths is always a challenge as most of the
optical elements are made to work with a small range of wavelengths. Furthermore,
one needs elements to split the laser in different paths also called laser distribution.

The two applications we would like to use the objective for are, the creation of light
patterns with a DMD setup [Pet15] working with 401 nm and the use of a focused
1299 nm. For further projects, we also want to keep the possibility to use 631 nm and
532 nm in transmission through the objective.
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Figure 5.13.: Implementation of the objective in the ERBIUM experiment

To keep as much possible of flexibility, we designed optical paths allowing to use simul-
taneously light at 401 nm, 1299 nm, 532 nm and eventually 631 nm. The distribution
is presented in Fig. 5.14. We decided, to first split the wavelengths 532 nm and 631 nm
thanks to a 100mm dichroic mirror (D1 in Fig. 5.14); see Appendix. B. The light from
the imaging is planned to travel through a 50:50 75mm cube or plate BS and then,
be focused by L1 to a CCD camera Andor Luca. The 50:50 BS splits the light coming
from the DMD to the light of the imaging. Finally, a second dichroic mirror (D2)
overlaps the light at 1299 nm with the one at 401 nm.

A first draft of the spatial organisation was made and is presented in Fig. 5.15.
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Figure 5.14.: Schematic side view of the implementation of the objective in the experiment.
The grey arrows indicate the sens of propagation.
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DMD

1299nm 
optics

Figure 5.15.: breadboard configuration of the second floor of the ERBIUM experiment.
In blue, the space used for the two 401 nm light splitting. In red, the overlapping with the
1299 nm light. In yellow and green are additional spaces for optical implementations.

68



C
h
a
p
t
e
r

6
Conclusion

6.1. Summary

The first purpose of this thesis was to participate in the experimental study of dipolar
gas confined in a 1D optical lattice, creating an array of quasi-2D dipolar gases. We
employed Bloch oscillations to understand the role quantum fluctuations play in an
array of quasi-two-dimensional BEC. We developed a method to quantify the dephas-
ing rate. We observed long-live oscillations when the repulsive short range interaction
and quantum fluctuations balance the attractive long-range dipole-dipole interactions.
A minimum of dephasing occurs at 60 a0, corresponding to the minimization of the
variance of chemical potential over the lattice sites. By further decreasing the scatter-
ing length, we observed the disappearance of the interference pattern in momentum
space, a sign of transition to a localized state in a single lattice plane. To quantify
the transition region, we performed a Fourier transform to the atomic cloud and de-
fined the contrast as the ratio between the main and second order components. The
observations were compared with a discrete quasi-one-dimensional theoretical model
developed in our group. Based on the extended Gross-Pitaevskii theory, it shows a
great quantitative agreement.

The second purpose of this thesis was to design, characterize and implement an high-
resolution imaging setup, allowing to reach in-situ density distribution of dipolar BEC
of erbium directly in the trap. We imaged the point-spread function of an objective
designed and produced by Special Optics. We found a resolution of 0.85(2)µm, with
an intensity Strehl ratio of S = 0.88(4). This is sufficient for the purpose of the
experiment and would allow us to observe in-situ supersolid density modulation. To
align the objective with the atoms, we designed a support for the objective including
5 precision adjustable degrees of freedom, the XY-tilt, the XY-translation and Z-
translation. The Z-translation can be controlled by a stepper motor to change from
TOF to in-situ imaging reliably. Finally, we draw a first planing for the future laser
implementations of the ERBIUM experiment. This new imaging setup represents a
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major step for the actual experiment toward quantum simulation and offers many new
opportunities to observe exotic states of matter with dipolar erbium.

6.2. Further understanding of dipolar BEC in optical
lattices

Our study on Bloch oscillations opened the door to a deeper questioning. As already
emphasized in Ref. [Kum19], dipolar gases in optical lattices represent a unique op-
portunity to control and experimentally access the effects of quantum fluctuation. In
our experiment we probed BO for a lattice depth of 8 Erec. In order to understand
better the role played by LHY in distributing the chemical potential over the lattice
sites without suffering from atom loss, it would be interesting to find a way to shift
the minimum of dephasing to higher as.

We investigated only dipoles aligned along the elongated axes, with principaly mean-
field attractive interactions. Early results for B aligned along the gravity axis indicated
that the behaviour is different. In this configuration DDI, is repulsive and only few
Bloch cycles were observed and further studies are needed.

6.3. Next step for the implementation of the objective

The objective has been set up recently in the experiment, but to reach a sub-micron
resolution, alignment between the atoms, the viewport and the objective must be
perfect. So far, we aligned the imaging beam perpendicular to the viewport, giving
us a reference to align the objective. The next step will include the setting of the
imaging optical path and the camera Andor Luka. Once done, we will perform the
last fine adjustment of the objective by trying to resolve the density modulation of a
supersolid.
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A
Code analyse PSF

A.1. main.m

1

2 %% parameters
3 ROI cut=50;
4 p ixe l camera =2.2; %in microns
5 magn i f i c a t i on =24.4 ;
6 e r r o r magn i f i c a t i o n =0.4 ;
7 r e s c o e f f=p ixe l camera /magn i f i c a t i on ; %r e s c a l i n g c o e f f i c i e n t
8 e r r r e s c o e f f= p ixe l camera * e r r o r magn i f i c a t i o n /magn i f i c a t i on

ˆ2 ;
9 p ix a r ea=r e s c o e f f * r e s c o e f f ;

10 e r r p i x a r e a=r e s c o e f f *2* e r r r e s c o e f f ;
11

12 %% ana l y s i s
13 %load the p i c t u r e s
14 f i l ename=[ ’%%f i l ename%%’ , ’mm.bmp ’ ] ;
15

16 ps f=imread ( f i l ename ) ;
17

18

19 ROI=create ROI ( psf , ROI cut , 1) ;
20 %1D in t e g r a t i o n o f the p s f
21 [ rho , p s f i n t ]= PSF 1D(ROI , ROI cut , 1) ;
22 %ca l c u l a t i o n o f the r e s o l u t i o n
23 [ res , e r r r e s , I0 , e r r I 0 ]= r e s o l u t i o n ( rho , p s f i n t , r e s c o e f f ,

e r r r e s c o e f f , 1) ;
24 %ext r a c t i on o f the norma l i s a t i on c o e f f i c i e n t
25 [ C res , e r r C r e s ]=norma(ROI , res , e r r r e s , p ix area ,

e r r p i x a r e a ) ;
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26

27 %ca l c u l a t i o n o f s t r e h l r a t i o
28 s t r e h l= C res * I0 ;
29 e r r s t r e h l=s t r e h l ( inda ) * s q r t ( ( e r r C r e s /C res ) ˆ2+( e r r I 0 / I0 )

ˆ2) ;

A.2. create ROI.m

1 f unc t i on [ROI]= create ROI ( data , ROI cut , show p )
2 %% crea t e a ROI out o f a 2D ps f func t i on
3 % showp =1 to show a p lo t
4

5

6 %f ind the cent e r
7 [maxv ,maxpx]=max( data ) ;
8 [ maxvv ,maxpy]=max(maxv) ;
9 maxpx=maxpx(maxpy) ;

10

11 %Cut the ROI and cente r
12 ROI=double ( data (maxpx=ROI cut :maxpx+ROI cut ,maxpy=ROI cut :

maxpy+ROI cut ) ) ;
13 %remove the background
14 ROI=ROI=mean(mean( data ( 1 : 3 0 , 1 : 3 0 ) ) ) ;
15

16 i f show p==1
17 f i g u r e (10)
18 imagesc (ROI)
19

20 end

A.3. PSF 1D.m

1 f unc t i on [ rho , c f i t ] = PSF 1D(ROI , ROI cut , show p )
2

3 % return the c i r c u l a r y i n t e g r a t ed PSF
4 % ROI => 2D array
5 % Magn => magn i f i c a t i on c o e f f i c i e n t
6 % px s i z e o f the camera
7 % show p => show the p l o t s
8

9 % the ana l y s i s i s based on a c i r c u l a r i n t e g r a t i o n o f the PSF
and f i t t i n g
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10 % with a s i n c ˆ2
11

12

13 [ s1 , s2 ]= s i z e (ROI) ;
14 x f i t=ze ro s (1 , s1 * s2 ) ;
15 y f i t=ze ro s (1 , s1 * s2 ) ;
16 c f i t=ze ro s (1 , s1 * s2 ) ;
17 f o r ind1=1: s1
18 f o r ind2=1: s2
19 x f i t ( ( ind1=1)* s1+ind2 )==ROI cut+ind1=1;
20 y f i t ( ( ind1=1)* s1+ind2 )==ROI cut+ind2=1;
21 c f i t ( ( ind1=1)* s1+ind2 )=ROI( ind1 , ind2 ) ;
22 end
23 end
24

25

26 %f i t a gauss ian to get the cent e r p o s i t i o n
27 maxv=max( c f i t ) ;
28 myfitgau=f i t t y p e ( ’ I *exp(=2*(x=A) .ˆ2/Bˆ2) *exp(=2*( t=C) .ˆ2/Dˆ2) ’

, ’ indep ’ ,{ ’ x ’ , ’ t ’ } , ’ c o e f ’ ,{ ’A ’ , ’B ’ , ’C ’ , ’D ’ , ’ I ’ }) ;
29 [ mdl1 , go f1 ]= f i t ( [ x f i t ’ , y f i t ’ ] , c f i t ’ , myfitgau , ’ s t a r t ’

, [ 0 , 3 , 0 , 3 ,maxv ] ) ;
30

31 %rec en t e r the p s f
32 c en t e r x=mdl1 .A;
33 c en t e r y=mdl1 .C;
34

35 %c i r c u l a r numerica l i n t e g r a t i o n
36 rho=ze ro s (1 , l ength ( c f i t ) ) ;
37 f o r ind1=1: l ength ( c f i t )
38 rho ( ind1 )=sq r t ( ( x f i t ( ind1 )=c en t e r x ) ˆ2+( y f i t ( ind1 )=

c en t e r y ) ˆ2) ;
39 end
40

41

42 i f show p==1
43 f i g u r e (1 )
44 imagesc (ROI)
45

46 f i g u r e (2 )
47 hold on ;
48 p lo t ( rho , c f i t , ’ o ’ , ’ Markers ize ’ , 1 )
49 end
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A.4. resolution.m

1 f unc t i on [ res , e r r r e s , I0 , e r r I 0 ]= r e s o l u t i o n ( rho , psf 1D ,
r e s c o e f f , e r r r e s c o e f f , show p )

2 %ca l c u l a t e the r e s o l u t i o n with a s i n c ˆ2 f i t
3 % rho => X axis o f the p s f in p i x e l
4 % 1D ROI= 1D integrated psf , 1D array
5 % px s i z e => s i z e o f the p i x e l o f camera
6 % magn => magn i f i c a t i on o f the o p t i c a l system
7 % err magn => e r r o r on the magne f i cat ion
8 % show p=1 to see p l o t s
9

10

11 maxv=max( psf 1D ) ;
12 %ca l c u l a t e the r e s o l u t i o n with a s i n c ˆ2 f i t
13

14 myfit=f i t t y p e ( ’ I * s i n c (A*x ) ˆ2 ’ , ’ indep ’ ,{ ’ x ’ } , ’ c o e f ’ ,{ ’A ’ , ’ I ’ })
;

15 f i t p o l y=f i t t y p e ( ’A+(x=B)ˆ3+C*xˆ2 ’ , ’ indep ’ ,{ ’ x ’ } , ’ c o e f ’ ,{ ’A ’ ,
’B ’ , ’C ’ }) ;

16 f i t f u n c=@( I ,A, x ) I * s i n c (A*x ) . ˆ 2 ;
17 [ mdl , go f ]= f i t ( rho ’ , psf 1D ’ , myfit , ’ s t a r t ’ , [ 0 . 1 ,maxv ] ) ;
18 [ mdl poly , go f ]= f i t ( rho ’ , psf 1D ’ , f i t p o l y , ’ s t a r t ’ , [maxv

, 0 , 1 ] , ’ lower ’ , [ 0 ,0 , =1000 ] ) ;
19 r e s=1/mdl .A* r e s c o e f f ; %r e s o l t u i o n in um
20

21 %re s o l u t i o n =0.627;
22

23 %ca l c u l e r r o r on the r e s o l u t i o n c a l c u l a t i o n
24 alpha = 0 . 6 8 ;
25 c i = con f i n t (mdl , alpha ) ;
26 err A=( c i (2 )=c i (1 ) ) /2 ;
27 e r r I =( c i ( end )=c i ( end=1) ) /2 ;
28

29 %give the e r r o r on the r e s o l u t i o n
30 e r r r e s=r e s * s q r t ( ( err A /mdl .A) ˆ2+( e r r r e s c o e f f / r e s c o e f f ) ˆ2) ;
31 I0=mdl . I ;
32 e r r I 0=e r r I ;
33 i f show p==1
34 x p l o t=l i n s p a c e (0 ,30 ,1000) ;
35 f i g u r e (20) ;
36 hold on ;
37 p lo t ( rho* r e s c o e f f , psf 1D , ’ o ’ , ’ Markers ize ’ , 1 ) ;
38 p lo t ( x p l o t * r e s c o e f f , mdl ( x p l o t ) ) ;
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39 x l ab e l ( ’ d i s t anc e to cent e r (\mu m) ’ ) ;
40 y l ab e l ( ’ i n t e n s i t y ( a . u ) ’ ) ;
41 xlim ( [ 0 , 2 ] ) ;
42 end
43 %plo t ( x p l o t *0 . 1 , mdl poly ( x p l o t ) ) ;

A.5. norma.m

1 f unc t i on [ C 2D , err C 2D ]= norma( psf 2D , res , e r r r e s ,
p ix area , e r r p i x a r e a )

2 % renorma l i z e the wave func t i on
3 % return the r eno rma l i z a t i on c o e f f i c i e n t and the e r r o r

a s s o c i a t ed to i t
4

5 %psf 2D => 2D arrax o f the p s f
6 %re s => r e s o l u t i o n o f the ob j e c t i v e
7 %e r r r e s => e r r o r o f the r e s o l u t i o n
8 %pix a r ea equ iva l en t ob j e t o f the area o f one p i x e l
9 %e r r p i x a r e a e r r o r o f the p i x e l area

10

11 %% exper imenta l determinat ion o f the i n t e g r a l
12 i n t 2d=sum(sum( psf 2D ) ) * p ix a r ea ;
13 e r r i n t 2 d= sum(sum( psf 2D ) ) * e r r p i x a r e a ;
14

15

16 %% 2D pe r f e c t b e s s e l f unc t i on
17 X= [ ] ;Y= [ ] ;
18

19 x = =10 :0 . 2 : 10 ;
20 y = =10 :0 . 2 : 10 ;
21 %sc a l i n g o f x , y
22 r e s c a l=r e s /3 . 8317 ; %r e s c a l i n g f a c t o r
23 resca l max=( r e s+e r r r e s ) /3 . 8317 ; %r e s c a l i n g f a c t o r
24 X=meshgrid (x ) ;
25 Y=meshgrid (y ) ’ ;
26 Rho=sq r t (X.ˆ2+Y.ˆ2 ) ;
27 I0 = 1 ;
28 I = I0 *(2* b e s s e l j (1 ,Rho) . / (Rho) ) . ˆ 2 ;
29 I ( i snan ( I ) )=1;
30 f i g u r e (1 )
31 X=r e s c a l *X;
32 Y=r e s c a l *Y;
33 s u r f a c e (X,Y, I , ’ Edgecolor ’ , ’ none ’ )
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34

35 t h eo ry p i x a r e a =(0.2* r e s c a l ) ˆ2 ;
36 theory p ix area max =(0.2* resca l max ) ˆ2 ;
37

38 %in t e g r a l o f I
39 i n t 2D theory=sum(sum( I ) ) * t h eo ry p i x a r e a ;
40 int 2D theory max=sum(sum( I ) ) * theory p ix area max ; %upper

bound f o r the i n t e g r a t i o n o f the a i r y pattern .
41 e r r i n t 2D theo ry=int 2D theory max=i n t 2D theory ;
42

43

44 C 2D=int 2D theory / in t 2d ;
45 err C 2D=C 2D* s q r t ( ( e r r i n t 2D theo ry / int 2D theory ) ˆ2+(

e r r i n t 2 d / in t 2d ) ˆ2) ;
46 %y labe l ( ’ Normalized PSF Amplitude ’ )
47 %x labe l ( ’ Radial Coordinates ’ )
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Technical documents of
imaging setup

This chapter presents additionnal documents related to the new imaging setup.
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Figure B.1.: Technical drawing of the objective produced by SpecialOptics
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Figure B.2.: , Coating of the dichroic mirror D1 produced by OptoSigma
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[Blo29] F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern,
Zeitschrift für Physik 52, 555–600 (1929).

[Blo05] I. Bloch, Ultracold quantum gases in optical lattices , Nature Physics 1, 23–30
(2005).

[Blo12] I. Bloch, J. Dalibard, and S. Nascimbène, Quantum simulations with ultra-
cold quantum gases , Nature Physics 8, 267–276 (2012).

[Bra95] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of
Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions ,
Phys. Rev. Lett. 75, 1687–1690 (1995).

[Car05] I. Carusotto, L. Pitaevskii, S. Stringari, G. Modugno, and M. Inguscio, Sen-
sitive Measurement of Forces at the Micron Scale Using Bloch Oscillations
of Ultracold Atoms , Phys. Rev. Lett. 95, 093202 (2005).

[Chi10] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in
ultracold gases , Rev. Mod. Phys. 82, 1225–1286 (2010).

https://doi.org/10.1021/cr2003568
https://doi.org/10.1021/cr2003568
https://link.aps.org/doi/10.1103/PhysRevLett.76.4508
https://link.aps.org/doi/10.1103/PhysRevLett.76.4508
https://www.sciencedirect.com/science/article/pii/B9780120845903500077
https://www.sciencedirect.com/science/article/pii/B9780120845903500077
https://link.aps.org/doi/10.1103/PhysRevA.97.012509
https://link.aps.org/doi/10.1103/PhysRevA.97.012509
https://doi.org/10.1088/1572-9494/ab95fa
https://doi.org/10.1088/1572-9494/ab95fa
http://arxiv.org/abs/2203.11119
http://arxiv.org/abs/2203.11119
https://doi.org/10.1007/BF01339455
https://doi.org/10.1038/nphys138
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://link.aps.org/doi/10.1103/PhysRevLett.75.1687
https://link.aps.org/doi/10.1103/PhysRevLett.75.1687
https://link.aps.org/doi/10.1103/PhysRevLett.95.093202
https://link.aps.org/doi/10.1103/PhysRevLett.95.093202
https://link.aps.org/doi/10.1103/PhysRevLett.95.093202
https://link.aps.org/doi/10.1103/RevModPhys.82.1225
https://link.aps.org/doi/10.1103/RevModPhys.82.1225


BIBLIOGRAPHY 83

[Cho16] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, et al., Quantum-
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orienté dans la voie de la recherche.

Thanks to all the members of the ERBIUM, the ER-DY and T-REQS experiments
as well as the members of the theory group, including Russel, and Wyatt with whom
I share my office for the last months. Special thanks go to, Gabriele for introducing
me to the very rich and exact science of coffee, Alexander for sharing with me all its
technical expertise and Arfor for the time spent in the lab with a very good mood and
nice music. Thanks also to Daniel, Simon, Sarah and Théo to have shared time with
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angegebenen Quellen entnommen wurden, sind als solche kenntlich gemacht.

Die vorliegende Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht als
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