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Synopsis

Since the realization of the first Bose-Einstein condensate in 1995, the number of
quantum-gas experiments grew enormously, involving different atomic species ranging
from alkali metals, such as rubidium, to triel elements, with the new-come indium.
This huge interest is motivated by the high control that quantum gases offer in terms
of interatomic interactions, dimensionality of the system, and the possibility of adding
complexity in a controlled manner. For this reason, in the past decades, ultracold
atoms revealed to be ideal platforms for simulating many-body phenomena, linked to
various fields as condensed-matter physics, high-energy physics, and quantum optics.

Ultracold gases interact usually with a short-range and isotropic contact-type
interaction. The achievement of degenerate gases with highly-magnetic atoms, such
as chromium, erbium, dysprosium, and just recently thulium and europium, which
possess a permanent magnetic moment in the ground state, led to richer interactions,
showing a long-range and anisotropic nature. The addition of this new ingredient to
the quantum-gas tool box brought to the discovery of interesting many-body phases,
as quantum droplets, and supersolid states, showing both superfluid and crystalline
order.

The work presented in this thesis focuses on two main topics. The first part
reports on the investigation of the interspecies interactions between the two highly
magnetic lanthanides, erbium and dysprosium, with a focus on the role played by the
dipole-dipole interaction. It presents an alternative method to estimate the interspecies
scattering length from the in-trap clouds displacement, and it shows how tuning the
interspecies repulsion can lead to binary supersolid states.

The second part focuses on the creation of a dipolar supersolid state with dysprosium
atoms. It first gives insights on the role played by finite temperatures in the superfluid-
to-supersolid phase transition. It then presents the first realization of two-dimensional
supersolid states, first in a zig-zag pattern, and then in a hexagon pattern. The
realization of two-dimensional supersolidity opens the door to many research directions,



viii

such as the investigation of the excitation modes, quantized vortices, and persistent
currents.



Zusammenfassung

Seit der Realisierung des ersten Bose-Einstein-Kondensats im Jahr 1995 hat die Zahl der
Quantengasexperimente enorm zugenommen, wobei verschiedene Atomarten von Alka-
limetallen wie Rubidium bis zu Trielelementen mit dem neu hinzugekommenen Indium
einbezogen wurden. Dieses enorme Interesse wird durch die hohe Kontrolle motiviert,
die Quantengase in Bezug auf interatomare Wechselwirkungen, die Dimensionalität des
Systems und die Möglichkeit, Komplexität auf kontrollierte Weise hinzuzufügen, bieten.
Aus diesem Grund haben sich ultrakalte Atome in den vergangenen Jahrzehnten als
ideale Plattformen für die Simulation von Vielteilchenphänomenen erwiesen, die mit ver-
schiedenen Bereichen wie der Physik der kondensierten Materie, der Hochenergiephysik
und der Quantenoptik verknüpft sind.

Ultrakalte Gase interagieren normalerweise mit einer kurzreichweitigen und isotropen
Wechselwirkung, einer sogenannten Kontaktwechselwirkung. Das Erreichen entarteter
Gase mit hochmagnetischen Atomen wie Chrom, Erbium, Dysprosium und erst kür-
zlich Thulium und Europium, die im Grundzustand ein permanentes magnetisches
Moment besitzen, ermöglichte die Nutzung von Wechselwirkungen, die eine langreich-
weitige und anisotrope Natur zeigen. Die Aufnahme dieses neuen Inhaltsstoffs in die
Quantengas-Werkzeugkiste führte zur Entdeckung exotischer Vielteilchenphasen wie
Quantentröpfchen und suprasolide Zustände, die sowohl eine supraflüssige als auch
eine kristalline Ordnung zeigen.

Diese Dissertation konzentriert sich auf zwei Hauptthemen. Der erste Teil berichtet
über die Untersuchung der Interspezies-Wechselwirkungen zwischen den beiden hoch-
magnetischen Lanthanoiden Erbium und Dysprosium, wobei der Schwerpunkt auf der
Rolle der Dipol-Dipol-Wechselwirkung liegt. Wir beschreiben eine alternative Methode
zur Abschätzung der Interspezies-Streulänge aus der Verschiebung der Wolken inner-
halb der Falle und zeigen, wie die Abstimmung der Interspezies-Abstoßung zu binären
suprasoliden Zuständen führen kann.

Der zweite Teil konzentriert sich auf die Erzeugung eines dipolaren Suprasolids mit
Dysprosiumatomen. Zunächst wird diskutiert, welche Rolle endliche Temperaturen
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beim Phasenübergang von suprafluid zu suprasolid spielen. Danach präsentieren wir
die erste Realisierung von zweidimensionalen Suprasoliden, zuerst in einem Zick-Zack-
Muster und dann in einem Hexagon-Muster. Die Realisierung der zweidimensionalen
Supersolidität öffnet die Tür zu vielen Forschungsrichtungen, wie der Untersuchung
von Anregungsmoden, quantisierten Wirbeln und Dauerströmen.
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Introduction

Since the first experimental realization of a Bose-Einstein condensate (BEC) [5, 35, 48]
and a degenerate Fermi gas (dFg) [53], ultracold gases have demonstrated to be ideal
platforms to study many-body quantum phenomena. Prominent examples are the
observation of long-range phase coherence [28] and quantized vortices [1, 121, 124],
common to superconductivity and superfluidity. Furthermore, ultracold gases feature
several attractive properties, as the tunability of the atomic interactions via Feshbach
resonances [39], and the possibility of changing the dimensionality of the system and
realizing ideal strong periodic potentials, through the use of far off-resonant laser
light. These features led to the investigation of strongly correlated regimes, as the
superfluid-to-Mott insulator transition [70] and Bardeen–Cooper–Schrieffer (BCS)
pairing [13, 33, 164]. It is clear now that quantum gases represent a powerful tool
for simulating and understanding complex condensed-matter problems, as well as
engineering novel quantum phases that have not been observed yet.

In ultracold gases, the form of the atomic interactions strongly affects the quantum
phases and the system’s dynamics. For this reason, in the last 20 years, a lot of
experimental effort was spent in creating ultracold gases with richer interactions, e.g.
long-range and anisotropic dipole-dipole interactions. The addition of this ingredient to
ultracold systems led to interesting predictions of many-body phases in optical lattices,
such as charged-density wave and supersolid phases, where superfluidity and crystalline
order coexist [11]. Another way of enriching the atomic interactions is through atomic
mixtures. In fact, by tuning the interspecies interactions, miscible and immiscible
quantum phases have been experimentally observed in alkali mixtures made of two
spin states [178], two different isotopes of the same species [142], or two species [126].
Theoretical works predict that dipole-dipole interactions add interesting features to
miscible and immiscible phases [69, 101, 195]. Moreover, exotic supersolid phases are
predicted to appear due to the competition between intra- and interspecies interactions
both in optical lattices [36, 186] and in the bulk [26, 169].
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Long-range interaction can be achieved in different ways. In ultracold-gas experi-
ments, it can arise from strong magnetic or electric dipole moments, as in magnetic
lanthanides, and hetero-nuclear molecules and Rydberg atoms [106], respectively. More-
over, by placing the atomic cloud in an optical resonator, long-range interactions can be
achieved by coupling the atoms to a single or multiple modes of the cavity [14, 123, 131].
Finally, long-range interactions can be engineered via atom-light interactions, see e.g.
Refs. [68, 140]. Each of these platforms is characterized by a different strength of the
long-range interactions, which makes them unique for investigating various phenomena.
For instance, in magnetic lanthanides, such as erbium and dysprosium, short-range
and long-range interactions have similar strength and can compete with each other
giving rise to exotic quantum phases, as discussed in this thesis.

In 2003, theoretical works [139, 168] predicted that this competition leads to the
appearance of a roton-maxon excitation spectrum, a precursor of crystallization, which
is a fundamental ingredient for supersolidity. Experimentally, the investigation of
quantum gases possessing a large permanent magnetic moment started in 2005 with
the realization of a Bose-Einstein condensate of chromium atoms [71]. Chromium was
followed, in 2011 and 2012, by dysprosium [119] and erbium [3], respectively. The list
of Bose-condensed magnetic lanthanides continues to grow, and more recently includes
thulium [49] as well as europium [129]. Breakthrough experiments, as the observation
of the roton mode in erbium [44] and the realization of a density-modulated state with
dysprosium [91], in a regime in which the mean-field physics predicts a collapse, led to
the discovery of the supersolid state in 2019 [32, 42, 182].

The Er-Dy experiment in Innsbruck, which is the focus of this work, links together
the world of hetero-nuclear mixtures with the one of magnetic lanthanides with long-
range interactions. This enables to perform experiments with erbium, or dysprosium,
but also combining the two. Since the first realization of double BECs of erbium and
dysprosium, and the creation of a single-component long-lived supersolid state with
dysprosium, the experiment has improved the knowledge of dipolar gases, including
the recent works presented in this thesis, such as the first experimental realization of
two-dimensional supersolidity.

During my PhD in the Er-Dy experiment, I contributed to two main research
topics: the investigation of erbium-dysprosium quantum mixtures, and the study of
supersolidity in dipolar quantum gases of dysprosium atoms. This resulted in a total
of 12 publications, among which 7 constitute the core of this thesis.
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Erbium-dysprosium quantum mixtures. When I started my PhD in January
2018, the team was working on the realization of the first dipolar quantum mixtures
of erbium and dysprosium. This study revealed a first hint of repulsive interaction
between the species, from a shift and a deformation of the atomic clouds. This brought
to one of the main results of this thesis. In fact, in collaboration with M. Modugno
from the University of the Basque Country in Bilbao (Spain), we investigated the
interspecies interactions in an erbium-dysprosium quantum mixture, with a focus on
the role played by the dipole-dipole interactions. Furthermore, by probing the in-trap
clouds displacement as a function of the magnetic-field orientation, and by comparing
our experimental results to ground-state calculations, we were able to estimate the
interspecies scattering length. This study is reported in the publication below:

• Interspecies interactions in an ultracold dipolar mixture.
C. Politi, A. Trautmann, P. Ilzhöfer, G. Durastante, M. J. Mark, M. Modugno,
and F. Ferlaino,
Phys. Rev. A, 105, 023304 (2022)

Supersolidity with dysprosium atoms. Another topic on which I contributed
during my PhD is the realization and the investigation of supersolidity in dipolar
quantum gases of dysprosium atoms. This subject can be divided in two more branches:
one-dimensional supersolid states, where the system consists of a linear chain of
quantum droplets linked to each other via a superfluid background, and two-dimensional
supersolid states, where the supersolid properties are extended along two directions.

Regarding the first research branch, we investigated the formation of a supersolid
state via evaporative cooling from a thermal cloud, from the birth until its disappearance.
Moreover, in collaboration with the group of T. Pohl at Aarhus University (Denmark),
we proved the important role played by thermal fluctuations in the formation of
supersolid states. These works are presented in the following publications:

• Birth, life, and death of a dipolar supersolid.
M. Sohmen, C. Politi, L. Klaus, L. Chomaz, M. J. Mark, M. A. Norcia, and F.
Ferlaino,
Phys. Rev. Lett.,126, 233401 (2021)

• Heating a quantum dipolar fluid into a solid.
J. Sanchez-Baena, C. Politi, F. Maucher, F. Ferlaino, and T. Pohl,
arXiv:2209.00335 (2022)
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In the second research branch, we were able to extend, for the first time, the
supersolid properties from one to two dimensions. In particular, we performed a
structural phase transition from a linear supersolid state to, first, a supersolid made
of quantum droplets arranged in a zig-zag pattern, and then in an isotropic hexagon
configuration. The realization of such supersolid states opened many research directions.
For instance, we investigated the excitations of two-dimensional supersolids, including
angular oscillations and their role as a potential probe of the superfluid fraction in
dipolar supersolids. The publications related to this research topic are listed below:

• Two-dimensional supersolidity in a dipolar quantum gas.
M. A. Norcia*, C. Politi*, L. Klaus, E. Poli, M. Sohmen, M. J. Mark, R. Bisset,
L. Santos, and F. Ferlaino,
Nature 596, 357 (2021)
*These authors contributed equally.

• Maintaining supersolidity in one and two dimensions.
E. Poli, T. Bland, C. Politi, L. Klaus, M. A. Norcia, F. Ferlaino, R. N. Bisset,
and L. Santos.,
Phys. Rev. A, 104, 063307 (2021)

• Two-dimensional supersolid formation in dipolar condensates.
T. Bland, E. Poli, C. Politi, L. Klaus, M. A. Norcia, F. Ferlaino, L. Santos, and
R. N. Bisset,
Phys. Rev. Lett., 128, 195302 (2022)

• Can angular oscillations probe superfluidity in dipolar supersolids?
M. A. Norcia, E. Poli, C. Politi, L. Klaus, T. Bland, M. J. Mark, L. Santos, R.
N. Bisset, and F. Ferlaino,
Phys. Rev. Lett., 129, 040403 (2022)

Thesis overview

This thesis work consists of four chapters, which are briefly introduced below.

Chapter 1 gives an overview on supersolidity, mentioning the experimental efforts
in solid helium and the results achieved with ultracold gases. It then introduces the
main ingredients necessary to realize supersolidity in ultracold dipolar gases. Finally,
it describes the extended Gross-Pitaevskii equation with the beyond mean-field term,
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which constitutes the main theoretical tool to represent various quantum phases of a
dipolar gas.

Chapter 2 describes the basic properties of erbium and dysprosium atoms, as the
electronic configuration and the optical transitions used to cool, manipulate and image
the atoms. It then gives a brief overview of the experimental apparatus with a focus on
the optical-dipole-trap setup used to confine the atomic cloud and produce supersolid
states.

Chapter 3 focuses on the first main result of this thesis: the study of the interspecies
interactions in an erbium-dysprosium mixture. First, it gives an overview on hetero-
nuclear mixture experiments and describes the experimental tools commonly used to
determine the interspecies scattering lengths. It then introduces the method developed
in our experiment to estimate the interspecies scattering length from the in-trap
displacement between the clouds. Finally, it gives an outlook on the interesting
quantum phases achievable by tuning the erbium-dysprosium interactions.

Chapter 4 is dedicated to the investigation of supersolidity in a cloud of dysprosium
atoms. This chapter first presents the technique developed in our experiment to create
supersolid states by directly evaporating from a thermal cloud and describes the tools
we use to probe such a state. It then focuses on the role played by finite temperatures.
Finally, it describes how to create two-dimensional supersolid states and it gives an
overview of the many research directions that this state offers, with the investigation
of excitation modes and quantized vortices.

Additional publications

Beside the above listed publications, in the past five years, I also contributed to
other publications which are not discussed in this thesis work. These publications are
presented in the Appendix A and listed below:

• Dipolar Quantum Mixtures of Erbium and Dysprosium Atoms.
A. Trautmann*, P. Ilzhöfer*, G. Durastante, C. Politi, M. Sohmen, M. J. Mark,
and F. Ferlaino,
Phys. Rev. Lett., 121, 213601 (2018)
*These authors contributed equally.
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• Long-lived and transient supersolid behaviors in dipolar quantum gases.
L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C. Politi, G. Duras-
tante, R. M. W. van Bijnen, A. Patscheider, M. Sohmen, M. J. Mark, and F.
Ferlaino,
Phys. Rev. X, 9, 021012 (2019)

• Feshbach resonances in an erbium-dysprosium dipolar mixture.
G. Durastante, C. Politi, M. Sohmen, P. Ilzhöfer, M. J. Mark, M. A. Norcia, and
F. Ferlaino,
Phys. Rev. A, 102, 033330 (2020)

• Phase coherence in out-of-equilibrium supersolid states of ultracold dipolar atoms.
P. Ilzhöfer*, M. Sohmen*, G. Durastante, C. Politi, A. Trautmann, G. Natale, G.
Morpurgo, T. Giamarchi, L. Chomaz, M. J. Mark, and F. Ferlaino,
Nature Physics 17, 356-361 (2021)
*These authors contributed equally.

• Observation of vortices and vortex stripes in a dipolar Bose-Einstein condensate.
L. Klaus*, T. Bland*, E. Poli, C. Politi, G. Lamporesi, E. Casotti, R. N. Bisset,
M. J. Mark, and F. Ferlaino,
Nature Physics (2022)
*These authors contributed equally.



Chapter 1

Supersolidity in dipolar quantum
gases

Supersolidity is a counterintuitive state of matter, combining both density modulation
and superfluid properties. Initially predicted in the late ’50s by E. P. Gross for a system
of interacting bosons [73], it was intensively searched in consensed-matter systems,
with solid helium as the prime candidate. However, the limited control of interactions
and imperfections in solid-state systems have pushed the theoretical investigations
towards ultracold atoms. It was then about a decade ago that the supersolid physics
became a topic of growing interest for the ultracold-gas community, triggered by the
high degree of control over many-body systems, e.g. over the interatomic interactions,
geometry, and dimensionality. In 2010, and later in 2017, two experimental groups
reported the observation of supersolid properties using two different settings: BECs
of rubidium atoms with cavity-mediated interactions [14, 112], and spin mixtures
of sodium atoms coupled via a two-photon Raman transition [114]. More recently,
experiments with dipolar gases of erbium and dysprosium, including the ones in our
group, demonstrated the existence of a supersolid state intrinsically arising from the
competition between the contact interactions and the long-range anisotropic dipole-
dipole interactions (DDI) [32, 42, 182]. This chapter gives a brief historical overview
of supersolidity and introduces the key ingredients to achieve simultaneous density
modulation and global phase coherence in dipolar gases. Finally, the last section recalls
the Gross-Pitaevskii equation and the relevant energy terms necessary to describe an
ultracold gas of dipolar atoms.
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1.1 Brief historical overview

Supersolidity was for the first time predicted in 1957 by Gross [72, 73]. In his works,
Gross considered a system of bosonic particles in a box, interacting via a two-body
potential, and demonstrated that, together with the standard uniform solution, for
strong enough attractive interactions, a ground state showing periodic density mod-
ulation exists. In these seminal papers, Gross investigated the excitations of such a
system and showed that at long wavelengths they have a phonon character, while
at short wavelengths they have a band character. These works unify for the first
time the theory of superfluidity and solids. Such a prediction have been object of
theoretical controversies with notable works by Penrose and Onsager [146], who pointed
out that localization and superfluidity are competing orders. However, over the years,
the existence of supersolidity as a possible quantum state gathered momentum, with
several theoretical works on this topic [6, 38, 111, 199]. Among them, Leggett suggested
an experimental measurement to determine the presence of superfluidity in solid He,
through the detection of a reduction of the moment of inertia with respect to the
classical value, below the critical temperature for superfluidity [111].

Experimental efforts in helium. Helium has always been considered a prime
candidate for observing supersolidity. This arises from its special quantum properties
with respect to other solids. In fact, its light mass and weak interatomic potential leads
to an exceptional high zero-point energy with respect to the depth of the molecular
potential wells for helium atoms, leading to an exchange of atoms via tunneling, which
makes the Bose (4He) or Fermi (3He) statistics relevant even in the solid phase [16]. As
known, helium has two liquid phases, with a superfluid phase at temperatures below
the λ transition at about 2K. A fundamental property arising from the large zero-point
energy and that distinguishes liquid helium from other liquids, is the possibility of
reaching the solid phase only by applying a pressure greater than about 2MPa.

Following Leggett’s suggestion to determine the superfluid fraction, several exper-
iments used a torsional oscillator to investigate the properties of solid helium. The
torsional oscillator consists of a cell filled with He connected to a base via a torsional
rod. The resonant frequency of this oscillator can be directly connected to the moment
of inertia I through the relation fres = (1/2π)

√
K/I, where K is the torsional stiffness.

At constant K, a reduction of the moment of inertia can be directly connected to an
increase of fres, suggesting a transition to a supersolid phase, with the superfluid part
decoupling from the rest of the oscillator [15].
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In 2004, Kim and Chan performed a measurement of the resonant frequency and
observed an increase when lowering the temperature below 200mK [95, 96]. They
attributed this behaviour to a possible transition to a supersolid state. Several
experimental works tried to replicate Kim and Chan’s observation, with most of them
showing qualitative agreement. However, in 2007, Day and Beamish reported on the
experimental determination of the shear modulus of solid helium as a function of the
temperature [50]. The authors measured an increase of stiffness when lowering the
temperature below a critical value, which was consistent with the critical temperature
to observe the increase of the resonant frequency in the torsional-oscillator experiment.
This behaviour was confirmed by a later work [82] and it is attributed to the motion
of crystal defects, which changes with temperature.

The temperature dependence of the shear modulus started to pose doubts on the
observation of supersolidity claimed by Kim and Chan, and in 2012 this claim was
disproved, see Ref. [94]. It is now clear that the increase in the resonant frequency
is related to a change in the shear modulus µshear, and therefore a change in the
stiffness K, rather than to a variation in the superfluid fraction. This was confirmed
in 2016, when a simultaneous measurement of the torsional oscillation frequency and
the shear modulus showed that the two quantities exhibited identical dependences on
temperature, driving frequency, and 3He impurities. A different behaviour with the
driving amplitude was observed, but this was confirmed to be induced by a change in
the elastic properties of solid 4He [172].

Ultracold quantum gases. The fast development of new techniques for controlling
and detecting ultracold atoms, makes these systems an ideal platform for investigating
many-body phenomena and overcome the issues related to imperfections and complexity
of condensed matter systems. For these reasons, in the quest for supersolidity, a lot
of theoretical effort moved in the direction of ultracold atoms. In 2010 and in 2017,
states with supersolid properties were observed in experiments with Bose-Einstein
condensates (BECs) coupled to light [14, 112, 114]. In particular, two different methods
were used. In one experiment, in 2010, rubidium atoms were coupled to the light field
of an optical cavity and a phase transition to a modulated state was observed [14].
Some years later, the supersolid properties were confirmed in similar settings [112].
In a second experiment, in 2017, the supersolid properties were achieved by inducing
spin-orbit coupling in an ultracold spin mixture of sodium atoms [114].

In the meantime, ultracold systems with dipolar interaction started to draw great
attention in the community, because of the momentum dependence of the interactions.
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Theoretical works predicted a supersolid phase for ultracold systems with a soft-core
potential, achievable in the experiment via Rydberg excitation [46, 83, 203]. This idea
followed the prediction by Andreev and Lifshitz [6], and Chester [38] of a solid phase
where particles can flow without friction due to the presence of zero-point defects.
A system interacts via a soft-core potential if the interatomic potential assumes a
constant value Vsoft > 0 for distances r smaller than the particle diameter and zero
otherwise. This means that, as the density increases, it is more energetically favourable
for the system to cluster some particles together, leaving empty cells. In a lattice, this
translates in the possibility of tunnelling between different lattice sites and defects
delocalization, favouring superfluid motion inside the crystal [47].

Other promising candidates for supersolidity were polar molecules and ultracold
gases with magnetic dipole-dipole interactions [120]. An important turning point in the
quest of supersolidity in the ultracold realm was the observation of the roton mode and
its softening with erbium atoms in experiments in Innsbruck [45]. Later on, the same
experiment demonstrated the existence of a roton-maxon excitation spectrum [150].
More breakthrough experiments with dysprosium experimentally proved the transition
to a density modulated state in a parameter regime where the mean-field theory predicts
a collapse [91]. However, the proof of global phase coherence had to wait until 2019,
when supersolidity in dipolar gases was simultaneously proved in three experiments,
including ours, by tuning the interactions [32, 42, 182]. Moreover, in our experiment,
we were able to prove direct evaporative cooling into a supersolid state and achieve
lifetime on the order of seconds [42, 177].

1.2 Supersolidity in dipolar gases: main ingredients

Supersolidity is a phase of matter whose properties challenge our imagination due
to the antithetical behaviours of solids and superfluids. There are different ways to
address this challenge. One can consider a solid and ask the question "Can a solid be
superfluid?", such as for example the quest of supersolidity in solid He. For ultracold
dipolar gases, which are superfluids, the question is reversed and becomes "Can a
superfluid be solid?". The following section answers this question and focuses on
the main ingredients necessary to achieve a supersolid state with ultracold dipolar
gases, namely a source for the development of density modulation and a stabilization
mechanism.



1.2 Supersolidity in dipolar gases: main ingredients 11

1.2.1 Crystallization mechanism

The knowledge of the excitation spectrum is crucial to understand whether an external
perturbation with energy ϵ and momentum p can create an excitation in the system.
One of the most important theoretical predictions in the quest for supersolidity, is
the emergence of a minimum in the excitation spectrum at large momenta, which is
considered a precursor for crystallization [97, 157]. In superfluid He, the existence
of this minimum was originally predicted by Landau [108], it relates to its nature of
strongly correlated liquid, and it was thought to be linked to a local vorticity. In
Ref [138], Nozières addresses the roton in a different way, as a soft mode, and states:
“a superfluid close to a charged density-wave instability has a dip in its excitation
spectrum near the incipient Bragg spot.”.

This minimum is usually not present in ultracold bosonic gases, whose isotropic
and short-range interactions1 are generally weak. In these systems, by following the
Bogoliubov approach, the excited states can be described in terms of non-interacting
quasi-particles of energy ϵ(p), which follows the Bogoliubov dispersion relation. For
small momenta p, the dispersion has a linear phonon-like behaviour (∝ p), while,
for larger momenta, it follows a free-particle behaviour (∝ p2). The transition point
between the two regimes is given by the healing length ξ =

√
h̄2/2mgn [153].

In 2003, two important theoretical proposals appeared in the ultracold-gas com-
munity. In Ref. [139], O’Dell et al. predicted the formation of a roton minimum at
finite momenta in the excitation spectrum, for a BEC with long-range interactions
induced by illuminating the atomic cloud with far off-resonant laser light. The position
of the roton minimum and the roton energy gap are tunable by changing the radial
width of the BEC, and the intensity and the wavelength of the laser light. In Ref. [168],
Santos et al. predicted that for an ultracold dipolar gas, when the contribution of the
long-range and anisotropic dipolar interaction is dominant over the contact interaction,
the spectrum of excitations develops a roton minimum at finite momenta krot with an
energy gap ∆rot. In this work, the authors considered an infinite pancake trap with
the dipoles aligned along the tight confinement.

This behaviour relates to the momentum dependence of the DDI, which in real
space has the following form:

Udd(r) = 4π h̄2 add
m

[
1−3(r̂ · µ̂m)2

]
, (1.1)

1We refere to those interactions as contact interactions.
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where m is the atomic mass, add = µ0µ2
mm/12πh̄2 is the dipolar length2, and µm is the

magnetic dipole moment (see Fig. 1.1a). For atoms confined in traps, if the dipoles
are aligned along the tight direction of the trap, the total mean-field interaction has
a negative contribution at large momenta, causing the dispersion relation to soften.
Figure 1.1b displays the effective 1D mean-field interaction Ũ , from Ref. [141], which
includes contact interactions and DDI and it is obtained from a variational theory; see
Refs [23, 24]. The effective interaction Ũ is shown as a function of the momentum k,
for 164Dy atoms and for two values of the scattering length, as = (115,140) a0. For
as > add, Ũ becomes negative for k ≳ 1/lz. The appearance of a roton minimum at
large momenta can be also understood by looking at the excitations. Figure 1.1c
shows the case of an infinite cigar-shaped harmonic trap with the dipoles oriented
along the direction othogonal to the tight confinement, of size lz. For small momenta
k << 1/lz, and therefore long wavelengths, the excitations have a two-dimensional
character and the dipoles, which sit side-by-side, mainly repel each other. Whereas,
for large momenta k >> 1/lz, and therefore short wavelengths, the excitations have
a three-dimensional character and the dipoles mainly sit head-to-tail attracting each
other and reducing the interparticle interaction.

The energy gap ∆rot depends on the density and on the interactions. For example,
by reducing the scattering length as via Feshbach resonaces, it is possible to decrease
∆rot until, when ∆rot becomes imaginary, in the mean-field picture, all the population
is transferred in ±krot. At this point, it is energetically free for the system to develop
a density modulation with periodicity ∼ 2π/krot. Experimentally, the roton mode
was first observed in erbium via a softening of the excitation spectrum [45] and few
years later the same experiment measured the full spectrum of excitations via Bragg
spectroscopy and observed the appearance of a roton minimum when increasing the
dipolar strength [150]. More recent experiments with Dy have inferred the spectrum
of excitations by looking at the static structure factor determined from insitu density
fluctuations in a 1D cigar-shaped trap [85] and later in a oblate trap [170]. The
existence of a roton minimum at large momenta lays the basis for the first ingredient
necessary for a supersolid state: a crystallization mechanism.

1.2.2 Stabilization mechanism

In a dipolar gas, when reducing the strength of the repulsive contact interaction as
via Feshbach resonances, below a certain threshold, the mean-field theory predicts a

2add = 130 a0 for 164Dy.
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Figure 1.1 (a) DDI at fixed distance r as a function of the angle θ. (b) Effective
mean-field interactions as a function of the momentum k, for 164Dy atoms, where
add = 130 a0, and for two values of the scattering length: as = 140 a0 (black), and
as = 115 a0 (orange). For as = 115 a0, as < add and the effective interaction becomes
negative at momenta approximately larger than 1/lz (grey dashed line). Parameters
and analytic formula taken from Ref. [141]. (c) Excitation spectrum for a dipolar BEC
in an infinite cigar-shaped trap. By decreasing the scattering length the spectrum
develops a roton minimum at a finite momentum krot. This can be understood by
looking at the excitations, where a change of the DDI from mainly repulsive at small
momenta to mainly attractive at large momenta happens. Figure adapted from [45].

collapse. This is due to the attractive contribution of the DDI. First studies of the
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dipolar collapse were performed with chromium [107, 127]. Here, the collapse showed
a pattern given by the d-wave anisotropy of the DDI. However, precursor experiments
with Dy showed that the system, instead of collapsing, splits into multiple peaks,
which are known as quantum droplets [91], leading to a density modulated state. The
behaviour of these quantum droplets is reminiscent of ordinary liquid droplets. For
high enough atom numbers, they show a self-bound nature and the system stays bound
even without any trapping confinement [40, 171].

This observation triggered a lot of theoretical effort in understanding the origin of
the stabilization mechanism, with a three-body conservative repulsion3 [21, 198] and
quantum fluctuations as possible candidates. The first experimental work aimed at
elucidating the stabilization mechanism was performed with Dy and pointed at the
quantum fluctuations [61]. Few months later, experiments with Er confirmed that the
transition to a droplet state was driven by the quantum fluctuations. Furthermore,
thanks to the unique control and knowledge of the scattering length, the erbium
experiments revealed the role of quantum fluctuations on the system’s properties, such
as e.g. atom losses, expansion dynamics, and collective modes [41]. These experimental
observations were promptly confirmed by theoretical works [22, 189, 190]. The beyond
mean-field effects have not been seen in chromium due to the weak dipolar length
(15 a0). In fact, in chromium, the losses due to three-body recombinations, overcome
the beyond mean-field effects, which can be neglected [43].

The effect of quantum fluctuations can be well described by the first-order correction
to the mean-field energy, namely the LHY term. A more detailed description of this
term will be given in the next section (Sec. 1.3). When the repulsive contact interactions
and the attractive dipole-dipole interactions almost balance each other, the beyond
mean-field term, which is positive and scales with a higher power of the density
with respect to the mean-field energy, becomes relevant preventing the system from
collapsing. The quantum fluctuations constitute the second ingredient necessary for a
supersolid state: a stabilization mechanism.

1.3 Many-body interactions

In standard conditions in which the overall interactions are repulsive, ultracold dipolar
gases are generally well pictured by mean-field theory, where the field operator Ψ̂ =

3Earlier on, Ref. [120] proposed three-body interactions as stabilization mechanism for a supersolid
states in two-dimensional dipolar bosons.
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ψ(r, t) + δψ can be safely replaced with its mean value ψ(r, t). This section briefly
recalls the basic steps necessary to derive the Gross-Pitaevskii equation (GPE) [153].

The time evolution of the field operator Ψ̂ follows the Heisenberg equation:

i h̄
∂Ψ̂(r, t)
∂t

=
[
Ψ̂(r, t), Ĥ

]
=
[
− h̄2∇2

2 m +V (r)

+
∫

dr Ψ̂†(r, t)U(r− r′)Ψ̂(r, t)
]
Ψ̂(r, t),

(1.2)

where the Hamiltonian operator Ĥ includes the one-particle operators describing
kinetic and trapping potential, and the two-particle operator describing the two-body
interaction.

Under the assumption of zero temperature and that most of the atoms occupy
the ground state of the system, the effect of quantum fluctuations, as the quantum
depletion or a shift of the ground state energy, can be usually neglected. This means
ignoring the term δψ. Furthermore, the real interatomic potential can be replaced by a
soft pseudopotential, which gives the same scattering length as as the exact one. The
system’s behaviour can be then described through the GPE:

i h̄
∂ψ(r, t)
∂t

=
[
− h̄2∇2

2 m +V (r)+
∫

dr′U(r− r′)n(r′)
]
ψ(r, t), (1.3)

with n(r′) = |ψ(r′, t)|2. Equation 1.3 includes the kinetic term, the trapping potential
V and the mean-field interaction U . For what concern the phenomena investigated in
this thesis, the trapping term V is described by a harmonic potential with trapping
frequencies (ωx,ωy,ωz):

V = 1
2m

∑
xi=x,y,z

ω2
xi
x2

i . (1.4)

The mean-field interaction term U includes the contact interaction, characterized by
the s-wave scattering length as, and the long-range dipole-dipole interaction, as follows:

U(r) = g

(
δ(r)+ 3ϵdd

4π
1−3cos2 θ

|r|3

)
, (1.5)

where g = 4π h̄2as/m is the coupling constant and ϵdd = add/as is the relative
dipolar strength. The angle θ is the angle between the dipoles orientation and the
interparticle separation vector r.
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The beyond-mean field term δψ can become relevant when energy terms with
opposite sign compete, enahancing the effect of quantum fluctuations in the system.
The important role of quantum fluctuations in stabilizing the system against the
collapse was originally proposed by Petrov for Bose-Bose mixtures [149], where beyond
mean-field effects can be enhanced by tuning the competition between intra- and inter-
species interactions close to the mean-field instability condition4. For dipolar gases,
when as is below a critical value, the repulsive contact interaction can not overcome
the attractive dipole-dipole interaction, inducing the collapse at the mean-field level.
Note that the exact critical scattering length depends on the trap geometry.
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Figure 1.2 (a) Beyond mean-field quantum fluctuation term γQF of Eq. 1.6 as a function
of the dipolar strength with fixed add, and (b) Re(Q5) of Eq. 1.7 as a function of the
dipolar strength ϵdd.

The effect of quantum fluctuations can be described by the first-order correction
to the mean-field energy, known as Lee-Huang-Yang (LHY) correction. This term,
originally formulated for weakly interacting ultracold Bose gases [110], was then
extended to ultracold dipolar gases [115, 116] and has the expression:

γQF = 128 h̄2

3m

√
πa5

sRe{Q5(ϵdd)}, (1.6)

where Q5 is a monotonic function of ϵdd and reads as below:

Q5(ϵdd) =
∫ 1

0
(1− ϵdd +3ϵddu

2)5/2du. (1.7)

4In Bose-Bose mixtures, the instability happens when the interspecies attraction overcomes the
geometrical average of the intraspecies repulsion.
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Figure 1.2 displays γQF and Re(Q5) as a function of ϵdd. By including the first-order
correction, the GPE takes the form:

i h̄
∂ψ(r, t)
∂t

=
[
− h̄2∇2

2 m +V (r)+
∫

dr′U(r− r′)n(r′)

+γQF|ψ(r, t)|3
]
ψ(r, t).

(1.8)
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Figure 1.3 Ground-state phase diagram for a 164Dy gas confined in a cigar-shaped trap
with trapping frequencies ωx,y,z = 2π× (229,37,135)s−1. At high as, the system is in
the standard dBEC phase (grey region). At low as, the ground state consists of a chain
of quantum droplets with independent phases (blue region). In a narrow range of as,
where the link L is significant, the ground state is a supersolid (red region) showing
density modulation and global phase coherence. Figure adapted from [89].

So far only two-body collisions are taken into account but, for high densities, the
approximation of considering only two-body interactions breaks down and inelastic
three-body collisions can have a big impact on the system. Three-body losses can be
included in Eq. 1.8, by adding the following term:
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−i h̄

2 L3n
2(r)ψ(r, t), (1.9)

where L3 is the three-body collision coefficient.
By minimizing the energy functional of Eq. 1.8, one can find the ground-state of the

system and develop a phase diagram as a function of atom number and scattering length.
Figure 1.3 shows the phase diagram for 164Dy in a cigar-shaped trap with the magnetic
field aligned along the tight axis. From the phase diagram the following phases can
be identified. At high scattering lengths, the ground-state of the system is a standard
dipolar BEC. By reducing the scattering length, the system enters the supersolid regime
(SSP), in which a density modulation develops in form of quantum droplets linked
to each other by a superfluid background, allowing global phase coherence. When
lowering the scattering length further, the link between the droplets decreases until it
becomes neglegible and the system enters the so-called isolated-droplet regime (ID)
and the global phase coherence is lost. The link strength is encoded in the color map
and it is defined as L = 1 − (nmax −nmin)/(nmax +nmin), where nmax and nmin are
the density maximum and minimum in the center region of the density distribution,
respectively. The experimental tools to realize a long-lived linear and two-dimensional
supersolid are described in more details in Chapter 4.

1.3.1 Thermal fluctuations

So far, this section underlined the important role of quantum fluctuations in stabilizing
a dipolar gas and avoiding the collapse when the dipolar strength ϵdd ≳ 1. The GPE in
Eq. 1.8, which includes the beyond mean-field term describing the quantum fluctuations,
assumes a dipolar quantum gas at zero temperature. However, in experiments, the
temperature of the system is finite and the condensed cloud usually coexists with a
thermal component, which can be a non-negligible fraction of the total atoms, leading
to a considerable interaction between condensed atoms and thermal excitations. In
this case, the fluctuation term δψ includes quantum as well as thermal fluctuations. In
this regard, later on in this thesis, we demonstrate how not only quantum fluctuations,
but also thermal fluctuations have a determinant role in the supersolid formation; see
Chapter 4.

In fact, in dipolar gases, finite temperatures can have an important effect on the
properties of the system. For instance, theoretical works reported on the role of thermal
fluctuations in stabilizing quantum droplets and changing their density profiles [7],
even at temperatures as low as 100nK. Moreover, our works reported in Sec. 4.4 and
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Sec. 4.9 show how thermal fluctuations shift the transition to a supersolid state towards
lower dipolar strengths, favouring the appearance of density modulation [180]. In the
latter, a temperature-dependent GPE, obtained by minimizing the grand-canonical
potential with respect to the wave function ψ(r) [67], well captures the phase diagram
of our dysprosium cloud at finite temperature. The total grand potential includes
the grand-canonical zero-temperature energy and the finite-temperature energy term
resulting from Bogoliubov theory. By minimizing this potential, one obtains the wave
function in thermal equilibrium. For more details, see Ref. [180].

The theory mentioned above is valid for a high fraction of condensed atoms and
represents properties of the system at thermal equilibrium. Therefore, for describing
dynamical processes, such as the supersolid formation, a more appropriate theory is the
stochastic GPE (SGPE) formalism [25, 117], whose validity is in a broader temperature
range and does not require the major occupation of the lowest energy state, as when
applying Bogoliubov theory. In the publication shown in Sec. 4.7, the SGPE with the
beyond mean-field quantum fluctuations is used to describe the process developed in
our group to experimentally achieve a supersolid state by direct evaporative cooling
from a thermal cloud [27].





Chapter 2

Er-Dy experiment

The previous chapter showed how the long-range dipole-dipole interactions can lead to
novel quantum phases of matter. Among neutral atoms, long-range and anisotropic
DDI can be achieved in several ways. The systems showing the strongest DDI are
Rydberg atoms with ϵdd larger than 106. Hetero-nuclear molecules follow with ϵdd ∼ 102.
Magnetic lanthanides, such as erbium and dysprosium, with their not completely filled
submerged f shell, present a permanent magnetic moment which can be 10 times larger
than alkali, giving rise to an ϵdd ∼ 1. Long-range interactions can also be induced
through atom-light coupling. To date four elements from the magnetic lanthanides
have been Bose condensed: dysprosium [119] (µm = 10µB), erbium [3] (µm = 7µB),
thulium [49] (µm = 4µB), and very recently europium [129] (µm = 7µB). Although
magnetic atoms have an ϵdd much smaller than the Rydberg atoms and hetero-nuclear
molecules, they feature several interesting properties, such as a rich manifold of internal
states, many electronic transitions with various linewidths, and the presence of two
main competing interactions (contact interaction and DDI), which are independently
tunable. This chapter briefly recalls the basic properties of erbium and dysprosium.
It then describes the experimental apparatus and the protocol used to create erbium-
dysprosium ultracold gases.

2.1 Basic properties

Erbium and dysprosium are part of the magnetic lanthanides with a permanent
magnetic moment of 7µB and 10µB, respectively. Dysprosium was the first to be
Bose-condensed in 2011 [119], with erbium following one year later [3]. Few years after,
degenerate Fermi gases of dysprosium [118] and erbium [2] were realized via universal
dipolar scattering. Since then a lot of theoretical and experimental works brought to the
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discovery of novel phenomena arising from the long-range and anisotropic dipole-dipole
interaction [43, 135]. Just recently the family of Bose-condensed magnetic lanthanides
grew with the addition of thulium [49] and europium [129].

The large permanent magnetic moment arises from the electronic configuration,
[Xe]4fm6s2, where m=10 and 12 for dysprosium and erbium, respectively, which is
characterized by an unfilled 4f shell surrounded by a completely filled s shell. The
unpaired electrons in the f shell leads to a large angular momentum quantum number
L, which has a big impact on the scattering properties (see discussion in Sec. 3.2) and
on the atomic polarizability (see Sec. 3.3.3). The submerged shell also leads to a rich
energy spectrum with various electronic transitions with linewidths ranging from µHz
to hundreds of MHz [10, 59].

In our experiment, the broad transitions at 401nm and 421nm, with a linewidth of
Γ401/2π = 29.4MHz and Γ421/2π = 32.2MHz, for erbium and dysprosium, respectively,
are used for a first stage of laser cooling and for imaging. The intercombination lines at
583nm and 626nm with linewidths of Γ583/2π = 186kHz and Γ626/2π = 135kHz are
used for the Magneto-Optical trap (MOT) for erbium and dysprosium, respectively. The
narrow-line transitions at 741nm and 841nm with linewidths of Γ741/2π = 2kHz and
Γ841/2π= 8kHz can be used for an additional stage of laser cooling, as done for example
in the group of M. Greiner at Harvard [152]. The Hz transition at 1299nm, recently
measured in erbium [145], and the 1001nm in dysprosium [147] can be a powerful
tool for optical manipulation and control of the atoms. Two additional narrow-line
transitions are at 631nm and 598nm for erbium and dysprosium, respectively and
their calculated linewidths are Γ631/2π = 28kHz and Γ598/2π = 12kHz. The open-
shell nature of magnetic lanthanides makes, on the one hand, the study of scattering
properties and atom-light interaction rather complex but, on the other hand, leads to
rich energy spectra, which offer many possibilities for manipulating the atoms. The
next section describes the experimental apparatus and the electronic transitions used
during the experimental sequence to produce ultracold gases of erbium and dysprosium.

2.2 Experimental apparatus

A detailed description of the experimental apparatus can be found in Ref. [88]. In brief,
the experimental apparatus is designed to produce degenerate quantum gases of erbium
and dysprosium, both in single and double-species operation. Figure 2.1 displays the
experimental apparatus. It is composed by three main modules: the atomic beam
source, the atomic beam shutter and the main chamber.
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Figure 2.1 Experimental apparatus for the creation of erbium and dysprosium quantum
gases. An effusion cell generates the atomic beam, which travels through several steps
of collimations (apertures and 2D transversal cooling). After crossing the atomic-beam
shutter section, the atoms are slowed down by a Zeeman slower and captured in the
main chamber by a two-species five-beam MOT. The atoms are transferred in a crossed
optical dipole trap, where quantum degeneracy is reached through evaporative cooling.
Credits: Philipp Ilzhöfer

The atomic beam source consists of a dual-filament effusion cell1 and a transversal
cooling (TC) section. An ion pump keeps the whole module at a pressure of 10−10mbar.
The effusion cell includes a tantalum crucible with two units. One unit contains the
erbium and dysprosium material, cut in small pieces, and its operating temperature is
usually set to 1100 °C2. The second unit is set to a higher temperature3 in order to
create a temperature gradient and avoid condensation of material inside the crucible.
This unit is partially filled with only erbium material in order to compensate for the
lower vapor pressure of erbium. In total, the first unit is filled with about 12g, 9g of
Dy and 3g of Er4, whereas the second unit is filled with approximately 2g of Er. Three
apertures inside the effusion-cell section provide a collimated atomic beam source. The
atomic beam is further collimated in the TC units, where two orthogonal laser beams
cool the atomic beam along the transversal directions.

The second module consists of an atomic beam shutter made of an in-vacuum
stainless steel plate that is controlled by a servo and, after the loading of the Magneto-

1Createc Fischer & Co. GmbH, DFC-40-10-WK-2B.
2A detailed description of the procedure followed to refill the effusion cell can be found in Ref. [65].
3The standard operating temperature is 1200°C.
4The larger amount of Dy in the first unit compensates for the lower melting temperature.
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Optical-Trap (MOT), prevents the atomic beam from reaching the next module. In
addition, two more pumps complete the module: a titanium sublimation pump, which
is usually flashed only after a replacement of the effusion cell, and an ion pump, which
allows pressure in the whole module down to 10−11mbar.

The final module consists of a spin-flip Zeeman slower (ZS)5. The ZS slows down
the erbium and dysprosium atoms, which are finally captured by a MOT in the main
chamber. Another ion pump keeps the pressure at 10−11mbar.

The MOT operates on the intercombination lines at 583nm and 626nm in erbium
and dysprosium, respectively. The narrow-line character of the optical transition and
the effect of gravity lead to a smile-shaped MOT, which sits below the zero of the
magnetic quadrupole field [64, 92]. Therefore, for large enough detunings, the atoms
mainly absorb light from the σ−-polarized beam coming from the bottom. As a result,
the atoms are spin-polarized in the lowest Zeeman sublevel and the top MOT beam can
be removed to leave space for a high resolution objective. Details about the operation
of our two-species five-beam MOT can be found in Refs. [87, 88]. The atoms are
typically loaded in the MOT for 5s. A compression phase follows by decreasing the
magnetic field gradient, and the laser detuning and power, leading to typical atom
numbers and temperatures of ∼ 108 and ∼ 10µK. At this step, the atoms are loaded
into an optical dipole trap (ODT) made from a laser beam operating at 1064nm to
evaporatively cool the atomic clouds down to quantum degeneracy.

The power of this beam is controlled by an acousto-optic deflector (AOD)6, whose
central frequency is modulated with an arccos function. For fast enough modulation
frequencies7, the atoms see a time-averaged potential, whose shape is the one of a
Gaussian beam with a horizontal waist that can be actively tuned to maximize the
overlap with the MOT volume. Moreover, this tunability allows us to vary the trapping
geometry from a cigar-shape to a pancake trap, a fundamental tool for the transition
from one to two-dimensional supersolidity (see publications in Sec. 4.5 and Sec. 4.7).
The aspect ratio (AR) of the trapping beam can be tuned from 1 to a maximum of
10. We named this optical dipole trap scanning ODT. An important element, that
influences the performance of the scanning system, is the modulation bandwidth of

5In such a configuration, the total magnetic field changes sign over the ZS length. In particular,
first it decreases, reaches zero and then increases as a function of the distance from the first coil (see
Ref. [88]).

6Gooch & Housego AODF, 4075-2, center frequency 75MHz, bandwidth 32MHz.
7The modulation frequencies need to be much higher than the trap frequencies.
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the voltage-controlled oscillator (VCO)8 used to set the frequency of the AOD. Indeed,
the modulation bandwidth affects both the maximum width and the shape of the
radio-frequency signal. More details can be found in Refs. [9, 156].

After few seconds, two more ODTs propagating horizontally are switched on in
order to reach the optimal density condition for elastic scattering. In contrast to the
scanning ODT, the waists of these beams are fixed. We named these optical dipole
traps static 1 and static 2 ODTs. The evaporative cooling last for about 5s to reach
the degenerate quantum gas regime. In 2018, our experiment, produced double BECs
of erbium and dysprosium atoms with five different bosonic isotope combinations, as
well as a Bose-Fermi mixture9. Typical total atom numbers are about 105 with a BEC
fraction above 50%.

2.2.1 Optical dipole traps

The evaporative cooling of erbium and dysprosium clouds takes place in a crossed
optical dipole trap made by three laser beams at λ= 1064nm. The three beams come
from a commercial master oscillator power amplifier (MOPA)10 with a maximum
output power of 55W.

Figure 2.2 shows the optical setup used to distribute the power from the laser head
to the three optical dipole traps. From the laser head the beam goes through a telescope
before it is divided into three paths, which are coupled into three Large-Mode-Area
(LMA) photonic crystal fibers11, one for each ODT. The fiber holders12 consist of
two parts: a fiber collimator with a multi-element focusing lens13 and a water-cooled
copper block which cools down the fiber connector. Before splitting the laser beam, an
iris masks spurious modes from the main peak, which would not be coupled into the
fibers. NTC thermistors and photodiodes interface with an Arduino® microcontroller
to monitor the temperature of the fibers and the fiber coupling, respectively. The
power is distributed in the following way: about 22W are sent to the scanning ODT
path and approximately 10W are sent to each of the static ODTs.

8The VCO implemented in the experiment is the model MiniCircuits ZX95-100 with a 3dB
modulation bandwidth of 180kHz. This will be exchanged with the fast VCO DRFA10Y - B – 0 -
50.110 from AAOptoElectronic, with a modulation bandwidth higher than 1MHz.

9At this early stage of the experiment, the crossed ODT was made by one horizontal beam and a
vertical beam propagating along gravity. This setting is also the one used for the publication shown
in Sec. 3.5.

10Coherent Inc., Mephisto MOPA 55 W.
11NKT Photonics LMA-PM-15.
12Home-built inspired by the Greiner’s lab in Harvard.
13OptoSigma HFTLSQ-20-30PF1.
14Thorlabs AC254-f -C, with f the focal length of the lens.
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Figure 2.2 Optical setup used to distribute the power from a MOPA, operating at
1064nm with a maximum output power of 55W, to the three optical dipole traps used
to trap the atomic clouds. A first telescope collimates and shapes the laser beam for an
optimal fiber coupling into the LMA photonic crystal fibers. An iris follows to get rid of
spurious modes from the main peak. Photodiodes (PDs) and NTC thermistors placed
on the fiber connector monitor the incoming power and the temperature, respectively.

Figure 2.3 shows the scanning-ODT laser path to the main chamber. From the
outcoupler, the laser beam goes through an AOD, which modulates and intensity
stabilizes the beam. Four lenses are used to shape the laser beam before being focused
onto the atoms. In particular, f1 converts the diffraction into a parallel displacement
of the beam. The distance between f3 and f4 is set by the position of two mirrors,
which can be tuned by moving a linear stage15. This leads to a shift of the focus at the
chamber without affecting the waist size (see Fig. 2.4). Finally, the last lens f5 focuses
the light onto the atoms with a final waist of approximately 18µm. At the position of
the f4 lens, the beam is close to the full aperture of the lens. This makes the alignment
quite challenging and leads, in some cases, to an astigmatic beam at the focus position
onto the atoms. For this reason, the lenses f3 and f4 are mounted on kinematic mirror
mounts. Furthermore, the five lenses need to be in a 10f imaging system configuration.
Deviations from this setting lead to a change in the focus position when varying the
modulation amplitude of the AOD, i.e. the AR of the scanning ODT beam. Figure 2.4
shows calculations of the beam waist as a function of the propagation distance from
the AOD for three different positions of the f4 lens. By translating the lens by ±5mm

15OWIS GmbH MT 60.
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Figure 2.3 Optical setup for the scanning-ODT path next to the main chamber. The
AOD modulates and intensity stabilizes the beam. The lenses used in this setup are
achromatic doublets14. A linear stage shifts two mirrors, which translates in changing
the distance between f3 and f4 and therefore moving the focus at the atoms without
affecting the final waist size. Figure adapted from [88].

the focus moves by ±7mm without variations in its size. Furthermore, modulating the
central frequency of the AOD does not affect the focus position and the beam size.

Figure 2.5 shows the static-ODTs laser paths to the main chamber. From the
outcoupler, the laser beam goes through an acousto-optic modulator (AOM)16, which
intensity stabilizes the beam. Similarly to the scanning ODT, two lenses shape the
laser beam before focusing the light onto the atoms. In the same way, the beam waist
can be translated by changing the distance between f1 and f2, which is done by moving
two mirrors on a linear stage. For the two static-ODTs, the final waist is about 60µm.
Note that the AOD and the AOMs used for the optical dipole traps are mounted on a
water-cooled block in order to improve the beam-pointing stability.

2.2.2 Imaging systems

The erbium-dysprosium experiment has two imaging systems. One propagates horizon-
tally at 45° with respect to the y direction, overlapping with the static-ODT 1. This
imaging system is described in details in Ref [88] and is used to perform absorption
imaging of the atomic cloud after Time-of-Flight (TOF) expansion. The pixel size

16Gooch & Housego I-M080-2C10G-4-AM3.
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Figure 2.4 Beam waist as a function of the propagation distance from the AOD (upper
row) and horizontal displacement of the laser beam for a modulation frequency of
10MHz (bottom row). When changing the distance between f3 and f4 by ±5mm the
beam waist moves by ±7mm without variations in its size. The waist size and position
do not change with the scanning amplitude.

of the camera at the position of the atoms is approximately 2.1µm. This horizontal
imaging beam is used in the experiment to get information on the atom number and
temperature. In particular, we record the momentum distribution after TOF, which
shows, for an unmodulated BEC, the standard profile with a broad contribution given
by the thermal component and a narrower peak given by the condensed atoms. We fit
a bimodal distribution to the 1D profile and extract atom number and temperature.
For a supersolid state, due to the presence of the density modulation resulting in a
series of high-density peaks, a different analysis is performed (see e.g. the publications
shown in Sec. 4.4 and in Sec. 4.5).

The second imaging system allows both insitu and TOF imaging. The laser beam
propagates vertically along the z direction and consists of an objective with a maximum
numerical aperture (NA) of 0.45 and a measured resolution of about 700nm, at 401nm
and 421nm. The pixel size of the camera at the position of the atoms is approximately
0.4µm. A detailed description can be found in Ref. [176]. To get information on
the insitu density distribution, we perform phase-contrast imaging [34, 193] with
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Figure 2.5 Optical setup for the two static-ODTs next to the main chamber. The
AOMs intensity stabilize the laser beams. The RF frequency that drives the AOM
for the staticODT 1 is shifted by few MHz from the central frequency to not interfere
with the scanning ODT when the modulation is on. The lenses used in this setup are
achromatic doublets. A linear stage shifts two mirrors, which translates in changing
the distance between f1 and f2 and therefore moving the focus without affecting the
final waist size. Figure adapted from [88].

far-detuned light17 and linearly polarized light. Whereas, to get information on the
momentum distribution, we perform standard absorption imaging after TOF expansion
with resonant light and circular polarization. A stepper motor allows to move the
objective vertically and switch from insitu and TOF imaging. This imaging system is
fundamental to probe density modulation and global phase-coherence of a supersolid
state (see Chapter 4).

2.2.3 Quantum gas microscope

In July 2021 a new element was added to the experimental apparatus, namely a glass
cell for quantum gas microscopy of erbium and dysprosium atoms. The quantum gas
miscroscope consists of an octogonal glass cell18 and an in-vacuum objective19 with
a maximum NA of approximately 0.89 and a measured resolution of about 300nm,
at 401 nm and 421 nm. The details on the design of the glass cell and the objective,
together with its performances can be found in Ref. [176]. The quantum gas microscope

17The detuning is set to ∆ ∼ 36Γ.
18Manifactured by Precision Glassblowing of Colorado, Inc.
19Manifactured by Special Optics, Inc.
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is a powerful tool that will open many research directions based on the investigation of
new quantum phases in optical lattices arising from the long-range interaction.



Chapter 3

Interspecies interaction in an
ultracold dipolar mixture

The previous chapter described the features of our experiment and how erbium-
dysprosium ultracold mixtures can be created with different isotope combinations.
This chapter focuses on the first study of the interspecies interactions and the determi-
nation of the interspecies scattering length a12, done by tracking the in-trap clouds
displacement generated by the mean-field interspecies interactions. In particular, the
first section gives a general overview of hetero-nuclear mixtures. The second section
introduces the methods that are generally used in ultracold experiments to determine
a12. The third section introduces the technique developed in our experiment and
gives details on the experimental sequence and on the theoretical model based on
the Gross-Pitaevskii equation with the energy terms arising from the interspecies
interactions. Finally, the last section is dedicated to the numerous possibilities that
hetero-nuclear dipolar mixtures offer for studying new quantum phases.

3.1 Hetero-nuclear mixtures: an overview

In the past decades, ultracold homo- and hetero-nuclear mixtures have been realized
all around the world driven by multifold reasons. One of the first ultracold mixtures
was realized by merging two fermionic spin states of potassium atoms [53] in order to
overcome the limitation given by identical fermions in reaching quantum degeneracy.
Indeed, reaching quantum degeneracy relies on direct evaporative cooling and therefore
on elastic collisions. In the regime of low temperatures, the main contribution to
the scattering cross section is given by s-wave states. However, for identical fermions
with short-range interactions, the requirement of an antisymmetric wave function
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prohibits s-wave scattering. Therefore only distinguishable fermions can interact at
these low temperatures. This changes for dipolar fermions interacting via long-range
and anisotropic dipole-dipole interactions, where not only s-waves but all partial
waves contribute to the scattering cross section [2, 12]. For a similar purpose, Bose-
Fermi mixtures have been realized to use the bosonic species as a thermal bath to
sympathetically cool fermions [78, 188]. Furthermore, quantum mixtures can be used
to study polaron physics, where impurity atoms are immersed in a bosonic or fermionic
quantum degenerate bath [86, 90]. Long-range attractive mediated interactions have
been studied in Bose-Fermi mixtures, where a trapped BEC is surrounded by a
degenerate Fermi gas, leading to an instability of the condensate and, in a quasi 1D
trap, to a transition to a Bose-Fermi soliton train [55]. Another important driving
motivation for studying hetero-nuclear mixtures is the realization of ultracold molecules,
which possess a large electric dipole moment [128]. Finally, by tuning the interspecies
interaction to negative values a stable mixture of BECs can perform a phase transition
to quantum droplets [37, 54, 149].

All the hetero-nuclear mixtures mentioned so far have been realized by combining
alkali-metal atoms, with the advantage to make use of the wide knowledge developed
over many years of research on single-species experiments. Ultracold experiments have
also combined alkali-metal with alkaline-earth-metal atoms [143, 202] and alkali-metal
with alkaline-earth-like atoms [80, 81, 194] motivated by the possibility of realizing
molecules having both magnetic and electric dipole moments. In the last few years, the
family of hetero-nuclear mixtures has grown including also dipolar atoms. In particular,
in our experiment, the first double BECs of magnetic atoms were realized with several
isotope combinations of erbium and dysprosium [187]. In the same year, a degenerate
Fermi-Fermi mixture with dysprosium and potassium atoms was realized in Innsbruck
as well [163].

The presence of long-range and anisotropic interactions is expected to enrich
the already fascinating quantum phases predicted with contact-interacting mixtures.
Theoretical works addressed the formation of vortex lattices in rotating dipolar mix-
tures [102, 103], binary quantum droplets [20, 174, 175], pattern formation [197], double
supersolid states [169], and domain supersolids [26]. All the phenomena mentioned
so far are highly sensitive on the interspecies interaction strength and to be observed
require a fine and controlled tuning of a12. In fact, the interaction between the species
strongly affects the in-trap density distribution of the clouds, leading in some cases to
phase separation [101]. For dipolar mixtures, whether the two species overlap, namely
they are miscible, or they are pushed aside, namely they are immiscible, depends on
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both the contact and dipolar intra- and interspecies scattering lengths. Whereas for
alkali atoms, collisional models can predict the scattering lengths, for dipolar atoms,
the complexity of the electronic structure and the anisotropic interactions make a
theoretical determination quite challenging [100, 148]. Therefore the determination
of the intra- and interspecies scattering lengths relies on experimental measurements.
The next section recalls the most common experimental methods for determining
the interspecies scattering length, while Sec. 3.3 describes the one developed in our
experiment and presented in the publication shown in Sec. 3.5.

3.2 Cross-species thermalization measurements

One of the methods used in ultracold mixtures to infer the interspecies scattering
length is the cross-species thermalization technique. This approach consists of driving
the system out of thermodynamic equilibrium, e.g. by selectively heating one of the
species and then registering the evolution of the temperature towards the equilibrium,
through elastic collisions. One can relate the thermalization time τ to the elastic cross
section and finally to the interspecies scattering length a12. By following Refs. [4, 76],
one can model the cross thermalization through a set of rate equations, as below:

Ṅ1,2 = 0, (3.1)

Ṫ1,2 = ±ξ Γ12 (T2 −T1)
3N1,2

, (3.2)

where Ni, Ti are the atom number and temperature of the i species, respectively. Γ12
is the interspecies collisional rate and ξ = 4 m1 m2/(m1 +m2)2, with m1(m2) the mass
of the 1(2) species. The factor ξ takes into account the reduced energy transfer caused
by different masses. Furthermore, the factor 3 at the denominator, which is usually
known as α, considers that about three collisions are needed for thermalization [130].
This factor changes whether the collisions are s-wave or p-wave, where α is about
4 [52]. In the case of dipolar atoms, due to the anisotropic nature of the interactions,
the parameter α depends on the direction of the quantization axis, generally given
by the magnetic field, with respect to the gravity axis, as well as on the scattering
length [30, 191] (see the experimental work done with erbium atoms [144]).

Equations 3.1 and 3.2 neglect the terms coming from evaporative cooling, three-body
losses, losses due to collisions with background gas, and heating due to the trapping
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laser. From Eq. 3.2 one finds:

Ṫ2 − Ṫ1 = ξΓ12
3 ( 1

N1
+ 1
N2

)(T2 −T1). (3.3)

By assuming that the thermalization time of the temperature difference is the same as
the individual temperatures, τ can be defined as:

1
τ

= ξΓ12
3N1N2

(N1 +N2). (3.4)

The thermalization rate can be linked to the elastic cross section σ12 from the
relation:

Γ12 = n̄12σ12v̄12, (3.5)

where n̄12 and v̄12 are the mean spatial overlap and the mean collisional velocity,
respectively. These two quantities have the following form:

n̄12 = N1N2m
3/2
1 ω̄

3/2
1

[(2πkB)(T1 +β2T2)]3/2 , (3.6)

v̄12 =
√

8kB
π

( T1
m1

+ T2
m2

), (3.7)

with ω̄i=1,2 the geometric average of the trapping frequencies and β2 =m2ω̄2
2/m1ω̄2

1.
By combining Eq. 3.4, Eq. 3.6 and Eq. 3.7, one can write:

1
τ

= ξ(N1 +N2)
3N1N2

n̄12σ12v̄12. (3.8)

By measuring τ , Ni=1,2 and Ti=1,2 it is possible to estimate σ12. The dependence of α
on the polarization angle and on a12 makes the determination of the scattering length
challenging and dependent on theoretical predictions. However, a rough estimation
can be inferred from the relation:

σ12 = 4πa2
12 + 64π

45 a2
dd,12, (3.9)

where add,12 is the interspecies dipolar length. This thermalization model was used
in the publication presented in A.3 to determine the scattering cross section in the
vicinity of an interspecies Feshbach resonance and get insight into the strength and
width of the resonance.
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3.2.1 Feshbach spectroscopy

Due to the quadratic dependence on a12 of the elastic cross-section, the cross-species
thermalization method allows determining only the modulus of the interspecies scat-
tering length and not the sign. In order to determine the sign, thermalization mea-
surements can be combined with Feshbach spectroscopy to map out the dependence
of a12 with the magnetic field B and estimate the background scattering length abg

12 .
Once an interspecies Feshbach resonance is identified, one can perform cross-species
thermalization measurements at different B around the resonance and, by using the
model described in Sec. 3.2, determine a12. The magnetic-field dependence of a12 can
be represented by the following relation [39]:

a(B) = abg

(
1− ∆

B−B0

)
, (3.10)

where B0 is the resonance position and ∆ the resonance width1. This method is widely
used in our community and was adopted to determine the interspecies scattering length
in various systems as hetero-nuclear mixtures of alkali atoms [51, 173], in cesium-
ytterbium mixtures [77] and lately in dysprosium-potassium mixtures [162, 201].

3.2.2 Other methods

Other methods include the determination of the interspecies scattering length from
collective-excitation spectroscopy. The frequencies of excitation modes, e.g. breathing
modes, are predicted to be dependent on a12 [60, 158]. Theoretical works proposed
also the possibility of inferring a12 from the insitu density profiles [104]. Finally, a
more demanding techinique is lattice-modulation spectroscopy (see Sec. 3.3.3), which
was used in ultracold fermionic erbium atoms to determine the interspecies scattering
length between the two lowest spin states [8].

3.3 Interspecies scattering length from mean-field
shift

The technique developed in our group and presented in Sec. 3.5 consists of a joined
theoretical and experimental work to study the effect that dipole-dipole interactions

1For dipolar atoms, the presence of a highly dense Feshbach spectrum requires the use of the
formula for overlapping resonances: a(B) = abg

∏
i

(
1− ∆i

B−B0,i

)
[109].
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have on the total mean-field interspecies interactions and to estimate a12 from tracing
the in-trap cloud displacement as a function of the magnetic field orientation. Let’s
consider a non-interacting ultracold mixture of Er and Dy atoms trapped in an elongated
1064-nm optical dipole trap. Due to the slight difference in mass and polarizability the
two clouds are displaced in the vertical direction by what is known as gravitational
sag, ∆zgrav = g(1/ω2

z1 −1/ω2
z2), where g is the gravitational acceleration and ωzi the

trap frequency along the gravity direction for the i species. This effect combines
with a repulsive or attractive shift coming from the interspecies interactions; see later
discussion. Figure 3.1(a) illustrates the geometry of our system with the two atomic
clouds vertically displaced and the magnetic field orientation, which is given by the
angles θ and ϕ, can be arbitrarily oriented along any desired direction. Figure 3.1(b)
shows the ground state of the system calculated from the binary Gross-Pitaevskii
equation (see Sec. 3.3.1) for the non-interacting case, when the magnetic field points
along the gravity direction (z-axis). The 2D column density shows that the center-of-
masses (COM) are vertically shifted by the gravitational sag, but the atomic clouds
merge in the overlapping region.

When switching the interactions on, the clouds displacement is modified by another
term, namely the mean-field shift ∆zMF. This term includes the mean-field shift due
to the contact and dipole-dipole interactions and can push the two clouds closer or
further apart, whether the total mean-field interactions are attractive or repulsive,
respectively. Figure 3.1(c) shows the ground state of the system for the same parameters
as Fig. 3.1(b), but with a repulsive interaction characterized by a12 = 100 a0. Due
to the interactions, the two clouds repel each other leading to a larger clouds COM
displacement. It becomes clear that the in-trap displacement with respect to the
non-interacting position is a measure of the strength of the interactions, namely a12.
For repulsive interactions, the stronger a12 the larger the in-trap displacement gets.

An effect that plays a big role in dipolar gases and distinguishes them from the
short-range interacting ones is magnetostriction [179], which is an elongation of the
atomic cloud along the magnetic field direction. Figure 3.1(d) shows the ground state
of the system with the same parameters as Fig. 3.1(c), but with the magnetic field
pointing along the x-axis. Whereas for a magnetic field pointing along the z-axis, the
magnetostriction leads to an increase of the vertical overlap between the clouds, when
the magnetic field points along the x-axis, the atomic clouds elongate horizontally,
hence reducing the vertical density overlap. This in turn reduces the interspecies
repulsion and the two clouds approach the non-interacting clouds displacement, fixed
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Figure 3.1 (a) Geometry of our dipolar mixture with 164Dy and 166Er shown as red and
blue ellipse, respectively. The angles ϕ and θ define the orientation of the magnetic field.
(b-d) Ground-state calculation of the column density for a mixture with imbalanced
atom numbers: NDy = 1.3 × 104, NEr = 4.9 × 104. Iso-density contour levels for Dy
(dashed lines) and Er (filled lines). z=0 corresponds to the center of the gravitational
sag. The magnetic field points along the z-axis with no interspecies interactions (b)
and a12 = 100 a0 (c). The magnetic field is aligned along the x-axis, and a12 = 100 a0
(d). Figure adapted from [155]. (c,d) Credits: Michele Modugno.

by the gravitational sag. Hence, the maximum value of the COM shift occurs when the
magnetic field points along the gravity direction, which maximizes the density overlap.

Another knob that can be tuned in dipolar gases is the magnetic field direction. In
fact, in an asymmetric trap, for a fixed modulus of the magnetic field, the contribution
of the dipolar interaction to the total mean-field interaction can be tuned from attractive
to repulsive by varying the magnetic-field orientation. Figure 3.2 shows the dipole
potential created by the dysprosium cloud and felt by the erbium atoms for two different
magnetic field orientations. On the one hand, when the magnetic field points along the
vertical direction, see Fig. 3.2(a), the interspecies interaction is mainly attractive due to
the dipoles aligned predominantly head-to-tail. On the other hand, when the magnetic
field points along the x-axis, see Fig. 3.2(b), the dipoles mainly sit side-by-side giving
rise to a dipole potential felt by erbium atoms which is mainly repulsive (see Eq. 1.1).
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Figure 3.2 Heat map of the dipole potential produced by the Dy condensate
ṼDy(r) ≡

∫
Vdd(r − r′)nDy(r′)dr′, in the x = 0-plane. Iso-density contour levels of

the Er component (dotted-dashed lines). The magnetic field is oriented along the z-axis
(a) and along the x-axis (b). In the former case, the potential produced by Dy on Er in
the overlapping region is negative, indicating that the interspecies dipolar interactions
are predominantly attractive. Whereas, for the latter, the potential is positive, indi-
cating that the interspecies dipolar interactions are predominantly repulsive. Figure
adapted from [155]. (b) Credits: Michele Modugno.

3.3.1 Extended Gross-Pitaevskii equation

Before giving details on the experimental sequence used to probe the interspecies
interactions, the following section briefly recalls the theoretical model developed to
represent our system. To describe our mixture of dipolar erbium and dysprosium
condensates, the GPE presented in Sec. 1.3 needs to be modified to include the terms
arising from the interspecies interactions. These terms include the interspecies contact
and dipolar interaction, whose energy functional can be expressed as below:

Ec
12 = g12

∫
n1(r)n2(r)dr (3.11)

Edd
12 = µ0µ1µ2

∫
n1(r)Udd(r− r′)n2(r′)drdr′, (3.12)

where ni(r) = |ψi(r)|2 is the density of each condensate, g12 = 2πh̄2a12(m1 +m2)/m1m2
is the interspecies coupling constant, µ1(µ2) is the magnetic moment of species 1(2),
and Udd is the interspecies dipole-dipole interaction. Since the regimes investigated
in the experiment and presented in Sec. 3.5 are stable against mean-field collapse, for
the results presented in this thesis only the single species beyond-mean field terms, as
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in Eq. 1.6, have been taken into account. The interspecies LHY becomes crucial for
the stability of the system when, for attractive interspecies dipolar interactions, a12 is
reduced below a critical value leading to a collapse of both species at the mean-field
level. A theoretical description including the interspecies LHY term has been done in
Refs [20, 174]. After minimizing the energy functional including all the relevant terms,
we determine the ground state of the system, as shown in Fig. 3.1 and Fig. 3.2, and
get the calculated in-trap displacement for a fixed value of a12.

3.3.2 Experimental sequence

The experimental sequence used to probe the in-trap cloud displacement is described
in details in the publication reported in Sec. 3.5. In brief, the experiment consists
of preparing a double BEC of erbium and dysprosium atoms, as described in the
previous chapter. The two atomic clouds repel each other due to repulsive interspecies
interactions. One of the species is then selectively removed, by shining resonant light.
This removal put the remaining species out of equilibrium and induces center-of-mass
oscillations around the new equilibrium position, fixed by the minimum of the trap
and the gravitational sag. The amplitude of this oscillation can be connected to the
strength of the interspecies repulsion (see publication in Sec. 3.5).

After performing this sequence for one magnetic field orientation, we repeat the
procedure for various θ and ϕ. As a result, we obtain the mean-field shift as a function of
the magnetic field orientation, where the maximum displacement appears for a magnetic
field direction oriented along the gravity direction, which maximizes the density overlap
of the two clouds due to magnetostriction and therefore the interspecies repulsion.
By performing ground-state calculations at different interspecies scattering lengths
and for different magnetic field orientations, it is possible to infer the a12 that best
represents the experimental data, which we estimate to be a12 = 105[−65,+162] a0.
The experimental sequence described above was also used to probe other isotope
mixtures (162Dy-168Er, 162Dy-170Er) with all showing a qualitatively similar behaviour
with total mean-field repulsive interactions at the operating magnetic field.

3.3.3 Evaluation of the systematic errors

The calculated mean-field shift qualitatively agrees with the experimental one with the
largest deviation when the magnetic field points along the horizontal plane. Below, few
factors that might be the cause of the disagreement are mentioned. In our theory model,
the trap frequencies are assumed to be constant and independent on the magnetic field
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orientation. However, unlike alkali atoms, for erbium and dysprosium, the polarizability
features a tensorial character [17, 113]. The light shift has a dependence on the angle
between the light polarization and the magnetic field orientation (θp) and the angle
between the light propagation and the magnetic field orientation (θk). Following
Ref. [113], the total light shift can be expressed as below:

Ushift(ω) =− I(r)
2ϵ0c

[
αs(ω)+ |u∗ ×u|cosθk

mJ

2J αv(ω)

+ 3m2
J −J(J +1)
J(2J −1)

3cos2 θp −1
2 αt(ω)

]
,

(3.13)

where I is the light intensity, ϵ0 is the vacuum permittivity, c is the speed of light, u is
the light polarization vector, θk(θp) is the angle between the magnetic field direction and
the light propagation(polarization). αs, αv, and αt are the polarizability coefficients
for the scalar, vector, and tensor part, respectively. For our experiments, we trap
the atomic cloud in a 1064-nm laser beam, which is linearly polarized. This makes
the vectorial term in Eq. 3.13 vanish. Regarding the tensorial term, when tilting the
magnetic field from the z-axis into the xy-plane, θp can maximally change from θp = 90◦

to θp = 0◦. This means that the polarization-dependent factor can change from -1/2
to +1. Taking the values of αs = 184.4(2.4) a.u. and αt = 1.7(6) a.u. reported in
Ref. [161], the contribution of the tensorial term varies from 0.5% up to 1% of the
scalar one. The trap frequencies scale as ∝ √

αtot, where the polarizability αtot takes
into account all the scalar, vector, and tensor parts. Therefore there would be only a
small contribution of the tensorial part to the change in trap frequencies, which we
neglect.

The trap frequencies are also affected by the presence of residual magnetic field
gradients. To quantify those gradients we performed measurements of the COM position
Zi(tTOF) for three different orientations of the magnetic field, along the three axes (x,
y, z), and as a function of tTOF. By fitting the function y = a+ b tTOF + 1

2c t
2
TOF to

Zi(tTOF), it is possible to estimate the correction to the gravitational acceleration due
to the presence of residual magnetic field gradients. We measure a higher acceleration
by 2% and 1% for dysprosium and erbium, respectively, when the magnetic field points
along the z-axis. These gradients, which point along the same direction of gravity,
slightly decrease the trap frequencies by few % when going from B along the xy-plane
to B along z.
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Another important input for the theoretical model is the value of the intraspecies
scattering length. For erbium, the scattering length was accurately determined using
lattice-modulation spectroscopy [144]. This technique is based on the measurement of
the on-site interaction between atoms trapped in an optical lattice, from which as can
be determined. The on-site interaction is measured by modulating the lattice depth
and by looking at the induced heating caused by the doubly occupied lattice sites at
the specific resonance frequency. Therefore, for the magnetic field value relevant for
us, aEr

s was set to aEr
s = 83(3) a0 [40]. However, such an accurate determination of

the scattering length is still missing for dysprosium and various experiments reported
different values [62, 181]. We set aDy

s = 95 a0, which gives an unmodulated BEC for
our atom numbers and trap geometry.

3.4 Outlook: induced supersolidity in dipolar mix-
ture

In Chapter 1 it was shown that erbium and dysprosium can make a phase transition to
a supersolid state and develop density modulation and maintain global phase coherence
in a narrow range of scattering lengths, where ϵdd ≳ 1.3. From our ground-state
calculations of a double BEC made of erbium and dysprosium atoms, we found that
when the scattering length of dysprosium is just above the aforementioned range,
whereas erbium is in the contact-dominated regime with ϵEr

dd < 1, by increasing the
repulsive interactions a12 between the species, it is possible to induce the onset of
supersolidity in dysprosium. Furthermore, when pushing the two clouds closer by
tightening the trap, the density modulation present in dysprosium can be transferred
on erbium.

After this work, several theoretical proposals focused on the different ground-state
phases that can be realized by merging two dipolar condensates. In particular, in
Ref. [169], the authors study a dipolar mixture with (µ2/µ1 ≃ 1) in the miscible regime,
where µ1(µ2) is the magnetic moment of species 1(2), and N2/N = [0,0.5] with N

the total atom number and N2 the atom number of species 2. The authors show
that a binary condensate can be described as a single-component condensate with an
effective dipolar strength, which can be tuned by changing the interspecies scattering
length and the atom number of the second species. In this work, a peculiar phase
with a double supersolid formed by immiscible droplets is predicted. In Ref. [26], the
authors investigate the formation of domain supersolids formed after a spin roton
instability [195]. Unlike supersolids induced by roton instability, where to sustain
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supersolidity a certain density need to be maintained [154], for domain supersolids,
such a stringent condition on the density is not present. This leads to extended systems
with atom numbers per domain an order of magnitude lower than the case of droplet
supersolids, leading to a potentially longer lifetime due to reduced three-body losses.

The aforementioned interesting regimes can be reached by varying the magnetic
field value in proximity of an interspecies Feshbach resonance (FR) in order to tune
the sign and the strength of a12. In the publication shown in A.3, we experimentally
observed interspecies FR in two bosonic isotope mixtures of erbium and dysprosium
with a width larger than 1G, whose interspecies character was probed by looking at
the scattering cross-section in proximity of the loss feature, as described in Sec. 3.2.
These Feshbach resonances are located in a reasonably low magnetic field region2 and
are promising tools to achieve interesting many-body phases in erbium-dysprosium
mixtures.

2The isotope mixture 164Dy-168Er presents an interspecies FR at around 13G, while 164Dy-166Er
at around 34G.
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We experimentally and theoretically investigate the influence of the dipole-dipole interactions (DDIs) on
the total interspecies interaction in an erbium-dysprosium mixture. By rotating the dipole orientation we are
able to tune the effect of the long-range and anisotropic DDI, and therefore the in-trap displacements of the
erbium and dysprosium clouds. We present a theoretical description for our binary system based on an extended
Gross-Pitaevskii theory, including the single-species beyond mean-field terms, and we predict a lower and
an upper bound for the interspecies scattering length a12 = 105[−65, +162]a0. Our work is a step towards
the investigation of the experimentally unexplored dipolar miscibility-immiscibility phase diagram and the
realization of quantum droplets and supersolid states with heteronuclear dipolar mixtures.

DOI: 10.1103/PhysRevA.105.023304

I. INTRODUCTION

The ability to tune the interparticle interactions, the geom-
etry and dimensionality of the system, and the possibility of
adding complexity in a controlled manner, has made ultra-
cold atomic gases a great platform for studying a plethora
of physical phenomena that would be otherwise hard to
achieve [1]. Combining two atomic species gives even further
opportunities for investigating the effects arising from the
interplay between the intra- and interspecies interactions, as
polarons [2,3], heteronuclear quantum droplets [4–6], soli-
tons [7], and ultracold molecules [8].

Heteronuclear mixtures are typically realized by com-
bining contact-interacting atomic species (see alkali-alkali
mixtures [9–15], alkali-alkaline-earth mixtures [16], and
alkali-alkaline-earth-like mixtures [17–19]). Recently, experi-
ments were able to produce novel types of ultracold mixtures
where either one or both mixture components are long-range
interacting (lanthanide) atomic species [20,21]. In particular,
the realization of Er-Dy dipolar quantum mixtures is attract-
ing great interest, driven by the possibility of creating new
quantum phases even more exotic than the one achieved in
contact-interacting mixtures [1] or in single-species dipolar
gases [22]. Several theoretical works reported on the study
of miscibility in dipolar condensates [23–26], vortex lattice
formation [27,28], and on binary quantum droplets realized
with dipolar mixtures [29–31].

In heteronuclear dipolar Bose-Bose mixtures, the phenom-
ena mentioned above rely quite strongly on the miscibility-
immiscibility conditions. These conditions define whether

*Present address: Physikalisches Institut, Auf der Morgenstelle 14
(D-Bau), 72076 Tübingen, Germany.

†Present address: 5. Physikalisches Institut and Center for In-
tegrated Quantum Science and Technology, Universität Stuttgart,
Pfaffenwaldring 57, 70569 Stuttgart, Germany.

‡Corresponding author: francesca.ferlaino@uibk.ac.at

the two components mix together with the center of masses
overlapping at the trap center or whether they are in a phase-
separated state where the two centers of mass are pushed away
from each other. The miscibility-immiscibility phase diagram
depends on the contact intraspecies scattering lengths a11, a22

and dipolar lengths add,1, add,2, and the interspecies scattering
lengths a12 and dipolar lengths add,12. While add,12 can be
calculated analytically, a12 is unknown and its determination
relies on experimental measurements.

In this paper, we prepare ultracold degenerate mixtures
of erbium and dysprosium, and experimentally investigate
the effect of the mean-field dipole-dipole interactions on
the total interspecies interaction by tracing the center-of-
mass displacement for different dipole orientations. We
present a theoretical description for our system, including
the single-species beyond mean-field terms, which reproduces
qualitatively well the experiment. By matching theory and
experiment, we define a lower and upper bound for the in-
terspecies scattering length a12.

II. THEORY

Here, we consider a binary mixture of dipolar condensates
of 164Dy and 166Er atoms confined in a harmonic potential, in
the presence of a magnetic field B aligned along an arbitrary
direction in space. The system can be described in terms of
an extended Gross-Pitaevskii energy functional E = EMF +
Edd + ELHY with.

EMF =
2∑

i=1

∫ [
h̄2

2mi
|∇ψi(r)|2 + Vi(r)|ψi(r)|2

]
dr

+
2∑

i, j=1

gi j

2

∫
ni(r)n j (r)dr, (1)

Edd =
2∑

i, j=1

Cdd
i j

2

∫∫
ni(r)Vdd(r − r′)n j (r′)drdr′, (2)

2469-9926/2022/105(2)/023304(9) 023304-1 ©2022 American Physical Society



C. POLITI et al. PHYSICAL REVIEW A 105, 023304 (2022)

and the single-species Lee-Huang-Yang (LHY) correction for
the two components

ELHY = 256
√

π

15

2∑
i=1

h̄2a5/2
ii

mi

(
1 + 3

2
ε2

dd,i

) ∫
ni(r)5/2dr, (3)

where ni(r) = |ψi(r)|2 represents the density of each con-
densate, Vi(r) = (mi/2)

∑
α=x,y,z ω2

α,ir
2
α + migz includes the

harmonic trapping and gravity potentials, gi j = 2π h̄2ai j (mi +
mj )/(mimj ) is the contact interaction strength, Vdd(r) = (1 −
3 cos2 θ̄ )/(4πr3) the (bare) dipole-dipole potential, Cdd

i j ≡
μ0did j its strength, di the modulus of the dipole moment d i

of each species, εdd,i = μ0d2
i /3gii [32], r the distance be-

tween the dipoles, and θ̄ the angle between the vector r and
the dipole axis, cos θ̄ = d · r/(dr) [33]. In the following we
identify species 1 with the Er condensate, and species 2 with
the Dy condensate (we have also omitted the reference to the
mass number, for ease of notations). As described later on, the
orientation of the magnetic dipoles is varied along arbitrary
directions through an external magnetic field B.

Then, for each set of parameters the ground state of
the system is obtained by minimizing the energy functional
E [ψ1, ψ2] by means of a conjugate algorithm (see, e.g.,
Refs. [33–35]). In the numerical code the double integral
appearing in Eq. (2) is mapped into Fourier space where it
can be conveniently computed using fast Fourier transform
(FFT) algorithms, after regularization (see Appendix B). The
LHY correction in Eq. (3) is obtained from the expression
for homogeneous three-dimensional (3D) dipolar condensates
under the local-density approximation [32,36]. For the sake
of simplicity, here we do not include the interspecies LHY
correction as it would require a much more complicated treat-
ment [29,30], which is not essential when the system is stable
against the mean-field collapse driven by the interspecies in-
teractions, as in the present analysis.

Finally, we remark that the intraspecies scattering lengths
are given as the input to the theory and, whereas the value for
Er has been measured with high accuracy to be a11 = 83(3)a0

at the magnetic field we are working at [37], the scattering
length for Dy, a22, still lacks an accurate determination. Sev-
eral works have reported different values ranging from 60a0

to 100a0 [38,39]. As in the present work no signs of super-
solid or droplet states have been observed [40], we set a22 to
the minimal value for which Dy is stable against mean-field
collapse (without LHY), namely a22 = 95a0. This guarantees
that the ground state is an unmodulated BEC, for our atom
numbers and trap frequencies. Note that, since a11 > add,1

while a22 � add,2, with add,i = Cdd
ii mi/(12π h̄2) the dipolar

length, we expect Eq. (3) to be more relevant for Dy than for
Er. Indeed, when dropping this term for Er, we observe no
changes in the behavior. Instead, for Dy, the system would
collapse for a22 < 95a0 for B perpendicular to the gravity
direction.

III. EXPERIMENT

Our experiment starts with a degenerate mixture of 166Er
and 164Dy, similar to Ref. [21]. In brief, after cooling the
atomic clouds in a dual-species magneto-optical trap [41], we
start the evaporative cooling by loading the mixture into a

(a)

(b)

(c)

FIG. 1. Trap geometry, ground-state column density, and dipole
potential. (a) Illustration of the geometry of our 164Dy (red ellipse)
and 166Er (blue ellipse) mixture. The orientation of the magnetic field
is defined by the angles φ and θ . The imaging beam propagates
in the horizontal plane, at an angle of 45◦ with respect to the y
axis (not shown). (b) Ground-state column density for an imbal-
anced mixture with NDy = 1.3 × 104, NEr = 4.9 × 104, a12 = 100a0.
Dashed and solid lines show the isodensity contour levels for Dy
and Er, respectively. For comparison, the in-trap displacement due
to the gravitational sag for a noninteracting mixture is also shown
(black dashed lines). We set z = 0 at the center of the gravitational
sag. (c) Heat map of the dipole potential produced by the Dy con-
densate (parameters below), ṼDy(r) ≡ ∫

Vdd(r − r′)nDy(r′)dr′, in the
x = 0 plane. Here, the magnetic field points along the z axis. The
dotted-dashed lines represent the isodensity contour levels of the Er
component, indicating that in this regime the interspecies dipolar
interaction is predominantly attractive.

single-beam optical dipole trap at 1064 nm, which propagates
horizontally (y axis); see the reference frame in Fig. 1(a).
After about 600 ms, the power of a second trapping beam,
propagating vertically along the direction of gravity (z axis),
is linearly ramped up to form a crossed optical dipole trap
(cODT). Here, the evaporation further proceeds for about
5 s. We perform the evaporation at a magnetic field of B =
2.028 G, pointing along the z axis, which allows an efficient
cooling of both species.

The final harmonic trap has a cigarlike shape,
axially elongated along the y axis, with frequencies
ωx,y,z = 2π × [96(1), 18(1), 150(5)] s−1, and ωx,y,z =
2π × [104(1), 18(1), 165(5)] s−1 for Er and Dy, respectively.
The trapping frequencies of the two species slightly differ.
This is due to the small difference in their mass and atomic
polarizability [42,43]. In a harmonic trap, each species
experiences a shift of its center-of-mass (COM) position
along the z axis due to gravity. This effect is known as
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FIG. 2. Experimental protocol. After preparing our Er-Dy mix-
ture with B ‖ z, the magnetic field is rotated to an arbitrary direction,
defined by θ and φ, in 120 ms. The atomic clouds are held in the
trap for 50 ms to reach equilibrium, before either of the species
is removed with resonant light. The remaining cloud is held for a
variable hold time th. The cloud is then released from the trap and
imaged with standard absorption imaging after a TOF expansion of
tTOF = 26 ms. We prepare imbalanced mixtures with condensed atom
numbers NC in the range [1–3] × 104 and [4–6] × 104 for Dy and Er,
respectively (see Appendix A).

gravitational sag [44–46]. For mixtures, the differential
gravitational sag between the components is given by
	zgrav = g(1/ω2

z1 − 1/ω2
z2), which for our Er-Dy mixture

is 	zgrav = 1.9(1) μm with Er shifted downwards more
than Dy; see Fig. 1(a). Such gravitational sag favors phase
separation along the z axis, reducing the interspecies overlap
density. In the presence of interspecies interactions, the
vertical distance of the clouds’ centers is not only determined
by the gravitational sag but also by their mutual mean-field
attraction or repulsion [13,15,47–49], quantified by the
mean-field shift 	zMF. For dipolar mixtures, 	zMF is
determined by the interplay between the dipolar and contact
interspecies interactions, as we will discuss later. The total
vertical in-trap displacement is thus 	z = 	zgrav + 	zMF.

Figure 1(b) shows exemplary calculations of the 2D
ground-state column density of an imbalanced mixture for
B ‖ z and a12 = 100a0. In this configuration, a COM shift is
clearly visible, which exceeds the gravitational sag, indicating
a total repulsive mean-field interaction between the compo-
nents. To understand the role of the DDI, it is interesting to
calculate the effective potential generated by one species (e.g.,
Dy), ṼDy(r) ≡ ∫

Vdd(r − r′)nDy(r′)dr′, felt by the other species
(e.g., Er). Such effective potentials are most relevant in the
region where the two species overlap (beside a long-range tail
from the DDI). As shown in Fig. 1(c), for our trap geometry
and dipole orientation, Er experiences a dominant attractive
DDI generated by Dy, which is however weaker than the
repulsive interspecies contact interaction for a12 = 100a0.

To experimentally study the interspecies mean-field shift,
we selectively remove either one of the two species and follow
the COM dynamics of the remaining species towards its new
equilibrium position in the trap [21]. Figure 2 illustrates our
protocol. After preparing our trapped Bose-Bose Er-Dy mix-
ture with B ‖ z, we first adiabatically rotate the magnetic field

(a)

(b)

FIG. 3. COM oscillations after removal of either one of the
species. (a) Vertical COM position of Dy after removing Er and
(b) vice versa. The vertical position Zi is recorded after a TOF
expansion of 26 ms, as a function of the holding time. The offset
zoff has been subtracted to facilitate comparison. The measurements
are repeated for two magnetic-field orientations: B ‖ z, θ = 0◦, φ =
0◦ (circles) and B ∈ xy, θ = 90◦, φ = 15◦ (diamonds). The atom
numbers are NDy = 1.3(2) × 104, NEr = 4.9(7) × 104 and NDy =
3.1(5) × 104, NEr = 4.7(5) × 104 for B ‖ z and B ∈ xy, respectively.
The error bars reported represent the standard error on the mean over
three experimental trials, and are mostly smaller than the markers.
We fit Eq. (4) to the data for B ‖ z (solid lines) and B ∈ xy (dotted
lines).

in 120 ms to the desired orientation (i.e., changing θ and φ)
and let the mixture equilibrate for 50 ms. We then selectively
remove either Er or Dy by shining a resonant light pulse, op-
erating on either of the two strong atomic transitions [401 nm
(421 nm) for Er (Dy)]. We have checked that this resonant
pulse of 3-ms duration does not affect the remaining species.
Finally, we hold the remaining species in trap for a variable
time th and probe the system with standard absorption imaging
after a time-of-flight (TOF) expansion of tTOF = 26 ms.

After the selective removal of either of the two species,
the remaining species is out of equilibrium and the cloud
COM starts to oscillate around its new equilibrium posi-
tion, given by the dipole-trap minimum in the presence of
gravity. Figure 3(a) [Fig. 3(b)] shows the vertical COM po-
sition Zi (see Appendix A), measured after TOF, for Dy
(Er) after removing Er (Dy) and for two different dipole
orientations.

The amplitude of the observed oscillation is directly
connected to the interspecies mean-field shift experienced
by the atoms in the trap. Within the assumption of
ballistic expansion, which is justified in the weakly interact-
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ing regime, Zi(th, tTOF) = zi(th) + żi(th)tTOF + gt2
TOF/2, where

zi(th) = 	zMF,i cos(ωith) + 	zgrav is the in-trap COM posi-
tion. The oscillation frequency ωi is the trap frequency along
the z axis.

By combining the previous equations, one gets the follow-
ing expression,

Zi(th, tTOF)=	zMF,i cos(ωith) − 	zMF,i ωi sin(ωith)tTOF+zoff,

(4)
where zoff = 	zgrav + gt2

TOF/2. We fit Eq. (4) to the exper-
imental data for the two magnetic-field orientations with
the mean-field shift 	zMF,i, ωi, and zoff being free fitting
parameters.

IV. RESULTS

Figure 3 shows important information on the interspecies
interactions. First, by comparing the dynamics of the two
species, we observe that the oscillations are counterphase. The
Dy cloud starts moving downwards towards the trap center,
whereas the Er one moves upwards, confirming a total repul-
sive interspecies interaction for this geometry. Second, we see
a clear difference in the oscillation amplitude between Dy and
Er. This is due to the fact that the mixture is imbalanced with
Er being the majority species, and therefore the mean-field
shift caused by Er on Dy is larger. Finally, for each species,
the oscillation amplitude strongly depends on the magnetic-
field orientation. This behavior cannot be simply explained
by the anisotropy of the DDI. For B ‖ z, the DDI is more
attractive over the interspecies overlap region than for B in the
xy plane, B ∈ xy. Hence, one would expect 	zMF,z < 	zMF,xy,
contrasting the observations.

The additional effect to account for is the magnetostric-
tion [50] of each species, i.e., a cloud elongation along the
magnetization direction caused by the single-species DDI.
For B ‖ z, the two clouds elongate along the z axis, thus
increasing the interspecies overlap density; see Fig. 1(b). This
increased overlap activates a backaction on the strength of the
repulsive contact interaction, which acquires a larger weight,
leading to an increased repulsion between the clouds. On the
contrary, for B ∈ xy, the clouds elongate horizontally, thereby
minimizing the overlap density and therefore the interspecies
repulsion. The slight difference in frequency observed for the
two magnetic-field orientations is due to the presence of small
residual magnetic-field gradients (see Appendix C).

To get further insight into the anisotropy of the interspecies
interactions, we repeat the above measurement for various
dipole orientations, set by the angles θ and φ. As before,
we perform two sets of measurements: We probe the out-
of-equilibrium dynamics of Dy after removing Er and vice
versa. To enhance the amplitude of the COM oscillations of
one species (Dy), we perform measurements with imbalanced
mixtures, where Er is the majority species with condensed
atom numbers in the range [4–6] × 104, while the Dy cloud
contains about [1–3] × 104 (see Appendix A).

Figure 4 summarizes our results. It shows both the mea-
sured and calculated mean-field shift 	zMF,i for each plane of
rotation for Dy (red points) and Er (blue points). We observe
that 	zMF,i has a maximum for B ‖ z and decreases when ap-
proaching the horizontal plane. The gray lines show the theory

(a) (b) (c)

FIG. 4. Mean-field displacement and theory prediction. Exper-
imental estimation of the mean-field displacement 	zMF,i for Dy
(red points) and Er (blue points), as a function of the magnetic-field
orientation. (a) θ = [0◦, 90◦], φ = 0◦. (b) φ = [0◦, 90◦], θ = 90◦.
(c) θ = [0◦, 90◦], φ = 90◦. Theory prediction for an interspecies
scattering length a12 = 100a0 (gray lines). The gray shaded area
takes into account the experimental uncertainty on the estimation
of the atom number. The error bars in 	zMF,i correspond to the
statistical uncertainty from the fit. The mismatch between the data
points at θ = 0◦ in (a) and (c) is due to different atom numbers (see
Appendix A).

results for an interspecies scattering length a12 = 100a0 and
for our experimental parameters, i.e., atom numbers and trap
frequencies. We chose a12 = 100a0 as it describes best the
experimental data. The gray shaded area takes into account
the experimental uncertainty on the estimation of the atom
number.

The theory curves agree qualitatively with the experimental
observations. In particular, experiment and theory are in good
agreement for B ‖ z, while they start to deviate for B ∈ xy.
The small mismatch can be due to the presence of residual
vertical magnetic-field gradients, which are not taken into
account in the theory. These can cause a systematic shift
of the trap frequencies to higher values when going from
B ‖ z to B ∈ xy, thereby reducing the gravitational sag (see
Appendix C). Furthermore, while our Dy ground-state calcu-
lations predict the transition to a macrodroplet at a22 = 95a0

for B ‖ y, and a further reduction of the overlap density, in
the experiment we observe a stable Dy BEC. Previous works
have also shown a quantitative mismatch between theory and
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FIG. 5. Calculated mean-field displacement as a function of a12.
Calculated mean-field displacement for (a) Dy and (b) Er as a func-
tion of the interspecies scattering length a12. The red dashed line
and the red shaded area in (a) represent the Dy experimental mean-
field displacement and its error, respectively. The magnetic field is
oriented along the z axis. (c) In-trap density cut along y = 0 for Dy
(red) and Er (blue), for a12 = 30a0 (solid lines), a12 = 100a0 (dashed
lines), and a12 = 200a0 (dotted lines). Here, NDy = 0.8 × 104 and
NEr = 5.9 × 104.

experiment in predicting the macrodroplet transition, suggest-
ing the need for refined models and an accurate determination
of a22 [36,37,51].

The overall behavior shown in Fig. 4 can be explained by
the effect of the magnetostriction on the interspecies over-
lap density. In fact, as discussed earlier, for magnetic-field
orientations in the horizontal plane, the clouds are elongated
horizontally along the direction of B, thereby minimizing the
density overlap and the interspecies repulsion, whereas when
orienting the magnetic field along the vertical direction, the
magnetostriction leads to an increase of the density overlap
and therefore of the interspecies repulsion, which overcomes
the attractive DDI. The system undergoes a transition to a state
where the two components are pushed aside, maximizing the
in-trap displacement [see Fig. 1(b)].

To study the behavior of the mean-field shift as a function
of a12, we consider a specific magnetic-field orientation. In
particular, for B ‖ z, we perform ground-state calculations
varying the interspecies scattering length a12 and calculate
the Er-Dy mean-field displacement as a function of a12. The
results are shown in Fig. 5. The mean-field displacement in-

creases with a12 owing to the fact that Dy [Fig. 5(a)] is pushed
away from Er [Fig. 5(b)]. Figure 5(c) shows the Dy (red)
and Er (blue) density cuts along y = 0, for a12 = 30a0 (solid
lines), a12 = 100a0 (dashed lines), and a12 = 200a0 (dotted
lines). The repulsive interaction between the species leads to
a decrease of the density overlap when going to higher a12. We
compare the theory results with the experimentally measured
mean-field shift at [θ = 0◦, φ = 90◦], and by performing a
χ2 analysis we are able to estimate the interspecies scatter-
ing length to be a12 = 105[−65,+162]a0 (see Appendix D).
From our ground-state calculations, when choosing a12 <

30a0 the repulsive contribution of the contact interactions to
the mean-field shift is not enough to overcome the attractive
contribution from the DDI [see Fig. 1(c)] leading to a collapse
of both species. In this regime, it might be necessary to include
the interspecies LHY term as done in Refs. [29,30].

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have experimentally investigated the
effect of the DDI on the total interspecies interaction by trac-
ing the mean-field in-trap displacement between the species.
We have presented a theoretical description for our Er-Dy
mixture, including the single-species beyond mean-field cor-
rections, which qualitatively describes well our system and
allows us to predict an interspecies scattering length on the
order of a12 = 100a0. By changing the magnetic-field ori-
entation from the horizontal plane to the vertical direction,
we were able to observe a transition to a state in which the
two components are pushed apart by the dominant mean-field
repulsive interaction. Future studies will focus on the use of
interspecies Feshbach resonances, recently reported in our
group [52], to reach the conditions in which one or both
components exhibit a phase transition to a quantum droplet or
supersolid regime. As an example, Fig. 6 shows that the onset
of a supersolid phase in the Dy component can be induced by
increasing the interspecies contact scattering length a12.
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(a)

(b)

FIG. 6. Calculation of an interaction-induced supersolidity.
Ground-state configurations for an imbalanced dipolar mixture with
the magnetic field pointing along the x axis, for two different val-
ues of the interspecies scattering length: (a) a12 = 100a0, (b)a12 =
150a0. Dashed and solid lines show the isodensity contour levels
for Dy and Er, respectively. Here, NDy = 1.2 × 104, NEr = 6 × 104,
a11 = 83a0, and a22 = 95a0.

APPENDIX A: ATOM NUMBER AND VERTICAL
COM POSITION

After each experimental sequence—described in Fig. 2—
we release the clouds and perform absorption imaging after
a TOF expansion of 26 ms. We measure the condensed atom
number for each species after subtracting the thermal part by
fitting a symmetric 2D Gaussian to the wings of the den-
sity distribution. We then fit an asymmetric Gaussian to the
remaining density distribution to extract the vertical COM
position Zi. Figure 7 shows the measured condensed atom
numbers NC of Dy (red points) and Er (blue points), related
to the results presented in Fig. 4 of the main text. These atom
numbers are given as input to the theory for each value of θ

and φ.

APPENDIX B: FOURIER REPRESENTATION AND
REGULARIZATION OF THE DIPOLAR ENERGY

Here, we outline the method used for calculating the
double integral in Eq. (2), following the standard approach in-
troduced in Ref. [33]. As anticipated, we start by rewriting the
above integral in Fourier space. In particular, we make use of
the Parseval theorem [34],

∫
g(x)h∗(x)dx = ∫

g̃(k)h̃∗(k)dk,
where g̃(k) ≡ FT[g](k) and h̃∗(k) ≡ {FT[h](k)}∗. Then, by
defining f ≡ h∗ and recalling that FT[ f ∗](k) = f̃ ∗(−k), we
have h̃∗(k) = {FT[ f ∗](k)}∗ = f̃ (−k), so that

Edd = 1

2

∫
ñ∗

i (k)Ṽdd(k)ñ j (k)dk, (B1)

where we have used the fact that ni(r) is real, which implies
ñi(−k) = ñ∗

i (k) [53]. At this point it is worth recalling that
the use of the FT implicitly entails a periodic system, and
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FIG. 7. Condensed atom numbers as a function of the magnetic-
field orientation. Measured atom numbers in the BEC for Dy (red
points) and Er (blue points) related to the measurement shown in
Fig. 4 of the main text. The magnetic field is oriented (a) in the
XZ plane, (b) in the XY plane, and (c) in the Y Z plane. The error
bars reported represent the standard error on the mean over three
experimental trials.

this brings along an unwanted effect: The long-range dipolar
interactions can couple the system to virtual periodic replica.
Such a coupling is obviously unphysical, and it can be cured
by limiting the range of the dipolar interaction within a sphere
of radius R (contained inside the computational box of size
L), namely multiplying Vdd(r) by the Heaviside step function
�(R − r), with R � L/2. The corresponding FT is [33]

Ṽ cut
dd (k) = 4π

(
1 + 3

cos(Rk)

R2k2
− 3

sin(Rk)

R3k3

)(
cos2 α − 1

3

)
.

(B2)

APPENDIX C: ESTIMATION OF THE RESIDUAL
MAGNETIC-FIELD GRADIENT

To evaluate the residual magnetic-field gradient we mea-
sure the COM position of Er and Dy as a function of the
TOF and for different values of the magnetic field. In this
way, we are able to extract the correction to the gravitational
acceleration g due to residual magnetic-field gradients. When
B is oriented along the z axis we measure an increase in g of
about 2% for Dy and 1% for Er. The presence of these residual
magnetic-field gradients along the direction of gravity leads
to a slight decrease of the trap frequencies (see Fig. 3 in the
main text) when orienting B from the XY plane to the z axis.
The tensorial polarizability [42,54] could also cause a shift
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FIG. 8. χ 2 distribution of the mean-field shift. χ 2 distribution for
the Dy mean-field shift (black points). We estimate the interspecies
scattering length to be a12 = 105[−65, +162]a0, by locally doing a
Gaussian fit around the minimum of the distribution (gray line) and
by defining the lower and upper bounds as the values at which χ2 = 1
(black dashed lines).

of the trap frequencies when changing the orientation of the
magnetic field, but these are negligible in our case.

APPENDIX D: ESTIMATION OF THE INTERSPECIES
SCATTERING LENGTH

From the calculated mean-field shift as a function of the
interspecies scattering length, shown in Fig. 5 of the main
text, we can estimate the value of a12 that best represents
the experimental results and its confidence interval. Since Er
is the majority species, its mean-field displacement is less
sensitive to the change in interspecies scattering length [as
shown in Fig. 5(b)]. In particular, the change in mean-field
shift is within the experimental error. Therefore, we only take
Dy into account for our analysis. We perform a χ2 analysis
for the Dy mean-field shift at [θ = 0◦, φ = 90◦], with χ2 =
(	zMF,2 − 	zth

MF,2)2/σ 2
	zMF,2

, where 	zth
MF,2 is the theoretically

calculated in-trap mean-field displacement, and 	zMF,2 and
σ	zMF,2 the experimental value and its statistical error. By
fitting a Gaussian around the minimum of the distribution and
by defining its confidence interval as the range in which χ2 <

1 [55], we estimate a12 = 105[−65,+162]a0, see Fig. 8.
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Chapter 4

Two-dimensional supersolidity in
dysprosium

In 2017 the ERBIUM experiment in Innsbruck observed the roton instability in a
dipolar quantum gas [45]. Such a find provided first hints of the existence of a novel
state of matter, namely a supersolid state, in analogy with the state predicted in
helium. Later in 2019, in our experiment and in the ERBIUM experiment, the first
dipolar supersolids were realized with 164Dy and 166Er, respectively [42]. Simultaneous
results where achieved in the group of Giovanni Modugno [182] in Pisa (Italy), and
in the group of Tilman Pfau [32] in Stuttgart (Germany). The realization of a
dipolar supersolid triggered many novel theoretical, as well as experimental works,
e.g. low-lying excitation modes (Goldstone and Higgs modes) [75, 84, 184], excitation
spectrum [132, 151], superfluid fraction [136, 165, 183], out-of-equilibrium dynamics [89],
and many more. One method to realize a dipolar supersolid is by first preparing a
Bose-Einstein condensate at as > add, with ϵdd < 1, and then reach the supersolid
regime by ramping the scattering length to lower values, in order to have ϵdd > 1 (see
Chapter 1).

This chapter introduces a different preparation scheme to achieve supersolidity
by direct evaporative cooling from a thermal cloud. The first supersolid states were
formed by three or four droplets aligned along a single direction. The second section
of this chapter points out the fundamental steps necessary to extend the supersolidity
from one to two dimensions, first in a zig-zag pattern and finally in a hexagonal pattern.
Lastly, the third section describes the possibility offered by two-dimensional states of
studying interesting excitation modes, as well as vortices in supersolid states.



54 Two-dimensional supersolidity in dysprosium

4.1 Direct evaporation into the supersolid state

Erbium and dysprosium present many stable isotopes with relatively high abundance,
whose interaction properties are different, offering a powerful knob to tune in the
experiment. In contrast to 166Er and 162Dy (used in Stuttgart [32] and in Pisa [182]),
to prepare a supersolid state we loaded our atomic cloud with the isotope 164Dy. The
special property of this isotope is the background scattering length abg, which is smaller
than add, where for 164Dy is add = 131 a0. Figure 4.1 shows an illustration of how
the dipolar strength changes with the magnetic field. Figure 4.1(a) shows the 164Dy
case, in which the scattering length can be tuned away from the Feshbach resonance
to reach the supersolid regime with ϵdd > 1. Figure 4.1(b) shows instead the 166Er
and the 162Dy case where, to reach the dipolar dominated regime, the magnetic field
has to be tuned close to the Feshbach resonance. This caused big losses and a short
lifetime of the supersolid state due to three-body recombination losses. In fact, while
the other groups, using 166Er and 162Dy, observed a lifetime on the order of tens of
ms, the 164Dy supersolid survived for several hundreds of ms [42], when prepared via
interaction ramp.

The long lifetime motivated us to develop a new preparation scheme, in which
we performed direct evaporative cooling into the supersolid state from a thermal
cloud [42, 177]. In this way, instead of moving horizontally in the T = 0 phase diagram
(see Sec. 1.3), we cross the supersolid phase at fixed scattering length from the third
dimension, given by the temperature. Although, for linear supersolids, where the
droplets are aligned along a single direction, the interaction-ramp protocol can be
weakly first order or continuous [18, 23] and therefore causing only small excitations, the
direct-evaporative cooling protocol proved to be essential in realizing two-dimensional
supersolidity and allowed us to reach lifetime on the order of seconds (see Sec. 4.7).

The formation of a supersolid state requires the breaking of two continuous sym-
metries: the phase invariance of the superfluid and the translational invariance of the
crystal. When accessing the supersolid state from a thermal cloud, the initial state
of the system has neither phase coherence nor density modulation. Therefore, it is
natural to ask whether the two symmetries are broken simultaneously and, if not, which
one occurs first. In our publication in Sec. 4.4, by following the evaporative-cooling
process of the atomic cloud, from several hundreds of nK down to tens of nK, we could
gain information on the development of the supersolid state. Our first experimental
observation pointed at the initial formation of a quasi-condensate crystal, where phase
coherence is localized within the droplets, and later, when lowering the temperature,
the creation of the supersolid state with the coexistence of density modulation and
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Figure 4.1 Illustration of the dipolar strength ϵdd as a function of the magnetic field
B, for 164Dy (a) and for 166Er and 162Dy (b). In the former case, the condition of
abg < add allows us to achieve a supersolid state by moving away from the Feshbach
resonance. On the other hand, in the latter case, abg > add. Therefore, to reach the
dipolar dominated regime, the magnetic field is tuned closer to the Feshbach resonance
causing large three-body recombination losses.

global phase coherence [177]. Furthermore, when looking at the modulation contrast
for similar atom number but different temperatures, we observed a higher degree of
modulation for higher temperatures, underlining the important role that finite tem-
perature plays in the supersolid formation. These findings triggered many theoretical
works aimed at improving the understanding of the finite-temperature phase diagram
of dipolar gases. Section 4.1.2 and 4.9 show how, not only quantum fluctuations, but
also thermal fluctuations have a fundamental role in the formation of a supersolid state.
In particular, higher temperatures lower the roton gap in the excitation spectrum and
favour the appearance of density modulation.

4.1.1 Probing supersolidity in the experiment

As evidence of supersolidity in the system, both density modulation and global phase
coherence need to be proven. In this regard, we use two different imaging techniques:
one probing the insitu density distribution, from which we determine the density
modulation and therefore the crystalline nature of the state, and a second one probing
the momentum distribution after a TOF expansion, from which we determine the
global phase coherence and therefore the superfluid nature of the state1.

1The recorded images taken after TOF expansion give also information on the amount of density
modulation. More details will be given later in this section.
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Insitu imaging. To probe the insitu density distribution, we shine far-detuned light
onto the atoms and perform phase-contrast imaging (see Chapter 2). Fig. 4.2a shows
the insitu density distribution n(x,y) of a linear supersolid state made of 164Dy atoms.
By integrating n(x,y) along the direction orthogonal to the modulation, we obtain the
integrated density profile ny(x) (Fig. 4.2b), which shows a crystalline structure with
periodicity lx. The periodicity depends on the trap geometry and on the scattering
length through the relation 1/lx ∝ κ ϵ

1/4
dd /lz, where lz is the harmonic oscillator length

along the dipole orientation2 and κ is a geometrical factor only dependent on fz/fy [45].
To gain quantitative information on the amount of modulation present in the system,
we perform the Fourier transform of ny(x). This profile shows peaks in the momentum
space at ±k∗ ≃ 2π/lx. By taking the ratio of the Fourier component at k∗ and the
one at zero momentum, we determine the insitu density modulation M (see Fig. 4.2c).
Note that, at the moment, the insitu imaging does not allow us to clearly resolve
the low-density region between the droplets and extract direct information on the
superfluid link. The low-density area is indeed more sensitive to fluctuations of the
background, which can lead in some cases to unphysical negative values. Futhermore,
for large detunings, the atomic susceptibility can assume a small non-zero value, which
makes the dense atomic cloud behave as a lens. This effect is strongly reduced in
phase-contrast imaging, but getting rid of it completely remains challenging due to the
coupled dependence on detuning and intensity of the light. For this reason, to probe
the superfluidity of the system, we look at the matter-wave interference pattern after
TOF expansion.

Time-of-Flight imaging. To probe the global phase coherence of the state, we
image the cloud after a TOF expansion by shining resonant light and performing
standard absorption imaging (see Chapter 2). For an unmodulated dipolar BEC, the
recorded picture shows a standard bimodal distribution, with a dense peak given by
the condensed atoms and a broad contribution given by the thermal component. For
a modulated system, the dense peak develops a pattern arising from the interference
between the expanding droplets, with maxima at ±k∗ ≃ 2π/lx. Fig. 4.3 displays an
example of absorption picture taken after 35ms TOF for a linear modulated state, in
the supersolid (a) and in the isolated-droplet (b) regimes. By recording the interference
pattern for several runs under the same experimental parameters, it is possible to
determine whether the system has global phase coherence. Indeed, on the one hand, if
each droplet shared the same phase in trap, the interference pattern is reproducible

21/lz = 2π
√

mνz/h.
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Figure 4.2 (a) In-trap density distribution n(x,y) of a linear supersolid measured
from phase-contrast imaging. The low-density link can not be reliably resolved (see
discussion in the insitu imaging paragraph). (b) 1D integrated profile ny(x). (c)
Absolute value of the Fourier transform of ny(x) showing a central peak at k = 0 and
secondary peaks at ±k∗.

from shot to shot, and survives after averaging the pictures over several experimental
runs. On the other hand, if the droplets had all different phases, the interference
pattern is not reproducible, exhibiting peaks with random amplitudes from shot to
shot, and gets washed out in the average [79] (see Fig. 4.3(a,b)).

To quantify the amount of global phase coherence, as for the insitu pictures,
we integrate the momentum distribution n(kx,ky) along the direction orthogonal to
the modulation and perform the Fourier transform (see Fig. 4.3(c-f)). The Fourier
transform ñy(x) holds the information on both the degree of modulation and global
phase coherence of the system, through the complex phasors Pi = ρi exp(−iΦi), with
ρi and Φi its magnitude and phase, respectively. We define the phasor amplitudes
at k∗, AM = ⟨|Pi|⟩ and AΦ = |⟨Pi⟩|, which carry the information on the amount of
density modulation and global phase coherence, respectively. For an unmodulated state
AM = 0, whereas, for a modulated and fully coherent state AM = AΦ. Fig. 4.3(e,f)
show ñy(x) in the supersolid and isolated droplets case, respectively. Additionally,
by recording the phase Φi for each experimental run, it is possible to get a further
estimation of the amount of global phase coherence. The insets in Fig. 4.3(e,f) show
the polar scatter plots of the phase for two cases: supersolid state and isolated droplet
state, respectively. In the former, all the points cluster in a small region of the polar
plot whereas, for the latter, the points are spred all over the 2π region.
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Figure 4.3 (a,b) Absorption images taken after 35ms TOF and averaged over 100
shots, for a modulated state as in Fig. 4.2a, in the supersolid and isolated droplet
regime, respectively. (c,d) Integrated density profiles for several runs under the same
experimental parameters (gray lines) and the average (black line) for a supersolid state
and an isolated droplet array, respectively. (e,f) Fourier transform of the integrated
profiles (gray lines) and nM = ⟨|ñy(x)|⟩ (red line) and nΦ = |⟨ñy(x)⟩| (blue line) for a
supersolid state and an isolated droplet array, respectively. The insets show the phase
Φi for each experimental run.

4.1.2 The role of finite temperature

The role played by the temperature in the phase transition to a crystalline phase
has drawn particular interest in the community to bridge theory and experiment.
Indeed, in the experiment, the temperature of the condensed cloud has a finite value,
while theoretical predictions are usually done assuming zero temperature. Recently,
we carried out studies in collaboration with the group of Thomas Pohl at Aarhus
University on the role of thermal fluctuations in dipolar systems. Our findings reveal
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that the interaction between condensed atoms and thermal excitations can have a
focusing effect on the density of condensed atoms, facilitating the appearance of density
modulation [180]. This behaviour can be understood by looking at how the relevant
energy terms scale with the condensate density and interactions. In particular, the
energy term describing the quantum fluctuations (Eq. 1.6) is positive, increases with
the density of condensed atoms and with the interactions and stabilizes the system
against the collapse. The interaction between the condensed atoms and the thermal
excitations is also positive and can be described by the following energy term:

Eth =
∫ dk

(2π)3 Ṽ (k)fk(r) τk

ϵk(r) , (4.1)

where Ṽ (k) is the Fourier transform of the total interaction potential, including con-
tact interaction and long-range DDI, fk = 1/(eϵk/kBT − 1) is the Bose distribution
of the thermal excitations, τk = h̄2k2/(2m) is the kinetic energy of the atoms, and
ϵk =

√
τk(τk +2|ψ(r)|2Ṽ (k)) is the dispersion relation of the excitations. A more de-

tailed description of the theoretical formalism can be found in the publication in Sec. 4.9.
This energy term decreases when the density of condensed atoms increases, because
higher density of condensed atoms means less thermal excitations. Therefore at finite
temperatures, in seeking the lowest energy possible, higher densities are preferred [7]
leading to a decrease in the roton energy gap ∆rot, supporting density modulation.
Another way of understanding this behaviour is by looking at the population of the
excitation modes. At finite temperatures, the roton mode has a higher probability to
be occupied. A population of this mode is associated with a modulation of the density
in real space at the roton wavelength. This modulation locally increases the density,
which in turn lowers the roton gap.

These theoretical findings agree well with our experimental observations and shed
some light on the role of finite temperatures on the superfluid-supersolid phase transi-
tion. Figure 4.4a shows the average integrated profiles ny(x), for a dysprosium cloud
prepared via evaporative cooling at fixed scattering length, with similar condensed
atom numbers but different temperatures. The cloud at higher temperature shows a
stronger modulation, which is also evident in the Fourier transform (Fig. 4.4b).

A decrease of the roton gap for higher temperatures was also observed in liquid
helium [56, 93], where the elementary excitation spectrum is experimentally addressed
via inelastic neutron scattering. Furthermore, theoretical predictions on the softening
of the roton mode with increasing temperatures were done in BECs with light-induced
dipole-dipole interactions, where long-range interactions can be engineered by irradi-
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ating a cigar-shaped BEC with far off-resonant laser light [125]. Finally, theoretical
works on Bose gases in reduced dimensions underlined the importance of thermal
fluctuations and predicted the appearance of a thermally induced roton in contact
interacting two-dimensional gases [134], and a decrease and a shift of the roton mode
for increasing temperatures [200].
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Figure 4.4 (a) Averaged integrated density profile of a 164Dy cloud measured at two
different temperatures: T = 107(4) nK (red line) and T = 77(8) nK (blue dash-dotted
line). The condensed and the total atom number are 1.42(4) × 104 and ∼ 7 × 104,
respectively, for the profile at higher temperature, and 1.34(7)×104 and ∼ 4×104 for the
profile at lower temperature. The trap geometry is cigar shaped with trap frequencies
ωx,y,z = 2π× (36,88,141)s−1 (b) Fourier transform of the averaged integrated profiles,
showing a peak at the modulation wavevector for the system at higher temperature.

4.2 From one to two-dimensional supersolidity

The previous section described the main tools used in our experiment to create - direct
evaporative cooling - and probe - phase-contrast and absorption imaging - supersolidity.
As shown in Fig. 4.2a, the early supersolid states consisted of few droplets – three
or four – aligned along a single direction, i.e. the elongated axis of a cigar-shaped
trap. The clear further step to realize a supersolid state closer to the predicted bulk
supersolids [31] was to extend the supersolid properties along a second direction and
achieve two-dimensional supersolidity with a larger number of droplets.

The first two-dimensional states showing density modulation were realized in
2016 [91], but the system did not show any global phase coherence. It was not clear,
from the beginning, whether it was possible to realize periodic structure and global
phase coherence in systems with atom numbers that where realistically achievable in
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the actual experiments. Most theoretical works predicted two-dimensional supersolidity
for unconfined systems [99], systems confined only along the dipole orientation [204],
or for atom numbers larger than the ones reported in the experiments [165]. The first
supersolids were indeed realized with ∼ 2×104 atoms [42, 89, 177]. It was clear that
to achieve density modulation and global phase coherence along two directions, and a
larger system’s size, a higher number of atoms was needed to build up the superfluid
bath necessary for the particles to flow between droplets, and allow the development
of global phase coherence.

In particular, the quantity that plays a key role in the transition from 1D to 2D
supersolid states is the averaged 2D density ρ=Ncfxfy [154]. In fact, for a fixed atom
number, when loosening the trap confinement, e.g. fy, the supersolidity is lost and the
ground state of the system is a standard dipolar BEC. To maintain supersolidity, the
2D density needs to be kept constant, by either increasing the atom number Nc or fx.
Since in the experiment Nc can not be increased indefinitely, to achieve a transition to
a 2D supersolid state, Nc can be kept constant while varying fx and fy accordingly to
keep ρ constant. More details can be found in the publication shown in Sec. 4.6.

In the experiment, after improving the condensed atom number up to ∼ 7×104,
we were able to produce states with up to 10 droplets. To reach supersolidity along
two dimensions, we employed a similar approach already seen with ion crystals, and
performed a structural phase transition from a linear chain of droplets to an arrange of
droplets in a zig-zag pattern. In crystals made of singly-charged ions, the location of the
ions and therefore the system’s structure, arises from the competition between the long-
range Coulomb repulsive interaction and the harmonic trapping confinement, usually
provided by a Paul or a Penning trap. By tuning the trap frequencies independently,
or by fixing the trap and increasing the ion number, the ions can arrange in a linear,
zig-zag or helical configuration [19, 160].

In our system, the DDI plays the role of the Coulomb interaction and it is the com-
petition between the contact and the long-range interaction and the trap confinement
that induces the transition to a zig-zag supersolid state. In particular, by changing
the power of the laser beams that generate our crossed optical dipole trap3, we were
able to prepare the supersolid state at different trap frequencies, while weakening the
confinement orthogonal to the droplet direction and increasing the atom number, until
the system performed a structural transition from a linear chain to a zig-zag pattern.
Figure 4.5 shows the structural phase transition from a linear to a zig-zag pattern for a
system made of ion crystals and for our dipolar supersolid made of 164Dy atoms. While

3See Chapter 2.2.1 for details on the optical dipole trap.
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in the former case releasing the transverse confinement is sufficient to achieve a zig-zag
pattern, for a dipolar gas, to maintain supersolidity, while lowering the transverse trap
frequency, the atom number needs to be increased.
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Figure 4.5 Structural phase transition from a linear chain to a zig-zag pattern in ionic
crystals (a,c) and in a ultracold dipolar gas of 164Dy atoms (b,d). In the former case, the
transition to the zig-zag pattern is obtained by releasing the transverse confinement. In
the latter case, to maintain supersolidity, the trap aspect ratio changes from αt = 0.32
(b) to αt = 0.43 (d), while the condensed atom number increases from 3.1(3)×104 (b)
to 6.7(3) × 104 (d). The trap frequencies along the other two directions are fixed to
fx = 33(2)Hz and fz = 167(1)Hz. (e) Condensed atom number as a function of the
trap aspect ratio, αt = fx/fy. The blue and green data points correspond to the insitu
density distribution shown in (b) and (d), respectively. Figures (a,c) adapted from
[159]. Figures (b,d) adapted from [137].

As mentioned in the previous section, to evaluate the global phase coherence of
the supersolid state, we switch off the trap and let the droplet fall. While expanding,
they interfere with each other and the resulting intereference pattern is reminiscent
of the in-trap geometry. Figure 4.6 shows the interference pattern calculated for
three different in-trap droplets arrangements: a triangular, a square and a diamond
geometry. The interference pattern are obtained by considering free expanding Gaussian
droplets with a phase randomly chosen in the narrow range 0.1 × [0,2π] to emulate
the supersolid regime, and averaging over 50 trials, as done in the measurement
shown in the publication in Sec. 4.5. The peaks distance and the configuration of
the interference pattern resemble the in-trap droplets arrangement, with the hexagon
pattern reproducing quantitatively well the experimental one. The amount of phase
coherence changes the sharpness of the peaks and blurs the average pattern. Figure 4.7
shows the interference pattern for an insitu triangular geometry (as in the experiment)
and for three different phase distributions: 0.1 × [0,2π], 0.5 × [0,2π], and 1 × [0,2π],
where the first and the last represent the case of supersolid and isolated droplets,
respectively.
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Figure 4.6 Calculated average interference pattern for three different in-trap geometrical
droplets configurations: triangular (a,d), square (b,e) and diamond (c,f). (a-c) In-trap
droplet configuration. (d-f) Calculated interference pattern for the in-trap configuration
of (a-c), respectively. Each droplet is pictured as an expanding Gaussian with a random
phase in the narrow range 0.1× [0,2π]. The resulting interference patterns are averaged
over 50 trials, as in the experiment.
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Figure 4.7 Calculated average interference pattern for three different droplets phase
distributions: (a) 0.1 × [0,2π], (b) 0.5 × [0,2π], and (c) 1 × [0,2π]. Orange boxes:
experimental interference pattern obtained after 36ms TOF from absorption imaging
for a supersolid (left) and an isolated droplet state (right). Figures in orange boxes
adapted from [137].

4.2.1 Supersolidity in a circular trap

After the experimental realization of two-dimensional supersolidity, the natural next
step was to go from a zig-zag state towards an isotropic state in a cicular trap. At
this stage, in the experiment, the atomic cloud was trapped in a crossed optical dipole
trap made of two laser beams crossing at an angle of 45°. One of this laser beam is
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modulated to create a time-averaged potential with a Gaussian shape, whose effective
waist in one direction can be tuned. The second dipole trap has instead a fixed waist.
Due to this geometrical configuration, the maximum trap aspect ratio was limited to
αt = 0.43. To be able to increase the aspect ratio to 1 and reach a circular trap, we
implemented a third optical dipole trap (see Chapter 2) with similar specifications to
the optical dipole trap with fixed waist and that crosses this one at an angle of 90°.
In this way, we have an individual control over the trap frequencies by changing the
power of the three laser beams independently.

In the publication presented in Sec. 4.7, we could realize a hexagon state made of
7 droplets in a circular trap, as predicted from theory. These two-dimensional states
have a lifetime beyond one second. The process of directly evaporating from a thermal
cloud has a fundamental role in realizing robust supersolid states in pancake traps.
By comparing the dynamic formation of a circular supersolid via an interaction ramp
with a temperature ramp, it can be shown that the former leads to a highly excited
state, preventing global phase coherence at realistic timescales. Whereas, the latter
allows the system to achieve global phase coherence soon after the temperature ramp.
Indeed, while for linear systems one roton mode can connect the superfluid state to
the supersolid state with a continuous phase transition4, in 2D systems the transition
is predicted to be discontinuous leading to strong excitations, which interfere with
the development of global phase coherence across the system [27]. Our theoretical
simulations of the interaction ramp from a dipolar superfluid to a supersolid show that
this process follows a crystal-growth type of formation, where the central droplets form
and are then succeeded by an outer ring of droplets, suggesting that the dipolar BEC
cannot be linked to the supersolid by a single roton mode as in the 1D case. More
details about the theoretical model are reported in the publication shown in Sec. 4.7.

4.3 Excitations in two-dimensional supersolids

The realization of the hexagon state opens up a whole new experimental research on the
excitations of two-dimensional supersolids. In this regard, we investigated the role that
angular oscillations can play in determining the superfluid fraction (see publication
in Sec. 4.8). Furthermore, supersolids in circular traps pave the way for the study of
vortices [165] and persistent currents [185].

4Note that, in 1D systems, the phase transition from a superfluid to a supersolid can be continuous
or discontinuous depending on the density [18, 23].
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4.3.1 Scissors mode and angular oscillations

In the quest for supersolidity, one of the major result was to be able to prove the
superfluid nature of the system. In our group, we probe the global phase coherence of
the supersolid state by performing matter-wave interference experiments and looking
at the resulting pattern (see Sec. 4.1.1). Another way of quantifying the superfluidity
of the system can be through the excitation of the scissors mode [74]. The scissors
mode is a counter rotation of the atomic cloud with respect to the axes of the trap.
It has been widely employed to infer the superfluidity in several systems as trapped
BEC [122], Fermi gases [196], 2D Bose gases [167], dipolar quantum droplets [63], and
nulcei [29], where protons and neutrons can oscillate out of phase. In the experiment
it can be excited by a sudden rotation of the trap.

Given the trap ellipticity ϵ= (ω2
x −ω2

y)/(ω2
x +ω2

y), where ωx,y are the trap frequencies
in the plane of rotation, and the atomic cloud ellipticity β = ⟨x2 −y2⟩/⟨x2 +y2⟩, the
angular oscillation frequency ωsc can be related to the moment of inertia as below [183]:

Θ = Θc ϵβ
ω2

x +ω2
y

ω2
sc

, (4.2)

where Θ is the moment of inertia and Θc is its classical value. The angular oscillation
frequency strongly depends on whether the system is superfluid or not. Following
Leggett’s definition for the superfluid fraction fs, Θ = (1−fs)Θc [111], which for non
isotropic trap can be written as:

Θ = (1−fs)Θc +fsβ
2Θc, (4.3)

and using Eq. 4.2, one can derive the angular oscillation frequency for a fully superfluid
system (fs = 1) and for a normal fluid performing rigid body rotation (fs = 0). These
are given by

ωSF
sc =

√
(ω2

y −ω2
x)/β,

ωRBR
sc =

√
(ω2

y −ω2
x)β,

(4.4)

for superfluid and normal fluid, respectively. Due to the density modulation, a supersolid
should respond to a scissors-mode excitation with a frequency ωsc between ωRBR

sc and
ωSF

sc .
From the relations above, it is visible that both a change in the superfluid fraction

and in the atomic ellipticity lead to a change in the moment of inertia and therefore
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in ωsc, with no possibility of distinction between superfluid and normal fluid for very
elongated systems where β ≃ 1 [165]. For that reason, exciting the scissors mode to
extract information on the superfluid fraction of a linear supersolid has some limitations.
Indeed, the transition from an unmodulated dBEC to a supersolid state is accompanied
by a dramatic change in the atomic ellipticity β. In addition, the supersolid state
is characterized by interconnected droplets surrounded by a superfluid bath, which
we refer to as "halo". This halo feeds the droplets and the low density link between
them, which is responsible for the phase coherence of the system. When crossing
the transition, there is a change in the density of the halo and of the interdroplet
connection. Furthermore, in linear systems, the scissors mode is always orthogonal to
the droplet axis, which weakens any conclusion on the exact value of the superfluid
link between the droplets.

In this regard, the possibility of realizing two-dimensional supersolids and having
control on β allows us to investigate this aspect deeper. Indeed, in two dimensional
systems, when crossing the transition from a dBEC to a supersolid state, β stays
almost constant. Furthermore, the angular oscillation involves motion that partially
happens along the droplet axis. In the publication shown in Sec. 4.8, surprisingly, by
exciting the scissors mode with a sudden rotation of the trap, we observe an angular
oscillation frequency that is always close to the case of fs = 1, for several scattering
lengths corresponding to a standard dBEC, a supersolid and an isolated droplet regime,
and for different values of β. These experimental findings are well reproduced by real
time simulations based on the eGPE, where a similar protocol for the excitation of the
scissors mode and a similar analysis of the oscillation dynamics are performed.

A possible explanation for these observations can be given by the multi-frequency
response of the system to the trap excitation. Equation 4.4 is in fact valid under
the assumption of shape preserving modes and single-frequency response and, in
the case of many frequencies, ωSF and ωRBR are only an upper bound for ωsc. In
the experiment the high frequency angular oscillation modes dominate over the low
frequency ones. Therefore, to infer the superfluid fraction, a different experimental
protocol able to address the scissors mode needs to be implemented [166]. Furthernore,
such a low frequency can not easily be probed in the actual experiment, due to e.g. a
limited lifetime of the supersolid state. Due to the aforementioned limitations, different
techniques might be more reliable to probe the superfluid nature of the supersolid, as
the observation of quantized vortices.
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4.3.2 Outlook: vortices in dipolar supersolids

Quantized vortices represent a strong evidence of superfluidity and they have been
observed in different ultracold systems, as BECs [1, 121, 124] and Fermi gases [205]. In
dipolar supersolids, the presence of high density peaks connected by low density regions
is predicted to modify the properties of the vortices, e.g. critical angular velocity,
angular momentum per particle, and vortex lattice geometry [66]. In particular, the
critical angular velocity to nucleate vortices, which follows the relation Ωc = ωq/2, with
ωq the frequency of the quadrupolar mode, decreases in the supersolid regime. This
is given by the low density inter-droplet regions that make the nucleation of vortices
energetically more favorable. The angular momentum per particle carried by the vortex
is predicted to be smaller than h̄, due to the reduction of superfluidity in the supersolid
state. Furthermore, for large angular velocities, the presence of high density peaks,
arranged in a triangular pattern, modifies the vortex lattice. The vortices are pinned
in low density regions between the droplets and form a honeycomb lattice [206].

Recently, in our experiment we demonstrated the first realization of quantized
vortices in a dipolar ultracold gas made of dysprosium atoms (see Appendix A.5). So
far, vortices have been created by rotating a slightly anisotropic trap [1], by stirring the
system with a focused laser beam [121], by rapidly crossing the atomic sample with an
obstacle (e.g. blue detuned laser beam) [105, 133], or by Kibble-Zurek mechanisms [192],
as topological defects arising from a rapid quench of the system. In dipolar systems,
the magnetostriction - dipole alignment along the magnetic field direction - offers an
alternative way of deforming the atomic cloud, through the anisotropic nature of the
DDI and impart angular momentum into the system. Indeed, by rotating the magnetic
field at a constant angular velocity, above the critical one Ωc, vortices appear in the
dysprosium cloud.

By using a similar technique, but preparing the cloud at a lower scattering length
during evaporative cooling, it could be possible to nucleate vortices in the circular
supersolid state. The major limitation is given by the ability of detecting vortices in
the low density region between the high density peaks. A recent theoretical proposal
suggested a protocol to nucleate and detect vortices in supersolid states based on
a interaction ramp from a superfluid to a supersolid state and then back to the
superfluid [206]. The starting condition is a rotating dipolar BEC at an angular
velocity below the critical one. By reducing the scattering length, the system enters
the supersolid state. Due to the lower value of the critical angular velocity, a vortex
can be nucleated in the low density region. For detection, the scattering length can be
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increased again, melting the supersolid into an unmodulated dBEC with a vortex at
the center, which can now be detected.
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In the short time since the first observation of supersolid states of ultracold dipolar atoms, substantial
progress has been made in understanding the zero-temperature phase diagram and low-energy excitations
of these systems. Less is known, however, about their finite-temperature properties, particularly relevant for
supersolids formed by cooling through direct evaporation. Here, we explore this realm by characterizing
the evaporative formation and subsequent decay of a dipolar supersolid by combining high-resolution in-
trap imaging with time-of-flight observables. As our atomic system cools toward quantum degeneracy, it
first undergoes a transition from thermal gas to a crystalline state with the appearance of periodic density
modulation. This is followed by a transition to a supersolid state with the emergence of long-range phase
coherence. Further, we explore the role of temperature in the development of the modulated state.

DOI: 10.1103/PhysRevLett.126.233401

Supersolid states, which exhibit both global phase
coherence and periodic spatial modulation [1–7], have
recently been demonstrated and studied in ultracold gases
of dipolar atoms [8–10]. These states are typically accessed
by starting with an unmodulated Bose-Einstein condensate
(BEC) and then quenching the strength of interatomic
interactions to a value that favors a density-modulated state.
In this production scheme, the superfluidity (or global
phase coherence) of the supersolid is inherited from the
preexisting condensate. However, a dipolar supersolid state
can also be reached by direct evaporation from a thermal
gas with fixed interactions, as demonstrated in Ref. [10].
A thermal gas at temperatures well above condensation

has neither phase coherence nor modulation, so both must
emerge during the evaporative formation process. This
leads one to question whether these two features appear
simultaneously, or if not, which comes first. Further,
because this transition explicitly takes place at finite
temperature T, thermal excitations may play an important
role in the formation of the supersolid, presenting a
challenging situation for theory. Moreover, in the case of
a dipolar supersolid, the nonmonotonic dispersion relation
and the spontaneous formation of periodic density modu-
lation lead to important new length and energy scales not
present in contact-interacting systems, which dramatically
modify the evaporative formation process.
While the ground state and dynamics of a zero-temper-

ature dipolar quantum gas can be computed by solving an
extended Gross-Pitaevskii equation [8,11–17] [see also
Fig. 1(a)], similar treatments are currently lacking for finite
temperatures in the supersolid regime. In principle, effects
of finite temperature can be taken into account by pertur-
batively including the thermal population of excited modes.

This can be done either coherently, by adding them in a
single classical field that abides the Gross-Pitaevskii
equation, as in Refs. [18–20], or incoherently, by iteratively
computing mode populations via a set of coupled Hartree-
Fock-Bogoliubov equations [9,21,22]. In order to accu-
rately describe dynamical processes occurring at temper-
atures approaching the critical temperature, both coherent
excitations and incoherent interactions with the background
thermal gas must be accounted for, requiring either more
advanced c-field [18] or quantum Monte Carlo [23–27]
techniques. So far, theories with realistic experimental
parameters have not been developed to unveil the finite-
temperature dipolar phase diagram and to determine the
properties of the thermal-to-supersolid phase transition.
In this Letter, we experimentally study the evaporative

transition into and out of a supersolid state in a dilute gas of
dysprosium atoms. As the atoms cool down to quantum
degeneracy, the number of condensed atoms increases,
giving birth to the supersolid state. Continued evaporation
and collisional loss lead to a reduction of atom number and,
eventually, the death of the supersolid. Such an evaporation
trajectory, as illustrated in Fig. 1(a), passes through the
little-understood finite-temperature portion of the super-
solid phase diagram. During the evaporative birth of the
supersolid, we discover that the system first establishes
strong periodic density modulation of locally coherent
atoms and only later acquires long-range phase coherence.
When comparing the birth and death of the supersolid,
which occur at different temperatures, we observe higher
levels of modulation during the birth, suggesting that
thermal fluctuations may play an important role in the
formation of density modulation.
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For our experiments, we first prepare an optically
trapped gas of approximately 105 dysprosium atoms (iso-
tope 164Dy), precooled via forced evaporation to temper-
atures of several hundred nanokelvin, at which point the gas
remains thermal. From here, we can apply further evapo-
ration either by a nearly adiabatic ramp-down of the trap
depth (“slow ramp”) or by a rapid reduction of the trap
depth followed by a hold time at fixed depth (“fast ramp”)
to further lower the temperature and induce condensation
into the supersolid state. The slow ramp protocol yields a
higher number of condensed atoms (Nc ∼ 2 × 104; see next
paragraph for definition) and lower shot-to-shot atom
number fluctuations, whereas the fast ramp protocol
(Nc ∼ 104) allows to follow the evolution of the system
in a constant trap, disentangling the system dynamics from
varying trap parameters. In contrast to protocols based on
quenching the interactions in a BEC [8–10], we hold the
magnetic field (and hence the contact interaction strength)
fixed during the entire evaporation process at 17.92 G,
where the system ground state at our Nc is a supersolid
[scattering length ∼ 85ð5Þ a0].
For the present Letter, we have implemented in-situ

Faraday phase contrast imaging [28,29], which allows us to

probe the in-trap density of our quantum gas at micron-
scale resolution. During the formation of the density-
modulated state, the translation symmetry is broken along
the long (axial) direction of our cigar-shaped trap [30],
typically giving rise to a chain of 3–6 density peaks, which
we call droplets. These droplets have a spacing of roughly
3 μm, clearly visible in our in-situ images [Fig. 1(b)]. As in
our previous works [10,16], we also image the sample after
a time-of-flight (TOF) expansion using standard absorption
imaging. These TOF images include a spatially broad
contribution that we attribute to thermal atoms, whose
number Nth and temperature T we estimate by 2D fitting of
a Bose-enhanced Gaussian function [31], excluding the
cloud center. Surplus atoms at the cloud center (compared
to the broad Gaussian) are at least locally coherent, or
“(quasi-)condensed” in the sense of Refs. [32–34]. With the
total number of atoms N measured by pixel count, we
define Nc ¼ N − Nth to be the number of these (at least
locally) coherent atoms. During TOF, matter-wave inter-
ference between the expanding droplets gives rise to a
characteristic interference pattern [Fig. 1(c)]. The high
contrast of the interference pattern is visible in single
TOF images and indicates that each individual droplet is by
itself a phase-coherent many-body object. The stability of
the interference fringes within the envelope over multiple
experimental realizations encodes the degree of phase
coherence between droplets (cf. Refs. [10,16] and discus-
sion below). The combination of in situ and TOF diag-
nostics provides complementary information, allowing us
to measure both density modulation and its spatial extent
(number of droplets), as well as phase coherence.
Figure 2 shows the birth of the supersolid. Starting from

a thermal sample, we apply the fast ramp (225 ms)
evaporation protocol to the desired final trap depth, too
fast for the cloud to follow adiabatically and intermediately
resulting in a nonthermalized, noncondensed sample.
Simply holding the sample at constant trap depth for a
time th, collisions and plain evaporation lead to thermal-
ization and cooling. In Fig. 2(a), we plot the average axial
in-situ density profile [cf. Fig. 1(b)] versus th, for about 20
images per time step without any image recentering. At early
th the atoms are primarily thermal and show up as a broad,
low-density background in our images. For th ≲ 150 ms,
inspection of single-shot images reveals an increasing,
though substantially fluctuating, number of droplets appear-
ing out of the thermal cloud. After this time, the droplet
number stabilizes to its final value. We observe that the
droplet formation happens on the same timescale as the
equilibration of Nc and T (see Supplemental Material [35]).
This timescale is set by the rate of evaporation, which in turn
depends on the thermalization rate and hence on the elastic
collision rate 1=τel. For our experimental parameters, we
estimate for two thermal atoms τel ≈ 3 ms (τel ≈ 10 ms)
before (after) our last evaporation ramp. Once the droplets
have formed, other timescales might be relevant in

(a) (b)

(c)

( )

FIG. 1. Evaporation trajectory through the finite-temperature
phase diagram. (a) At T ¼ 0 (bottom plane), the phase diagram
for a gas of dipolar atoms is spanned by the s-wave scattering
length as and the condensate atom number Nc. In an elongated
trap, it features a BEC (white) and independent droplet (ID,
black) phases, separated in places by a supersolid state (SSS, gray
scale). The plotted lightness in the T ¼ 0 phase diagram
represents the droplet link strength across the system (cf.
Ref. [16]). Away from T ¼ 0, the phase diagram is not known.
We explore this region through evaporation into [red, near (i)] and
out of [blue, near (ii)] the SSS, along a trajectory represented
schematically by the colored arrow. (b) Single-shot image of the
optical density (OD) of the sample in trap. Here, a system of four
“droplets” within the SSS region is shown, together with its
projected density profile. (c) Single-shot matter-wave interfer-
ence pattern after 35 ms TOF expansion (OD) and the corre-
sponding projected profile. The color scale is truncated for visual
clarity. The background clouds of thermal atoms present are not
visible in the color scales of (b) or (c); for 35 ms TOF and around
50 nK [as in (c)], the thermal atoms show an approximately
isotropic 2D Gaussian distribution of mean width σ̄ ∼ 55 μm.
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determining the equilibration rate of their relative positions
and phases; the details of this possibility remain an open
question [16].
To better quantify the growth of the modulated state, we

consider the density-density correlator C0ðdÞ for the in-situ
density profiles over distances d [35]. We find that C0ðdÞ is
well described by a cosine-modulated Gaussian and define
the density correlation length L [Fig. 2(b)] as its fitted
width. This method provides a way to determine the extent
over which density modulation has formed. Figure 2(c)
shows L for the dataset of Fig. 2(a) versus the number of
coherent atoms Nc, which we extract from TOF absorption
images in separate experimental trials with identical
parameters. Interestingly, despite the strongly modulated

structure of the supersolid state, the density correlation
length L closely follows a scaling ∝ N1=5

c , just as the
Thomas-Fermi radius of a harmonically trapped BEC,
suggesting a dominant role of interactions over kinetic
energy.
While in-situ images provide information about density

modulation (diagonal long-range order), they do not carry
direct information about phase coherence (off-diagonal
long-range order), either within or between droplets. For
this, we use TOF imaging and address the question of
whether the formation of density modulation precedes
global (i.e., interdroplet) phase coherence during the
evaporative formation of the supersolid, or the other
way round.
For this study, we perform a slow (500 ms) final forced

evaporation ramp of constant slope that is nearly adiabatic
with respect to Nc and T (though not necessarily with
respect to excitations of droplet positions and phase) and
terminate the ramp at selected crop times tc [38]. After tc,
we immediately release the atoms and perform TOF
imaging. Figure 3(a) shows the observed evolution of
the total (N) and (quasi-)condensed (Nc) atom number,
as well as the sample temperature (T) versus tc. We expand
on the observed evolution by measuring coherence proper-
ties. Following Refs. [10,16], for each measurement i we
extract a rescaled complex phasor Pi ¼ ρi exp ð−iΦiÞ, i.e.,
the Fourier component corresponding to the modulation
wavelength in the TOF interference profile (see
Supplemental Material [35]). For systems with a small
number of droplets (but at least 2), the magnitude of the
phasor ρi encodes the modulation strength and also the
(local) degree of coherence within each of the individual
droplets. Meanwhile, the phase Φi depends primarily on
the relative phase between the droplets (cf. [39]).
We plot the phasors for different evaporation times on the

polar plane in Fig. 3(b), where two effects become
apparent. First, the modulus of the phasors grows during
the evaporation, indicating that the degree of modulation
increases. Second, the distribution of phases Φi is initially
uniform and then narrows down over tc. To determine the
time sequence of these two effects, we calculate the
incoherent and coherent amplitude means AM ¼ hjPijii,
encoding modulation strength and local phase coherence,
and AΦ ¼ jhPiiij, encoding the degree of global phase
coherence across the system [10,16]. Plotting AM and AΦ
against tc [Fig. 3(c)], we notice a time lag of around 40 ms
between the increase of AM and AΦ, indicating that during
evaporation into a supersolid the translational and the phase
symmetry are not broken simultaneously [40]. Rather,
density modulation and local phase coherence appear
before global phase coherence, consistent with predictions
from Monte Carlo simulations (cf., e.g., Ref. [27]).
A similar effect is observed in the fast ramp protocol [35].
This observation suggests the transient formation of a

quasicondensate crystal—a state with local but not

(a)

(b) (c)

FIG. 2. Growth and spread of density modulation during
evaporation. (a) Averaged in-situ density profiles (no recentering,
approximately 20 shots per time step) along the long trap axis as a
function of hold time th after the fast ramp reduction of trap depth
(see main text). (b) The density correlator C0ðdÞ (solid black line)
is fitted by a cosine-modulated Gaussian function (dashed red
line) to extract the correlation length L. Gray regions are strongly
influenced by imaging noise and excluded from fits. Correlators
are displayed for th ¼ 50 ms (upper) and th ¼ 300 ms (lower).
(c) Density-density correlation length L versus Nc, for the same
time steps shown in (a). Horizontal error bars are the standard
deviation over repetitive shots, vertical error bars reflect the
correlator fit uncertainty, red points correspond to the correlators
of (b). The dashed line indicates the simple atom number
scaling of the Thomas-Fermi radius of a harmonically trapped
BEC, ∝ N1=5

c .
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long-range coherence [32–34], whose increased compress-
ibility relative to a thermal gas allows for the formation of
density modulation [41]—prior to the formation of a
supersolid with phase coherence between droplets. The
lack of global phase coherence could be attributed to a
Kibble-Zurek-type mechanism [42], in which different
regions of the sample condense independently, to excitation
of modes involving the motion or phase of the droplets
during the evaporation process, or to the thermal population
of collective modes (which reduce long-range coherence) at
finite temperature. As the evaporation process does not
allow independent control of temperature and condensation
rate without also changing density or trap geometry, we
cannot reliably determine the relative importance of these
effects (or others) from the experiment. Dedicated theo-
retical studies at finite temperature will thus be needed to
elucidate the impact of these types of processes and to
understand the exact formation process.
After the birth of the supersolid state, both density

modulation and global phase coherence persist for remark-
ably long times, exceeding 1 s. Figure 4 shows the
evolution of the coherent atom number Nc and temperature

T at long hold times under conditions similar to Fig. 2—the
same fast ramp followed immediately by hold time th.
Evaporative cooling first increases the coherent atom
number until, at long th ≥ 1 s, atom losses become dom-
inant and lead to a continuous decrease of Nc, eventually
leading to the disappearance of the modulated state.
However, this death of the supersolid is not a mere time
reversal of the birth. Nc decreases, i.e., evolves in the
opposite direction, but more slowly and at lower temper-
ature than for the birth. Furthermore, phase coherence
appears to outlive modulation and to be maintained until
the very end [35]. Thus, a comparison between the birth
and death process provides us with important clues to the
impact of temperature on the supersolid.
We contrast the birth and death of the supersolid in Fig. 4

by also plotting the observed in-situ density modulationM,
which is calculated by Fourier transforming the in-situ
density profiles and normalizing the Fourier component
corresponding to the modulation wavelength to the zero-
frequency Fourier component. By comparing M between
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and coherent atom number (Nc, solid red line) as a function of the
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versus Nc.
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times that have similar Nc during the birth and the death of
the supersolid, respectively, we find that the degree of
modulation is higher during the birth of the supersolid than
during the death. Because the sample is hotter at shorter
hold times, this suggests that the observed modulation is
increased at higher temperature, perhaps due to thermal
population of collective modes or due to finite-temperature
modifications to the dispersion relation [43], as predicted in
Ref. [22]. Again, further development of finite-temperature
theory will be needed to conclusively determine the
importance of such effects.
The role of finite temperature in the formation of

modulation, as well as the mechanism by which phase
variations across the modulated state arise and then
ultimately disappear, represent important future directions
for theoretical investigations of dipolar supersolids away
from the relatively well understood T ¼ 0 limit.
Experimentally, it would be of great interest to study the
evaporative formation process in a larger and more uniform
system, where distinct domains may be observed to form
and a broader separation of length scales may be explored
in correlation measurements. Such measurements, along
with improved finite-temperature theory, could enable more
precise statements as to the nature of the supersolid phase
transition away from zero temperature.
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CALCULATION OF DENSITY-DENSITY
CORRELATOR

We define our correlator as

C(d) = 〈∫ n(x)n(x+ d) dx〉 , (1)

where n(x) is the projected density at position x along
our cigar-shaped trap, and the expectation value 〈. . .〉 is
calculated over different runs of the experiment. In prac-
tice, we follow a standard procedure (e. g., Ref. [1]) and
calculate the correlator by computing the square of the
Fourier transform of each image to obtain its power spec-
tral density, then Fourier transform again to obtain its
autocorrelation function. The autocorrelation functions
for the different images in the sample are then averaged
to obtain C(d). Note that we do not normalize this as is
typical for a noise correlator, as we are interested in the
structure of the density profile and not specifically in its
fluctuations. To extract the correlation length, we first
subtract off a slowly varying background that represents
the envelope of our density profile from C(d) to obtain
C ′(d), shown in Fig. 2b of the main text. We then fit
the product of a Gaussian and a cosine with spatial fre-
quency km = 2π/xm corresponding to the in-trap modu-
lation wavelength xm, i. e. cos(kmx) exp(−x2/2L2), and
define the correlation length as L.

CALCULATION OF COHERENCE QUANTITIES

As described in the main text, we evaluate the coher-
ence of our droplet array by imaging the sample after
TOF expansion and Fourier transformation (F ) of the
projected density profile n(x′) (cf. Fig. 1c in main text),
where in-situ distances x and the corresponding trans-

forms are denoted as x
TOF−→ x′

F−→ x′′ [2]. For each
experimental repetition i this yields a phasor

P̃i(x
′′) = F {n(x′)}x′′ . (2)

We can calculate the incoherent and coherent means of
the Fourier amplitudes over the experimental repetitions
i, writing

ÃM (x′′) = 〈|P̃i(x
′′)|〉i and ÃΦ(x′′) = |〈P̃i(x

′′)〉i|, (3)

respectively.
The quantities AM and AΦ from the main text are

closely connected to ÃM (x′′) and ÃΦ(x′′). To disentangle
the spectral amplitude from the coherent atom number
(i. e., the area under the density profile), we calculate the
rescaled phasors

Pi(x
′′) =

P̃i(x
′′)∫

|P̃i(x′′)|dx′′
(4)

mentioned in the main text. The amplitude means cor-
responding to the in-trap modulation at wavelength xm
are then given by

AM = 〈|Pi(x
′′
m)|〉i and AΦ = |〈Pi(x

′′
m)〉i|. (5)

SUPPLEMENTARY DATA FOR FIG. 2

The data of Fig. 2 of the main text is obtained from
in-situ images of samples created via the ‘fast ramp’ evap-
oration procedure. From corresponding TOF images,
taken after the data of Fig. 2, we can study the time
evolution of ÃM (x′′) and ÃΦ(x′′) over the hold time th.
After about a hundred milliseconds a sidepeak has devel-
opped in ÃM (x′′), corresponding to the in-trap density
modulation at xm ∼ 3.5 µm wavelength. A correspond-
ing peak develops in ÃΦ(x′′), signalling growing coher-
ence between the droplets. In Fig. S1 we plot a direct
comparison of the rescaled Fourier amplitude means, AM

and AΦ, calculated at x′′m = 3.5 µm. We see that both
AM and AΦ increase with th and the increase of mod-
ulation strength starts before the development of phase
coherence.

For reference, we plot in Fig. S2 the evolution of the
total (N) and coherent (Nc) atom number for the data
set of Fig. 2 of the main text, obtained using the ‘fast
ramp’ evaporation protocol.

SUPPLEMENTARY DATA FOR FIG. 4

Fig. 4 of the main text shows the death of the super-
solid over long hold times th. Here we compare in Fig. S3
the evolution of AM and AΦ, calculated at the sidepeak
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‘fast ramp’ evaporation. a. Evolution of total (N , dashed)
and condensed atom number (Nc, solid line). b. Evolution of
the temperature, as extracted by a Bose-enhanced Gaussian
fit to the background cloud of thermal atoms [3].

in ÃM at x′′ = 3.5 µm, during the death of the super-
solid. We start our discussion looking at AM , the mea-
sure for in-trap modulation. AM stays roughly constant
for around 600 ms before it starts to decay. At above
∼ 1.1 s (gray shading in Fig. S3), the sidepeak in ÃM

around x′′ = 3.5 µm has vanished. However, AM does
not go straight to zero, since when the modulation dis-
appears, the fundamental peak (around x′′ = 0) broad-
ens to x′′ > 3.5 µm because the condensate size becomes
comparable to the (former) droplet spacing. From this
point onwards, AM cannot be used anymore as a mea-
sure for modulation. Recall that in the in-situ analysis
(Fig. 4 of the main text) a very similar behaviour was
observed, with maximal modulation until ∼ 600 ms and
modulation having disappeared by ∼ 1.1 s.

Now turning to AΦ, we note that over the full du-

ration of this process AM and AΦ (which is bounded by
AM ) evolve closely together, suggesting that coherence is
maintained in the sample throughout the life and death.
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FIG. S3. Coherence properties during the death of the
supersolid. Evolution of the means AM and AΦ from the
TOF profiles during th after a ‘slow ramp’ evaporation. The
gray shading marks the region from when on the sidepeaks
in ÃM corresponding to in-trap modulation have disappeared
and AM is not a good measure for modulation anymore.

EVAPORATION RAMPS

In the experiment, once the atoms are loaded into our
crossed optical dipole trap (ODT), we perform a near-
exponential evaporation ramp of trap power, approxi-
mated by piecewise linear ramp sections. The trap fre-
quencies after the penultimate ramp are around ω′x,y,z =
2π×(39, 178, 174) s−1, where we typically have around
N = 3×105 atoms at around 200 nK. From here, we ramp
the power of the ODT linearly down to the final value,
giving around ωx,y,z = 2π×(36, 88, 141) s−1. This pro-
cedure yields the atom numbers and temperatures pre-
sented in Figs. 3–4 of the main text and Fig. S2.

IMAGING SPECIFICATIONS

The images shown in this work have been recorded
using a new imaging system recently installed in our ex-
periment. The direction of view of the new system is
vertical (counter-directed to gravity).

Images from our imaging along the horizontal direc-
tion (as in our earlier works, see, e. g., Refs [4, 5]), in
contrast, suffer from the fact that the line of sight is
at 45° with respect to the axis connecting the droplets,
leading to a small apparent fringe spacing and to the in-
terference peaks partially hiding each other; additionally
the interference peaks do not lie in a single focus plane.
These drawbacks were eliminated with the vertical imag-
ing setup, which is why the images are much clearer to
interpret now.

The fundamental resolution of this imaging system,
applicable to in-trap images and characterised by the
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Rayleigh criterion, has been measured offline to be ap-
proximately 700 nm. We report micron-scale resolution
as a conservative claim that accounts for possible align-
ment imperfections in the finally installed condition, and
a reduction of the imaging aperture to increase depth
of field. The pixel size of our camera is smaller than
the imaging resolution, corresponding to approximately
400 nm at the location of the atoms. Additionally, the
images displayed have been supersampled to allow them
to be rotated while maintaining resolution.
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Supersolidity — a quantum-mechanical phenomenon characterized by the presence of both su-

perfluidity and crystalline order — was initially envisioned in the context of bulk solid helium, as

a possible answer to the question of whether a solid could have superfluid properties [1–5]. While

supersolidity has not been observed in solid helium (despite much effort)[6], ultracold atomic gases

have provided a fundamentally new approach, recently enabling the observation and study of super-

solids with dipolar atoms [7–16]. However, unlike the proposed phenomena in helium, these gaseous

systems have so far only shown supersolidity along a single direction. By crossing a structural phase

transition similar to those occurring in ionic chains [17–20], quantum wires [21, 22], and theoreti-

cally in chains of individual dipolar particles [23, 24], we demonstrate the extension of supersolid

properties into two dimensions, providing an important step closer to the bulk situation envisioned

in helium. This opens the possibility of studying rich excitation properties [25–28], including vortex

formation [29–31], as well as ground-state phases with varied geometrical structure [7, 32] in a highly

flexible and controllable system.

Ultracold atoms have recently offered a fundamentally
new direction for the creation of supersolids — rather
than looking for superfluid properties in a solid system
like 4He, ultracold atoms allow one to induce a crys-
talline structure in a gaseous superfluid, a system which
provides far greater opportunity for control and obser-
vation. This new perspective has enabled supersolid
properties to be observed in systems with spin-orbit cou-
pling [33] or long-range cavity-mediated interactions [34],
though in these cases the crystalline structure is exter-
nally imposed, yielding an incompressible state. In con-
trast, dipolar quantum gases of highly magnetic atoms
can spontaneously form crystalline structure due to in-
trinsic interactions [11–13], allowing for a supersolid with
both crystalline and superfluid excitations [14–16]. In
these demonstrations, supersolid properties have only
been observed along a single dimension, as a linear chain
of phase-coherent “droplets”, i.e. regions of high density
connected by low-density bridges of condensed atoms,
confined within an elongated optical trap.

The extension of supersolidity into two dimensions is a
key step towards creating an ultracold gas supersolid that
is closer to the states envisioned in solid helium. Com-
pared to previous studies of incoherent two-dimensional
dipolar droplet crystals [8, 35], we work with both a sub-

stantially higher atom numberN and relatively strong re-
pulsive contact interactions between atoms. This leads to
the formation of large numbers of loosely bound droplets,
enabling us to establish phase coherence in two dimen-
sions. In our system, the repulsive dipolar interactions
between droplets facilitate a structural transition from
a linear to a two-dimensional array, analogous to the
Coulomb-interaction-mediated structural phase transi-
tions observed with ions [17–20]. Unlike ions however,
our droplets are compressible and result from the spon-
taneous formation of a density wave, allowing for dynam-
ical variation in both droplet number and size. Further,
the exchange of particles between droplets enables the
spontaneous synchronization of the internal phase of each
droplet across the system, and the associated superfluid
excitations [14–16].

Dipolar quantum gases exhibit a rich set of ground-
and excited-state phenomena due to the competition
between many energetic contributions. These include
mean-field interactions of both contact and dipolar na-
ture, quantum fluctuations, and external confinement,
parameterized by potentially anisotropic trapping fre-
quencies fx,y,z. Such systems can be described with
great accuracy by using an extended Gross–Pitaevskii
equation (eGPE) [36–39]. Even a fine variation of the
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FIG. 1. Calculated phases of dipolar droplet array. a.

In-trap ground-state density profiles calculated using eGPE

for atom numbers N ∈ [3.3, 4.4, 5.8] × 104 in the droplets

and trap aspect ratios αt = fx/fy ∈ [0.33, 0.35, 0.39] (left

to right). The scattering length a = 88 a0, where a0 is the

Bohr radius. Green dots depict the droplet positions obtained

from the variational model, assuming the same N and droplet

number ND as the eGPE. Stars connect to experimentally

observed density profiles in Fig. 2b. b. Phase diagram, ob-

tained from our variational model, as a function of N and αt

for fx = 33 Hz, fz = 167 Hz. Linear (two-dimensional) phases

with ND droplets are labelled as 1DND (2DND ).

strength of these energetic contributions can lead to dra-
matic qualitative changes in the state of the system, for
example enabling a transition from a uniform conden-
sate to a supersolid, or in our present case, from a linear
supersolid to a two-dimensional one.

Fig. 1a shows ground-state density profiles calculated
across this transition using the eGPE at zero temper-
ature. These profiles feature arrays of high-density

droplets, immersed in a low-density coherent “halo” that
establishes phase-coherence across the system. As the
trap becomes more round, the initially linear chain of
droplets acquires greater transverse structure, eventually
forming a zig-zag state consisting of two offset linear ar-
rays.

Although the eGPE has remarkable predictive power,
full simulations in three dimensions are numerically
intensive, making a global survey of the array properties
as a function of our experimental parameters difficult.
To overcome this limitation, we employ a variational
ansatz that captures the key behavior of the system, and
allows us to disentangle the competing energetic contri-
butions. In this approach, we describe an array of ND
droplets by the wavefunction ψ(r) =

∑ND
j=1 ψj(r), where

the j–th droplet is assumed to be of the form: ψj(r) ∝
√
Nj exp

(
− 1

2

(
|ρ−ρj |
σρ,j

)rρ,j)
exp

(
− 1

2

(
|z−zj |
σz,j

)rz,j)
, in-

terpolating between a Gaussian and a flat-top profile
characteristic of quantum droplets [40]. For a given total
number of atoms N and droplet number ND, energy
minimization provides the atom number Nj in each
droplet, as well as their widths σρ(z),j , exponents rρ(z),j ,
and positions ρj = (xj , yj). Repeating this energy
minimization as a function of ND gives the optimal
number of droplets. This model provides a good quali-
tative description of the overall phase diagram (Fig. 1b),
revealing that the interplay between intra-droplet
physics and inter-droplet interaction results in a rich
landscape of structural transitions as a function of the
atom number and the trap aspect ratio αt = fx/fy.

Several trends are immediately visible from the phase
diagram. Larger N and higher αt generally produce
states with larger numbers of droplets. Further, as with
ions, a large number of droplets favors a 2D configuration,
while tighter transverse confinement (small αt) favors 1D
[17–20]. A transition from 1D to 2D is thus expected
when moving towards larger N or to higher αt. In stark
contrast to the case of ions, the number of droplets typi-
cally increases across the 1D to 2D transition, implying a
first-order nature, while only narrow regions in the phase
diagram may allow for a 1D-to-2D transition at constant
droplet number.

The variational results are in excellent agreement with
our eGPE numerics, in terms of predicting the qualitative
structure of droplet array patterns, as shown in Fig. 1a.
Slight discrepancies exist between the two theories re-
garding the predicted droplet positions and the location
of the 1D-to-2D transition. This is likely because of the
presence of the halo in the eGPE simulation (and pre-
sumably in the experiment), visible in Fig. 1a, which is
not accounted for in the variational model. This halo ap-
pears to accumulate at the ends of the trap, pushing the
droplets toward the trap center and likely increasing the
effective trap aspect ratio experienced by the droplets.

To explore the 1D to 2D transition experimentally, we
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FIG. 2. Linear to zig-zag transition in an anisotropic trap. a. We confine and condense dipolar 164Dy atoms within

an anisotropic optical dipole trap (ODT) formed by the intersection of two laser beams. By tuning the aspect ratio of the

trap in the x-y plane (αt), perpendicular to an applied magnetic field B, we induce a transition between linear and zig-zag

configurations of droplets. b. Single-trial images of the in-trap density profile of atoms at different αt, showing structural

transition from linear to zig-zag states, as well as an increase in droplet number for higher αt. Stars indicate values αt and N

corresponding to the eGPE calculations of Fig. 1a. c. Atomic aspect ratio αa versus trap aspect ratio αt. αa is the ratio of

minor to major axes of a two-dimensional Gaussian fit to the imaged in-trap density profile (inset). For the supersolid droplet

array (black markers) we see an abrupt change in αa at the critical trap aspect ratio α∗t , extracted from the fit (gray line, see

methods). The shape of the transition agrees well with eGPE prediction (green diamonds, see methods). For an unmodulated

condensate (white markers), no abrupt change is evident. d. Distribution of droplet number versus αt, showing a distinct

increase in droplet number at the transition of linear to zig-zag configurations.

use a condensate of highly magnetic 164Dy atoms con-
fined within an anisotropic optical dipole trap with in-
dependently tunable trap frequencies fx,y,z. The trap,
shown in Fig. 2a, is shaped like a surf-board with the
tight axis along gravity and along a uniform magnetic
field that orients the atomic dipoles and allows tuning
of the contact interaction strength. Typically, we per-
form evaporation directly into our state of interest at
our desired final interaction strength, as demonstrated
in Refs. [13, 41]. A combination of in-trap and time-of-
flight (TOF) imaging provides us with complementary
probes of the density profile of our atomic states, and
the phase coherence across the system.

We begin by studying the transition from one to two
dimensions by changing the strength of transverse con-
finement provided by the trap. Our optical setup allows
us to tune fy from roughly 75 to 120 Hz, while leaving
fx, fz nearly constant at 33(2), 167(1) Hz, and thus to
vary the trap aspect ratio αt in the plane perpendicu-
lar to the applied magnetic field and our imaging axis.

For small αt, the atoms are tightly squeezed transversely,
and form a linear-chain supersolid (as seen in in-trap im-
ages of Fig. 2b). As we increase αt above a critical value
α∗t = 0.34(2), we observe a structural phase transition
to a two-dimensional (2D) state with two side-by-side
droplets in the center of the chain. By further increasing
αt, the 2D structure extends to two offset lines of droplets
in a zig-zag configuration. The observed patterns match
well with the ground-state predictions from the eGPE
calculations when we globally fix the scattering length to
88a0.

We obtain higher atom numbers in the more oblate
traps (higher αt), giving N = 6.5(5) × 104 at αt = 0.44
and N = 2.5(4) × 104 at αt = 0.28. This further facil-
itates the crossing of the 1D to 2D transition, by favor-
ing states with larger numbers of droplets in the broader
traps. In the zig-zag regime, two-dimensional modula-
tion is clearly visible for durations beyond one second.
Further, the droplet configuration patterns are fairly re-
peatable, with clear structure visible in averaged images
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FIG. 3. Coherence in linear and zig-zag states. Upper panels show averaged images of experimental TOF interference

patterns, along with projections along horizontal and vertical directions of average (solid black lines) and individual images

(gray lines). The vertical projection is calculated between the dashed lines. Lower panels show interference patterns calculated

for the pictured in-trap droplet configurations (green outlines). a. Linear chain of phase-coherent droplets, showing uniaxial

modulation persisting in averaged image (26 trials). b. Zig-zag configuration of phase-coherent droplets, showing modulation

along two directions that persists in averaged image (51 trials), and hexagonal structure. The spacing of rows in the simulation

was adjusted to approximate the observed aspect ratio of TOF image. The image outlined in blue shows the average momentum

distribution calculated from a series of 20 variational calculations converging to slightly different droplet configurations, showing

the tendency of such fluctuations to broaden features in the interference pattern while maintaining the underlying structure.

c. Zig-zag configuration of phase-incoherent droplets. Modulation remains in single images, as evidenced by the spread of gray

traces in projection, but washes out in average (43 trials).

as shown in the inset of Fig. 2c, which is an average of 23
trials taken over roughly two hours.

The transition from 1D to 2D is immediately visible
when plotting the atomic aspect ratio αa versus αt, as
shown in Fig. 2c. We find that αa undergoes a rapid
change at α∗t , as the single linear chain develops two-
dimensional structure. For comparison, we plot αa mea-
sured for an unmodulated BEC, formed at a different
magnetic field, which does not feature the sharp kink
present for the supersolid state.

In Fig. 2d, we show the number of droplets present for
different αt. In the 1D regime, we typically see between
five and six droplets. This number abruptly jumps up by
approximately one droplet for 2D states near the tran-
sition point, and then increases up to an average value
of eight droplets as αt is further increased. The change
in droplet number indicates that the transition that we
observe is not of simple structural nature, but is also

accompanied by a reconfiguration of atoms within the
droplets, as expected from theory (see Fig. 1).

The measurements of in-trap density presented above
inform us about the structural nature of the transition,
but not about phase coherence, which is the key distin-
guishing feature between an incoherent droplet crystal
and a supersolid. Previous observations of 2D droplet
arrays [35] were performed in traps where the ground
state is a single droplet [8], and the observed droplet
crystal was likely a metastable state lacking inter-droplet
phase coherence. In contrast, we expect from our theo-
retical calculations that the 2D array is the ground state
of our surfboard-shaped trap (for αt > α∗t ), facilitating
the formation of a phase-coherent, and therefore super-
solid state for our experimental parameters.

We experimentally demonstrate the supersolid nature
of our 2D modulated state using a matter-wave interfer-
ence measurement, as previously used in linear supersolid
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chains [11–13], (Fig. 3a). In this measurement, an array
of uniformly spaced droplets creates an interference pat-
tern with spatial period proportional to the inverse of the
in-trap droplet spacing. The relative internal phase of the
droplets determines both the contrast and spatial phase
of the interference pattern [42]. When averaging over
many interference patterns, obtained on separate runs
of the experiment, clear periodic modulation persists for
phase-coherent droplets, but averages out if the relative
droplet phases vary between experimental trials. Thus,
the presence of periodic modulation in an average TOF
image provides a clear signature of supersolidity in our
system, as it indicates both periodic density modulation
and phase coherence.

Figure 3a shows an example of such an averaged inter-
ference pattern for a linear chain. Uniaxial modulation
is clearly present along the direction of the chain, indi-
cating a high degree of phase coherence. For comparison,
we also show the expected interference pattern calculated
for a linear array of four droplets from free-expansion cal-
culations, showing similar structure.

For conditions where in-trap imaging shows a 2D zig-
zag structure, the averaged interference pattern exhibits
clear hexagonal symmetry (Fig. 3b). This is consistent
with our expectation, and is indicative of the triangular
structure of the underlying state. To confirm that the
observed modulation is not present without phase coher-
ence, we repeat the measurement of Fig. 3b at a mag-
netic field corresponding to independent droplets, and
also compute averaged interference pattern for a zig-zag
state with the phases of the individual droplets random-
ized between simulated trials (Fig. 3c). In both cases, the
averaged image does not show clear periodic modulation.

By exploiting the transition between linear and zig-
zag states, we have accessed a regime where the super-
solid properties of periodic density modulation and phase
coherence exist along two separate dimensions. Future
work will focus on further understanding the spectrum
of collective excitations in the full two-dimensional sys-
tem [26–28, 43], where both the crystalline structure and
the exchange of particles between droplets will play an
important role. Further investigations may elucidate in
more detail the nature of the phase transitions and ex-
pected configurations in a wider range of trap aspect ra-
tios, as well as the role that defects play in the 2D system,
either as phase-slips in the zig-zag patterns [44, 45], or as
vortices trapped between droplets of the array [29–31].
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of the Austrian Academy of Science, the QuantERA
grant MAQS by the Austrian Science Fund FWF
No I4391-N. L.S and F.F. acknowledge the DFG/FWF
via FOR 2247/PI2790. M.S. acknowledges support by
the Austrian Science Fund FWF within the DK-ALM
(No. W1259-N27). L.S. thanks the funding by the
Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy
– EXC-2123 QuantumFrontiers – 390837967. M.A.N. has
received funding as an ESQ Postdoctoral Fellow from
the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Sk lodowska-Curie grant
agreement No. 801110 and the Austrian Federal Min-
istry of Education, Science and Research (BMBWF).
M.J.M. acknowledges support through an ESQ Discov-
ery Grant by the Austrian Academy of Sciences. We also
acknowledge the Innsbruck Laser Core Facility, financed
by the Austrian Federal Ministry of Science, Research
and Economy. Part of the computational results pre-
sented have been achieved using the HPC infrastructure
LEO of the University of Innsbruck.

∗ M. A. N. and C. P. contributed equally to this work.

† Correspondence should be addressed to

Francesca.Ferlaino@uibk.ac.at

[1] E. P. Gross, Unified theory of interacting bosons, Phys.

Rev. 106, 161 (1957).

[2] E. P. Gross, Classical theory of boson wave fields, Annals

of Physics 4, 57 (1958).

[3] A. F. Andreev and I. M. Lifshitz, Quantum theory of

defects in crystals, Sov. Phys. JETP 29, 1107 (1969).

[4] G. V. Chester, Speculations on Bose–Einstein condensa-

tion and quantum crystals, Phys. Rev. A 2, 256 (1970).

[5] A. J. Leggett, Can a solid be “Superfluid”?, Phys. Rev.

Lett. 25, 1543 (1970).

[6] M. H.-W. Chan, R. Hallock, and L. Reatto, Overview on

solid 4 he and the issue of supersolidity, Journal of Low

Temperature Physics 172, 317 (2013).

[7] Z.-K. Lu, Y. Li, D. S. Petrov, and G. V. Shlyapnikov, Sta-

ble dilute supersolid of two-dimensional dipolar bosons,

Phys. Rev. Lett. 115, 075303 (2015).

[8] D. Baillie and P. B. Blakie, Droplet crystal ground states

of a dipolar bose gas, Phys. Rev. Lett. 121, 195301



6

(2018).

[9] S. M. Roccuzzo and F. Ancilotto, Supersolid behavior

of a dipolar bose-einstein condensate confined in a tube,

Phys. Rev. A 99, 041601 (2019).

[10] M. Boninsegni and N. V. Prokof’ev, Colloquium: Super-

solids: What and where are they?, Rev. Mod. Phys. 84,

759 (2012).

[11] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti,
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M. Schmidt, K. S. Ng, S. D. Graham, T. Langen,

M. Zwierlein, and T. Pfau, Roton excitations in an oblate

dipolar quantum gas, arXiv preprint arXiv:2102.01461

(2021).

[44] K. Pyka, J. Keller, H. Partner, R. Nigmatullin, T. Burg-

ermeister, D. Meier, K. Kuhlmann, A. Retzker, M. B.

Plenio, W. Zurek, et al., Topological defect formation and

spontaneous symmetry breaking in ion coulomb crystals,

Nature communications 4, 1 (2013).

[45] S. Ulm, J. Roßnagel, G. Jacob, C. Degünther,

S. Dawkins, U. Poschinger, R. Nigmatullin, A. Retzker,

M. Plenio, F. Schmidt-Kaler, et al., Observation of the

kibble–zurek scaling law for defect formation in ion crys-

tals, Nature communications 4, 1 (2013).
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Methods

Experimental apparatus and protocols: Our ex-
perimental apparatus has been described in detail in
Ref. [46]. Here, we evaporatively prepare up to N =
6.5(5) × 104 condensed 164Dy atoms in a crossed opti-
cal dipole trap formed at the intersection of two beams
derived from the same 1064 nm laser, although detuned
in frequency to avoid interference. One beam (the static
ODT) has an approximately 60 µm waist. The second
(the scanning ODT) has an 18 µm waist, whose position
can be rapidly scanned horizontally at 250 kHz to cre-
ate a variably anisotropic time-averaged potential. By
tuning the power in each beam, and the scanning range
of the scanning ODT, we gain independent control of the
trap frequencies in all three directions. The two trapping
beams propagate in a plane perpendicular to gravity, and
cross at a 45° angle, which leads to the rotation of the
zig-zag state at high αt visible in Fig. 2b.

We apply a uniform magnetic field oriented along grav-
ity and perpendicular to the intersecting dipole traps,
with which we can tune the strength of contact interac-
tions between atoms. This allows us to create unmod-
ulated Bose-Einstein condensates, supersolid states, or
states consisting of independent droplets at fields of B =
23.2 G, 17.92 G, and 17.78 G, respectively.

Details of our imaging setup are provided in Ref. [41].
In-trap and TOF images are performed along the vertical
direction (along B and gravity), using standard phase-
contrast and absorption techniques, respectively. The
resolution of our in-trap images is approximately one mi-
cron. We use a 36 ms TOF duration for imaging interfer-
ence patterns.
Atom number: We extract the condensed atom number
N from absorption imaging performed along a horizontal
direction in a separate set of experimental trials under
otherwise identical experimental conditions. This allows
for a larger field of view, and better fitting of thermal
atoms. N is determined by subtracting the fitted thermal
component from the total absorption signal.

For comparison between experiment and theory, and
between the variational and eGPE theory methods, we
associate N with the number of atoms in the droplets,
and not in the diffuse halo that surrounds the droplets.
From simulation of TOF expansion, we find that the halo

is repelled at early expansion times, and is likely indis-
tinguishable from the thermal cloud in our TOF mea-
surements. While it is possible that some of the halo is
counted in N , we neglect this possibility and assume that
N includes only atoms within droplets.

Scattering length: The positions of phase boundaries
between different droplet configurations are quite sensi-
tive to the scattering length a, which is not known with
high precision in our range of magnetic fields. For all
theory, we use a value of a = 88 a0, where a0 is the Bohr
radius, as this value provides good agreement between
experiment and theory for the 1D-to-2D transition point.

Extracting critical aspect ratio: The critical aspect
ratio α∗t is extracted from fit to the function αa = α0 for
αt < α∗t , αa =

√
α2
0 + b(αt − α∗t )2 for αt > α∗t , where

α∗t , α0, and b are fit parameters. The error bars reported
in Fig. 2c represent the standard error on the mean, and
are smaller than the markers on most points.

Interference patterns: The predicted interference pat-
terns of Fig. 3 are calculated by assuming free expansion
of Gaussian droplets. In reality, the droplets are prob-
ably not Gaussian, and interactions during TOF expan-
sion may modify the interference pattern. However, the
droplet shape primarily effects the envelope of the inter-
ference pattern, which is not our primary interest here,
and from eGPE simulations, we expect the effects of in-
teractions to be minor, provided that the droplets be-
come unbound in a time short compared to the TOF,
which we verify by both looking at shorter TOFs and
comparing the fringe spacing observed in TOF with that
expected from the in-trap droplet spacing. The positions
and size of the droplets are tuned to provide illustrative
interference patterns.

Droplet number: We extract the droplet number from
our in-trap images using a peak-finding algorithm ap-
plied to smoothed images. The algorithm finds the local
maxima above a threshold, which is chosen to be 40%
of the overall peak value. Each in-trap density distribu-
tion is classified as linear array or 2D zig-zag based on
the atomic aspect ratio. Finally, the counts with a given
droplet number are normalized by the total number of
trials to get the probability shown in Fig. 2d. Fluctua-
tions in the number of atoms in a given trial can push
droplets above or below the threshold value, contributing
to the spread in extracted droplet number for a given αt.
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We theoretically investigate supersolidity in three-dimensional dipolar Bose-Einstein condensates. We focus
on the role of trap geometry in determining the dimensionality of the resulting droplet arrays, which range
from one-dimensional to zigzag, through to two-dimensional supersolids in circular traps. Supersolidity is well
established in one-dimensional arrays, and may be just as favorable in two-dimensional arrays provided that one
appropriately scales the atom number to the trap volume. We develop a tractable variational model—which we
benchmark against full numerical simulations—and use it to study droplet crystals and their excitations. We also
outline how exotic ring and stripe states may be created with experimentally feasible parameters. Our work paves
the way for future studies of two-dimensional dipolar supersolids in realistic settings.
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I. INTRODUCTION

A supersolid concurrently exhibits both superfluidity and
crystalline order [1–6]. Although predicted over half a century
ago, supersolidity was only recently realized in experiments:
a feat made possible by the flexibility and high degree of
control afforded by quantum gas systems. While supersolid
properties were observed in experiments with cavity-mediated
interactions [7] and spin-orbit coupling [8,9], those platforms
produce rigid lattices that are impervious to the usual ex-
citations expected of crystals. In contrast, supersolids with
deformable crystals have now been realized in dipolar Bose-
Einstein condensates [10–12], in which genuine crystal and
superfluid excitations have been observed [13–15].

Dipolar Bose-Einstein condensates (BECs) can be ob-
tained from highly magnetic atoms such as chromium [16],
dysprosium [17], and erbium [18]. It was already predicted
in 2003 that dipolar BECs could undergo a roton insta-
bility [19]—where the unstable excitations occur at finite
momenta—as observed in cigar-shaped Er BECs [13,20] and,
more recently, in a pancake-shaped Dy BEC [21]. However, it
was also expected from theory that the ensuing periodic den-
sity modulations would undergo a runaway collapse, and the
regions of high local density would invoke three-body losses
that rapidly destroy the underlying BEC. Indeed, a similar
process was observed with the implosion of entire chromium
BECs, driven by the attractive head-to-tail dipolar interactions
[22]. From the perspective of supersolidity, the missing ingre-
dient was a mechanism to stabilize against such implosions,
and the answer came from the experimental discovery of
dipolar droplets in Dy [23,24] and Er [25] BECs. Intriguingly,
the stabilization mechanism is well described by including
the leading-order effects of quantum fluctuations, resulting in
a theory now known as the extended Gross-Pitaevskii equa-
tion (eGPE) [25–28]. These beyond-mean-field effects are

*Corresponding author: thomas.bland@uibk.ac.at

especially important for the highly magnetic Er and Dy atoms.
With this knowledge in hand, the first dipolar supersolids were
created by crossing the roton instability from the BEC regime
to the droplet array regime [10–12], or directly by evaporative
cooling into the supersolid phase [12]. The supersolid ground-
state region exists close to this phase transition, where the
droplets overlap enough for the superfluid to globally conduct
throughout the crystal.

While almost all dipolar supersolids have been experimen-
tally realized as one-dimensional (1D) droplet arrays (see, for
example, Refs. [10–15]), two recent experiments have created
two-dimensional (2D) supersolids [29,30], thus opening an
exciting frontier. An early theoretical study in 2D predicted
a rich phase diagram determined by competing metastable
crystal configurations [31]. More recent works in 2D have
predicted supersolid edge phases [32], intriguing manifesta-
tions of quantum vortices and persistent currents [33–36],
honeycomb supersolids [37], as well as ring and stripe
phases [38,39].

Associated with this rich physics, dipolar supersolids have
a large number of control parameters and their effects on the
ground-state phase diagram interplay in a complicated way.
Furthermore, the supersolid regime typically lies only within
a small range of parameters, located between the ordinary
unmodulated BEC and a crystal of isolated droplets. It is
therefore paramount to develop strategies for maintaining su-
persolidity while exploring phase space. From a theoretical
perspective, it is also necessary to develop tractable and accu-
rate descriptions to supplement the computationally intensive
eGPE.

In this work, we study supersolidity in three-dimensional
(3D) dipolar BECs. We systematically explore 1D and 2D
droplet arrays, identifying the crucial role that the aver-
age 2D density plays to maintain supersolidity for various
trap geometries and atom numbers. We implement an eGPE
formalism—and develop a tractable variational model—to
examine the phase diagram from linear supersolids in elon-
gated traps to 2D supersolids in circular traps, passing through
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zigzag and multirow elliptical phases along the way. We find
that 2D supersolids may be just as favorable as their 1D
counterparts, provided that one fixes the average 2D density.
Through increasing the average 2D density, we show how to
observe the exotic ring and stripe phases [38,39] with realistic
experimental parameters. Finally, we extend our variational
model to study 2D crystal excitations and benchmark this
against full numerical calculations.

The paper is structured as follows. In Sec. II, we outline our
system and the eGPE, while Sec. III introduces the concept of
the average 2D density and uses it to theoretically build a 1D-
2D supersolid phase diagram. We also introduce our droplet
crystal variational model. Section IV examines increasing the
average 2D density to access the exotic ring and stripe phases.
In Sec. V, we present some exemplary 2D crystal excitations,
before concluding with Sec. VI.

II. FORMALISM

We consider 3D dipolar BECs under harmonic confine-
ment and we use the eGPE, given by [25–28]

ih̄
∂�(x, t )

∂t
=

[
− h̄2∇2

2m
+ 1

2
m

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)

+
∫

d3x′ U (x − x′)|�(x′, t )|2

+ γQF|�(x, t )|3
]
�(x, t ), (1)

where m is the mass and ωi = 2π fi are the harmonic trap
frequencies. The wave function � is normalized to the total
atom number N = ∫

d3x|�|2. For dilute gases, two-body in-
teractions are well described by the pseudopotential,

U (r) = 4π h̄2as

m
δ(r) + 3h̄2add

m

1 − 3 cos2 θ

r3
, (2)

with the first term describing the short-range interactions gov-
erned by the s-wave scattering length as. The second term
represents the anisotropic and long-range dipole-dipole inter-
actions, characterized by dipole length add = μ0μ

2
mm/12π h̄2,

with magnetic moment μm and vacuum permeability μ0. We
take the dipoles to be polarized along z, and θ is the angle
between the polarization axis and the vector pointing from one
of the interacting particles to the other. We always consider
164Dy, such that add = 130.8a0, where a0 is the Bohr radius.
The final term in (1) is the dipolar Lee-Huang-Yang correction
arising from quantum fluctuations [40], having the coefficient

γQF = 128h̄2

3m

√
πa5

s Re{Q5(εdd)}, (3)

where Q5(εdd) = ∫ 1
0 du (1 − εdd + 3u2εdd)5/2 is the auxil-

iary function, and the relative dipole strength is given by
εdd = add/as. Note that Q5 can be calculated analytically
(Appendix A), but this is just a monotonically increasing
function that is of the order of unity for the regimes that
we consider here. Ground-state and metastable solutions of
Eq. (1) are calculated by minimizing the energy functional
corresponding to the eGPE using a conjugate-gradients tech-
nique [41].

III. TWO-DIMENSIONAL SUPERSOLIDITY

A. Average 2D density

In dipolar gases, the strong interplay between the confine-
ment geometry and the long-range and anisotropic dipole-
dipole interactions means that the ground-state phase diagram
is complex and the relevant parameter space to consider is
huge. This may conceal the identification of the most im-
portant control parameters. For example, it was demonstrated
in Refs. [10–12,31,39,42] that varying as and fz dramati-
cally affects the supersolid ground state, with supersolidity
easily being lost. In what follows, we identify an important
control parameter for moving between or within the various
supersolid regimes, as well as maintaining supersolidity while
progressing from 1D to 2D droplet arrays.

Dipolar supersolids require tight confinement along the
direction of dipole polarization, and the precise choice of fz

determines the narrow range of as over which supersolidity
occurs. For this reason, we take both fz and as to be fixed in the
following argument. We propose that the average 2D density
acts as an important control parameter. This can be thought
of as an average over the droplet and interdroplet regions, and
only the 2D density is considered because fz is fixed. A simple
yet powerful estimate for how the average 2D density scales is
furnished by the Thomas-Fermi approximation, where kinetic
energy is neglected, and the x and y radii of a BEC scale ∼1/ fx

and ∼1/ fy, respectively, giving a BEC area scaling ∼1/ fx fy.
The key point is then to realize that the average 2D density
scales approximately with the parameter 
 = N fx fy. In the
next section, we explore the consequences of varying 
 versus
keeping it fixed.

B. From 1D to 2D

In order to illustrate the utility of the average 2D density—
characterized by 
—the first two columns of Fig. 1 explore the
1D-2D transition for two different phase-space trajectories:
first by allowing 
 to vary and second by fixing 
. For both, we
consider fixed interactions while moving from a cigar-shaped
trap (top row) to a pancake-shaped trap (bottom row). The
key difference between the trajectories is that column 1 has
a fixed atom number—and hence 
 decreases as the trap
loosens—while column 2 instead fixes 
, with N increasing
to compensate for the widening of the trap. Crucially, the
reduction of 
 in the first column leads to a loss of the super-
solid phase, replaced by an unmodulated BEC, while fixing 


allows us to loosen the trap while remaining in the supersolid
regime, eventually resulting in a large, 19-droplet supersolid
for the circular trap [Fig. 1(j)]. We have theoretically verified
in other work that this large 2D supersolid state is robust
against thermal fluctuations [30].

C. Droplet variational theory

Although direct simulations of the eGPE have a remarkable
predictive power, they are numerically intensive and hinder
a thorough overview. We develop a variational model that
permits a much simpler determination of the available droplet
phases, while presenting an excellent qualitative, and largely
quantitative, agreement with our eGPE calculations.
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FIG. 1. Opening up the trap from 1D to 2D for 164Dy atoms
with as = 88a0 and add = 130.8a0. In each panel, we fix ( fx, fz ) =
(33, 167) Hz and decrease fy ∈ {110, 84.6, 60, 40, 33} Hz, from top
to bottom, showing the integrated column density. Column 1: eGPE
result with constant N = 6.3 × 104. Column 2: eGPE with con-
stant average 2D density, increasing N to fix 
 = N fx fy with N ∈
{6.3, 8.19, 11.55, 17.325, 21} × 104. Column 3: same as column 2,
but the variational model. The atom number in the variational model
is chosen to match the droplet atom number of the eGPE (see text).
We always take the dipoles to be polarized by magnetic field �B
along z.

Inspired by recent work with nondipolar droplets [43], we
assume the following Ansatz for a dipolar droplet:

�(x) =
√

Nφ(ρ)ψ (z), (4)

with N the number of particles and ρ =
√

x2 + y2. We
again consider dipoles polarized along the z axis, and the
droplets are cylindrically symmetric, which we have con-
firmed as a good approximation by comparing with full eGPE
calculations. The radial and axial functions take the form,
respectively,

φ(ρ) =
√

rρ

2π�(2/rρ )σ 2
ρ

e− 1
2 ( ρ

σρ
)rρ

,

ψ (z) =
√

rz

2�(1/rz )σz
e− 1

2 ( |z|
σz )rz

,

(5)

with �(x) being the Gamma function. The widths σρ,z and
the exponents rρ,z are variational parameters. Note that this
function permits the interpolation between a Gaussian (r = 2)
and a flat-top (r � 1) profile in a natural way. Furthermore,
this Ansatz allows for a simple evaluation of the various ener-

gies in the system using well-known properties of the Gamma
function.

Our general strategy is to first numerically minimize the
single-droplet problem for a range of possible parameters
to build interpolation functions for the variational widths
σρ,z(N ) and exponents rρ,z(N ). These functions are then used
to solve the many-droplet problem.

For a single droplet, Ansätze (4) and (5) can be used to
minimize the eGPE energy functional,

Esd(N ) = Ekin + Etrap + Esr + Edd + Eqf, (6)

where these quantities are the kinetic, trap, short-range in-
teraction, dipole-dipole interaction, and quantum fluctuation
contributions, respectively. The evaluation of these terms is
detailed in Appendix A.

Now consider a droplet array with ND droplets, with Nj

atoms in the jth droplet. Within the variational model, the
energy of the droplet array is then given by

E =
ND∑
j=1

[
Esd(Nj ) + m

2

(
ω2

x x2
j + ω2

y y2
j

)
Nj

]
+

ND∑
j=1

∑
j′> j

E j j′ ,

(7)

where Ej j′ is the interdroplet interaction, detailed in
Appendix B. By solving the single- then multidroplet
problems separately, we effectively reduce the num-
ber of variational parameters from 7ND − 1 to 3ND − 1
({σ j

ρ,z, r j
ρ,z, Nj, x j, y j} → {Nj, x j, y j}), where the −1 arises

from fixing the total atom number, N = ∑
j Nj .

It is worth noting that important early work employed a
purely Gaussian variational model (i.e., rρ = rz = 2) to ex-
plore crystal and supersolid configurations [31]. Our model
goes a step further by allowing for the possibility of droplets
with flat-top density profiles, which partially acts to shield
interdroplet repulsion in the supersolid regime where the
droplets are tightly packed together.

Example solutions of our variational Ansatz are shown in
Fig. 1 (column 3), displaying excellent agreement with the
corresponding eGPE results (column 2). It should be noted
that for the eGPE solutions, a sizable number of atoms exist
outside the droplets in an outer ring, which we term the “halo.”
To make direct comparisons between the variational and
eGPE methods, we estimate the total number of atoms in the
droplets alone from the eGPE and use this to set the total atom
number for the corresponding variational calculation. For ref-
erence, the variational to eGPE atom number ratio varies from
Nvar = 0.84NeGPE for the linear chain [Figs. 1(f) and 1(k)] to
Nvar = 0.58NeGPE for the circular crystal [Figs. 1(j) and 1(o)].
Small deviations in the droplet positions occur between the
models due to repulsion between the droplets and the halo in
the eGPE, whereas the halo is absent in the variational model.
In general, the halo leads to a slight compression of the crystal.
Additionally, because the halo density is nonuniform around
the perimeter of the droplet array (in some cases forming
nearly-droplet-like regions of higher density), its presence can
also qualitatively modify the structure and the symmetry of
the droplet array in certain situations [cf. Figs. 1(h) and 1(m)].
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FIG. 2. Crystal phase diagram for 164Dy atoms from 1D (left) to
circular trap regime (right) using Ansätze (4) and (5). Color indicates
ground-state droplet number vs total atom number N and aspect
ratio αt = fx/ fy. A constant average 2D density (controlled by fixing

 = N fx fy) is used throughout, which means the trap tightens from√

fx fy = 43 Hz (top) to
√

fx fy = 114 Hz (bottom). White lines sep-
arate the 1D, zigzag (ZZ), and 2D regions. Example configurations
for fixed N = 5.4 × 104 are shown below. Parameters fz = 167 Hz
and as = 88a0 remain constant.

D. Crystal phase diagram

Here, with the variational model, we seek to explore the
full phase diagram of droplet crystal configurations while
maintaining a fixed average 2D density, which we control by
keeping 
 constant. Figure 2 shows the droplet configurations
of the ground state as a function of the trap aspect ratio
αt = fx/ fy and atom number. Since 
 is held fixed throughout,
the bottom of the phase diagram corresponds to N = 104

and
√

fx fy = 114 Hz, while the top reaches N = 7 × 104

and
√

fx fy = 43 Hz. Traversing right on the phase diagram
equates to increasing fx and decreasing fy, hence moving to
more circular configurations.

Several trends are apparent from this phase diagram.
Larger N corresponds to ground states with a larger number of
droplets. If the configuration is linear (left in Fig. 2), then the
droplet number increases incrementally one droplet at a time;
however, for large αt ∼ 1 (right in Fig. 2), there are occasional
jumps of two or more droplets—within the resolution of our
phase diagram—corresponding to preferential triangular con-
figurations of the lattice in 2D. For example, we find that for
αt = 1, the ground state jumps from ND = 8 to the ND = 12
state shown in Fig. 2 (×), with only a very narrow range of N
corresponding to a 10-droplet configuration in between.

Following the solutions from bottom left to top right in
Fig. 2, there are two distinct jumps in the average transver-
sal spread (�y = 1/ND

∑ND
j |y j − ȳ|, for the y position of

the jth droplet y j , and mean y position ȳ), marked as white
dashed lines in Fig. 2. These signify the transition from linear
[Fig. 2 (
)] to zigzag [Fig. 2 (©)] configurations, and then
2D solutions with three [Fig. 2 (�)] or more [Fig. 2 (×)]
rows of droplets. The first three of these highlighted solutions
contain the same number of droplets for a fixed atom number,
until αt ≈ 1, where the ground-state configuration consists of
12 droplets. Intriguingly, these jumps in �y are also usually
associated with a change in the ground-state droplet number. It
is interesting to note that in the 1D regime, the regions of con-
stant ND slope downwards to the left. This can be understood
by considering a horizontal trajectory, for which both N and 


are constant. As we move left along this trajectory, increasing
fy can no longer force the droplets closer together—since the
array is already 1D—while the decreasing fx provides more
space for longer droplet arrays, with larger ND.

IV. INCREASING AVERAGE 2D DENSITY

Previous theoretical works have found exotic two-
dimensional supersolid states with either large atom numbers
(∼106) or tight trapping (∼1 kHz) [37–39]. Notably, hon-
eycomb ground states have been predicted [37] with crystal
arrays of holes rather than droplets. Such states are appealing
due to their predicted strong superfluid conductance across the
crystal, without relying on low-density connections between
droplets. Also predicted are intriguing stripe and ring states
[38], as well as labyrinthine instabilities [39] familiar in clas-
sical ferrofluids [44].

Using the eGPE, we investigate the feasibility of creating
these exotic supersolids by increasing the average 2D density
through tightening the radial trap frequencies, without relying
on pushing the parameters to unrealistically large values. Fig-
ures 3(a)–3(f) show how the solution changes by increasing
fx = fy ∈ {30, 50, 80, 90, 100, 150} Hz, respectively, while
holding fixed N = 1.4 × 105, and hence 
 increases. This
trajectory through phase space takes us from an unmodulated
BEC [Fig. 3(a)] to a hexagonal supersolid [Fig. 3(b)], a stripe
supersolid [Fig. 3(d)], through to a ring state [Fig. 3(e)], and,
finally, a macrodroplet [Fig. 3(f)]. Interestingly, while the
peak density of the BEC phase is about 1.5 × 1020 m−3, for all
droplet and supersolid phases it is roughly constant at ∼1.5 ×
1021 m−3, suggesting that the atom losses from inelastic three-
body collisions—and hence also the lifetimes—of these exotic
states may be comparable to that for the current generation of
supersolid experiments.

V. EXCITATIONS OF A 2D SUPERSOLID

Following the recent experimental observation of a seven-
droplet hexagon supersolid [30], we further investigate the
excitations of this state in a circular trap using the eGPE [see
Fig. 4(a1)] and variational model [see Fig. 4(b1)].

We find excitations in the Bogoliubov–de Gennes (BdG)
framework, which consists of a linearization of the eGPE
around the stationary solution ψ0 with perturbations of
the form δψ = ue−iεt/h̄ + v∗eiεt/h̄ [45]. To visualize the
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FIG. 3. Increasing the average 2D density. The radial trap
frequency is increased from (a)–(f), respectively, as fx = fy ∈
{30, 50, 80, 90, 100, 150} Hz, while N = 1.4 × 105 is held fixed.
Density isosurfaces are shown at the 5%, 0.1%, and 0.01% of the
maximum density level. Shadow shows the 2D integrated density.
Other parameters: fz = 167 Hz and as = 88 a0.

excitations, we plot the density perturbation
�ψ = (u + v∗)|ψ0| for several exemplary excitations in
Figs. 4(a2)–4(a5) (arbitrary normalization). The arrows
represent the droplet displacement vectors (with arbitrary
global scaling), calculated from the shift in density peaks
caused by adding a small amount of excitation to the
ground-state wave function. These results are compared with
the corresponding excitations calculated with the variational
model [Figs. 4(b2)–4(b5)], with droplet displacement vectors
obtained through linearizing perturbations to the droplet
positions (see Appendix C). Since these modes exist
in the variational model—which does not account for
superfluid flow between droplets—we can classify them as
predominantly crystalline in nature.

Due to rotational symmetry, there is a zero-energy ro-
tational mode [Figs. 4(a2) and 4(b2)], which is unique to
circular trap supersolids. As expected, there are two degen-
erate Kohn modes at the radial trap frequency, one of which is
shown in Figs. 4(a3) and 4(b3). Also plotted are quadrupole
excitations [Figs. 4(a4) and 4(b4)], as well as an example
surface crystal mode [Figs. 4(a5) and 4(b5)], which is a unique
feature of 2D supersolids highlighting the rich tapestry of ex-
citations. In the last two examples, the mode energy obtained
in the BdG framework and the variational models differs.
The energies are E/h = 54 Hz [Fig. 4(a4)] and E/h = 72 Hz
[Fig. 4(a5)] from the BdG calculations and E/h = 65 Hz
[Fig. 4(b4)] and E/h = 69 Hz [Fig. 4(b5)] from the variational

FIG. 4. Crystal excitations. (a1),(b1) Seven-droplet crystal state
and corresponding excitations from the (a2)–(a5) eGPE-BdG cal-
culations and (b2)–(b5) variational model. Arrows indicate relative
droplet motion (see main text). Parameters: as = 90a0, fx,y,z =
(52.83, 52.83, 167) Hz, N = 9.5 × 104. (c) Exemplary excitations
for the 19-droplet state from the variational model shown in Fig. 1(o).

model. These deviations point to a measurable role played by
the superfluid connection between the droplets, and the effect
of the surrounding halo, which are not accounted for by the
variational model. Such comparisons between models provide
an excellent platform to distinguish contributions from the
crystal and the superfluid surrounding and connecting the
droplets.

The computational cost of obtaining modes from BdG
linearization is high, requiring the diagonalization of large
dense matrices consisting of the total number of position space
grid points squared; in our case, ∼106 × 106. We achieve
this using an eigensolver based on the implicitly restarted
Arnoldi method. We also find that the linearization is slower
when there is no appreciable superfluid connection between
the droplets, making excitations in the isolated droplet regime
difficult to obtain. However, in this regime, the variational
model agrees well with the BdG calculations, and the former
only requires the diagonalization of a 2ND × 2ND matrix [i.e.,
the total number of (x j, y j ) pairs]. This allows us to explore
excitations of larger crystals.

In Figs. 4(c1)–4(c3), we show excitations of the 19-droplet
crystal [Fig. 1(o)] using the variational model, a state that
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would require months of computational time to obtain exci-
tations within the eGPE-BdG framework. This configuration
consists of two concentric hexagons with a single droplet in
the middle, where the inner hexagon consists of six droplets
and the outer hexagon has 12. In Fig. 4(c1), we highlight an
interesting mode in which the two outer hexagons counter-
rotate. We also find a quadrupole mode [Fig. 4(c2)] and, in
Fig. 4(c3), we show an analog of the surface crystal mode that
we saw for the seven-droplet hexagon [Figs. 4(a5) and 4(b5)].

VI. CONCLUSIONS

We have investigated the scope and feasibility of 2D super-
solidity in harmonically trapped dipolar Bose gases, identify-
ing the crucial role of the average 2D density in maintaining
both the crystal structure and global superfluidity while vary-
ing the dimensionality and size of the droplet array. By devel-
oping a variational multidroplet model, we explored the phase
diagram of crystal configurations for a wide range of atom
numbers and aspect ratios for a fixed 2D density, identifying
the transition from one- to two-dimensional droplet arrays.

We theoretically explored how increasing the average 2D
density may provide a route for creating exotic stripe and
ring supersolids under experimentally realistic conditions. We
also extended our variational model to explore crystal excita-
tions, verified by direct comparison to the BdG analysis. This
method allows for the investigation of crystal modes in large
2D supersolids, where exact diagonalization of the eGPE is
demanding.

Future work will further explore the potential of the varia-
tional model. Implementing a system of Hamilton equations
would allow for dynamics of the droplet arrays, and fur-
ther open up the study of excitations in two-dimensional
supersolid crystals. While we have revealed how to vary an
important triplet of coupled parameters, i.e., N , and the two
trapping frequencies perpendicular to the direction of dipole
polarization, fx and fy, enabling the exploration of supersolids
of various shapes and sizes, future studies will seek an easy
determination for how best to vary other control parameters,
such as the coupling between the interaction strengths and the
remaining trap frequency, fz.
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APPENDIX A: SINGLE-DROPLET VARIATIONAL MODEL

Here we detail the individual contributions to the single-
droplet energy functional for N atoms,

Esd(N ) = Ekin + Etrap + Esr + Edd + Eqf. (A1)

These terms are given by

Ekin = − h̄2

2m

∫
d3x �∗∇2�,

Etrap = m

2

∫
d3x �∗ ∑

i

ω2
i x2

i �,

Esr = 1

2

∫
d3x �∗g|�|2�,

Edd = gεdd

2

∫
d3k

(2π )3

(
3k2

z

k2
− 1

)
|ñ(k)|2,

Eqf = 2

5
γQF

∫
d3x |�|5,

(A2)

corresponding to the kinetic, trap, short-range interaction,
dipole-dipole interaction, and quantum fluctuation con-
tributions, respectively. Here, the short-range interaction
coefficient is g = 4π h̄2as/m, and the quantum fluctua-

tion coefficient is γQF = 32
3 g

√
a3

s
π

Q5(εdd), where Q5(εdd) =
Re[

∫ 1
0 du (1 − εdd + 3u2εdd)5/2], and the density in Fourier

space is ñ(k) = ∫
d3x e−ik·x|�(x)|2. The integral Q5(εdd) can

be evaluated as

Q5(εdd) = Re
(3εdd)5/2

48

[
(8 + 26ε + 33ε2)

√
1 + ε

+ 15ε3 ln

(
1 + √

1 + ε√
ε

)]
, (A3)

where ε = (1 − εdd)/(3εdd). Note that when using this defini-
tion, care should be taken for the special cases Q5(0) = 1 and
Q5(1) = 3

√
3/2.

These integrals are evaluated upon substitution of the
Ansatz �(x) = √

Nφ(ρ)ψ (z) [43] [see main text, Eq. (4)],
with N the number of particles in the droplet. The radial and
axial functions, normalized to one, are assumed to be of the
form

φ(ρ) =
√

rρ

2π�(2/rρ )σ 2
ρ

e− 1
2 ( ρ

σρ
)rρ

,

ψ (z) =
√

rz

2�(1/rz )σz
e− 1

2 ( |z|
σz )rz

,

(A4)

with �(x) the Gamma function. The widths σρ,z and the expo-
nents rρ,z are variational parameters. Substituting the Ansätze
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given by Eqs. (A4) into the energy contributions given by
Eqs. (A2) gives the following results. The kinetic energy of
the droplet is of the form

Ekin

N = h̄2

2mσ 2
ρ

r2
ρ

4�(2/rρ )
+ h̄2

2mσ 2
z

rz fK (rz )

2�(1/rz )
, (A5)

with fK (rz ) = (rz − 1)�(1 − 1/rz ) − rz

2 �(2 − 1/rz ). The trap
energy is

Etrap

N = m

2

(
ω2

x + ω2
y

)[σ 2
ρ �(4/rρ )

2�(2/rρ )

]
+ m

2
ω2

z

[
σ 2

z �(3/rz )

�(1/rz )

]
.

(A6)

Short-range interactions lead to an energy contribution,

Esr

N = gN
8πσ 2

ρ σz

rρrz

22/rρ+1/rz�(2/rρ )�(1/rz )
, (A7)

whereas quantum fluctuations result in the Lee-Huang-Yang
correction:

Eqf

N = 64Q5(εdd)

15
√

π

(
2

5

) 2
rρ

+ 1
rz

gn0

√
n0a3, (A8)

where n0 = N rρrz

4π�(2/rρ )�(1/rz )σ 2
ρ σz

is the central density.

The dipolar energy is best evaluated in momentum space.
The Ansatz density in Fourier space can be decomposed as
ñ(k) = ñρ (kρ )ñz(kz ), with

ñρ (kρ ) = rρ

�(2/rρ )

∫ ∞

0
dρ ρe−ρrρ

J0(kρσρρ),

ñz(kz ) = rz

�(1/rz )

∫ ∞

0
dz e−zrz

cos(kzσzz),

(A9)

where J0 is the first Bessel function of the first kind.
Interestingly, these functions can be very closely approx-

imated by Gaussians: ñρ (kρ ) � e−αρ (rρ )(kρσρ )2
and ñz(kz ) �

e−αz (rz )(kzσz )2
, where αρ (ρ) and αz(z) are functions found

through numerical fitting to Eqs. (A9) prior to variational
minimization. The dipole-dipole interaction can then be easily
expressed as

Edd

N = gεddN f (�ρ/�z )

2(2π )3/2�2
ρ�z

, (A10)

where �2
ρ,z = 4αρ,z(rρ,z )σ 2

ρ,z, and

f (κ ) = 1

κ2 − 1

[
2κ2 + 1 − 3κ2 arctan(

√
κ2 − 1)√

κ2 − 1

]
. (A11)

Our approach is to first minimize the single-droplet en-
ergy (A1) for a suitable range of atom numbers. Thus, in
preparation for solving the multidroplet problem, we gen-
erate interpolating functions Esd(N ), σρ,z(N ), and rρ,z(N ),
furnishing a library of single-droplet solutions for a given trap
and interaction parameters.

Employing this two-step method reduces the number
of variational parameters from seven per droplet to three
({σ j

ρ,z, r j
ρ,z, Nj, x j, y j} → {Nj, x j, y j}). Note that the final

populations of the droplets are constrained by the total atom
number N = ∑

j Nj . The effect of interdroplet repulsion is
not accounted for in calculating the shape of the droplets. We

replace fx,y → 110 Hz to simulate the effect of interdroplet
interactions on a given droplet’s shape; then, to get the energy,
we use the fx,y of the actual trap.

For all minimization procedures related to variational
calculations, we use the sequential quadratic programming
algorithm implemented in the MATLAB function fmincon.

APPENDIX B: INTERDROPLET INTERACTION ENERGY

Let us consider two droplets with N1 and N2 atoms, re-
spectively, which are sufficiently separated, such that we can
neglect any overlapping. The center of mass of the droplets is
placed at r j=1,2 = (x j, y j, 0), i.e., we permit displacements on
the xy plane, but assume that z j = 0. As for the single-droplet
dipolar energy, the interdroplet dipole-dipole interaction is
best calculated in momentum space,

E12 = gεddN1N2

∫
d3k

(2π )3

[
3

k2
z

k2
− 1

]
ñ∗

1(k)ñ2(k), (B1)

where we can approximate the Fourier transform of the den-
sity profile of the droplets as

ñ j (k) � e−k2
ρ�ρ (Nj )2/4e−k2

z �z (Nj )2/4eikρ (x j cos φ+y j sin φ). (B2)

The phase φ is accumulated due to the central position of
the droplets being different from the origin and plays no
role in the energy calculation. We can then evaluate the
interaction energy E12 as a function of the distance r12 =√

(x1 − x2)2 + (y1 − y2)2 between the droplets:

E12(r12) = gεddN1N2

�̄2
ρ�̄z

√
2

π2

×
∫ 1

0
du

(�2+2)u2 − �2

(1−�2)u2 + �2
G

[
2r2

12(1−u2)

�̄2
ρ

]
,

(B3)

where 2�̄2
ρ,z = �ρ,z(N1)2 + �ρ,z(N2)2, � = �̄z/�̄ρ , and

G(x) =
√

π

4
e−x/8

{
I0

(x

8

)
+ x

4

[
I1

(x

8

)
− I0

(x

8

)]}
, (B4)

with In(x) the modified Bessel function. The interaction en-
ergy (B3) is attractive at short distances, a spurious effect up
to the radial size of a droplet. In order to prevent the droplets
from “piling up”â in this inner region, we instead approximate
the interdroplet potential as

Ej j′ (r j j′ ) � V0(Nj, Nj′ )NjNj′

[r j j′ + r0(Nj, Nj′ )]3
, (B5)

for any two droplets j and j′, where V0 and r0 are determined
by fitting to Eq. (B3). This term is the last contribution to
Eq. (7) and is utilized in the phase diagram given in Fig. 2.
By considering a range of particle number pairs between
droplets, we determine the interpolating functions V0(N ,N ′)
and r0(N ,N ′) prior to solving the full many-droplet problem.
Note that the shift r0, which results from the z extension of the
droplet, is relevant because typical interdroplet distances are
comparable to the z size of the droplets.
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APPENDIX C: EXCITATIONS OF THE VARIATIONAL
MODEL

Expanding around the equilibrium positions R j = (x j, y j ),
r j = R j + ε j , the energy of the array becomes, up to sec-
ond order in the displacement ε j = (εx; j, εy; j ), of the form
E = E0 + E (2) (the first-order contribution cancels because
we move from an energy minimum), with E0 the ground-state
energy, and

E (2) =
ND∑
j=1

εT
j ·

[
Â j · ε j −

∑
j′ �= j

B̂ j j′ · ε j′

]
, (C1)

where

B̂ j j′ = V0(Nj, Nj′ )
√

NjNj′

(
β j j′ + γ j j′X 2

j j′ γ j j′Xj j′Yj j′

γ j j′Xj j′Yj j′ β j j′ + γ j j′Y 2
j j′

)
,

(C2)

Â j = mNj

2

(
ω2

x 0
0 ω2

y

)
+

∑
j′ �= j

B̂ j j′ , (C3)

with

β j j′ = −3

2Rj j′ (Rj j′ + r0, j j′ )4
, (C4)

γ j j′ = 3

2R3
j j′ (Rj j′ + r0, j j′ )4

+ 6

R2
j j′ (Rj j′ + r0, j j′ )5

, (C5)

and the separation matrices Xj j′ = x j − x j′ , Yj j′ = y j − y j′ ,
and Rj j′ = |r j − r j′ |.

We can write E (2) = ��T · M̂ · ��, with �� =
(εx,1, εy,1, . . . εx,NDεy,ND ). Now, we can diagonalize �M to
obtain the eigenvalues λν , which provide the excitation
frequencies of the droplet array, �ν = √

2λν . Note that this
is an expansion around the equilibrium positions only, and
not a perturbation of the individual droplet shape or atom
number, so other shape excitations, such as droplet breathing
modes, will not be captured by this method. Some example
excitations are shown in Figs. 4(b2)–4(b5) and 4(c1)–4(c3),
where the arrow indicates the vector between R j and r j for
each droplet j.
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4.7 Publication V:

Two-dimensional supersolid formation in dipolar con-
densates
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Dipolar condensates have recently been coaxed to form the long-sought supersolid phase. While one-
dimensional supersolids may be prepared by triggering a roton instability, we find that such a procedure
in two dimensions (2D) leads to a loss of both global phase coherence and crystalline order. Unlike in 1D,
the 2D roton modes have little in common with the supersolid configuration. We develop a finite-
temperature stochastic Gross-Pitaevskii theory that includes beyond-mean-field effects to explore the
formation process in 2D and find that evaporative cooling directly into the supersolid phase—hence
bypassing the first-order roton instability—can produce a robust supersolid in a circular trap.
Importantly, the resulting supersolid is stable at the final nonzero temperature. We then experimentally
produce a 2D supersolid in a near-circular trap through such an evaporative procedure. Our work
provides insight into the process of supersolid formation in 2D and defines a realistic path to the
formation of large two-dimensional supersolid arrays.

DOI: 10.1103/PhysRevLett.128.195302

The supersolid phase was predicted to simultaneously
exhibit crystalline order and superfluidity [1–6]. While it
remains elusive in helium, recent developments in ultracold
quantum gases have finally made supersolidity a reality,
providing an excellent platform for the control and obser-
vation of these states. Important early advances were made
in systems with spin-orbit coupling [7,8] and cavity-
mediated interactions [9], where supersolid properties were
observed in rigid crystal configurations. Bose-Einstein
condensates (BECs) with dipole-dipole interactions have
now been observed in a supersolid state with deformable
crystals [10–13], with their lattices genuinely arising from
the atom-atom interactions [14–16].
In the first dipolar supersolid experiments, translational

symmetry was broken only along one axis, giving rise to a
one-dimensional (1D) density wave, commonly referred to
as a 1D droplet array [10–12]. A more recent experiment
has created the first states with two-dimensional (2D)
supersolidity in elongated traps of variable aspect ratio
[13]. This opens the door to study vortices and persistent
currents [17–20], as well as exotic ground state phases
predicted for large atom numbers [21–24].
It is still an open question whether 2D arrays provide as

favorable conditions for supersolidity as 1D arrays do. In
1D, following an interaction quench from an unmodulated
to modulated BEC, the density pattern induced by a roton
instability [14,25–28] can smoothly connect with the final
supersolid array [10–12]. This transition, hence, has a
weakly first-order character or is even continuous [29,30],
and such quenches through the transition cause only small
excitations of the resulting supersolid [10–12]. While it has

been predicted that a similar procedure may lead to
coherence between three droplets in a triangular configu-
ration [31], earlier work with nondipolar superfluids
suggests that such symmetry-breaking quenches may be
unfavorable for supersolid formation in 2D and 3D [32,33].
An alternative method exists to experimentally produce

dipolar supersolids. Instead of quenching the interactions
to trigger a roton instability, it is possible to cool a
thermal sample directly into the supersolid state using
evaporative cooling techniques [12,34]. Crucially, this is
the only known method for producing 2D supersolids to
date [13]. While a dynamic interaction quench may be
described by the extended Gross-Pitaevskii equation
(eGPE) [35–38], we are not aware of any available theory
to model the required evaporation process. From a theo-
retical perspective, much remains unknown about evapo-
rative supersolid formation. Is it a general feature that the
droplets form before global phase coherence develops, as
reported in Ref. [34]? Under what conditions do defects
persist? Such answers will be paramount in the quest for
ever-larger 2D supersolids, as well as for the observation of
vortices embedded within them.
In this Letter, we explore the formation of large 2D

supersolids in circular-shaped traps. We develop a finite-
temperature Stochastic eGPE (SeGPE) theory to model the
entire evaporative cooling process. Importantly, our theory
includes the beyond-mean-field quantum fluctuations
responsible for stabilizing the individual droplets.
We compare the evaporative cooling formation dynamics

with those resulting from an interaction quench, finding
striking differences between the two protocols. Following
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an interaction quench, the 2D crystal grows nonlinearly
with the droplets developing sequentially, producing con-
figurations that are unrelated to any roton mode combina-
tion of the original unmodulated BEC. The resulting crystal
is substantially excited and lacks global phase coherence.
Alternatively, by directly cooling into the supersolid
regime, our SeGPE theory predicts the formation of large
2D supersolids in circular traps, with global phase coher-
ence that remains robust at finite temperature. To bench-
mark our theory—as well as to test the direct cooling
protocol for pancake-shaped trapping geometries—we
perform experiments and observe a 7-droplet hexagonal
supersolid in a near-circular trap.
Formalism.—We are interested in ultracold, dipolar

Bose gases harmonically confined in 3D with trapping
frequencies ωx;y;z ¼ 2πfx;y;z. Two-body contact inter-
actions and the long-ranged, anisotropic dipole-dipole
interactions are well described by a pseudopotential,
UðrÞ ¼ ð4πℏ2as=mÞδðrÞ þ ð3ℏ2add=mÞ½ð1 − 3cos2θÞ=r3�,
with as being the s-wave scattering length and add ¼
μ0μ

2
mm=12πℏ2 the dipole length, with magnetic moment

μm, and θ is the angle between the polarization axis (z axis)
and the vector joining two particles. The ratio ϵdd ¼ add=as
(for as > 0) is convenient to keep in mind, since for ϵdd ≤ 1
the ground state will be an unmodulated BEC, whereas
for the dipole-dominated regime ϵdd > 1 the unmodulated
BEC may become unstable [39]. Here, we always consider
164Dy, with add ¼ 131a0. The eGPE has been described
elsewhere [35–38], and its details have been deferred to
Supplemental Material [40].
We phenomenologically introduce a finite-temperature

simple growth SeGPE theory [55]. This describes the
“classical” field, Ψðr; tÞ, of all highly populated
modes up to an energy cutoff. The dynamics are governed
by [56]

iℏ
∂Ψ
∂t ¼ P̂fð1 − iγÞðL½Ψ� − μÞΨþ ηg: ð1Þ

Here, L is the eGPE operator defined in Ref. [40],
and γ describes the coupling of the classical field modes
to the high-lying modes. We find that γ ¼ 7.5 × 10−3

gives good agreement to the condensate number growth
rate of a recent experiment under comparable conditions
[34] (see also Ref. [40]). The dynamical noise term η,
subject to noise correlations given by hη�ðr; tÞηðr0; t0Þi ¼
2ℏγkBTδðt − t0Þδðr − r0Þ, means that each simulation run
is unique. Finally, P̂ is a projector which constrains the
dynamics of the system up to energy cutoff ϵcutðμÞ ¼ 2μ—
consistent with previous treatments [57,58]—where we use
the final μ after evaporative cooling.
Supersolid formation simulations.—With these two the-

ories in hand, we perform two kinds of dynamic quench
simulations in a pancake-shaped trap, where in both
cases the ground state for the final parameters would be
a 19-droplet supersolid:
(i) An interaction quench from an unmodulated BEC to

the supersolid regime using the eGPE [Fig. 1(a)]. Noise is
first added to the BEC ground state [59], and this is evolved
for a 20 ms equilibration time before the interaction
strength is linearly ramped over the next 30 ms from
as ¼ 95a0 to as ¼ 88a0—crossing the roton phase tran-
sition to the supersolid regime—and then held constant
again for the remainder of the simulation.
(ii) A temperature quench from a thermal cloud to the

supersolid phase using the SeGPE [Fig. 1(c)]. Each simu-
lation begins with a 200 ms equilibration time at fixed
high temperature T ¼ 150 nK to generate a thermal cloud.
To simulate the evaporative cooling process, the chemical
potential and temperature are then linearly ramped
over 100 ms, from ðμ; TÞ ¼ ð−12.64ℏωz; 150 nKÞ to

(a)

(c)

(b)

FIG. 1. (a) Crystal preparation from interaction quench, evolved with the eGPE, for N ≈ 2.1 × 105 Dy atoms [quench (i)]. Isosurfaces
are at 5% max density, with color indicating phase. Insets: z column densities normalized to max value from the entire simulation.
(b) Dynamic structure factor for an unmodulated BEC (as ¼ 92a0) in energy-momentum space, normalized to peak value. The lowest-
energy roton modes are indicated, and the ground state with an m ¼ 2 roton mode added is shown, revealing the localized nature of the
rotons. Parameters are otherwise the same as in (a). (c) Crystal preparation from temperature quench (evaporative cooling) evolved with
the SeGPE [quench (ii)]. The temperature decreases as the chemical potential and condensate number rise, with scattering length fixed at
as ¼ 88a0. For all subplots fx;y;z ¼ ð33; 33; 167Þ Hz, and lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p
.
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ð12.64ℏωz; 30 nKÞ, mimicking the growing condensate
number observed in experiments [60,61], while the scatter-
ing length is always held fixed at as ¼ 88a0.
Focusing first on the interaction quench, the density

isosurfaces in Fig. 1(a) represent snapshots at various times
for a single simulation run, revealing intriguing formation
dynamics. Initial droplets are seeded through unstable roton
modes, but staggered droplet formation reveals a process
of nonlinear crystal growth, as highlighted by the column
densities shown as insets in Fig. 1(a). In Fig. 1(a2), two
central droplets have already attained their final peak
density, while a secondary ring of droplets is only just
beginning to form. Then, in Fig. 1(a3), eight droplets
have fully matured, and the process continues radially
outward until a 19-droplet crystal is approximately
attained. Similar droplet formation dynamics have been
predicted in optical media [62].
The colors on the density isosurfaces in Fig. 1(a)

represent the wave function phase. The color scale is
recentered in each subplot, and an ideal phase coherent
solution would have a uniform color everywhere.
Importantly, the crystal growth process disrupts the global
phase coherence, as evidenced by the various colors in
Fig. 1(a4), leaving an excited crystal in which some outer
droplets dissolve and reemerge from the halo. Note that the
situation does not qualitatively change for reduced initial
noise or gentler interaction ramps, suggesting that the
strong excitations result from a first-order character of
the roton instability in 2D.
We explain the interaction quench dynamics by

calculating the elementary excitations of the unmodulated
BEC close to the roton instability, i.e., for as ¼ 92a0.
These results are displayed in Fig. 1(b) as the dynamic
structure factor Sðk;ωÞ, which predicts the system
response to perturbations of momentum ℏk and energy
ℏω [28,63–65] (also see Ref. [40]). A roton minimum can
be seen at kxlz ≈ 1.1, and we plot the lowest roton modes
corresponding to m ¼ 0, 1, 2, with m being the angular
quantum number in the z direction [66]. On the top right is
the density obtained by adding an m ¼ 2 roton mode to the
BEC wave function, revealing how rotons are confined to
high-density regions [67,68]. This reveals a qualitative
difference between the 1D and 2D situations, since, from a
simple geometric standpoint, in 2D the high-density region
inherently encompasses a smaller proportion of the total
atom number. Thus, the roton-induced droplet number is
only a small fraction of the final droplet number, meaning
the droplets appear sequentially for 2D.
Another qualitative difference between 1D and 2D is a

kind of frustration. First, note that our target supersolid
ground state for the final quench parameters is a 19-droplet
crystal, with a central droplet [see the inset of Fig. 2(b)].
Only an m ¼ 0 roton mode [see Fig. 1(b)] could directly
trigger the formation of a central droplet, but then only
concentric rings could form further out. Thus, unlike for

1D, no single roton mode can smoothly connect the
unmodulated BEC to the 2D supersolid ground state.
Next, we analyze the finite-temperature quench results.

Figure 1(c) shows snapshots of the condensate growth,
demonstrating that both the crystal structure and the
global phase coherence—evidenced by the uniform color
in Fig. 1(c4)—develop soon after the quench. Note that
timescales will be quantified shortly. It is also an important
result in itself that we predict such a large 2D supersolid
to be stable against thermal fluctuations (recall that
Tfinal ¼ 30 nK). As they form, each droplet individually
has a uniform phase that may be different from that of its
neighbors, sometimes creating vortex pairs between drop-
lets of different phase. In this scenario, the droplets do
not form as a result of a roton instability, and the partial
phase coherence continues to improve after the crystal
has formed, consistent with earlier observations [34].
Occasionally, long-lived isolated vortices remain near the
center of the supersolid. Simulation videos are provided in
Supplemental Material [40].
Supersolid quality.—We seek to quantify the resulting

supersolid quality for both quench protocols. We start
by analyzing the phase excitations, taking the phase
coherence Cp with a similar measure presented in
Ref. [10]. A value of Cp ¼ 1ð0Þ implies global phase

(a)

(b)

FIG. 2. Supersolid quality. (a) Global phase coherence Cp over
time for interaction quenches [quench (i)] into linear chain (blue)
and pancake crystal (red) and temperature quenches [quench (ii)]
into the pancake crystal (black). Diamonds link to example
frames in Figs. 1(a) and 1(c). Each curve is averaged over 3–5
runs with an error band marking one standard deviation. Time
t ¼ 0 corresponds to when the crystals first fully mature.
(b) Density overlap Cd between the time-dependent and ground
state densities. Parameters are the same as Fig. 1, but for linear
chain fx;y;z ¼ ð33; 110; 167Þ Hz and N ¼ 82 × 103.
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coherence (incoherence) [69]. In Fig. 2(a), we plot this
quantity for interaction quenches into the pancake super-
solid regime (red) and linear supersolid regime (blue) and
temperature quenches into the pancake supersolid (black).
The time t ¼ 0 indicates when the droplet number has
approximately stabilized and the crystal has first matured
[70]. For the linear chain, the system remains coherent
(high Cp ≈ 0.8), indicating a stable supersolid. However,
quenching into the pancake geometry is qualitatively
different, with strong incoherence (Cp ≈ 0.3) soon after
crystal formation, recovering a high value at around 150 ms
after the crystal forms. During evaporative cooling, the
global phase coherence is predicted by the high value of
Cp ≈ 0.8 around 50 ms after the crystal forms, with
qualitatively similar values to the interaction quench
simulations for the linear supersolid case.
We quantify the quality of the supersolid crystal by

measuring the density overlap Cd between the ground state
target solution and the time-dependent wave function [71].
We find the maximal value of Cd after applying translations
and rotations to the state, noting that perfect overlap would
give Cd ¼ 1. In Fig. 2(b), this quantity is presented for the
two geometries, with the ground state solutions shown as
insets. For the linear chain, once the droplets have formed,
the density overlap rapidly attains Cd > 0.9 and remains
there, consistent with the interaction quenched state being
close to the ground state supersolid. However, the pancake
case shows weak overlap after the droplets are formed,
which only recovers slowly—after around 300 ms—to
values comparable with the linear chain. Primarily, this is
due to the sensitivity of droplet positions of Cd and
indicates that there are many excited supersolid modes
present after the droplets form [40]. Direct evaporative
cooling for the pancake case, however, shows that after the
droplets have formed they rapidly settle into the expected
crystal pattern (Cd ≈ 0.95).
Finally, it is important to note that for the pancake

interaction quench, while the phase coherence is restored
by around t ¼ 150 ms after the droplets are formed, the
crystal remains highly excited until around 300 ms. On
these timescales, three-body losses become significant, and
it is unlikely that a large supersolid would be observed. In
contrast, direct evaporative cooling may lead to a robust
supersolid within around 50 ms of the crystal first appear-
ing, a timescale that we find to be weakly dependent on the
value of γ [40].
Experimental observation.—While experiments have

evaporatively cooled directly into the supersolid phase
for linear and elongated 2D configurations [12,13,34],
this could prove an optimal method in circular traps for
avoiding the excitations associated with crossing the
roton instability. We confirm this by producing a 7-droplet
hexagon supersolid in a near-circular trap, as shown in
Fig. 3. The experimental apparatus and procedure is similar
to that described previously [13], but new modifications in

the optical dipole trap setup have enabled us to tune
between anisotropic and round traps. The current optical
trap consists of three 1064 nm wavelength trapping beams,
each propagating in the plane perpendicular to gravity. Two
of the beams, which cross perpendicularly, have approx-
imately 60 μm waists and define the horizontal trapping
frequencies. The third, crossing at a roughly 45° angle from
the others, has a waist of approximately 18 μm and is
rapidly scanned to create a time-averaged light sheet that
defines the vertical confinement.
In a harmonic trap with frequencies fx;y;z ¼ ½47ð1Þ;

43ð1Þ; 133ð5Þ� Hz, we observe in trap a 7-droplet state
consisting of a hexagon with a central droplet, with a
condensate atom number of N ∼ 4 × 104 [Fig. 3(a)]. To
confirm that this state is phase coherent, we release the
atoms from the trap and image the interference pattern after
36 ms time of flight [Fig. 3(b)]. The presence of clear
modulation in the interference pattern averaged over
68 runs of the experiment indicates a well-defined and
reproducible relative phase between the droplets and is
consistent with our expectations for a phase-coherent state
undergoing expansion [Fig. 3(d)], obtained through 3D
dynamic simulations starting from the eGPE ground state
[Fig. 3(c)]. Even rounder traps are possible, but the slight
anisotropy orients the state, helping to observe the repro-
ducible interference pattern.
Summary.—We have theoretically explored the forma-

tion of large 2D supersolids using both an interaction

FIG. 3. Experimental realization of a 7-droplet hexagon state.
(a) Exemplary in situ image of the density profile. (b) Image after
36 ms time-of-flight (TOF) expansion, averaged over 68 trials of
the experiment. Hexagonal modulation structure is clearly present
in the averaged image. Note the rotation of the hexagon between
in situ and TOF images. (c),(d) Corresponding simulations for
the same trap, and with as ¼ 90a0 and ≈4.4 × 104 atoms within
the droplets.
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quench from an unmodulated BEC and a temperature
quench from a thermal cloud. For the latter, we developed
a finite-temperature stochastic Gross-Pitaevskii theory that
can simulate evaporative cooling directly into the super-
solid regime. Our simulations predict that a temperature
quench provides a robust path for creating 2D supersolids
in circular traps, and we confirm this experimentally by
using this method to create a reproducible hexagonal
7-droplet supersolid.
In contrast, the interaction quench results in highly

excited crystals that lack global phase coherence in the
period following their formation. Interestingly, droplets
appear sequentially rather than simultaneously, with the
final crystal structure being unrelated to the roton modes
that seeded the instability. This is in contrast to the situation
for 1D arrays, where an interaction quench through a roton
instability can smoothly connect an unmodulated BEC to
the supersolid ground state.
Our finite-temperature theory is broadly applicable

for future studies on topics such as formation dynamics,
supersolid vortices, improved quench protocols to produce
large 2D supersolids, and thermal resilience, as well as
dipolar droplets in general.
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FORMALISM

We utilize dynamic and ground state calculations of
the extended Gross-Pitaevskii equation (eGPE), given by
i~ψt = L[ψ]ψ, where the eGPE operator is [1–4]

L[ψ] = −~2∇2

2m
+

1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(S1)

+

∫
d3x′ U(x− x′)|ψ(x′, t)|2 + γQF|ψ(x, t)|3 ,

m is the mass and ωx,y,z = 2πfx,y,z are the external
trapping frequencies. Two-body contact interactions and
the long-ranged, anisotropic dipole-dipole interactions
are described by the pseudo-potential

U(r) =
4π~2as

m
δ(r) +

3~2add

m

1− 3 cos2 θ

r3
, (S2)

respectively, with θ being the angle between the polar-
ization axis (z axis) and the vector joining two parti-
cles. This is characterized by s-wave scattering length
as and dipole length add = µ0µ

2
mm/12π~2, with mag-

netic moment µm. To find the ground state we em-
ploy a conjugate-gradients technique minimizing the cor-
responding energy functional [5]. The last term appear-
ing in Eq. (S1) represents quantum fluctuations in the
form of a dipolar Lee-Huang-Yang correction [6], γQF =
128~2

3m

√
πa5

s Re {Q5(εdd)}, where Q5(εdd) =
∫ 1

0
du (1 −

εdd + 3u2εdd)5/2 is the auxiliary function, which can be
solved analytically, and εdd = add/as.

Primarily, we use the eGPE to simulate the formation
dynamics of a supersolid through an interaction quench
of the scattering length, constructing an initial state by
adding non-interacting noise to an unmodulated BEC
ground state (far from the roton instability). Thus, our
initial state is ψ(r, 0) = ψ0(r) +

∑′
n αnφn(r), where φn

are the single-particle states, αn is a complex Gaussian
random variable with 〈|αn|2〉 = (eεn/kBT −1)−1 + 1

2 with
temperature T and the sum is restricted to modes with
εn ≤ 2kBT . On average, this adds about 1000 atoms
when T = 30nK.

CHOICE OF γ FOR STOCHASTIC EXTENDED
GPE THEORY (EQ. 1 OF MAIN TEXT)

Stochastic Gross-Pitaevskii equations have been
benchmarked against numerous Bose gas experiments in
various geometries [7–13], including Bose-Bose mixtures
[14]. These comparisons to experimental data include di-
rect modeling of the evaporative cooling process [7, 8]. In
these works, γ is approximated by fitting the condensate
atom number growth rate to experimental observations.
However, there is also an approximate analytic solution
appropriate for near-equilibrium solutions that depends
on the chemical potential, energy cut-off, temperature,
and interaction strength [15]. One comparison found γ
extracted from condensate growth data is an order of
magnitude larger than the analytic approximation [8].
The choice of γ does not affect the equilibrium proper-
ties of the system [16] (due to the fluctuation-dissipation
theorem [17, 18]), however it affects many observables
during equilibration.

To the best of our knowledge there does not exist any
analytic prediction for γ for the dipolar system [18]. We
approximate γ based on direct experiment-theory com-
parisons with the condensate growth rate in Ref. [19].
For that case we have the relevant experimental data
available. There, the supersolid formation was studied
in detail for a dysprosium supersolid in a cigar-shaped
geometry, and a value of γ = 0.0075 was found to give
quantitatively similar growth behavior as observed exper-
imentally. Here, for a qualitatively similar regime [20] we
initially assume the same value.

In Fig. S1 we investigate the γ dependency on the
evaporative cooling protocol presented in the main text,
namely a 164Dy gas in a pancake trap with (fx, fy, fz) =
(33, 33, 167)Hz and as = 88a0. Further details are given
in the main text. We consider both half and double the
initial value, i.e. γ = (0.00375, 0.0075, 0.015). Interest-
ingly, several observables are sensitive to the choice of γ.
This includes: atom number versus time, onset time of
global phase coherence versus onset time of crystal struc-
ture, and the number of free vortices trapped within the
crystal. For our simulations we calculate the phase co-
herence Cp and density overlap Cd. Despite the c-field
atom number increasing faster with larger γ, the growth
of phase coherence does not appear as clearly dependent
on γ. This is possibly due to the number of vortices gen-
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FIG. S1. Effect of varying γ. Five simulations are shown
with the same color for each γ. (a) Energy per particle versus
time. The average final value is independent of γ, as expected.
Inset shows the same data over a longer time range, where
t = 0 corresponds to the beginning of the 100ms temperature
quench. (b) Phase coherence for all data. Curves with a lower
opacity correspond to simulations with isolated vortices. (c)
Density overlap with the ground state 19 droplet supersolid.
In all plots the dashed vertical line indicates t = 0 in Fig. 2
of the main text.

erated through the quench, which have been shown to
appear more readily with increasing γ, although there is
also evidence they are damped quicker too [7]. Curves
for simulations with a long-lived single vortex are shown
with a lower opacity in Fig. S1(b), as this greatly influ-
ences Cp, and these simulations are not included in the
averages shown in the main paper. It is also worth not-
ing that we do not see free vortices after the interaction

quenches. Even in the presence of a free vortex the fi-
nal state can still be considered as a coherent supersolid,
with Cd ∼ 1, however Cp < 1. Future improvements to
this measure could involve finding the vortex centre and
multiplying the phase by the opposite circulation. This
is not easy however due to the nonlinear azimuthal phase
profile of a vortex in a supersolid [21, 22].

The effect of varying γ is most obvious in the overlap
between the simulation density and ground state den-
sity, Cd [Fig. S1(c)]. Larger γ forces the c-field atom
number, and hence density, to rapidly increase, forcing
the fast production of droplets. We believe that compar-
ing a spectrum of observables such as these will provide
important benchmarks to fine tune the simulations, and
that this will also provide an important test in the future
for the development of analytic theories that can predict
γ. As supersolid production in 2D becomes more routine,
direct comparison between the condensate atom number
and droplet number growth rates in particular will be-
come crucial in determining the appropriate choice of γ.

It is worth noting that even if the supersolid forma-
tion time was a few 100ms longer than the data pre-
sented here, the whole process would still be faster than
evaporatively cooling into the BEC state, quenching the
interactions and then waiting for the phase coherence to
reappear. In this latter scenario, significant three-body
losses play a negative role. Previous works in 1D have
maximized phase coherence by increasing the final as,
and hence increasing the superfluid connection between
droplets [23], and decreasing the droplet peak density.
However, the droplet number is strongly dependent on as,
and we find that such a strategy significantly decreases
the number of droplets.

THE ROLE OF ENERGY DURING SUPERSOLID
FORMATION

It is instructive to investigate the role of energy during
the formation of 2D droplet arrays, via both interaction
quenches and the temperature quenches. In Fig. S2 (a),
we show the energy versus time for the five interaction
quench simulations considered in Fig. 1(a) of the main
text. We have also marked the energy of the ground state
before the interaction quench (EBEC

GS ), and the energy of
the ground state following the interaction quench (ESS

GS),
with the superscript indicating that the ground state is
initially in the BEC phase, then later in the supersolid
phase. An estimate for the energy added by crossing the
phase transition can be evaluated as [E(tfinal) − ESS

GS] −
[E(tinitial) − EBEC

GS ] ≈ 0.35~ωx. Note that E(tinitial) −
EBEC

GS does not equal zero due to the random noise added
to the initial state.

It is interesting at this point to compare the final ener-
gies of the eGPE simulations in Fig. S2 (a) with the final
energies of the c-field simulations following the evapo-
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FIG. S2. Energy versus time for the pancake quench simula-
tion runs considered in Fig. 2 of the main text. (a) Interac-
tion quenches simulated using the eGPE with N ≈ 2.1× 105.
Dashed lines show the ground state energy for the initial pa-
rameters, EBEC

GS , and the final paremeters corresponding to
the target supersolid, ESS

GS. (b) Temperature quenches simu-
lated with the SeGPE. All curves are with fixed γ = 0.0075.
For both subplots fx,y,z = (33, 33, 167) Hz.

rative cooling quench, which are shown in Fig. S2 (b),
which differ by more than 30~ωx. From such a compari-
son we can deduce that the important factor for disrupt-
ing supersolid formation following an interacting quench
is not so much the total energy injected into the system
by crossing the first-order phase transition [in Fig. S2
(a)] but, rather, which modes become excited. This large
disparity in energy, however, tells us that at much longer
time scales than shown here, the eGPE states may set-
tle down to a better quality supersolid than the SeGPE
[see e.g. Fig. 2 of the main text], but this could be on
the order of seconds, much larger than the supersolid life
time.

From our dynamic structure factor calculations shown
in Fig. S3 (which will be discussed shortly), one can see
that the out-of-phase Goldstone modes (the low-energy
modes at finite momentum that show up as red ovals)
are particularly vulnerable to excitation by the inter-
action quench. Note that although this figure is for

the 7-droplet supersolid rather than the 19-droplet one,
such low-energy Goldstone modes are a general feature of
dipolar supersolids [24, 25]. Since these modes inherently
cause both phase and crystal excitations, they directly
act to disrupt the supersolid. Furthermore, we also see
some vortex pairs after the interaction quench, and these
also play a role. Interestingly, even in the interaction-
quench simulations, a supersolid is obtained in the long-
time limit (although too long to be useful for current ex-
periments due to lifetime limitations), even though the
total energy is conserved, thanks to a damping of these
phase and crystal excitations.

SUPERSOLID EXCITATIONS

We investigate the 7-droplet hexagon supersolid, the
same configuration as shown in Fig. 3 of the main text,
using the extended Gross-Pitaevskii equation (eGPE), fo-
cusing here on its excitations. We perform a Bogoliubov-
de Gennes linearization and present results in the form
of the dynamic structure factor,

S(k, ω) =
∑

l

∣∣∣∣
∫

d3x [u∗l (r) + v∗l (x)]eik·xψ0(x)

∣∣∣∣
2

δ(ω − ωl) ,

(S3)

Here, ψ0 is the ground state wavefunction normalized
to unity, i.e.

∫
d3x|ψ0(x)|2 = 1, and {ul(x), vl(x)} are

the quasiparticle excitations with energy ωl [26, 27]. The
dynamic structure factor along two orthogonal directions
is displayed in Fig. S3. Note, the asymmetry along kx and
ky is due to the triangular configuration of the crystal,
which can be seen clearly in Fig. S4(b).

To explore the role of dimensionality, Fig. S4 compares
the static structure factor, S(k) =

∫
dω S(k, ω), for both

linear and 7-droplet hexagon supersolids. These results
are converged within the dashed ellipses, set by ensur-
ing that the f -sum rule,

∫
dω ωS(k, ω) = ~2k2/2m, is

satisfied, and should be ignored outside. Convergence
is limited by the number of BdG modes, for which we
use 512 modes for both cases. In order to make a fair
comparison between a 1D and 2D supersolids we choose
to approximately match the average 2D trap density by
fixing % = Nfxfy [28]. As previously reported, the struc-
ture factor for the linear case [Fig. S4(a)] has peaks corre-
sponding to the average inter-droplet spacing (2.67µm),
kxlz ≈ 1.43, and subsequent peaks at integer multiples of
this [24]. We find that the dominant contributing modes
to the structure factor peaks are low energy out-of-phase
Goldstone modes [24, 25, 29], where the superfluid cur-
rent and crystal oscillate out-of-phase with one another.
Note that for possible comparison with experiments our
spectrum in Fig. S4 was energy broadened with a Gaus-
sian of width σ = 0.008 ~ωz, note that Fig. 1(b) of the
main text was similarly broadened by σ = 0.004 ~ωz.
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FIG. S3. Dynamic structure factor (DSF), Eq. (S3), normalized to peak value, in energy-momentum space for a 164Dy 7-droplet
hexagon supersolid. Left: DSF along kx with ky = kz = 0. Right: DSF along ky with kx = kz = 0. Parameters: as = 90a0,
fx,y,z = (52.83, 52.83, 167) Hz, N = 9.5 × 104.

FIG. S4. Static structure factors for (a) linear and (b) 7-
droplet hexagon supersolids. Convergence is achieved within
the dashed ellipses (see text). Dotted lines in (b) corre-
spond to the trajectories shown in Fig. S3, integrated over
energy. Parameters for linear chain: as = 90a0, fx,y,z =
(52.83, 130, 167) Hz, N = 4 × 104. For 2D crystal: as = 90a0,
fx,y,z = (52.83, 52.83, 167) Hz, N = 9.5 × 104.

For the 2D supersolid, Fig. S4(b) displays peaks sit-
uated at kρlz ≈ 1.43 every 60◦ azimuthally, where

kρ =
√
k2
x + k2

y. These peaks reflect the hexagonal struc-

ture of the ground state, however this value does not
directly reflect the inter-droplet spacing (3.05µm, which
would correspond to kρlz ≈ 1.25), but rather the spacing
of lattice planes between droplets. Crucially, the six inner
momentum peaks are rotated compared to the droplet
crystal, analogous to what we observed experimentally
in the TOF images. Similar to the 1D chain, we find
that the out-of-phase Goldstone modes–a manifestation
of superfluidity–contribute to the majority of the peak
signal.
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Angular oscillations can provide a useful probe of the superfluid properties of a system. Such
measurements have recently been applied to dipolar supersolids, which exhibit both density modulation
and phase coherence, and for which robust probes of superfluidity are particularly interesting. So far, these
investigations have been confined to linear droplet arrays, which feature relatively simple excitation
spectra, but limited sensitivity to the effects of superfluidity. Here, we explore angular oscillations in
systems with 2D structure which, in principle, have greater sensitivity to superfluidity. In both experiment
and simulation, we find that the interplay of superfluid and crystalline excitations leads to a frequency of
angular oscillations that remains nearly unchanged even when the superfluidity of the system is altered
dramatically. This indicates that angular oscillation measurements do not always provide a robust
experimental probe of superfluidity with typical experimental protocols.
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Some of the most distinctive manifestations of super-
fluidity in ultracold quantum gases relate to their behavior
under rotation. These include the presence of quantized
vortices [1–3] and persistent currents in ring traps [4], as
well as shape-preserving angular oscillations associated
with a “scissors” mode [5]. Measurements of the scissors
mode frequency have long been used to illuminate the
superfluid properties of a variety of systems [6–11]. With
the recent advent of dipolar supersolids [12–18]—states
that possess both the global phase coherence of a superfluid
and the spatial density modulation of a solid—the scissors
mode provides a tempting way to quantify changes in
superfluidity across the superfluid-supersolid transition
[19,20]. Angular oscillations have also been used to search
for superfluid properties in solid helium [21]. In this case,
however, a change in oscillation frequency initially attrib-
uted to superfluidity was eventually traced, instead, to other
reasons [22]. In this Letter, we study more deeply the
connection between angular oscillations and superfluidity
in dipolar supersolids to determine the extent to which such
experiments can inform our understanding of superfluidity
in these systems.
The goal of these angular oscillation measurements is to

infer the flow patterns allowed for a given fluid. A super-
fluid is constrained by the single-valued nature of its wave
function to irrotational flow (IF), while a nonsuperfluid
system faces no such constraint and, in certain situations,
may be expected to undergo rigid-body rotation (RBR).
Prototypical velocity fields for angular oscillations under
IF (v⃗ ∝ ∇xy) and RBR (v⃗ ∝ rθ̂) are depicted in Figs. 1(a)
and 1(b), respectively. The velocity field associated with

angular rotation is related to the moment of inertia of the
system and, thus, the frequency of angular oscillations.
The ability to distinguish between RBR and IF (and,

thus, in principle, between a classical and superfluid

θ

(a)

(d)

(b) (c)
x

y

FIG. 1. Characteristic velocity profiles for irrotational flow (a)
and rigid-body rotation (b). A wide atomic state (light turquoise
oval) samples a region of space where the two differ significantly,
while a highly elongated state (dark turquoise oval) samples a
region where the two patterns are nearly indistinguishable. (c) We
excite oscillations in the angle θ of our atomic gas by rapidly
rotating the anisotropic trap (dashed oval), then returning it to its
original orientation and observing the subsequent dynamics.
(d) Typical example of experimental angular oscillation for the
zigzag modulated state shown on the right (image averaged over
nine iterations). In this case, the errors from the fit to the state angle
are smaller than themarkers. The red line is a damped sinusoidal fit
used to extract the angular oscillation frequency fosc.
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system) depends critically on the geometry of the system,
and is sensitive only to the character of the flow pattern
where the atomic density is appreciable. As illustrated in
Figs. 1(a) and 1(b), highly elongated states sample only the
region along the weak axis of the trap (near x ¼ 0) where IF
and RBR are identical for small rotations (dark turquoise
regions), while rounder states (light turquoise regions)
sample regions of space where the flow patterns differ
significantly and, thus, are far more sensitive to the
irrotational constraint. Recent works have focused on
systems that form a short linear chain of about two
“droplets” [23] in the supersolid regime [19,20].
In this Letter, we study angular oscillations in systems

with linear and two-dimensional modulation to disentangle
the effect of three important contributions: (i) a narrowing
of the aspect ratio of the gas (geometrical change), (ii) a
reduction in the population of the low-density superfluid
“halo” that occupies the outer regions of the trap, and (iii) a
reduction in the density of the interdroplet connection that
enables the exchange of atoms between droplets, which is
key to the superfluid nature of supersolid systems. We find
that, in linear systems, contributions (i) and (ii) dominate
the change in oscillation frequency associated with the
onset of modulation, while (iii) has a negligible effect.
In dipolar condensates with two-dimensional structure,

which have been a focus of recent work [24–28], the effects
of geometry and superfluidity may be disentangled, and
one may expect to observe a direct link between a change of
the superfluid fraction and a modification of the angular
oscillation frequency. However, we find that the physics at
play is much more complex. Indeed, not only does the
oscillation frequency fail to approach its rigid-body value
for states with a vanishing superfluid connection, but it
remains very close to the value predicted for a superfluid
state. We extensively investigate the system behavior as a
function of geometry and interaction parameters, revealing
a unique multimode response of the dipolar supersolid.
Experimentally, we use a dipolar quantum gas of 164Dy

atoms (up to approximately 5 × 104 condensed atoms),
confined within an optical dipole trap (ODT) of tunable
geometry, formed at the intersection of three laser beams
[25,27,29]. The trap geometry and particle number at the
end of the evaporative cooling sequence determine the
character of the modulated ground state, which can form
linear, zigzag, or triangular lattice configurations [28]. By
varying the applied magnetic field in the vicinity of
Feshbach resonances near 18–23 G, we can access scatter-
ing lengths that correspond to either unmodulated BECs or
modulated states. In past works, we have demonstrated that
modulated states created at the corresponding field have
global phase coherence [25,27]. In this Letter, we expect
the same to be true, but refer to these experimental states
simply as modulated, as we do not repeat the characteri-
zation for every trap condition used. We excite angular
oscillations by using the well-established protocol of

applying a sudden small rotation of the trap, by varying
the relative powers in the ODT beams for 6 ms before
returning them to their original values [Fig. 1(c)]. Using our
high-resolution imaging [30], we observe the in-trap
density profile at a variable time from the excitation, and
extract the angle of the major and minor axes using a
two-dimensional Gaussian fit to the state [31].
A typical angular oscillation is shown in Fig. 1(d), for a

“zigzag”modulated state [25]. From such oscillation traces,
we extract the dominant oscillatory frequency fosc using a
fit to an exponentially damped sinusoid. Typically, the
statistical error on our measurements of fosc is on the sub-
Hertz level, better than our knowledge of the trap frequen-
cies, due to drifts between calibrations. We perform such
measurements for trap geometries ranging from an elon-
gated cigar shape to pancake shaped, and for different
scattering lengths, as summarized in Fig. 2(a).
Within a single-mode approximation, the angular oscil-

lation frequency fosc can be predicted using either a sum-
rule based approach [19,34], or considerations based on
hydrodynamic flow [5]. For RBR, the angular oscillation

frequency is given by frig ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf2y − f2xÞβ

q
, whereas for IF,

the predicted value is firr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf2y − f2xÞ=β

q
[19,20]. Here,

fx;y are the trap frequencies along directions x and y. β ¼
hx2 − y2i=hx2 þ y2i is a geometrical factor that quantifies
the degree of elongation of the atomic cloud (but carries no

(a)

(b)

FIG. 2. Normalized oscillation frequencies fosc from experi-
ment (a) and simulation (b). Blue points represent unmodulated
BECs, red points represent modulated states (expt.) and super-
solid states (sim.), and green points represent independent droplet
arrays. Solid lines are predictions for irrotational flow firr. Dashed
lines are predictions for rigid body rotation frig. The trap frequ-
encies used in the simulation, from left to right, are ðfx; fyÞ ¼
½ð43; 53Þ; ð40; 57Þ; ð37; 62Þ; ð32; 70Þ; ð26; 87Þ� Hz. fz ¼ 122 Hz
for all cases. A similar range is used in the experiment.
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information about the superfluid fraction). As shown in
Fig. 2, frig and frig are more distinct for smaller values of β.
Remarkably, independent of trap geometry or the presence
of modulation, we observe fosc close to the IF prediction
and far from the RBR prediction when the two predictions
differ appreciably.
To gain a deeper understanding of our observations, we

theoretically study the oscillation dynamics using a real-
time simulation of the extended Gross-Pitaevskii equation
(EGPE) [35–37]. To compare to the experimental obser-
vations of Fig. 2(a), first, we calculate the ground state for a
given trap, scattering length, and atom number. Then, we
apply a 0.5° rotation of the trap for 6 ms (we have
confirmed that the character and frequency of the response
do not change for much larger excitations), and then let the
state evolve for 50 ms. Then, we perform the same fitting
procedure as used in the experiment to extract fosc. For the
simulation, we calculate β directly for the ground state (we
confirm that the exact value of β agrees with that extracted
from a Gaussian fit at the 5% level). For simulations
performed on states ranging from the unmodulated BEC to
supersolid (SS) to independent droplet (ID) regimes, with
vanishing superfluid connection between droplets, we
again find that fosc is always very close to firr, in very
good agreement with the experimental data. For isolated
droplet states in particular, fosc can actually be even higher
than the expected value for irrotational flow, indicating that
the oscillation frequency is not necessarily in between
the irrotational and rigid body values.
To further illuminate the dependence fosc on super-

fluidity, we analyze the results of the simulation as a
function of the s-wave scattering length as (Fig. 3).
Scattering lengths of 85a0 yield arrays of (nearly) inde-
pendent droplets, while as ¼ 97a0 produces an unmodu-
lated BEC. In between, we find supersolid states, with low-
density connections between droplets. Inspired by the
formulation of Leggett [38], we quantify the degree of
interdroplet density connection as C ¼ ½R dx=ρðxÞ�−1,
where ρðxÞ is the projected atomic density, evaluated over
the interdroplet connection [Fig. 3(a)] [39].
As shown in Fig. 3, despite the rapid reduction of C with

as, the simulated fosc exhibits a rather constant behavior
with a value always close to the purely irrotational
predictions, firr, for both a linear (1D) and hexagon state
(2D). This observation indicates that (i) the degree of
interdroplet connection is not actually a major determinant
of the angular oscillation frequency and (ii) that the system
does not undergo RBR even for vanishingly small inter-
droplet density connection. The latter conclusion is par-
ticularly evident for hexagon states, where the rigid-body
prediction substantially departs from the irrotational one.
For the linear array, the elongated geometry means that the
frig and firr differ only slightly; see Supplemental Material
for further discussion [31].
At this point, we can clearly see the geometrical

limitations of the linear systems. In linear systems, the

narrowing of the atomic density distribution that occurs
with the onset of modulation causes the dominant con-
tribution to a modification in oscillation frequency as well
as a reduction in sensitivity of the oscillation frequency to
superfluidity. Simultaneously, the transfer of atoms from
the halo to the droplets leads to a reduction of the super-
fluidity of the composite halo-droplet system, which is
accompanied by a small change in the oscillation fre-
quency. However, because the motion induced by rotation
in a linear system is perpendicular to the interdroplet axis,
these effects should not be interpreted as a result of the
weakening superfluid connection along the interdroplet
axis. In contrast, systems with two-dimensional structure
maintain a relatively round aspect ratio in the modulated
regime, and the rotational motion does orient along certain
interdroplet axes.
To better understand the nonrigid nature of the angular

oscillations, we employ a method to extract the character of
the system’s response by analyzing our experimental and
EGPE simulation dynamics in the frequency domain with
respect to time, but in the position domain with respect to
the spatial coordinates. A similar technique has been
applied along one dimension to understand the mode
structure of an elongated condensate [40]. This technique,
which for convenience we refer to as “Fourier transform
image analysis” (FTIA) [31], allows us to extract a power
spectrum of density fluctuations driven by the angular
excitation, as well as the spatial form of the density
fluctuations at each frequency. For comparison, we also

ID SS BEC
(a)

(b)

FIG. 3. Impact of scattering length on simulated scissors mode
frequencies. (a) Interdroplet connection C (defined in text) versus
scattering length for different trap geometries. The calculated
ground state in each trap is shown on the right, with correspond-
ing border colors. (b) Scissors mode frequency versus scattering
length. Solid lines are predictions for irrotational flow firr.
Dashed lines are predictions for rigid body rotation frig. β ranges
from 0.93 to 0.99, and 0.27 to 0.31 in the linear and hexagonal
cases, respectively.
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calculate the spectral power of our rotational signal through
a Fourier transform. For computational robustness, we use
the fitted angle θ in the experimental case, and hxyi for the
simulations. To enhance our frequency resolution, we
analyze simulations with longer durations than are acces-
sible in the experiment (160 to 290 ms).
We apply the FTIA to both simulation and experimental

images in Fig. 4(a). For a BEC, the FTIA gives a dominant
peak in both simulation and experiment, whose frequency
and shape are consistent with a scissors mode oscillation at
the frequency observed from the angular response. For a
zigzag modulated state, we again predominantly observe a
single peak in the FTIA spectrum at the frequency of the
angular oscillation. In the simulation, we can see that the
mode corresponds to the motion of the different droplets in
a pattern reminiscent of IF in an unmodulated superfluid,
and clearly distinct from RBR. In the experiment, the
response of individual droplets is not visible due to shot-to-
shot fluctuations in the exact number and position of
the droplets, but the overall structure is similar to the
simulation.
For hexagonal supersolid [Fig. 4(b)] and isolated droplet

[Fig. 4(c)] states, the FTIA reveals a clear multifrequency
response. For the supersolid, we observe the excitation of
modes near 3 and 25 Hz that do not contribute strongly to
hxyi. The droplet motion associated with the 3 Hz mode is
approximately (but not exactly) shape preserving, and the
frequency is much lower than would be expected for a
single-mode RBR response. For the isolated droplet array,
we again observe a nearly shape-preserving low-frequency
response from FTIA, as well as a dominant angular
response that is split into two frequencies, both above
the scissors mode frequency firr expected for a super-
fluid with the same geometry. In the experiment, the

combination of nonangular excitations associated with
our method used to rotate the trap and relatively rapid
damping of the oscillation prevent us from observing
meaningful mode profiles for small β.
Importantly, the FTIA reveals that, even in cases where

we observe an apparently single-frequency response in
typical rotational observables like θ or hxyi [as in Figs. 4(a)
and 4(b)], the response of the system may, in fact, be
multimode in nature, breaking the single-mode approxi-
mation used to analytically extract firr and frig [19,34]. In
the case of a multifrequency response, firr and frig, instead,
provide an upper bound for the frequency of the lowest
energy excitation—an excitation that is difficult to see with
experimentally accessible observables. Features of these
subdominant modes, including the lack of a strong rota-
tional signal in the low-frequency oscillations and the
apparent similarity between the droplet motion (the motion
of the halo is quite different) near 25 Hz to that of the
dominant rotational mode, remain interesting topics for
future investigation.
As we have noted, not only does the dominant angular

response frequency fail to approach the rigid-body value in
the isolated droplet regime, but it also stays near to the
irrotational prediction. A possible intuitive explanation for
this observation is that the flow pattern of Fig. 1(a)
resembles that of a quadrupolar surface mode, and it is
well known that, for sufficiently strong interactions, the
frequency of such modes is predominantly determined by
the trap parameters, rather than the details of the inter-
particle interactions [34].
In conclusion, measurements of angular oscillation

frequencies offer a simple way to demonstrate superfluidity
in certain conditions. However, care must be taken when
making and interpreting such measurements—geometrical
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(a) (b) (c)

FIG. 4. Analysis of mode shapes and response due to angular excitation. Solid lines are the power spectrum obtained from the
rotational signal (θ in the experiment and hxyi in the simulation), and dashed lines are obtained from FTIA (see text, Supplemental
Material [31] for description). Inset panels show the mode shapes for selected modes. Red and blue indicate out-of-phase changes in
density, overlaid onto the average density profile in the panels corresponding to simulation (gray to white). Solid and dashed vertical red
lines represent firr and frig, respectively. (a) Responses in elongated traps from simulation (top) and experiment (bottom), for an
unmodulated BEC (left) and a zigzag droplet state (right). Trap frequencies are fx;y ¼ ½31ð1Þ; 73ð1Þ; 128ð1Þ� Hz, and fx;y;z ¼
½32; 70; 122� Hz for the experiment and theory, respectively. (b) Simulated response of supersolid hexagon state (as ¼ 92a0).
(c) Simulated response of droplet crystal hexagon state (as ¼ 85a0). Note that the ground state has a different orientation for the two
scattering lengths in this trap. Trap frequencies are fx;y;z ¼ ½43; 53; 122� Hz for (b) and (c).
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changes can mask the effects of changing superfluidity, and
usual predictions to which one might compare rely on the
assumption of a single-frequency response of the lowest
energy rotational mode. While the moment of inertia of the
system is defined as the angular momentum of a system in
response to a shape-preserving, steady-state drive, oscil-
lation measurements involve a time-localized change in the
rotation rate of the trap, which may excite modes that do not
meet this criterion. In small, linear systems, the simple exci-
tation spectra means that approximately shape-preserving
oscillations can still be excited [31]. However, we find that
a supersolid with 2D structure, which one might expect to
be an ideal candidate for such measurements, can exhibit an
apparently single-frequency response associated with a
mode that is not the lowest in energy. Further, this exci-
tation frequency is typically very close to that of a purely
superfluid system, even for systems where the effects of
superfluidity are minimal. Therefore, such measurements
do not provide a robust indicator of superfluidity for
modulated systems. In the future, it may be possible to
extract information about superfluidity using a modified
excitation scheme to preferentially excite the lower energy
modes and a more comprehensive analysis scheme suitable
for multifrequency response [41]. However, such tech-
niques would require detailed knowledge of the exact
excitation applied and measurement of response ampli-
tudes, both of which are considerably more challenging
in an experiment than measuring the frequency of an
oscillation.
Finally, we note that, even in the case of single-frequency

response, where the frequency of angular oscillations has a
direct connection to the moment of inertia of the system,
making a clear connection between the moment of inertia
and quantities like a superfluid fraction can be problematic.
Past works have predicted that a system which is partially
superfluid should have a moment of inertia in between the
RBR and IF predictions, linearly interpolated according to
a superfluid fraction [20,38]. While this interpretation may
be valid for systems featuring a rigid crystalline structure
and a uniform distribution of crystalline and superfluid
components, as in [38], it is not necessarily valid for our
small dipolar supersolids, which, in addition to coupled
superfluid-crystalline excitations, feature a nonuniform
degree of modulation across the system.
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Österreichische Akademie der Wissenschaften, Innsbruck, Austria
2Institut für Experimentalphysik, Universität Innsbruck, Austria

3Institut für Theoretische Physik, Leibniz Universität Hannover, Germany

EXCITATION PROTOCOL

In both experiment and simulation, we excite the
atoms by suddenly rotating the trap, holding for 6 ms,
then returning it to its initial orientation. This was im-
portant in the experiment, as the trap frequencies gener-
ally change slightly as the trap is rotated, and we want to
observe the evolution of a state that is equilibrated to the
trap prior to the rotation. To explore whether the exact
excitation protocol influences our results, we performed
additional simulations where the trap angle was rotated
and held in the new orientation, but not rotated back.
We find that the same modes are excited in this case,
and the frequency of their responses are the same. For
some parameters the relative contributions of the modes
to the spectrum of 〈xy〉 can differ between the two proto-
cols, but for the parameters we explore the frequency of
the peak response remains unchanged. In particular, for
the droplet crystal hexagon shown in Fig. 4c of the main
text, the contribution of the low-frequency mode to the
〈xy〉 power spectrum becomes appreciable, though is still
smaller than the contribution of the modes near 60 Hz.
Thus, the multimode response appears to be a generic
feature of possible schemes to excite angular oscillations.
While the spectral content of the excitation may differ,
influencing the relative amplitudes of different modes, the
frequency and character of the modes is determined by
the system, not the drive.

We have also performed excitation in the simulation by
directly imprinting a small phase variation αxy onto the
ground-state wavefunction. This protocol produces qual-
itatively similar results to those described above. Again,
the same modes are excited and respond with the same
frequencies, though sometimes with different amplitudes.
The dominant mode excited is the same as the rotate-
and-return protocol for all cases investigated.

EXTRACTING ANGULAR POWER SPECTRUM

Several methods can be used to extract the angular
response of our system. For the experiment, we perform
a two-dimensional Gaussian fit to the in-trap image, and
record the angle of the major and minor axes as a func-
tion of time. For the simulation, we report the angu-

lar response obtained using one of two observables. For
direct comparison to the experiment, we use the state
angle extracted from a 2D Gaussian fit, as in the ex-
periment. For more detailed spectral analysis, we use
the quantity 〈xy〉, as this is expected to have a strong
response to a rapid rotation of the trap and we find it
to be numerically more robust. We have confirmed that
these and other similar observables, such as the direc-
tions of maximal and minimal variance, provide consis-
tent results (up to overall normalization). In some cases,
the Fourier spectrum of 〈L̂z〉 (though not experimentally
accessible) shows different relative response amplitudes
between modes compared to 〈xy〉, particularly for those
modes at low frequencies.

FOURIER TRANSFORM IMAGE ANALYSIS

Time Time

Subtract 
mean 
image

Frequency

FFT along 
time axis

In-trap images

(averaged for each 

timestep)

FIG. S1. Procedure for Fourier transform image analysis
(FTIA). See text for description.

The goal of our Fourier transform image analysis
(FTIA) protocol is to visualize the density response of our
atomic system in real-space with respect to position, but
in frequency space with respect to time. This provides
a simple way to extract the spatial profile of excitation
modes. The process is illustrated in Fig. S1. To perform
the FTIA, we assemble images of projected density pro-
files corresponding to single time-steps (directly from the
simulation, or averaged over several in-trap images from
the experiment), then subtract the average (over all time-
steps) image from each. We then Fourier transform the
results along the time axis. The output is then a sequence
of real-space images, showing the fluctuation pattern at
a given frequency. Because each pixel is now represented
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by a complex number (encoding the amplitude and phase
of the density variations at that location), we plot with
respect to the global phase for each frequency that shows
maximum variation, thus plotting the in-phase quadra-
ture of the oscillation.

In order to obtain a power spectrum (useful for locat-
ing the frequencies of excited modes), we compute the
sum of the absolute square of the fluctuations over a re-
gion of interest containing the atomic cloud for each fre-
quency. This power spectrum can be used to identify the
frequency and spatial character of modes, but is not ex-
pressed in physically meaningful units, and so should not
necessarily be used to compare the strength of different
mode responses.

We note that there are some similarities between the
FTIA method and principal component analysis (PCA)
[1, 2]. Both provide a model-free way of extracting the
form of excitations present in a system. PCA does so
by finding correlated patterns of fluctuations within a
set of images, with no prior information about the time-
sequence of the images. This makes it well-suited to
revealing modes that are excited incoherently, for ex-
ample by thermal or quantum noise. In contrast, our
FTIA method explicitly incorporates the time-domain
information associated with the images. This makes it
well-suited to extracting modes that are coherently ex-
cited (FTIA, as we apply it, would not work for inco-
herently excited modes). In practice, we find that the
FTIA is more robust than PCA at extracting fluctuation
patterns that each exhibit a single-frequency response.
While PCA often returns components whose weights vary
with multiple frequencies (indicating that they actually
correspond to a linear combination of eigenmodes), FTIA
by construction returns a fluctuation pattern associated
with a single frequency. We find that this feature makes
it more robust for identifying eigenmodes of a system
subject to a coherent drive.

SPECTRA/TABLE FOR ALL PARAMS

Excitation power spectra from simulation for a range of
traps and scattering lengths used in the main manuscript
can be found in Fig. S2.

PREDICTIONS FOR ROTATIONAL MODE
FREQUENCIES

The rotational response of a gas can be calculated us-
ing hydrodynamic equations [3] or a sum-rule approach
[4, 5]. From the sum-rule approach, an expression can
be derived for the rotational oscillation frequency, under
the assumption that the response is single-frequency:

ω2 =
m〈y2 − x2〉(ω2

x − ω2
y)

Θ
(1)

Here, Θ is the moment of inertia associated with steady-
state rotation.

The numerator of Eq. 1 can be interpreted as a ro-
tational spring constant: kτ = −τ/θ, where τ is the
torque exerted on a state whose major and minor axes
y and x are rotated relative to the their equilibrium po-
sition in the trap by an angle θ. To see this, consider
a mass element m at position (x, y) in a trapping po-
tential V = (mωxx

2 + mωyy
2)/2, which exerts a torque

τ = xFy − yFx = xym(ω2
x − ω2

y). We can then calcu-
late kτ = −∂τ/∂θ = −m(y∂x/∂θ + x∂y/∂θ)(ω2

x − ω2
y) =

m(y2 − x2)(ω2
x − ω2

y). Summing over mass elements pro-
vides the numerator of Eq. 1. This highlights that the
numerator of this expression is purely geometrical, inde-
pendent of whether the state is superfluid or classical. In
the case of multi-frequency response, Eq. 1 (as defined by
the sum rule) becomes an inequality, defining the upper
bound for the lowest frequency angular excitation in the
system [4].

BETA VERSUS SCATTERING LENGTH FOR 1D
AND 2D

In Fig. S3, we show the change in the anisotropy of the
atomic state in response to a change in scattering length
for a variety of traps, featuring both linear and 2D array
modulated configurations. Here, we consider the quan-
tity β2 = (〈x2 − y2〉/〈x2 + y2〉)2, as this quantity gives
the expected change in moment of inertia between irro-
tational flow (IF) and rigid-body rotation (RBR). As β2

approached unity, the difference between the two van-
ishes, so such states can exhibit minimal sensitivity to
superfluidity.

States in more elongated traps generally have values of
β2 closer to one than their rounder counterparts. How-
ever, even in relatively round traps, such as those of
Refs. [5, 6], low atom numbers can lead to the formation
of linear arrays, which are highly elongated. In these
cases, the sensitivity of the state to superfluidity is dra-
matically reduced upon entering the modulated regime.
In contrast, combinations of trap parameters and atom
number that lead to a 2D modulated state typically main-
tain values of β2 substantially different from one even in
the low scattering length, independent droplet regime.

LINEAR CASE

In Fig. S4, we explore the parameters of refs [5, 6],
where a change in scattering length induces a transi-
tion from an unmodulated BEC to a linear array of two
droplets. This transition is accompanied by a dramatic
change in the aspect ratio of the atomic state, as evident
in the near convergence of the predictions for rigid body
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FIG. S2. Response sepctra extracted from simulations for different trap parameters (rows) and scattering lengths (columns).
Upper rows correspond to more elongated traps, while lower rows correspond to more round ones. From top to bottom,
(fx, fy) = [(26, 87), (32, 70), (37, 62), (40, 57), (43, 53)] Hz. fz = 122 Hz for all cases. Red vertical dashed and solid lines
correspond to the rigid-body rotation and irrotational flow predictions, respectively. Gray traces are power spectra extracted
from FTIA, while black traces are from 〈xy〉. In all cases, as = 97a0 corresponds to an unmodulated BEC, while lower scattering
lengths correspond to modulated states, with the overlap between droplets decreasing with scattering length. (fx, fy) = (26, 87)
is a linear droplet chain for all scattering lengths that produce a modulated state. All other modulated states have transverse
structure, increasing in prevalence as the trap becomes more round.

and irrotational flow (frig and firr) at lower scattering
lengths, corresponding to the droplet state.

We see that the dominant frequency of angular re-
sponse is between frig and firr, indicating a change in
the level of superfluidity in the system. We find that
the angular response in the supersolid regime (as = 90
or 92 a0) has two clear frequency components, though in
this case the dominant frequency observed matches the
prediction from the sum rule (with moment of inertia
calculated under static rotation). Because of the geome-
try of the system, rotation does not lead to a significant
transfer of mass between the two droplets. Thus, we at-
tribute the change in superfluidity to the low-density halo
that surrounds the droplets, rather than the inter-droplet
connection itself.

∗ Correspondence should be addressed to
Francesca.Ferlaino@uibk.ac.at
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FIG. S3. Difference in moment of inertia between IF and
RBR, β2 for different traps and scattering lengths. Traps and
atom numbers that correspond to linear arrays for modulated
states are indicated by round markers, while those that corre-
spond to 2D modulated arrays are indicated by triangles. All
points except those at as = 97a0 are modulated, interdroplet
connection decreasing with scattering length. The states ex-
plored in Fig. S2 are shown in grey-scale, with lighter satu-
ration corresponding to rounder traps, while the conditions
similar to those of Refs. [5, 6] are shown in red.
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a.

b.

FIG. S4. Analysis of linear two-droplet arrays of [5, 6]. a.
Dominant angular oscillation frequency (markers) extracted
from simulations versus scattering length, through transition
from BEC (right) to isolated droplets (left). The irrotational
and rigid-body predictions firr and frig are shown as solid and
dashed lines, respectively. b. The Fourier spectrum of 〈xy〉
for the point near as = 92a0 exhibits a response with domi-
nant and sub-dominant mode contributions. The fluctuation
profiles associated with these two frequencies are shown in the
insets. Solid and dashed vertical red lines represent firr and
frig, respectively.
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Raising the temperature of a material enhances the thermal motion of particles. Such an increase
in thermal energy commonly leads to the melting of a solid into a fluid and eventually vaporises
the liquid into a gaseous phase of matter. Here, we study the finite-temperature physics of dipolar
quantum fluids and find surprising deviations from this general phenomenology. In particular, we
describe how heating a dipolar superfluid from near-zero temperatures can induce a phase transi-
tion to a supersolid state with a broken translational symmetry. The predicted effect agrees with
experimental measurements on ultracold dysprosium atoms, which opens the door for exploring the
unusual thermodynamics of dipolar quantum fluids.

A supersolid is an exotic phase of matter in which par-
ticles develop regular spatial order and simultaneously
support the frictionless flow of a superfluid. Having
evaded experimental verification for several decades [1],
supersolidity can now be observed in Bose-Einstein con-
densates of ultracold atoms with finite-range interactions
[2–6]. Spontaneous symmetry breaking in these systems
occurs in the form of regular periodic patterns of the
condensate density as first predicted by Gross in 1957
[7]. One would thus expect the lowest possible temper-
atures to provide optimal conditions for supersolidity by
ensuring a high degree of phase coherence and maximal
population of the Bose-Einstein condensate. On the con-
trary, we demonstrate here that thermal fluctuations in
dipolar condensates do not merely diminish global phase
coherence but can instead facilitate the formation of peri-
odic modulations of the condensate density. This finding
sheds light on recent experimental observations and re-
veals an unusual fluid-solid phase transition, whereby a
supersolid state of matter emerges upon increasing the
temperature.

As we shall see below, this surprising behaviour arises
from the anisotropic nature of the dipole-dipole interac-
tion

Vdd(r) =
C3

4π

1− 3 cos2 θ

r3
, (1)

which has repulsive as well as attractive contributions,
depending on the angle θ between the atomic dipoles
and the distance vector r of two interacting atoms. The
interaction strength C3 and the atomic mass m define
a length scale ad = mC3/(12π~2) that competes with
the scattering length a of the short-range interaction be-
tween the atoms. This competition between ad and a > 0

∗ jsbaena@phys.au.dk
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FIG. 1. Heating a dipolar quantum fluid can lead to
the emergence of a supersolid phase of matter. (a) This
is demonstrated in the thermodynamic phase diagram for
an infinitely elongated Bose-Einstein condensate in a radial
harmonic trap with no axial confinement, as illustrated in
panel (c). In between the superfluid (blue) and supersolid
(red) region, both phases coexist (purple region) as charac-
teristic for a first-order phase transition. The calculations
were performed for a fixed chemical potential µ/εd = 1,
where εd = ~2/((12π)2ma2d) parametrizes the characteristic
energy scale of the dipole-dipole interactions. Our experi-
ments in an ultracold gas of dysprosium atoms demonstrate
the temperature-driven emergence of supersolidity. The mea-
sured contrast of axial density modulations is shown by the
colored dots in panel (b). The observations show that su-
persolidity at higher temperatures indeed occurs for smaller
atom numbers, Nc in the condensate, in agreement with the
theoretical transition line (purple line).

can cause the condensate to collapse when the stabiliz-
ing short-range repulsion is not sufficient to overcome the
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attractive part of the dipole-dipole interaction between
the atoms [8–10]. Subsequent experiments [11–13] have
however found a higher level of stability, which arises
from quantum fluctuations [14, 15] that prevent the oth-
erwise inevitable collapse of the condensate [16–18]. In
fact, the balance of attraction and repulsion effectively
enhances the role of quantum fluctuations [17] beyond
the semiclassical mean-field physics of weakly interact-
ing quantum gases. This yields a unique setting that has
revealed rich physics and a host of new quantum states,
from self-bound quantum droplets [12, 13, 19] and su-
persolid phases [3–5, 20, 21] to complex patterns in two-
dimensional fluids [22, 23].

Given this striking role of quantum fluctuations in
dipolar Bose-Einstein condensates, one may also antici-
pate significant effects of thermal fluctuations despite the
ultralow temperatures that are required to reach quan-
tum degeneracy. To address this question we start from
the grand canonical potential Ω of the system at a finite
temperature T . For a weakly interacting gas with a high
fraction of atoms in the condensate, one can use Bogoli-
ubov theory to determine Ω. This yields simple expres-
sions for infinitely extended homogeneous systems [24]
that can be applied to describe trapped inhomogeneous
gases within a local density approximation. Hereby, one
determines the Bogoliubov excitation spectrum and all
relevant observables for a homogeneous particle density
ρ, which is then identified as ρ ≡ |ψ(r)|2 with the local
condensate wave function ψ(r) at a given position r. This
permits to express the grand canonical potential as

Ω = E0 +
kBT

(2π)3

∫
dr

∫
dk ln

(
1− e−

εk(r)

kBT

)
, (2)

where kB denotes the Boltzmann constant and E0

is the zero-temperature grand canonical energy that
contains the mean-field interaction energy and lead-
ing order corrections due to quantum fluctuations [14],
i.e. small occupations of excited states above the
formed Bose-Einstein condensate. The dispersion εk =√
τk(τk + 2|ψ(r)|2Ṽ (k)) of these excitations is deter-

mined by the kinetic energy τk = ~2k2/(2m) of the atoms

and the Fourier transform Ṽ (k) = 4π~2a
m +Ṽdd(k) of their

total interaction potential.
Minimizing Ω with respect to ψ(r) then yields a non-

linear wave equation that accounts for quantum as well
as thermal fluctuations (see Methods Section). At zero
temperature, it describes the mean-field physics of the
condensate and captures leading-order effects of quan-
tum fluctuations through an effective density-dependent
potentialHqu [17] that increases the energy of the system.
The second term in Eq.(2) yields an additional potential

Hth(r) =

∫
dk

(2π)3
Ṽ (k)fk(r)

τk
εk(r)

, (3)

that accounts for finite-temperature effects. It describes
the interaction between the condensate and thermally
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Hth

FIG. 2. Raising the temperature of a dipolar quantum fluid
can induce a pronounced roton-maxon spectrum of its col-
lective excitations, as shown in panel (a) for an infinitely
elongated condensate along the z-axis [see Fig.1(c)]. Heat-
ing the fluid tends to lower the energy of the roton minimum
and eventually softens the roton excitation as the tempera-
ture increases. This effect can be traced back to the density
dependence of the energy correction caused by fluctuations,
shown in panel (b). While quantum fluctuations yield an
energy Hqu (dashed line) that increases with a rising con-
densate density ρ = |ψ|2, the contribution Hth from ther-
mal fluctuations decreases (solid lines). The thermal energy
correction Hth(r), therefore, acts as a focusing nonlinearity
that supports the formation of regular density modulations.
This is illustrated in panel (c,d), where we show the axial
density ρ||(z) =

∫
dxdyρ(r) along with the axial potential

H̄th = ρ−1
||

∫
dxdyρ(r)H̄th(r), respectively. The calculations

are performed for a/ad = 0.7 and µ = εd.

created excitations that populate Bogoliubov modes ac-
cording to the Bose distribution fk = 1/(eεk/kBT − 1).
The resulting form of the finite-temperature extended
Gross-Pitaevskii equation (TeGPE) agrees with the re-
sult of Hartree-Fock Bogoliubov theory [24, 25], and in-
cludes relevant fluctuation terms that are commonly ne-
glected within the Popov approximation [26] (see Meth-
ods Section).

Let us first use this framework to study an elongated
atomic gas that is confined harmonically in the x − y
plane and extends infinitely in the z-direction without
confinement along the z-axis. Figure 1(a) shows the ther-
modynamic phase diagram obtained by simulating the
imaginary time evolution of the TeGPE at a fixed chem-
ical potential µ (see Methods Section). At zero tem-
perature, we find a superfluid-supersolid quantum phase
transition, with a co-existence region that is expected
for a first-order phase transition [27]. While increasing
the temperature may generally be expected to melt the
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FIG. 3. Our measured axial density |ψ||(z)|2 (filled area), ob-
served for T = 76.5 nK and Nc = 13400 condensate atoms,
demonstrates the formation of a supersolid state and agrees
well with the numerical simulation of the TeGPE (red line).
On the other hand, equivalent simulations at zero temper-
ature (blue line) disagree qualitatively and instead yield an
unmodulated superfluid phase.

supersolid phase [28], we find instead that it shifts the
transition towards weaker dipole-dipole interactions. As
a result, heating the system effectively drives a phase
transition from a fluid into a solid phase.

We can understand this effect from the excitation spec-
trum of the condensate in the superfluid phase. To this
end, we solve the time-dependent TeGPE within lin-
ear response theory to find the excitation spectrum ωkz
for periodic plane-wave excitations along the z-direction.
As shown in Fig.2, the obtained dispersion exhibits the
expected roton-maxon form [29–32], known from low-
temperature helium [33] and Bose-Einstein condensates
with finite-range interactions [34–37]. The local mini-
mum at finite momenta supports the formation of roton
quasiparticles, which were introduced by Landau as el-
ementary vortices to describe superfluidity in 4He [33].
Experiments show that the roton minimum in helium
decreases with increasing temperature [38] due to roton-
roton scattering [39]. Yet, the roton energy remains siz-
able at the transition to a normal-fluid phase [38], be-
yond which it only varies weakly with temperature. The
presence of a Bose-Einstein condensate in dilute dipo-
lar superfluids, however, enhances the effect of thermal
fluctuations due to the larger energy scale of the interac-
tion between Bogoliubov excitations and the condensate.
A similar effect is found for atoms with light-induced
interactions and predicted to lower the roton minimum
and cause enhanced condensate depletion [40]. In the
present case, we find a thermal softening of the roton
mode that can drive an instability of the superfluid and
thereby cause the formation of a supersolid phase with
increasing temperature.

We can gain further intuition about the underlying
mechanism by closer inspection of the two fluctuation
energies Hqu and Hth that both contribute a local non-
linearity to the wave equation for ψ(r). Hqu > 0 is
the Lee-Huang-Yang correction to the equation of state

[14, 15], and raises the ground state energy due to the
small condensate depletion caused by the atomic inter-
actions. It therefore increases for higher particle densities
and stronger interactions, as shown in Fig. 2(b). Conse-
quently, Hqu generates an effective repulsion that stabi-
lizes the condensate against collapse [17], and shifts the
roton instability towards higher densities and stronger
dipole-dipole interactions. On the contrary, Hth increases
as we lower the density of the condensate [see Fig.2(b)].
This behaviour is readily understood as follows. Decreas-
ing the condensate density increases the fraction of ther-
mally excited, non-condensed atoms [25]. In the limit
where this fraction remains small, such an increase im-
plies a larger potential energy due to interactions with
the thermal atoms. It therefore contributes a positive en-
ergy correction that decreases upon increasing the den-
sity ρ = |ψ|2 of the condensate. As a result, thermal
fluctuations energetically favour higher condensate den-
sities, such that Hth acts as a focusing nonlinearity which
lowers the roton energy and facilitates the formation of
a density-modulated phase, as illustrated in Fig.2c.

We recently observed experimental signatures of this
effect by studying the cooling-heating lifecycle of bosonic
dysprosium atoms at ultralow temperatures [41]. The ex-
periment starts from a thermal cloud of 105 atoms in a
cigar-shaped optical dipole trap and traces the time evo-
lution of the gas as it is cooled evaporatively to quantum
degeneracy by lowering the depth of the trap. During the
continual cooling and thermalization we observed the ex-
pected emergence of supersolidity, and studied the equi-
librium states of the quantum fluid across the supersolid
phase transition. The measured density profiles indicate
a higher degree of modulation at higher temperatures.
While this has cast mystery on the origin of the observa-
tions, they can now be used to corroborate and bench-
mark our theoretical understanding . Figure 1b shows
our measured contrast of the axial density modulations
for different temperatures and condensed-atom numbers
(see Methods Section). The results confirm the forma-
tion of a supersolid phase with increasing temperature in
good agreement with the theoretical transition line ob-
tained numerically by the TeGPE. Moreover, Fig. 3 com-
pares our measured axial density, ρ||(z), to the theoretical
prediction. The predicted zero-temperature ground state
corresponds to an unstructured superfluid and deviates
qualitatively from the observed supersolid state. The re-
sult of our finite-temperature TeGPE simulation, how-
ever, agrees with the experiment and reproduces quanti-
tatively the period and amplitude of the measured den-
sity modulations. This remarkable level of agreement
offers strong indication that the observed supersolid has
indeed been generated by the finite temperature of the
atoms.

The possibility to make detailed comparisons between
theory and experiments opens up several directions for
exploring the surprising thermodynamic behaviour of
quantum ferrofluids. Already, the ground state phase
diagram exhibits a rich structure, including first-order as
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well as second-order quantum phase transitions in one
and two-dimensional systems [27, 42, 43]. This offers a
promising starting point for investigating how thermal
fluctuations influence the nature of the fluid-solid phase
transition and may affect the physics of higher dimen-
sional supersolids [44, 45], which can come in a diverse
range of complex patterns [22, 23, 42]. Our present find-
ings motivate future experiments and first-principle sim-
ulations [46, 47] to expand the phase diagram of Fig.1
into the high-temperature domain and draw a direct con-
nection to the more familiar physics of liquid-solid phase
transitions in the absence of superfluidity. Such numer-
ical approaches may also reveal how the present phe-
nomenology extends into the regime of strong interac-
tions, which is becoming accessible in experiments with
ultracold polar molecules [48–50]. Equally important, an
improved understanding of finite-temperature effects in
dipolar quantum fluids could help resolving current ques-
tions about quantitative discrepancies between measure-
ments and theory [3, 31].

We thank Yongchang Zhang, Georg Bruun, and Jordi
Boronat for valuable discussions and the Er-Dy team in
Innsbruck for experimental support. This work was sup-
ported by the DNRF through the Center of Excellence
”CCQ” (Grant agreement no.: DNRF156) and the Carls-
berg Foundation through the ’Semper Ardens’ Research
Project QCooL. JB acknowledges funding by the Euro-
pean Union, the Spanish Ministry of Universities and the
Recovery, Transformation and Resilience Plan through a
grant from Universitat Politècnica de Catalunya. FF and
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Appendix A: The nonlinear wave equation

The grand canonical potential is minimal in equilib-
rium such that we can minimize Eq.(2) with respect to
the condensate wave function ψ(r). This yields the non-
linear wave equation

µψ(r) =

(
−~2∇2

2m
+ U(r) +

4π~2a
m
|ψ(r)|2 (A1)

+

∫
dr′Vdd(r− r′)|ψ(r′)|2 +Hqu(r) +Hth(r)

)
ψ(r),

which determines the equilibrium state of the condensate
for a given chemical potential µ. We consider a harmonic
trapping potential U(r) = m

2 (ωxx
2 + ωyy

2 + ωzz
2), with

trapping frequencies ωx,y,z along the three cartesian axes.
The first four terms correspond to the Gross-Pitaevskii
equation that describes the mean-field physics of the con-
densate at zero temperature. The next term is given by
Hqu(r) = γqu|ψ(r)|3 and accounts for leading order ef-
fects of quantum fluctuations with a strength γqu that
increases with a and ad [14, 15, 17]. Finite-temperature

effects are captured by the last term as given in Eq.(3).
We note here that the applied local-density approxima-
tion can cause an infrared divergence of the momentum
integral in Eq.(3). However, the finite system size of
trapped systems yields a natural momentum cutoff that
ensures converged results. Indeed, we find that our cal-
culated condensate wave functions are not sensitive to
the precise choice of the momentum cutoff for relevant
trap geometries.

Appendix B: Finite-temperature simulations

We have calculated the condensate wave function at
finite temperatures by simulating the imaginary time
evolution of the wave equation (A1). More concretely,
we replace µψ by −∂tψ in Eq.((A1)) and simulate the
time evolution until ψ(r, t) reaches a steady state for
a given norm Nc =

∫
dr|ψ(r, t)|2. Nc corresponds to

the number of condensate atoms under 3D confinement
as considered in Figs.1(b) and 3, and yields the axial

density Nc/L = L−1
∫

dxdy
∫ L
0

dz|ψ(r, t)|2 for a given
length L of the periodic simulation box as considered
in Figs.1(a) and 2. Finally, we determine the chemical
potential from Eq.(A1) in order to construct the thermo-
dynamic phase diagram shown in Fig.1(a). The results
shown in Figs.1(b) and 3 are obtained for the experimen-
tal trap parameters ωx/2π = 88Hz, ωy/2π = 141Hz, and
ωz/2π = 36Hz, and a scattering length of 89a0, where a0
is the Bohr radius. The simulations of Figs.1(a) and 2
have been performed for wx = 0.0717εd, wy = 0.142εd,
and wz = 0. In all cases, the dipoles are considered to
be polarized along the y-axis .

Appendix C: Experimental determination of the
average axial density and the density contrast

We probe the emergence of a supersolid state via time-
of-flight measurements and in-situ Faraday phase con-
trast imaging [41]. The former provides information on
the global phase coherence and the latter allows us to
extract the modulation contrast from the in-situ atomic
density. In particular, to obtain the modulation contrast
of the experimental points in Fig. 1c, we proceed as fol-
lows. For each {Nc, T}, we record the in-trap density
distribution and integrate along the direction orthogo-
nal to the droplet chain to get a 1D density profile ρ||(z).
We repeat the measurement under the same experimental
conditions for 10-20 times. For each profile, we then cal-
culate its Fourier Transform, ρ̃||(k) =

∫
e−ikzzρ||(z)dz.

Finally, we determine the average of |ρ̃||(k)| and obtain
the modulation contrast as the ratio between the Fourier
component at the modulation wavelength and the density
|ρ̃||(0)| at kz = 0.

The experimental profile shown in Fig. 3 is obtained
by averaging the density distributions from the repeated
measurements. The central maximum in each profile is



5

shifted to the origin, z = 0, to correct for unavoidable
center-of-mass fluctuations in the experiment. Moreover,

we remove negative density contributions in each density
image, which are caused by small but inevitable misalign-
ments of the imaging objective.
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Conclusions

The work discussed in this thesis can be divided into two main topics: the study of the
interspecies interactions in an ultracold dipolar mixture of erbium and dysprosium,
and the investigation of supersolidity with dysprosium atoms, with the phase transition
from one to two-dimensional supersolidity as one of the main results.

Er-Dy interspecies interactions. My journey as a PhD student in the Er-Dy
experiment in Innsbruck started in 2018. In the same year, our group merged for
the first time the physics of dipolar gases with the one of hetero-nuclear mixtures by
combining degenerate quantum gases of erbium and dysprosium with different isotope
combinations, among them also a Bose-Fermi mixture [187]. Each of these isotope
combinations interact differently due to the different scattering properties. Focusing
on one of the mixtures, 166Er-164Dy, already from the first measurements, by looking
at the atomic clouds after time-of-flight expansion, a clear deformation of the clouds
shape arising from the repulsive interaction between erbium and dysprosium atoms was
visible. This observation led to one of the main results of this thesis: the investigation
of the interspecies interaction, by measuring the in-trap displacement for different
orientations of the magnetic field [155].

In fact, for dipolar mixtures, the in-trap displacement does not only depend on the
interspecies contact interactions, but also on the dipole-dipole interactions. At fixed
magnetic field, and therefore at fixed interspecies contact interaction, the contribution
of the dipole-dipole interaction to the interspecies repulsion and therefore to the in-trap
displacement can be tuned by changing the orientation of the magnetic field. In
collaboration with M. Modugno from the University of the Basque Country in Bilbao
(Spain), we developed a model for our hetero-nuclear mixture. By calculating the
in-trap displacement for different interspecies scattering lengths, we could estimate
the value that best fitted the experimental results, which we predicted to be about
a12 ∼ 100 a0. Furthermore, the theoretical calculations revealed interesting regimes in
which supersolidity, a state combining density modulation and global phase coherence,
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is induced in one of the species by increasing the interspecies repulsive interactions [155].
This regime could be easily achieved in the experiment by tuning the magnetic field in
proximity of an interspecies Feshbach resonance.

In 2020, we performed extensive studies of interspecies Feshbach resonances for
different isotope combinations [58]. More details can be found in Ref. [57]. This project
had as main result the discovery, through atomic-loss spectrocopy, of two Gauss-broad
interspecies Feshbach resonances for two isotope mixtures. The interspecies nature of
those resonances was probed via cross-species thermalization measurements. These
results will allow us in the future to tune the interaction between erbium and dysprosium
and reach interesting many-body phases as the one mentioned above.

Dipolar supersolids. The second topic of this thesis regards the study of supersolid
states in a system of dysprosium atoms. This project started in 2019, when our group
joined the quest for supersolidity and, in collaboration with the ERBIUM experiment
in Innsbruck, we demonstrated the existence of a supersolid state in form of quantum
droplets linked to each other via a superfluid background [42]. This state, which was
found in a regime where dipolar interactions are dominant and the mean-field physics
predicts a collapse, is stabilized by quantum fluctuations. Simultaneous results were
achieved in the group of G. Modugno in Pisa (Italy) [182], and in the group of T.
Pfau in Stuttgart (Germany) [32]. What distinguished the supersolid realized in our
experiment from the others was the choice of the isotope. In fact, we created supersolid
states with a cloud of 164Dy atoms. 164Dy has the special property that the background
scattering length is lower than the dipolar length add. For this reason, to reach the
dipolar-dominated regime, we could tune our scattering length away from Feshbach
resonances and observe supersolidity for times longer than 1s. Furthermore, instead of
preparing the supersolid state via the standard interaction ramp from a dBEC adopted
by the other groups, we developed a new scheme to create a dipolar supersolid by
directly evaporating from a thermal cloud. This technique proved to be a fundamental
tool in the realization of two-dimensional supersolid states.

Soon after the realization of the first supersolid, we upgraded the experiment with
a vertical imaging characterized by an objective, whose resolution of 700nm at the
atoms allows us to probe the supersolid state in trap [176]. This tool, together with
the possibility of directly evaporating from a thermal cloud, gave us the opportunity
of studying the full life-cycle of the supersolid [177]. We observed that, during the
formation of the supersolid via direct evaporative cooling, the system develops first
a density modulation with phase coherence only localized within the droplets, and



Conclusions 133

then acquires global phase coherence. Another important result regards the role
of finite temperatures. In particular, our findings show that higher temperatures
favour the appearance of density modulation. This underlines that not only quantum
fluctuations, but also thermal fluctuations play a significant role in the formation of
a supersolid state. In a separate work in collaboration with the group of T. Pohl
at Aarhus University (Denmark), we revealed that indeed higher temperatures do
not melt the supersolid state but rather help in developing density modulation. This
counterintuitive behaviour relates to the excitation spectrum of a dipolar BEC, which
softens for higher temperatures [180].

Two-dimensional supersolidity. All the results on supersolidity mentioned above
regard a system made of three or four droplets aligned along the elongated axis of a
cigar-shaped trap. At the end of the year 2020, improvements in the experimental
apparatus allowed us to gain in condensed atoms and therefore also in number of
droplets. At the beginning of 2021, we managed for the first time to realize two-
dimensional supersolidity, by performing a structural phase transition from a linear
chain of droplets to a supersolid in a zig-zag pattern, with up to 10 droplets [137]. This
work was done in collaboration with L. Santos (Hannover) and R. Bisset (Innsbruck)
and represents one of the main results of this thesis. Soon after, we could extend
supersolidity from the zig-zag state to a hexagon state in a circular trap [27]. The
realization of this state opened the door towards many research directions, e.g. study
the excitation modes [136, 154]. Furthermore, the ability of producing states in an
isotropic circular trap allowed recently our group to observe, for the first time, quantized
vortices in a dipolar BEC by using the anisotropic nature of the dipole-dipole interaction
to impart angular momentum into the system [98].

Outlook. The Er-Dy experiment had so far really productive and exciting years.
This was also thanks to the many collaborations we had with external groups as the one
of T. Giamarchi (Geneva), L. Santos (Hannover), R. Bisset (Innsbruck), M. Modugno
(Bilbao), G. Lamporesi (Trento), and T. Pohl (Aarhus), but also thanks to our theory
group with T. Bland and E. Poli, who helped us with daily stimulating discussions and
theoretical support. I expect the next years to be as exciting. Next research directions
involve the nucleation of vortices in supersolid states, by following a similar approach
used in our group to impart angular momentum in a dipolar BEC. Furthermore, the
knowledge we gained in the past years on the interspecies interactions and Feshbach
resonances opens the door to the realization of binary supersolid states with erbium
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and dysprosium. Moreover, in July 2021 we upgraded our experimental apparatus
with a second chamber, namely a glass cell for quantum gas microscopy of erbium and
dysprosium atoms [176], which will enable us to study interesting many body phases
in optical lattices arising from the long-range dipole-dipole interaction.
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condensation in five different Er-Dy isotope combinations, as well as one Er-Dy Bose-Fermi mixture.
Finally, we present first studies of the interspecies interaction between the two species for one mixture.

DOI: 10.1103/PhysRevLett.121.213601

In recent years, the field of atomic dipolar quantum gases
has witnessed an impressive expansion as researchers have
made substantial headway in using and controlling a novel
class of atoms, the highly magnetic rare-earth species.
Since the first experimental successes in creating Bose and
Fermi quantum gases of Dy [1,2] or Er [3,4], fascinating
many-body phenomena based on the dipole-dipole inter-
action (DDI) have been observed, including Fermi surface
deformation [5], quantum-stabilized droplet states [6–8],
and roton quasiparticles [9]. Remarkably, for Dy and Er, the
intriguing physics within reach comes with comparatively
simple experimental approaches to achieve quantum degen-
eracy. Several research groups have either recently reported
on new experimental realizations of quantum gases with Dy
[10,11] or Er [12] or are actively pursuing it [13,14].
An alternative route to access dipolar quantum physics is

provided by polar molecules, possessing an electric dipole
moment. Up to now, ultracold gases of polar molecules
have been created from nondipolar binary quantum mix-
tures of alkali atoms [15–18] and dipolar spin-exchange
interactions have been recently observed with lattice-
confined molecules [19]. Besides molecule creation, het-
eronuclear quantum mixtures have been used as powerful
resources to realize a broad class of many-body quantum
states (e.g., [20–27]), in which intra- and interspecies short-
range contact interactions are at play.
In the experiment described in this Letter, we merge for

the first time the physics of heteronuclear mixtures with
the one of magnetic dipolar quantum gases. Our motiva-
tions to create quantum mixtures by combining two differ-
ent dipolar species, Er and Dy, are numerous. First, the
coupling between the two components acquires an aniso-
tropic and long-range character due to the strong inter-
species DDI, in contrast to purely contact-interacting
mixtures. The emergent physical richness of the system
has only begun to be uncovered by theory. Recent studies
include the prediction of anisotropic boundaries in the
dipolar immiscibility-miscibility phase diagram [28,29],

roton immiscibility [30], vortex lattice formation [31], and
impurity physics both in dipolar quantum droplets [32] and
dipolar Binary Bose-Einstein condensates (BECs) [33,34].
Moreover, the magnetic moments are large, yet different
(7 bohr magneton for Er and 10 for Dy), leading to a DDI
twice as strong in Dy as in Er. Such a difference is on one
hand advantageous to deeper elucidate the complex scat-
tering and many-body physics by performing comparative
single-species studies with Er and Dy in the same exper-
imental environment. On the other hand, we also anticipate

(a) (b) (c) (d)

(e)

FIG. 1. Binary Bose-Einstein condensation in a 166Er-164Dy
mixture. (a)–(c) Pairs of TOF absorption images at different
evaporation stages, showing (a) a thermal mixture at about
180 nK, (b) an Er cloud at the onset of condensation coexisting
with a thermal Dy gas at about 80 nK, and (c) the binary dipolar
BEC with total atom numbers N ¼ 3.4 × 104ð2.6 × 104Þ for
Er(Dy) with condensate fractions of about 45%. x̃ denotes the
horizontal axis perpendicular to the imaging axis. (d),(e) Density
profiles integrated along z, extracted from (c). Solid lines
depict the 1D bimodal fit, the dotted lines show Gaussian fits
to the thermal components. (f)–(h) BECs with a controlled
number imbalance giving about NEr ¼ ð3.2; 6.4; 9.2Þ × 104 with
(35, 70, 85)% condensate fraction and NDy ¼ ð3.1; 2.9; 0.9Þ ×
104 with (30, 55, 30)% condensate fraction for (f)–(h), respec-
tively. The deformations and the relative displacement of the
clouds are caused by interspecies interaction (see main text). The
color bar indicates the optical density.
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that, in mixture experiments, the imbalance in dipolar
strength, combined with the interspecies interactions,
promises fascinating prospects for creating long-lived
quantum-droplet states and for accessing exotic fermionic
superfluidity, for which the degree of deformation of the
Fermi surface is species-dependent [5].
Second, the rich, but different atomic spectra of Er and

Dy open promising prospects for implementing species-
dependent optical manipulations schemes, including spe-
cies-selective optical potentials at magic wavelengths and
checkerboard-pattern-like lattice structures. Third, Er and
Dy feature many stable bosonic and fermionic isotopes
(both elements have four isotopes with natural abundances
above 15%). Such an isotope variety allows us to create
dipolar Bose-Bose, Bose-Fermi, and Fermi-Fermi hetero-
nuclear mixtures. Last, mixtures composed of two different
magnetic species serve as an ideal platform to produce
ground-state polar molecules with both an electric and
magnetic dipole moment, offering novel degrees of control
and competing long-range interactions [35–37].
We here report on the first experimental realization of

quantum-degenerate dipolar mixtures of Er and Dy atoms,
using an all-optical approach for trapping and cooling.
Taking advantage of the isotope richness in Er and Dy, we
produce dipolar Bose-Bose mixtures with five different
isotope combinations, as well as one Bose-Fermi mixture.
We note that, prior to this work, the production of a Dy
isotope mixture of a degenerate Fermi gas and a Bose gas
near condensation has been reported [2] and, more recently,
a doubly degenerate Fermi-Fermi mixture has been created
from two Er spin states [39]. Experimental efforts are also
devoted to creating Dy-K mixtures [40].
In the following, we detail the production of a double

dipolar Bose-Einstein condensate (ddBEC) of 166Er and
164Dy. The same procedure is used for the other isotope
mixtures. Our experiment starts with a double magneto-
optical trap (MOT) of Er and Dy, as reported in our recent
work [41]. For both species, the MOT operates on narrow
intercombination lines and yields cold and spin-polarized
samples in the absolute lowest Zeeman sublevels
[10,13,41,42]. After loading the double MOT, we optically
compress the mixture in 400 ms (cMOT phase) by reducing
the detuning and power of the MOT beams as well as the
magnetic-field gradient.
We then transfer the mixture into an optical dipole trap

(ODT) by superposing it with the cMOT for 100 ms.
Initially, the ODT consists of a single laser beam at
1064 nm, propagating along the horizontal (y) axis. The
beam has a fixed vertical (z) focus of about 22 μm, whereas
the horizontal waist can be controlled via a time-averaging-
potential technique (see, e.g., [43]). This leads to an elliptic
beamwith variable aspect ratio (AR). Best transfer efficiency
is observed for a beam power of 32Wand an AR of 4, which
provides good spatial overlap between the cMOT and the
ODT.We then switch off theMOT beams andmagnetic-field

gradient, and start a 5-sec evaporation sequence, during
which we apply a bias magnetic field Bevap along the
gravity (z) axis to preserve spin polarization.
Our strategy for evaporative cooling can be divided into

three main stages. (i) During the initial 600 ms, we reduce
the AR to unity while lowering the power of the single-
beam ODT. This increases the density of the mixture at a
roughly constant trap depth. (ii) We start forced evaporation
in the horizontal ODT and add a vertically propagating
dipole trap beam. The vertical beam is derived from the
same laser source as the horizontal one and has a power of
15 W and a waist of 130 μm. (iii) We proceed with forced
evaporation in the crossed ODT by reducing the powers of
both beams nearly exponentially until the mixture is close
to quantum degeneracy. In the final stage of the evapora-
tion, we increase the AR to 5 to create a pancakelike
trapping geometry and further decrease the trap depth until
we reach double quantum degeneracy. To probe the atomic
mixture, we switch off the ODT and, after a time-of-flight
(TOF) expansion of 25 ms, we perform sequential absorp-
tion imaging with a resonant light pulse at 401 nm for Er
and 500 μs later at 421 nm for Dy [3,44]; both pulses have a
duration of 50 μs. The imaging light propagates horizon-
tally with an angle of 45° with respect to the y axis.
Unlike many alkali mixtures [45–48], Er and Dy exhibit

very comparable atomic polarizabilities α because of their
similar atomic spectra. From single-species experiments
[14,49], a ratio αDy=αEr ¼ 1.06 at 1064 nm is expected. For
our initial ODT parameters, we calculate trap frequencies
of about νEr ¼ ð490; 5; 1980Þ Hz and νDy ¼ ð505; 5;
2050Þ Hz [50], corresponding to trap depths of 380 and
410 μK for Er and Dy, respectively. Although small, the
difference in trap depths has an important effect on the
evaporation trajectory of the mixture. We observe that
the more weakly trapped Er atoms act as a coolant for Dy
and are preferentially evaporated from the trap (“sympa-
thetic losses” [47,51]). To sustain Er atom numbers high
enough to achieve double quantum degeneracy, we imbal-
ance the initial atom number in the MOT with Er as the
majority component. The atom number imbalance can be
easily controlled by individually changing the MOT load-
ing time and beam power. This strategy is often employed
in multispecies experiments, e.g., [52,53].
Figures 1(a)–1(c) show the phase transition from a

thermal Er-Dy mixture (a) to a ddBEC (c). The TOF
absorption images reveal the textbooklike fingerprint of
condensation, the emergence of a bimodal density distri-
bution, as plotted in Fig. 1(d). The condensation series
[Figs. 1(a)–1(c)] is taken for an Er(Dy) MOT loading time
of 3 s (1 s), for which we transfer 8 × 106 (7 × 105) Er(Dy)
atoms into our ODT and measure a temperature of about
35 μK; this parameter set allows us to create number-
balanced ddBECs. In agreement with the expected polar-
izabilities, we measure ODT trap frequencies of νEr¼
(48.6ð3Þ;29.7ð9Þ;144ð1Þ)Hz and νDy ¼ (50.6ð3Þ; 30.2ð9Þ;

PHYSICAL REVIEW LETTERS 121, 213601 (2018)

213601-2



160ð1Þ) Hz [54]. The resultant gravitational sag between
the two species is 2.1ð2Þ μm.By varying the imbalance of the
MOT loading, we can produce degenerate mixtures with
different atom number ratios and condensate fractions, which
is exemplified in Figs. 1(f)–1(h). For large condensates, one
directly observes a deformation of the density profiles due to
interspecies interaction, as we discuss later in more detail.
To quantify the cooling efficiency, we plot the normal-

ized phase-space density (PSD=PSD0) as a function of
normalized atom numbers (N=N0) during the evaporation
stages ii and iii [see Fig. 2(a)]. PSD0 and N0 are the
respective initial values at stage ii. From this plot, we
extract γ ¼ −d lnðPSD=PSD0Þ=d lnðN=N0Þ [55], which
captures the evaporation efficiency, via a linear fit to the
data. In the single-beam ODT (stage ii), we see similar
efficiencies both in mixture and single-species operations,
with γ ≈ 1.2. In the crossed ODT (stage iii), we find γEr ¼
2.4ð9Þ for Er in the mixture operation. This value is
comparable to state-of-the-art single-species Er experi-
ments [56] and, as expected, little affected by a small
admixture of Dy atoms. Contrarily, the cooling efficiency
of Dy in stage (iii) strongly benefits from the sympathetic
cooling by Er: We observe a steep increase of the Dy PSD
in the mixture and extract γDysym ¼ 7ð2Þ, whereas for the

same NDy
0 but in single-species operation, the evaporation

efficiency is considerably lower and would not suffice for
condensation. However, with higher NDy

0 we can still
produce large Dy BECs in single-species operation.
The proper choice of Bevap plays an important role for

cooling magnetic rare-earth atoms and becomes even more
critical in mixture operation. It has indeed been observed in
single-species experiments [57–59] that both Er and Dy
exhibit extremely dense and temperature-dependent spectra
of homonuclear Feshbach resonances. Figure 2(b) shows
the atom numbers of the 166Er-164Dy mixture at the onset of
condensation as a function of Bevap in a small magnetic-
field range from 0.5 to 5 G. As expected, we find a number
of broad and narrow loss features. Some of them are
connected to known homonuclear Feshbach resonances
[57–59], others we attribute to unknown high-temperature
resonances or detrimental interspecies scattering condi-
tions. In a few narrow magnetic-field windows, we observe
atom numbers large enough for both components to
condense. Our magnetic-field stability of about 2 mG is
sufficient to reliably operate in most of these small
windows. The optimal value of Bevap, listed in Table I,
depends on the isotope combination.
Combining Er and Dy offers an unprecedented variety of

heteronuclear mixtures with 16 possible isotope configu-
rations, including Bose-Bose, Bose-Fermi, and Fermi-
Fermi quantum gases (see Table I). Using the cooling
and trapping procedure optimized for 166Er-164Dy, we are
able to produce five ddBECs and one Bose-Fermi mixture.
Concerning the remaining combinations, we know from
previous experiments that both 167Er and 163Dy need a
different experimental approach since 167Er undergoes
light-induced losses in a 1064-nm ODT [4], whereas
163Dy, never brought to quantum degeneracy so far, has
an inverted hyperfine structure, requiring most probably
additional optical pumping stages. Both isotopes will be
investigated for future studies of Fermi-Fermi mixtures.
Figures 3(a)–3(d) show absorption pictures of our

doubly degenerate isotope mixtures. We are able to

(a)

(b)

FIG. 2. (a) Evaporation trajectories: PSD=PSD0 as a function of
N=N0. Filled squares (circles) indicate the Er(Dy) trajectory in
mixture operation. The lines are linear fits to the data for
evaporation in the single-beam (ii) and crossed-beam (iii) ODT
(see main text). Open symbols show the single-species operation
for Er (squares) and for Dy with small (circles) and large
(diamonds) initial atom numbers. In the latter case, Dy condenses
alone. (b) Atom numbers in the mixture of Er (red) and Dy (blue)
at the onset of condensation as a function of the magnetic-field
value during evaporation. Condensation is reached for atom
numbers above about 3.5 × 104 (gray region). We record the best
performance for a ddBEC around 2.075 G. Arrows indicate the
position of known single-species Feshbach resonances [57–59].

TABLE I. (Left) List of optimal Bevap and γ
Dy
sym for the quantum-

degenerate Er-Dy mixtures. (Right) Chart of the available isotope
mixtures: ð✓Þ realized double-degenerate mixtures, ð⨯Þ thermal
mixtures, where degeneracy is not yet reached. (…) Mixtures
with 167Er and 163Dy are not investigated here.
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condense all Bose-Bose isotope mixtures with the excep-
tion of 166Er-162Dy, for which we record severe losses
during the evaporation, potentially due to a very large
interspecies scattering length. For all degenerate mixtures,
we observe sympathetic cooling of Dy by Er. The atom
numbers in the ddBECs differ significantly for the different
mixtures, while the initial atom numbers in the MOT are
very similar. This points to different intra- and interspecies
scattering properties during evaporation. The optimal Bevap

and the extracted γDysym are listed in Table I.
We also prepare one Bose-Fermi mixture [see Fig. 3(e)],

in which a 168Er BEC coexists with a degenerate Fermi gas
of 161Dy. Although the cooling process of spin-polarized
fermions can differ substantially from bosons, we are able
to reach Bose-Fermi degeneracy with a similar evaporation
scheme [60]. We measure a temperature of the Fermi gas of
T=TF ≈ 0.5, with the Fermi temperature TF ¼ 140 nK. We
expect that deeper degeneracy might be reached by using
smaller ODT beam waists [4].
Remarkably, in the TOF images in Figs. 1 and 3 hints of

interspecies interactions can be spotted: in mixture oper-
ation, the center-of-mass (c.m.) position of each BEC is
vertically displaced with respect to its thermal-cloud center
[see also Fig. 4(a)]. The two BECs are displaced in opposite
directions, with the heavier (lighter) Er(Dy) always shifted
down (up). Contrarily, in single-species operation the
condensates and their thermal clouds are centered [see
Figs. 4(b) and 4(c)].
To confirm that the displacement after TOF originates

from in-trap interspecies interaction, we prepare a ddBEC,
let it equilibrate for 50 ms, and then selectively remove
either of the two species from the ODT using a resonant
light pulse [61]. After a variable hold time in the ODT, we
release the remaining cloud and record its c.m. position
after TOF. As shown in Figs. 4(d) and 4(e), we observe a

very pronounced c.m. oscillation of the remaining BEC
component with a frequency close to its bare trap frequency.
The oscillations of Er [removing Dy, Fig. 4(d)] and of Dy
[removing Er, Fig. 4(e)] proceed in counterphase, as
expected from their initial separation in trap. Repeating
the same measurement with a thermal-thermal mixture,
or a mixture with just one condensed component (not
shown), yields negligible or significantly weaker oscilla-
tions, respectively.
The spatial separation between the two condensed

components and their oscillating behavior after removal
indicate that, for our trap geometry, the overall interspecies
interaction—contact plus dipolar—has a repulsive charac-
ter. We note that the interspecies scattering length, gov-
erning the contact interaction, and its Feshbach tuning are
presently unknown and beyond reach of state-of-the-art
scattering models [57,62]. To isolate the different sources
of interaction and determine their signs, future dedicated
experiments studying the interplay between trap geometry,
dipole orientation, and interspecies scattering length, com-
bined with simulations based on generalized coupled
Gross-Pitaeskvii equations are necessary. Indeed, the
DDI breaks the angular symmetry of the mean-field
interspecies potentials and is expected to render the
strength and the sign of the overall interspecies interaction
anisotropic and trap dependent.
In conclusion, we have produced heteronuclear dipolar

quantum mixtures by combining two strongly magnetic
atomic species, Er and Dy. Their isotope variety, the
richness of their interactions, the imbalance in the dipolar
strength, and simple laser-cooling schemes make Er-Dy
mixtures a powerful experimental platform to access many-
body quantum phenomena, in which contact and dipolar
intra- and interspecies interactions are at play.
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(b)

(c)

FIG. 4. Evidence of interspecies interactions in the 166Er-164Dy
mixture: absorption pictures of Er and Dy in mixture (a) and
single-species (b),(c) operation. (d),(e) Filled symbols show the
c.m. position along z of the Dy BEC (d) and the Er BEC (e) after
removal of the other species with resonant light. The gray region
indicates the transient time until full removal. The solid lines are
damped sine fits to the oscillations. For comparison, open
symbols show the c.m. position in a thermal mixture.

(a) (b) (c) (d) (e)

FIG. 3. Absorption pictures of the double-degenerate Bose-
Bose mixtures (a)–(d) and the Bose-Fermi mixture (e). The
pictures are averaged over 5–10 single shots. For all combi-
nations, degeneracy is reached with the evaporation ramp
optimized for the 166Er-164Dy mixture (cf. Fig. 1). Bevap is
listed in Table I. Typical condensate fractions are around 30%,
total atom numbers range between 1 × 104 and 3.5 × 104 atoms.
For the imbalanced case, higher condensate fractions can be
achieved (see Fig. 1). For the 161Dy Fermi gas, N ¼ 8 × 103,
T=TF ≈ 0.5, and TOF ¼ 15 ms.
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By combining theory and experiments, we demonstrate that dipolar quantum gases of both 166Er and
164Dy support a state with supersolid properties, where a spontaneous density modulation and a global
phase coherence coexist. This paradoxical state occurs in a well-defined parameter range, separating the
phases of a regular Bose-Einstein condensate and of an insulating droplet array, and is rooted in the roton
mode softening, on the one side, and in the stabilization driven by quantum fluctuations, on the other side.
Here, we identify the parameter regime for each of the three phases. In the experiment, we rely on a detailed
analysis of the interference patterns resulting from the free expansion of the gas, quantifying both its
density modulation and its global phase coherence. Reaching the phases via a slow interaction tuning,
starting from a stable condensate, we observe that 166Er and 164Dy exhibit a striking difference in the
lifetime of the supersolid properties, due to the different atom loss rates in the two systems. Indeed, while in
166Er the supersolid behavior survives only a few tens of milliseconds, we observe coherent density
modulations for more than 150 ms in 164Dy. Building on this long lifetime, we demonstrate an alternative
path to reach the supersolid regime, relying solely on evaporative cooling starting from a thermal gas.

DOI: 10.1103/PhysRevX.9.021012 Subject Areas: Atomic and Molecular Physics,
Condensed Matter Physics,
Quantum Physics

I. INTRODUCTION

Supersolidity is a paradoxical quantum phase of matter
where both crystalline and superfluid order coexist [1–3].
Such a counterintuitive phase, featuring rather antithetic
properties, has been originally considered for quantum
crystals with mobile bosonic vacancies, the latter being
responsible for the superfluid order. Solid 4He has long
been considered a prime system to observe such a phe-
nomenon [4,5]. However, after decades of theoretical and
experimental efforts, an unambiguous proof of superso-
lidity in solid 4He is still missing [6,7].
In search of more favorable and controllable systems,

ultracold atoms emerged as a very promising candidate,
thanks to their highly tunable interactions. Theoretical
works point to the existence of a supersolid ground state
in different cold-atom settings, including dipolar [8]

and Rydberg particles [9,10], cold atoms with a soft-
core potential [11], or lattice-confined systems [7].
Breakthrough experiments with Bose-Einstein condensates
(BECs) coupled to light have recently demonstrated a state
with supersolid properties [12,13]. While in these systems
indeed two continuous symmetries are broken, the crystal
periodicity is set by the laser wavelength, making the
supersolid incompressible.
Another key notion concerns the close relation between a

possible transition to a supersolid ground state and the
existence of a local energy minimum at large momentum
in the excitation spectrum of a nonmodulated superfluid,
known as the roton mode [14]. Since excitations corre-
sponding to a periodic density modulation at the roton
wavelength are energetically favored, the existence of this
mode indicates the system’s tendency to crystallize [15]
and it is predicted to favor a transition to a supersolid
ground state [4,5,9].
Remarkably, BECs of highly magnetic atoms, in which

the particles interact through the long-range and anisotropic
dipole-dipole interaction (DDI), appear to gather several
key ingredients for realizing a supersolid phase. First,
as predicted more than 15 years ago [16,17] and recently
demonstrated in experiments [18,19], the partial attraction
in momentum space due to the DDI gives rise to a roton
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minimum. The corresponding excitation energy, i.e., the
roton gap, can be tuned in the experiments down to
vanishing values. Here, the excitation spectrum softens
at the roton momentum and the system becomes unstable.
Second, there is a nontrivial interplay between the trap
geometry and the phase diagram of a dipolar BEC. For
instance, our recent observations have pointed out the
advantage of axially elongated trap geometries (i.e., cigar
shaped) compared to the typically considered cylindrically
symmetric ones (i.e., pancake shaped) in enhancing the
visibility of the roton excitation in experiments. Last but
not least, while the concept of a fully softened mode is
typically related to instabilities and disruption of a coherent
quantum phase, groundbreaking works in the quantum-gas
community have demonstrated that quantum fluctuations
can play a crucial role in stabilizing a dipolar BEC [20–26].
Such a stabilization mechanism enables the existence,
beyond the mean-field instability, of a variety of stable
ground states, from a single macrodroplet [22,24,27] to
striped phases [28], and droplet crystals [29]; see also
related works [30–33]. For multidroplet ground states,
efforts have been devoted to understanding if a phase
coherence among ground-state droplets could be estab-
lished [28,29]. However, previous experiments with 164Dy
have shown the absence of phase coherence across the
droplets [28], probably due to the limited atom numbers.
Droplet ground states, quantum stabilization, and dipolar

rotons have caused a huge amount of excitement with very
recent advancements adding key pieces of information to
the supersolid scenario. The quench experiments in an
166Er BEC at the roton instability have revealed out-of-
equilibrium modulated states with an early-time phase
coherence over a timescale shorter than a quarter of the
oscillation period along the weak-trap axis [18]. In the same
work, it has been suggested that the roton softening
combined with the quantum stabilization mechanism
may open a promising route towards a supersolid ground
state. A first confirmation came from a recent theoretical
work [34], considering an Er BEC in an infinite elongated
trap with periodic boundary conditions and tight transverse
confinement. The supersolid phase appears to exist within a
narrow region in interaction strength, separating a roton
excitation with a vanishing energy and an incoherent
assembly of insulating droplets. Almost simultaneously,
experiments with 162Dy BECs in a shallow elongated trap,
performing a slow tuning of the contact interaction,
reported on the production of stripe states with phase
coherence persisting up to half of the weak trapping period
[35]. More recently, such observations have been con-
firmed in another 162Dy experiment [36]. Here, theoretical
calculations showed the existence of a phase-coherent
droplet ground state, linking the experimental findings to
the realization of a state with supersolid properties. The
results on 162Dy show, however, transient supersolid prop-
erties whose lifetime is limited by fast inelastic losses

caused by three-body collisions [35,36]. These realizations
raise the crucial question of whether a long-lived or
stationary supersolid state can be created despite the
usually non-negligble atom losses and the crossing of a
discontinuous phase transition, which inherently creates
excitations in the system.
In this work, we study both experimentally and theo-

retically the phase diagram of degenerate gases of highly
magnetic atoms beyond the roton softening. Our inves-
tigations are carried out using two different experimental
setups producing BECs of 166Er [22,37] and of 164Dy [38]
and rely on a fine-tuning of the contact-interaction strength
in both systems. In the regime of interest, these two atomic
species have different contact-interaction scattering lengths
as, whose precise dependence on the magnetic field is
known only for Er [18,22,39], and different three-body-loss
rate coefficients. Moreover, Er and Dy possess different
magnetic moments μ and masses m, yielding the dipolar
lengths, add ¼ μ0μ

2m=12πℏ2, of 65.5a0 and 131a0, respec-
tively. Here, μ0 is the vacuum permeability, ℏ ¼ h=2π the
reduced Planck constant, and a0 the Bohr radius. For both
systems, we find states showing hallmarks of supersolidity,
namely, the coexistence of density modulation and global
phase coherence. For such states, we quantify the extent of
the as parameter range for their existence and study their
lifetime. For 166Er, we find results very similar to the one
recently reported for 162Dy [35,36], both systems being
limited by strong three-body losses, which destroy the
supersolid properties in about half of a trap period.
However, for 164Dy, we have identified an advantageous
magnetic-field region where losses are very low and large
BECs can be created. In this condition, we observe that the
supersolid properties persist over a remarkably long time,
well exceeding the trap period. Based on such a high
stability, we finally demonstrate a novel route to reach the
supersolid state, based on evaporative cooling from a
thermal gas.

II. THEORETICAL DESCRIPTION

As a first step in our study of the supersolid phase in
dipolar BECs, we compute the ground-state phase diagram
for both 166Er and 164Dy quantum gases. The gases are
confined in a cigar-shaped harmonic trap, as illustrated in
Fig. 1(a). Our theory is based on numerical calculations of
the extended Gross-Pitaevskii equation [40], which
includes our anisotropic trapping potential, the short-range
contact and long-range dipolar interactions at a mean-field
level, as well as the first-order beyond-mean-field correc-
tion in the form of a Lee-Huang-Yang (LHY) term
[18,22–24,27]. We note that, while both the exact strength
of the LHY term and its dependence on the gas character-
istics are under debate [18,19,25,31,41], the importance of
such a term, scaling with a higher power in density, is
essential for stabilizing states beyond the mean-field
instability [18,25,41]; see also Refs. [8,42–44].
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Our theoretical results are summarized in Fig. 1. By
varying the condensed-atom number N and as, the phase
diagram shows three very distinct phases. To illustrate
them, we first describe the evolution of the integrated in situ
density profile nðyÞ with fixed N for varying as, Fig. 1(b).
The first phase, appearing at large as, resembles a regular
dilute BEC. It corresponds to a nonmodulated density
profile of low peak density and large axial size σy exceed-
ing several times the corresponding harmonic oscillator
length (ly ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωy

p
); see Fig. 1(e) and the region

denoted BEC in Figs. 1(f) and 1(g). The second phase
appears when decreasing as down to a certain critical value,
a�s . Here, the system undergoes an abrupt transition to a
periodic density-modulated ground state, consisting of an
array of overlapping narrow droplets, each of high peak
density. Because the droplets are coupled to each other via a
density overlap, later quantified in terms of the link strength
S, particles can tunnel from one droplet to a neighboring
one, establishing a global phase coherence across the cloud;
see Fig. 1(d). Such a phase, in which periodic density
modulation and phase coherence coexist, is identified as
the supersolid (SSP) one [10,34]; see the SSP region in
Figs. 1(f) and 1(g). When further decreasing as, we observe
a fast reduction of the density overlap, which eventually
vanishes; see Fig. 1(c). Here, the droplets become fully
separated. Under realistic experimental conditions, it is
expected that the phase relation between such droplets
cannot be maintained; see later discussion. We identify this
third phase as the one of an insulating droplet (ID) array

[27,28,45]; see the ID region in Figs. 1(f) and 1(g). For low
N, we find a single droplet of high peak density, as in
Refs. [24,27]; see dark blue region in Fig. 1(f). Generally
speaking, our calculations show that the number of droplets
in the array decreases with lowering as or N. The existence
of these three phases (BEC, SSP, ID) is consistent with
recent calculations considering an infinitely elongated
Er BEC [34] and a cigar-shaped 162Dy BEC [36], illustrat-
ing the generality of this behavior in dipolar gases.
To study the supersolid character of the density-modu-

lated phases, we compute the average of the wave function
overlap between neighboring droplets S. As an ansatz to
extract S, we use a Gaussian function to describe the wave
function of each individual droplet. This is found to be an
appropriate description from an analysis of the density
profiles of Figs. 1(b)–1(d); see also Ref. [46]. For two
droplets at a distance d and of identical Gaussian widths σy
along the array direction, S is simply S ¼ expð−d2=4σ2yÞ.
Here, we generalize the computation of the wave function
overlap to account for the difference in widths and
amplitudes among neighboring droplets. This analysis
allows us to distinguish between the two types of modu-
lated ground states, SSP and ID in Figs. 1(f) and 1(g).
Within the Josephson-junction picture [47–49], the tunnel-
ing rate of atoms between neighboring droplets depends on
the wave function overlap, and an estimate for the single-
particle tunneling rate can be derived within the Gaussian
approximation [46]; see also Ref. [40]. The ID phase
corresponds to vanishingly small values of S, yielding
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FIG. 1. Phase diagram of an 166Er and a 164Dy dipolar BEC in a cigar-shaped trap. (a) Illustration of the trap geometry with atomic
dipoles oriented along z. (b) Integrated density profile as a function of as for an 166Er ground state of N ¼ 5 × 104. In the color bar, the
density scale is upper limited to 4 × 104 μm−1 in order to enhance the visibility in the supersolid regime. (c)–(e) Exemplary density
profiles for an insulating droplet state (ID) at as ¼ 49a0, for a state with supersolid properties (SSP) at 51a0, and for a BEC at 52a0,
respectively. (f),(g) Phase diagrams for 166Er and 164Dy for trap frequencies ωx;y;z ¼ 2π × ð227; 31.5; 151Þ and 2π × ð225; 37; 135Þ Hz,
respectively. The gray color identifies ground states with a single peak in nðyÞ of large Gaussian width, σy > 2ly. The dark blue region
in (f) shows the region where nðyÞ exhibits a single sharp peak, σy ≤ 2ly, and no density modulation. The red-to-blue color map shows S
in the case of a density-modulated nðyÞ. In (g) the color map is upper limited to use the same color code as in (f) and to enhance visibility
in the low-N regime. The inset in (g) shows the calculated density profile for 164Dy at N ¼ 7 × 104 and as ¼ 91a0.
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tunneling times extremely long compared to any other
relevant timescale. In contrast, the supersolid phase is
identified by a substantial value of S, with a correspond-
ingly short tunneling time.
As shown in Figs. 1(f) and 1(g), a comparative analysis

of the phase diagram for 166Er and 164Dy reveals similarities
between the two species (see also Ref. [36]). A supersolid
phase is found for sufficiently high N, in a narrow region
of as, upper bounded by the critical value as�ðNÞ. For
intermediate N, a�s increases with increasing N. We note
that, for low N, the nonmodulated BEC evolves directly
into a single droplet state for decreasing as [50]. In this
case, no supersolid phase is found in between; see also
Refs. [24,27]. Despite the general similarities, we see that
the supersolid phase for 164Dy appears for lower atom
number than for Er and has a larger extension in as. This is
mainly due to the different add and strength of the LHY
term. We note that, at large N and for decreasing as, Dy
exhibits ground states with a density modulation appearing
first in the wings, which then progresses inwards until a
substantial modulation over the whole cloud is established
[51]; see inset of Fig. 1(g). In this regime, we also observe
that a�s decreases with increasing N. These types of states
have not been previously reported and, although challeng-
ing to access in experiments because of the large N, they
deserve further theoretical investigations.

III. EXPERIMENTAL SEQUENCE
FOR 166Er AND 164Dy

To experimentally access the above-discussed physics, we
produce dipolar BECs of either 166Er or 164Dy atoms. These
two systems are created in different setups and below we
summarize the main experimental steps; see also Ref. [40].
Erbium.—We prepare a stable 166Er BEC following

the scheme of Ref. [18]. At the end of the preparation,
the Er BEC contains about N ¼ 8 × 104 atoms at
as ¼ 64.5a0. The sample is confined in a cigar-shaped
optical dipole trap with harmonic frequencies ωx;y;z ¼
2π × ð227; 31.5; 151Þ Hz. A homogeneous magnetic field
B polarizes the sample along z and controls the value of as
via a magnetic Feshbach resonance (FR) [18,22,40]. Our
measurements start by linearly ramping down as within
20 ms and waiting an additional 15 ms so that as reaches its
target value [40]. We note that ramping times between 20
and 60 ms have been tested in the experiment and we do not
record a significant difference in the system’s behavior.
After the 15-ms stabilization time, we then hold the sample
for a variable time th before switching off the trap. Finally,
we let the cloud expand for 30 ms and perform absorption
imaging along the z (vertical) direction, from which we
extract the density distribution of the cloud in momentum
space, nðkx; kyÞ.
Dysprosium.—The experimental procedure to create a

164Dy BEC follows the one described in Ref. [38]; see also

Ref. [40]. Similarly to Er, the Dy BEC is also confined in a
cigar-shaped optical dipole trap and a homogeneous
magnetic field B sets the quantization axis along z and
the value of as. For Dy, we will discuss our results in
terms of magnetic field B, since the as-to-B conversion is
not well known in the magnetic-field range considered
[25,40,41,52]. In a first set of measurements, we first
produce a stable BEC of about N ¼ 3.5 × 104 condensed
atoms at a magnetic field of B ¼ 2.5 G and then probe the
phase diagram by tuning as. Here, before ramping the
magnetic field to access the interesting as regions, we
slowly increase the power of the trapping beams within
200 ms. The final trap frequencies are ωx;y;z ¼ 2π ×
ð300; 16; 222Þ Hz. After preparing a stable BEC, we ramp
B to the desired value within 20 ms and hold the sample for
th [40]. In a second set of measurements, we study a
completely different approach to reach the supersolid state.
As discussed later, here we first prepare a thermal sample at
a B value where supersolid properties are observed and then
further cool the sample until a transition to a coherent
droplet-array state is reached. In both cases, at the end
of the experimental sequence, we perform absorption
imaging after typically 27 ms of time-of-flight (TOF)
expansion. The imaging beam propagates horizontally
under an angle α of ≈45° with respect to the weak axis
of the trap (y). From the TOF images, we thus extract
nðkY; kzÞ with kY ¼ cosðαÞky þ sinðαÞkx.
A special property of 164Dy is that its background

scattering length is smaller than add. This allows us to
enter the supersolid regime without the need of setting B
close to a FR, as is done for 166Er and 162Dy, which
typically causes severe atom losses due to increased three-
body-loss coefficients. In contrast, in the case of 164Dy, the
supersolid regime is reached by ramping B away from the
FR pole used to produce the stable BEC via evaporative
cooling, as the as range of Fig. 1(g) lies close to the
background as reported in Ref. [52]; see also Ref. [40]. At
the background level, three-body-loss coefficients below
1.3 × 10−41 m6 s−1 have been reported for 164Dy [25].

IV. DENSITY MODULATION AND
PHASE COHERENCE

The coexistence of density modulation and phase coher-
ence is the key feature that characterizes the supersolid
phase and allows us to discriminate it from the BEC and ID
cases. To experimentally probe this aspect in our dipolar
quantum gases, we record their density distribution after a
TOF expansion for various values of as across the phase
diagram. As for a BEC in a weak optical lattice [53] or for
an array of BECs [54–56], the appearance of interference
patterns in the TOF images is associated with a density
modulation of the in situ atomic distribution. Moreover, the
shot-to-shot reproducibility of the patterns (in amplitude
and position) and the persistence of fringes in averaged

L. CHOMAZ et al. PHYS. REV. X 9, 021012 (2019)

021012-4



pictures, obtained from many repeated images taken under
the same experimental conditions, reveals the presence of
phase coherence across the sample [56].
Figure 2 exemplifies snapshots of the TOF distributions

for Er, measured at three different as values; see
Figs. 2(a)–2(c). Even if very close in scattering length,
the recorded nðkx; kyÞ shows a dramatic change in behavior.
For as ¼ 54.7ð2Þa0, we observe a nonmodulated distribu-
tion with a density profile characteristic of a dilute BEC.
When lowering as to 53.8ð2Þa0, we observe the appearance
of an interference pattern in the density distribution,
consisting of a high central peak and two almost symmetric
low-density side peaks [57]. Remarkably, the observed
pattern is very reproducible with a high shot-to-shot
stability, as shown in the repeated single snapshots and
in the average image [Figs. 2(b) and 2(e)]. This behavior
indicates a coexistence of density modulation and global
phase coherence in the in situ state, as expected in the
supersolid phase. This observation is consistent with
our previous quench experiments [18] and with the recent
162Dy experiments [35,36]. When further lowering as to
53.3ð2Þa0, complicated patterns develop with fringes
varying from shot to shot in number, position, and
amplitude, signaling the persistence of in situ density
modulation. However, the interference pattern is com-
pletely washed out in the averaged density profiles
[Fig. 2(f)], pointing to the absence of a global phase

coherence. We identify this behavior as the one of
ID states.
Toy model—To get an intuitive understanding of the

interplay between density modulation and phase coherence
and to estimate the role of the different sources of
fluctuations in our experiment, we here develop a simple
toy model, which is inspired by Ref. [56]; see also
Ref. [40]. In our model, the initial state is an array of
ND droplets containing in total N atoms. Each droplet is
described by a one-dimensional Gaussian wave function
ψ iðyÞ of amplitude αi, phase ϕi, width σi, and center yi. To
account for fluctuations in the experiments, we allow αi,
di ¼ yi − yi−1, and σi to vary by 10% around their expect-
ation values. The spread of the phases ϕi among the
droplets is treated specially as it controls the global phase
coherence of the array. By fixing ϕi ¼ 0 for each droplet or
by setting a random distribution of ϕi, we range from full
phase coherence to the incoherent cases. Therefore, the
degree of phase incoherence can be varied by changing the
standard deviation of the distribution of ϕi.
To mimic our experiment, we compute the free evolution

of each individual ψ i over 30 ms, and then compute the
axial distribution nðy; tÞ ¼ jPiψ iðy; tÞj2, from which we
extract the momentum distribution nðkyÞ, also accounting
for the finite imaging resolution [40]. For each computation
run, we randomly draw ND values for ϕi, as well as of σi,
di, and αi, and extract nðkyÞ. We then collect a set of nðkyÞ
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by drawing these values multiple times using the same
statistical parameters and compute the expectation value,
hnðkyÞi; see Figs. 2(j)–2(l). The angled brackets denote the
ensemble average.
The results of our toy model show large similarity with

the observed behavior in the experiment. In particular,
while for each single realization one can clearly distinguish
multipeak structures regardless of the degree of phase
coherence between the droplets, the visibility of the
interference pattern in the averaged nðkyÞ survives only
if the standard deviation of the phase fluctuations between
droplets is small (roughly, below 0.3π). In the incoherent
case, we note that the shape of the patterns strongly varies
from shot to shot. Interestingly, the toy model also shows
that the visibility of the coherent peaks in the average
images is robust against the typical shot-to-shot fluctua-
tions in droplet size, amplitude, and distance that occur in
the experiments; see Figs. 2(j) and 2(k).
Probing density modulation and phase coherence.—To

separate and quantify the information on the in situ density
modulation and its phase coherence,we analyze themeasured
interference patterns in Fourier space [36,58–60]. Here, we
extract two distinct averaged density profiles, nM and nΦ.
Their structures at finite y spatial frequency (i.e., in Fourier
space) quantify the two abovementioned properties.
More precisely, we perform a Fourier transform (FT) of

the integrated momentum distributions nðkyÞ denoted
F ½n�ðyÞ. Generally speaking, modulations in nðkyÞ induce
peaks at finite spatial frequency, y ¼ y�, in the FT norm,
jF ½n�ðyÞj; see Figs. 2(g)–2(i) and 2(m)–2(o). Following the
above discussion (see also Refs. [56,61]), such peaks in an
individual realization hence reveal a density modulation of
the corresponding in situ state, with a wavelength roughly
equal to y�. Consequently, we consider the average of the
FT norm of the individual images, nMðyÞ ¼ hjF ½n�ðyÞji, as
the first profile of interest. The peaks of nM at finite y then
indicate the mere existence of an in situ density modulation
of roughly constant spacing within the different realiza-
tions. As the second profile of interest, we use the FT
norm of the average profile hnðkyÞi, nΦðyÞ ¼ jF ½hni�ðyÞj.
Connecting to our previous discussion, the peaks of nΦ at
finite y point to the persistence of a modulation in the
average hnðkyÞi, which we identified as a hallmark for a
global phase coherence within the density-modulated state.
In particular, we point out that a perfect phase coherence,
implying identical interference patterns in all the individual
realizations, yields nM ¼ nΦ and, thus, identical peaks
at finite y in both profiles. We note that, by linearity, nΦ
also matches the norm of the average of the full FT
of the individual images, i.e., nΦðyÞ ¼ jhF ½n�ðyÞij; see
also Ref. [40].
Figures 2(g)–2(i) and 2(m)–2(o) demonstrate the sig-

nificance of our FT analysis scheme by applying it
to the momentum distributions from the experiment
[Figs. 2(d)–2(f)] and the momentum distributions from

the toy model [Figs. 2(j)–2(l)], respectively. As expected,
for the BEC case, both nM and nΦ show a single peak at
zero spatial frequency, y ¼ 0, characterizing the absence of
density modulation, Fig. 2(g). In the case of phase-coherent
droplets, Fig. 2(e), we observe that nM and nΦ are
superimposed and both show two symmetric side peaks
at finite y, in addition to a dominant peak at y ¼ 0; see
Fig. 2(h). In the incoherent droplet case, we find that, while
nM still shows side peaks at finite y, the ones in nΦ wash
out from the averaging, Figs. 2(f), 2(i), 2(l), and 2(o). For
both coherent and incoherent droplet arrays, the toy-model
results show behaviors matching the above description,
providing a further justification of our FT analysis scheme;
see Figs. 2(j)–2(o). Our toy model additionally proves two
interesting features. First, it shows that the equality
nM ¼ nΦ, revealing the global phase coherence of a
density-modulated state, is remarkably robust to noise in
the structure of the droplet arrays; see Figs. 2(j) and 2(m).
Second, our toy model, however, shows that phase fluc-
tuations across the droplet array on the order of 0.2π
standard deviation are already sufficient to make nΦ and
nM deviate from each other; see Figs. 2(k) and 2(n). The
incoherent behavior is also associated with strong varia-
tions in the side peak amplitude of the individual realiza-
tions of jF ½n�j, connecting, e.g., to the observations
of Ref. [36].
Finally, to quantify the density modulation and the

phase coherence, we fit a three-Gaussian function to both
nMðyÞ and nΦðyÞ and extract the amplitudes of the
finite-spatial-frequency peaks, AM and AΦ, for both dis-
tributions, respectively. Note that for a BEC, which is a
phase-coherent state, AΦ will be zero since it probes
only finite-spatial-frequency peaks; see Figs. 2(g)–2(i)
and 2(m)–2(o).

V. CHARACTERIZATION OF THE
SUPERSOLID STATE

We are now in the position to study two key aspects,
namely, (i) the evolution of the density modulation and
phase coherence across the BEC-supersolid-ID phases and
(ii) the lifetime of the coherent density-modulated state in
the supersolid regime.
Evolution of the supersolid properties across the phase

diagram.—The first type of investigation is conducted with
166Er since, contrary to 164Dy, its scattering length and
dependence on the magnetic field has been precisely
characterized [18,22]. After preparing the sample, we ramp
as to the desired value and study the density patterns as well
as their phase coherence by probing the amplitudes AM
and AΦ as a function of as after th ¼ 5 ms. As shown in
Fig. 3(a), in the BEC region (i.e., for large as), we observe
that both AM and AΦ are almost zero, evidencing the
expected absence of a density modulation in the system. As
soon as as reaches a critical value a�s , the system’s behavior
dramatically changes with a sharp and simultaneous
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increase of both AM and AΦ. While the strength of AM
and AΦ varies with decreasing as—first increasing then
decreasing—we observe that their ratio AΦ=AM remains
constant and close to unity over a narrow as range below a�s
of ≳1a0 width; see the inset of Fig. 3(a). This behavior
pinpoints the coexistence in the system of phase coherence
and density modulation, as predicted to occur in the
supersolid regime. For ðas − a�sÞ < −1a0, we observe that
the two amplitudes depart from each other. Here, while the
density modulation still survives with AM saturating to a
lower finite value, the global phase coherence is lost with
AΦ=AM < 1, as expected in the insulating droplet phase.
Note that we also study the evolution of AΦ and AM in
164Dy, but as a function of B, and find a qualitatively similar
behavior.
To get a deeper insight on how our observations compare

to the phase-diagram predictions (see Fig. 1), we study the
link strength S as a function of as; see Fig. 3(b). Since S
quantifies the density overlap between neighboring drop-
lets and is related to the tunneling rate of atoms across the
droplet array, it thus provides information on the ability of

the system to establish or maintain a global phase coher-
ence. In this plot, we set S ¼ 0 in the case where no
modulation is found in the ground state. At the BEC-to-
supersolid transition, i.e., at as ¼ a�s , a density modulation
abruptly appears in the system’s ground state with S taking
a finite value. Here, S is maximal, corresponding to a
density modulation of minimal amplitude. Below the
transition, we observe a progressive decrease of S with
lowering as, pointing to the gradual reduction of the
tunneling rate in the droplet arrays. Close to the transition,
we estimate a large tunneling compared to all other relevant
timescales. However, we expect this rate to become vanish-
ingly small, on the sub-Hertz level [40], when decreasing
as 1–2a0 below a�s. Our observation also hints at the smooth
character of the transition from a supersolid to an ID phase.
The general trend of S, including the extension in as

where it takes nonvanishing values, is similar to the as
behavior of AM and AΦ observed in the experiments [62].
We observe in the experiments that the as dependence at
the BEC-to-supersolid transition appears sharper than at
the supersolid-to-ID interface, potentially suggesting a
different nature of the two transitions. However, more
investigations are needed since atom losses, finite temper-
ature, and finite-size effects can affect, and in particular
smoothen, the observed behavior [64–66]. Moreover,
dynamical effects, induced by, e.g., excitations created at
the crossing of the phase transitions or atom losses during
the time evolution, can also play a substantial role in the
experimental observations, complicating a direct compari-
son with the ground-state calculations. The time dynamics
as well as a different scheme to achieve a state with
supersolid properties is the focus of the remainder of
the paper.
Lifetime of the supersolid properties.—Having identified

the as range in which our dipolar quantum gas exhibits
supersolid properties, the next central question concerns the
stability and lifetime of such a fascinating state. Recent
experiments on 162Dy have shown the transient character of
the supersolid properties, whose lifetime is limited by
three-body losses [35,36]. In these experiments, the phase
coherence is found to survive up to 20 ms after the density
modulation has formed. This time corresponds to about half
of the weak-trap period. Stability is a key issue in the
supersolid regime, especially since the tuning of as, used to
enter this regime, has a twofold consequence on the
inelastic loss rate. First, it gives rise to an increase in
the peak density [see Figs. 1(b)–1(d)] and, second, it may
lead to an enhancement of the three-body-loss coefficient.
We address this question by conducting comparative

studies on 166Er and 164Dy gases. These two species allow
us to tackle two substantially different scattering scenarios.
Indeed, the background value of as for 166Er (as well as for
162Dy) is larger than add. Thus, reaching the supersolid
regime, which occurs at add=as ≈ 1.2–1.4 in our geometry,
requires us to tune B close to the pole of a FR. This tuning
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also causes an increase of the three-body-loss rate. In
contrast, 164Dy realizes the opposite case with the back-
ground scattering length smaller than add. This feature
brings the important advantage of requiring tuning B away
from the FR pole to reach the supersolid regime. As we
describe below, this important difference in scattering
properties leads to a strikingly longer lifetime of the
164Dy supersolid properties with respect to 166Er and to
the recently observed behavior in 162Dy [35,36].
The measurements proceed as follows. For both 166Er

and 164Dy, we first prepare the quantum gas in the stable
BEC regime and then ramp as to a fixed value in the
supersolid regime for which the system exhibits a state of
coherent droplets (i.e., AΦ=AM ≈ 1); see previous discus-
sion. Finally, we record the TOF images after a variable th
and we extract the time evolution of both AΦ and AM.
The study of these two amplitudes will allow us to answer
the question of whether the droplet structure—i.e., the
density modulation in space—persists in time whereas
the coherence among droplets is lost (AM > AΦ → 0) or
if the density structures themselves vanish in time
(AM ≈ AΦ → 0).
As shown in Fig. 4, for both species, we observe that AΦ

and AM decay almost synchronously with a remarkably
longer lifetime for 164Dy [Fig. 4(b)] than 166Er [Fig. 4(a)].

Interestingly, AΦ and AM remain approximately equal
during the whole time dynamics; see insets of Figs. 4(a)
and 4(b). This behavior indicates that it is the strength of the
density modulation itself and not the phase coherence
among droplets that decays over time. Similar results have
been found theoretically in Ref. [67]. We connect this
decay mainly to three-body losses, especially detrimental
for 166Er, and possible excitations created while crossing
the BEC-to-supersolid phase transition [40]. For compari-
son, the inset of Fig. 4(a) shows also the behavior in the ID
regime for 166Er, where AΦ=AM < 1 already at short th and
remains so during the time evolution [40].
To get a quantitative estimate of the survival time of

the phase-coherent and density-modulated state, we fit a
simple exponential function to AΦ and extract tΦ, defined
as the 1=10 lifetime; see Fig. 4. For 166Er, we extract
tΦ ¼ 38ð6Þ ms. For th > tΦ, the interference patterns
become undetectable in our experiment and we recover
a signal similar to the one of a nonmodulated BEC state [as
in Figs. 2(a) and 2(d)]. These results are consistent with
recent observations of transient supersolid properties in
162Dy [35]. For 164Dy, we observe that the coherent density-
modulated state is remarkably long-lived. Here, we find
tΦ ¼ 152ð13Þ ms.
The striking difference in the lifetime and robustness of

the supersolid properties between 166Er and 164Dy becomes
even more visible when studying tΦ as a function of as
(B for Dy). As shown in Fig. 5, tΦ for Er remains
comparatively low in the investigated supersolid regime
and slightly varies between 20 and 40 ms. Similarly to the
recent studies with 162Dy, this finding reveals the transient
character of the state and opens the question of whether a
stationary supersolid state can be reached with these
species. On the contrary, for 164Dy we observe that tΦ
first increases with B in the range from 1.8 G to about
1.98 G. Then, for B > 1.98 G, tΦ acquires a remarkably
large and almost constant value of about 150 ms over a
wide B range. This shows the long-lived character of the
supersolid properties in our 164Dy quantum gas. We note
that over the investigated range, as is expected to monoto-
nously increase with B [40]. Such a large value of tΦ
exceeds not only the estimated tunneling time across
neighboring droplets but also the weak-axis trap period,
which together set the typical timescale to achieve global
equilibrium and to study collective excitations.

VI. CREATION OF STATES WITH SUPERSOLID
PROPERTIES BY EVAPORATIVE COOLING

The long-lived supersolid properties in 164Dy motivate us
to explore an alternative route to cross the supersolid phase
transition, namely, by evaporative cooling instead of
interaction tuning. For this set of experiments, we have
modified the waists of our trapping beams in order to
achieve quantum degeneracy in tighter traps with respect to
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the one used for condensation in the previous set of
measurements. In this way, the interference peaks in the
supersolid region are already visible without the need to
apply a further compression of the trap since the side-
to-central-peak distance in the momentum distribution
scales roughly as 1=lz [18]. Forced evaporative cooling
is performed by reducing the power of the trapping beams
piecewise linearly in subsequent evaporation steps until a
final trap with frequencies 2π × ð225; 37; 134Þ Hz is
achieved. During the whole evaporation process, which
has an overall duration of about 3 s, the magnetic field is
kept either at B ¼ 2.43 G, where we observe long-lived
interference patterns, or at B ¼ 2.55 G, where we produce
a stable nonmodulated BEC. We note that these two B
values are very close without any FR lying in between [40].
Figure 6 shows the phase transition from a thermal cloud

to a final state with supersolid properties by evaporative
cooling. In particular, we study the phase transition by
varying the duration of the last evaporation ramp, while
maintaining the initial and final trap-beam power fixed.
This procedure effectively changes the atom number and
temperature in the final trap while keeping the trap
parameters unchanged, which is important to not alter
the final ground-state phase diagram of the system. At the
end of the evaporation, we let the system equilibrate and
thermalize for th ¼ 100 ms, after which we switch off the
trap, let the atoms expand for 26.5 ms, and finally perform
absorption imaging. We record the TOF images for differ-
ent ramp durations, i.e., for different thermalization times.
For a short ramp, too many atoms are lost such that the
critical atom number for condensation is not reached, and
the atomic distribution remains thermal; see Fig. 6(a).

By increasing the ramp time, the evaporative cooling
becomes more efficient and we observe the appearance of a
bimodal density profile with a narrow and dense peak at the
center, which we identify as a regular BEC; see Fig. 6(b).
By further cooling, the BEC fraction increases and the
characteristic pattern of the supersolid state emerges; see
Figs. 6(c) and 6(d). The observed evaporation process
shows a strikingly different behavior in comparison
with the corresponding situation at B ¼ 2.55 G, where
the usual thermal-to-BEC phase transition is observed; see
Figs. 6(i)–6(l).
We finally probe the lifetime of the supersolid properties

by extracting the time evolution of both the amplitudes AΦ
and AM, as previously discussed. We use the same
experimental sequence as the one in Fig. 6(d)—i.e., 300-
ms duration of the last evaporation ramp and 100 ms of
equilibration time—and subsequently hold the sample in
the trap for a variable th. As shown in Fig. 7(a), we observe
a very long lifetime with both amplitudes staying large and
almost constant over more than 200 ms. At longer holding
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time, we observe a slow decay of AΦ and AM, following the
decay of the atom number. Moreover, during the dynamics,
the ratio AΦ=AM stays constant. The long lifetime of
the phase-coherent density modulation is also directly
visible in the persistence of the interference patterns in
the averaged momentum density profiles [similar to
Fig. 2(e)], both at intermediate and long times; see
Figs. 7(b) and 7(c), respectively. For even longer th, we
cannot resolve anymore interference patterns in the TOF
images. Here, we recover a signal consistent with a regular
BEC of low N.
Achieving the coherent droplet phase via evaporative

cooling is a very powerful alternative path to supersolidity.
We speculate that, for instance, excitations, which might be
important when crossing the phase transitions by inter-
action tuning, may be small or removed by evaporation
when reaching this state kinematically. Other interesting
questions, open to future investigations, are the nature of
the phase transition, the critical atom number, and the role
of noncondensed atoms.

VII. CONCLUSIONS

For both 166Er and 164Dy dipolar quantum gases, we have
identified and studied states showing hallmarks of super-
solidity, namely, global phase coherence and spontaneous
density modulations. These states exist in a narrow scatter-
ing-length region, lying between a regular BEC phase and a
phase of an insulating droplet array. While for 166Er,
similarly to the recently reported 162Dy case [35,36], the
observed supersolid properties fade out over a compara-
tively short time because of atom losses, we find that 164Dy
exhibits remarkably long-lived supersolid properties.
Moreover, we are able to directly create stationary states

with supersolid properties by evaporative cooling, demon-
strating a powerful alternative approach to interaction
tuning on a BEC. This novel technique provides prospects
of creating states with supersolid properties while avoiding
additional excitations and dynamics. The ability to produce
long-lived supersolid states paves the way for future
investigations on quantum fluctuations and many-body
correlations, as well as of collective excitations in such
an intriguing many-body quantum state. A central goal of
these future investigations lies in proving the superfluid
character of this phase, beyond its global phase coherence
[7,34,68–70].
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GROUND STATE CALCULATIONS

We perform numerical calculations of the ground state
following the procedure detailed in the supplementary
information of Ref. [1]. The calculations are based on
the conjugate-gradients technique to minimize the en-
ergy functional of an eGPE [2]. In particular, the eGPE
accounts for the effect of quantum fluctuations, by includ-
ing the LHY term ∆µ[n] = 32g(nas)

3/2(1+3ε2dd/2)/3
√
π

in the system’s Hamiltonian (here g = 4πh̄2as/m and
n = |ψ|2 is the spatial density of the macroscopic state
ψ). ∆µ[n] has been obtained under a local density
approximation in Refs. [3, 4]. The relevance of the
LHY correction has been demonstrated in various stud-
ies of dipolar Bose gases close to the mean-field instabil-
ity [1, 5–9] as it brings an additional repulsive potential,
stabilizing the gas against mean-field collapse at large
density. We note that the exact functional form of the
potential, originating from beyond mean-field effects, has
been questioned by several experimental results in finite-
size trapped systems [1, 9–11], calling for further theory
developments [12].

Our numerical calculations provide us with the three-
dimensional ground-state wavefunctions ψ(r). From this,
we compute the axial in-situ density profile along the
trap’s weak axis, n(y) =

∫
|ψ(r)|2dxdz and find den-

sity profiles, corresponding to the BEC, the supersolid
or the ID phase, that we plot in Fig. 1. From the
density profiles that exhibit a density modulation, we
evaluate S by performing Gaussian fits to each droplet,
i. e. to n(y) with y ranging between two neighboring lo-
cal density minima. From these Gaussian fits, we eval-

uate the sets of centers {y(0)
i }i and widths {σi}i cor-

responding to the macroscopic Gaussian wavefunctions
{ψi}i associated to the individual droplets in the ar-
ray. We then approximate the droplet wavefunction via

ψi(y) ≈
√
n(y ≈ y(0)

i ) = αi exp
(
−(y − y(0)

i )2/2σ2
i

)
with

αi a normalization coefficient such that
∫
|ψi(y)|2dy = 1.

We then evaluate the wavefunction overlap Si between

the neighboring droplets i− 1 and i via:

Si ≡
∫
ψ∗
i−1(y)ψi(y)dy (1)

=

√
2σiσi−1

σ2
i + σ2

i−1

exp

(
− (y

(0)
i − y

(0)
i−1)2

2(σ2
i + σ2

i−1)

)
. (2)

The latter equation is obtained via an analytical evalu-
ation of the Gaussian integral. The characteristic link
strength defined in the paper is then computed by aver-
aging Si over all droplet links in the array: S = 〈Si〉i. In
our calculation, we only consider as droplets all density
peaks of at least 5 % of the global density maximum.

LINK STRENGTH AND ESTIMATE OF
TUNNELING RATE

Generally speaking, the wavefunction overlap between
neighboring droplets relates to a tunneling term, which
sets a particle exchange term between two neighboring
droplets [13–16]. Following the work of Ref. [17], we per-
form a first estimate of the tunneling coefficient by sim-
ply considering the single-particle part of the Hamilto-
nian and evaluate it between two neighboring droplets.
We note that, in our particular setting where the density
modulation is not externally imposed but arises from the
mere interparticle interactions, the inter-droplet interac-
tion may also play a crucial role. To perform a more
precise estimation of the tunneling between droplets, one
would certainly need to properly account for this effect.
Here, we stress that our approach simply gives a rough
idea of the magnitude of tunneling while it does not aim
to be a quantitative description of it. This consideration
calls for further studies making a systematic analysis of
the full Hamiltonian and of the full phase diagram within
the Josephson junction formalism and beyond.

Generalizing the description of Ref. [17] to neighbor-
ing droplets of different sizes and amplitudes, which are
described by a three-dimensional wavefunction ψi(r) ap-
proximated to a three-dimensional Gaussian of widths



2

(σi,x, σi,y, σi,z) with σi,y = σi, our estimate writes:

Ji =
h̄2Si
2m



∑

k=x,y,z

1 +
(
σi,kσi−1,k

`2k

)2

σ2
i,k + σ2

i−1,k

+
(y

(0)
i − y

(0)
i−1)2

2σiσi−1

(σiσi−1/`y)
4 − 1

σ2
i + σ2

i−1

]
, (3)

where `x,y,z =
√
h̄/mωx,y,z are the harmonic oscillator

lengths.
In general, the tunnelling coefficients set two typical

rates relevant for equilibration processes. The first one
is the bare single-particle tunneling rate, which is equal
to Ji/h, while the second accounts for the bosonic en-
hancement from the occupation of the droplet modes
and writes t̃i =

√
NiNi−1|Ji|/h where Ni is the num-

ber of atoms in droplet i. In our analysis, we then define
the average rates over the droplet arrays as characteristic
rates J/h = 〈Ji〉i/h, and t̃ = 〈t̃i〉i; see e.g. [18]. While
the ground state evolves from a BEC to a supersolid to
an ID, the relevant timescale for achieving (global) equi-
librium crosses from being set by the trap frequencies to
the above-mentioned tunneling rates.

Using our approximate model, we here give a first es-
timate of the rates J/h and t̃ as a function of as, for the
parameters of Fig. 1(b-d) of the main text (i.e. Er quan-
tum gas with N = 5 × 104 atoms). Here we find that,
for as = a∗s , J/h ∼ 400 Hz and t̃ ∼ 10 MHz while for
as = a∗s − 2.5 a0, J/h ∼ 10−7 Hz and t̃ ∼ 10−3 Hz.

TOY MODEL FOR THE INTERFERENCE
PATTERN

As described in the main text we use a simple toy
model, adapted from Ref. [18], to identify the main fea-
tures of the TOF interference patterns obtained from an
insitu density-modulated state. As a quick reminder, our
model considers a one-dimensional array of ND Gaus-
sian droplets, described by a single classical field, ψi,
thus neglecting quantum and thermal fluctuations. We
compute the TOF density distribution from the free-
expansion of the individual ψi during a time t via
n(y, t) = |∑i ψi(y, t)|2. In our calculations, we also ac-
count for the finite imaging resolution by convolving the
resulting n(y, t) with a gaussian function of width σim.
Here we allow the characteristics of the individual ψi to
fluctuate. In this aim, we introduce noise on the corre-
sponding parameter with a normal distribution around
its expectation value and with a variable standard devi-
ation (only φi can also have a uniform distribution). We
then perform a Monte-Carlo study and perform ensemble
averages, similar to our experimental analysis procedure.
We note that, in this simple implementation, the noise
on the different parameters – droplet amplitudes, widths
and distances – are uncorrelated.

In the main text, we present results for a single set of
parameters, namely ND = 4, d ≡ 〈di〉i = 2.8µm (mean
droplet distance), σy ≡ 〈σi〉i = 0.56µm (mean droplet
size), t = 30 ms, and σim = 3µm, typical for our exper-
imental Er setting and the corresponding theory expec-
tations in the supersolid regime. 〈·〉i denotes the average
over the droplets. In this section, we have a deeper look
at the impact of the different parameters on both the
TOF signal and our FT analysis. We study both the
fully phase coherent and fully incoherent case, and the
unchanged parameters are set as in Fig. 2(j,m) and (l,o).
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FIG. S1. Toy model realizations with varying number
of droplets ND. We use 100 independent draws, and expec-
tation values d = 2.85µm, σy = 0.56µm (with 10% noise) and
either φi = 0 (a,b,e,f,i,j), or φi uniformly distributed between
0 and 2π (c,d,g,h,k,l). (a–d) ND = 2, (e–h) ND = 3 and (i–l)
ND = 8. (a,c,e,g,i,k) TOF density profiles and (b,d,f,h,j,l)
corresponding FT analysis of the interference patterns, same
color code as Fig .2.

In Fig. S1, we first exemplify the TOF and FT pro-
files for a varying number of droplets, between 2 and 8,
which cover the range of relevant ND over the phase di-
agram of Fig. 1. The results remain remarkably similar
to the realization of Fig. 2 with only slight quantitative
changes. The main difference lies in the individual inter-
ference patterns obtained in the phase incoherent case.
With increasing ND, those profiles become more com-
plex and made of a larger number of peaks (see (c,g,k)).
Yet, in this incoherent case, a similar (non-modulated)
profile is recovered in the averaged n(ky) for all ND.
Additionally, we note that for the coherent case with
ND = 8, the side peaks in the FT analysis (see (j))
become less visible. By performing additional tests, we
attribute this behavior to the limited TOF duration, t,
used in our experiment yielding a typical length scale,√
h̄t/m (= 3.4µm), which becomes small compared to

the system size (≈ (ND − 1)d + σy) for large ND. This
intermediate regime in the TOF expansion leads to more
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complex features, including smaller-sized motifs, in the
interference patterns. Finally, when accounting for our
imaging resolution, it yields a broadening of the structure
observed in the TOF images and less visible peaks in the
FT (see (i)). We note that our experiments, because of
limited N and additional losses, should rather lie in the
regime 2 ≤ ND ≤ 5; see Fig. 1(b).
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FIG. S2. Toy model realizations with varying σy/d.
We use 100 independent draws, with ND = 4, d = 2.85µm
(with 10% noise) and either φi = 0 (a,b,e,f,i,j), or φi uni-
formly distributed between 0 and 2π (c,d,g,h,k,l). For each
realization we also compute the associated mean S. (a–d)
σy/d = 0.1, yielding S = 1.8×10−7 (e–h)σy/d = 0.15, match-
ing S = 1.7×10−4 and (i–l) σy/d = 0.25, matching S = 0.028.
(a,c,e,g,i,k) TOF density profiles and (b,d,f,h,j,l) Correspond-
ing FT analysis of the interference patterns, same color code
as Fig. 2.

We then investigate the evolution of the interference
patterns and their FT analysis for a varying mean droplet
size, σy, while keeping their mean distance, d, fixed. This
study is particularly relevant recalling that, within the
Josephson junction formalism (see main text and cor-
responding section of this Supplemental Material), the
key parameter controlling the tunneling rate between the
droplets is set by the ratio σy/d, and the link strength pa-
rameter that we use to characterize the supersolid regime
scales roughly as exp(−(d/2σy)2). Thus, in our experi-
ment, σy/d is intrinsically expected to decrease with the
scattering length (see Fig. 3). Performing a direct esti-
mate of the average droplet link from the initial state of
our toy model, we find S = 0.004 for the calculations
of Fig. 2(j-o), lying in an expected supersolid regime yet
rather close to the supersolid-to-ID transition. Figure
S2 investigates the effect of smaller and larger values of
σy/d (and consequently of S) on the TOF and FT profiles
while independently assuming phase coherence or inco-
herence. Qualitatively, the features remain similar as in
Fig. 2(j-o). In the coherent case, side peaks are visible in

the individual as well as in the mean n(ky) (see (a,e,i))
and yield side peaks in the FT profiles, with nM ≈ n (see
(b,f,j)). Increasing (decreasing) σ/d mainly results in a
stronger (weaker) signal both in the interference pattern
and their FT analysis. Within our toy model, we find
that, already for σ/d = 0.25, the signal nearly vanishes;
see (i,j). Even if, given the approximations used in our
toy model, this exact value may not fully hold for our
experimental conditions, we expect a similar trend. It is
interesting to keep in mind that this effect may limit our
capacity of detecting an underlying supersolid state via
matter-wave interference in experiments. In the incoher-
ent case, the effect of decreasing σy/d mainly results in
a broader shape of the mean density profile, while it re-
mains non-modulated; see (c,g,k). In the FT analysis nΦ

remains structure-less independently of σy/d while the
structures in nM becomes sharper with decreasing σy/d,
as in the coherent case; see (d,h,l).
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FIG. S3. Toy model realizations allowing noise in
the center position. We use 100 independent draws, with
ND = 4, d = 2.85µm (with 10% noise), σy/d = 0.15 (a–
d) or σy/d = 0.2 (e–h), and either φi = 0 (a,b,e,f,i,j), or φi

uniformly distributed between 0 and 2π (c,d,g,h,k,l). Cen-
ter fluctuation are introduced as normal noise around 0 with
standard deviation of 2µm−1 in situ (a,c,e,g,i,k) TOF den-
sity profiles and (b,d,f,h,j,l) corresponding FT analysis of the
interference patterns, same color code as Fig. 2.

Finally, we investigate how a possible shot-to-shot
noise on the position of the central interference peak
could affect our observables of the density modulation
and phase coherence. In the experiments, such fluctua-
tions may occur, for instance, because of beam-pointing
fluctuations or excitations of the gas. Although we com-
pensate for such effects by recentering the individual im-
ages (see Imaging Analysis section), residual effects may
remain, in particular due to center misestimation in the
mere presence of the interference patterns of interest. To
investigate this aspect, we repeat our toy model calcu-
lations now including noise in the global droplet array
position and using a standard deviation of 2µm for two
values of σy/d; see Fig.S3. Again, qualitatively the ob-
served features remains similar to our prediction in the
main text. The main effect lies in the appearance of a
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small discrepancy in the coherent case between nΦ and
nM , while the structure in the incoherent case remains
similar. As the center misestimation should be the most
severe in the latter case (due to the variability of the
interference patterns observed here), our test shows the
robustness of our analysis procedure against this issue.

IMAGING ANALYSIS: 164Dy AND 166Er

The density distributions in momentum space are ex-
tracted from the TOF images using the free-expansion
expectation. In the Dy case, the thermal component is
subtracted from the individual distribution by cutting
out the central region of the cloud and performing an
isotropic Gaussian fit on the outer region. This sub-
traction is beneficial because of the large thermal frac-
tion. In the 166Er case, such a subtraction is on the
contrary complicated because of the weak thermal com-
ponent and this pre-treatment may lead to improper es-
timation of AM and AΦ in the later analysis. The ob-
tained momentum density distributions are then recen-
tered and integrated numerically along kz(kx) between
[−2.0,+2.0]µm−1 ([−1.28,+1.28]µm−1) to obtain n(kY )
(n(ky)) for 164Dy (166Er). The recentering procedure
uses the result a single Gauss fit to the TOF images.
The fit is performed after convoluting each image with
a Gaussian function of width 0.5µm whose purpose is
to reduce the impact of the interference pattern on the
center estimation [19].

In order to characterise the system’s state, we use the
Fourier transform, F [n](y) of the single density profile,
n(ky). We then compute two average profiles, nM and
nΦ, relying on ensemble average over all measurements
under the same experimental conditions; see below for a
detailed discussion on nM and nΦ. In all the measure-
ments reported in this work we use averages over typically
15 to 100 realizations.

To quantify both the existence of a density modulation
and global phase coherence on top of this modulation, we
fit both nM (y) and nΦ(y) with a triple-Gaussian function,
where one Gaussian accounts for the central peak and the
other Gaussians are accounting for the symmetric side
peaks. The amplitudes of the latter give AM and AΦ,
respectively. The distance between the side peaks and
the central one is allowed to vary between [2.5, 2.7]µm
([2.3, 2.5]µm) in the case of 164Dy (166Er).

DETAILS ON THE FOURIER ANALYSIS

In our analysis we rely on two averaged profiles, named
nM or nΦ, to quantify both the density modulation and
its phase coherence. Here we detail the meaning of the
average performed.

The Fourier transform (FT) of the integrated mo-
mentum distributions, n(ky), which reads F [n](y) =
|F [n](y)| exp(i arg (F [n](y))) sets the ground for our
analysis. As stated in the main text, an in-situ density
modulation of wavelength y∗ yields patterns in n(ky) and
consequently induce peaks at y ≈ y∗, in the FT norm,
|F [n](y)|, see Fig. 2(g-i) and (m-o). Spatial variations of
the phase relation within the above-mentioned density
modulation translate into phase shifts of the interference
patterns, which are stored in the FT argument at y ≈ y∗,
arg (F [n](y∗)); see also Ref. [18, 20].

The first average that we use is nM (y) = 〈|F [n](y)|〉,
i. e. the average of the FT norm of the individual images.
As the phase information contained in arg (F [n](y)) is
discarded from nM when taking the norm, the peaks
in nM probe the mere existence of an insitu density
modulation of roughly constant spacing within the dif-
ferent realizations. The second average of interest is
nΦ(y) = |〈F [n](y)〉|, i. e. the average of the full FT of the
individual images. In contrast to nM , nΦ keeps the phase
information of the individual realizations contained in
arg (F [n](y∗)). Consequently, peaks in nΦ indicate that
the phase relation is maintained over the density modula-
tion, in a similar way for all realizations. Their presence
thus provides information on the global phase coherence
of a density-modulated state.

EXPERIMENTAL SEQUENCE: 164Dy AND 166Er

166Erbium - The BEC of 166Er is prepared similarly to
Refs. [1, 8, 21, 22]. We start from a magneto-optical trap
with 2.4 × 107 166Er atoms at a temperature of 10µK,
spin-polarized in the lowest Zeeman sub-level. In a next
step we load about 3 × 106 atoms into a crossed opti-
cal dipole trap (ODT) operated at 1064 nm. We evap-
oratively cool the atomic cloud by reducing the power
and then increasing the ellipticity of one of the ODT
beams. During the whole evaporation a constant mag-
netic field of B = 1.9 G (as = 80 a0) along z is applied.
We typically achieve BEC with 1.4 × 105 atoms and a
condensed fraction of 70%. In a next step the ODT
is reshaped in 300 ms into the final trapping frequencies
ωx,y,z = 2π×(227, 31.5, 151) Hz. Consecutively, we ramp
B linearly to 0.62 G (64.5 a0) in 50 ms and obtain a BEC
with 8.5× 104 atoms, which are surrounded by 3.5× 104

thermal atoms. This point marks the start of the ramp
to the final as.

164Dysprosium - For the production of a 164Dy BEC
we closely follow the scheme presented in [23]. Starting
from a 3 s loading phase of our 5-beam MOT in open-top
configuration [24], we overlap a 1064 nm single-beam
dipole trap with a 1/e2-waist of about 22µm, for 120 ms.
Eventually, we transfer typically 8×106 atoms utilizing a
time averaging potential technique to increase the spatial
overlap with the MOT. After an initial 1.1 s evaporative
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cooling phase by lowering the power of the beam, we
add a vertically propagating beam, derived from the
same laser, with a 1/e2-waist of about 130µm to form a
crossed optical dipole trap for additional confinement.
Subsequently, we proceed forced evaporative cooling
to reach quantum degeneracy by nearly exponentially
decreasing the laser powers in the two dipole-trap beams
over 3.6 s. We achieve BECs of 164Dy with typically 105

atoms and condensate fractions of about 40%. During
the entire evaporation sequence the magnetic field is
kept constant at 2.5 G pointing along the vertical (z-)
axis.

To be able to condense directly into the supersolid,
we modify the dipole trap to condense at a stronger
confinement of ωx,y,z = 2π × (225, 37, 134) Hz. After a
total evaporative cooling duration of 3.1 s, we achieve
Bose-Einstein condensation at 2.55 G and reach a state
with supersolid properties at 2.43 G, keeping the mag-
netic field constant throughout the entire evaporation
sequence for both cases.

Time of flight and imaging for 166Er and 164Dy - In
order to probe the momentum distribution of the Dy (Er)
gases, we switch off the confining laser beams and let the
atoms expand freely for 18 ms (15 ms), while keeping the
magnetic field constant. Consecutively the amplitude of
B is increased to a fixed amplitude of 5.4 G (0.6 G). In the
case of 164Dy, the magnetic field orientation is rotated
in order to point along the imaging axis. This ensures
constant imaging conditions for different as. After an
additional 9 ms (15 ms) we perform a standard absorption
imaging.

TUNING THE SCATTERING LENGTH IN 166Er
AND 164Dy

166Erbium - All measurements start with a BEC at
64.5 a0. In order to probe the BEC-supersolid-ID region,
we linearly ramp as to its target value in tr = 20 ms
by performing a corresponding ramp in B. Due to a
finite time delay of the magnetic field in our experimental
setup and the highly precise values of as needed for the
experiment, we let the magnetic field stabilize for another
15 ms before th = 0 starts. By this, we ensure that the
residual lowering of as during the entire hold time is <∼
0.3 a0. In the main text, we always give the as at th = 0 .
Furthermore, we estimate our magnetic field uncertainty
to be ±2.5 mG, leading to a ±0.2 a0 uncertainty of as in
our experiments.

To choose the best ramping scheme, we have performed
experiments varying tr from 0.5 ms to 60 ms, ramping to
a fixed as lying in the supersolid regime, and holding for
th = 5 ms after a fixed 15 ms waiting time. We record the
evolution of AΦ as a function of tr; see Fig. S4. When

increasing tr, we first observe that AΦ increases, up to
tr = 20 ms, and then AΦ gradually decreases. The initial
increase can be due to diabatic effects and larger exci-
tation when fast-crossing the phase transition. On the
other hand, the slow decrease at longer tr can be ex-
plained by larger atom loss during the ramp. We then
choose tr = 20 ms as an optimum value where a super-
solid behavior develops and maintains itself over a signif-
icant time while the losses are minimal.
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FIG. S4. Ramp time effect on the supersolid behavior
Measured AΦ for various durations of the scattering-length
ramp with 166Er and a final as = 54.1(2) a0. All measure-
ments include a 15 ms stabilization time after tr and are per-
formed with an additional hold of th = 5 ms.

164Dysprosium - As the value of the background scat-
tering, abg length for 164Dy is still under debate [9, 10,
25], we discuss the experimental settings in terms of mag-
netic field. Yet, to gain a better understanding of the
tunability of as in our experiment, we first perform a Fes-
hbach spectroscopy scan on a BEC at T = 60 nK. After
evaporative cooling at B = 2.5 G, we jump to B varying
from 1 G to 7.5 G and we hold the sample for 100 ms.
Finally, we switch off the trap, let the cloud expand for
26ms and record the total atom number as a function of
B. We then fit the observed loss features with a gaussian
fit to obtain the position B0,i and width ∆Bi of the FRs,
numbered i. We finally use the standard Feshbach res-
onance formula to estimate the as-to-B dependence via
as(B) = abg

∏
i (1−∆Bi/(B −B0,i)). Here we account

for 8 FRs located between 1.2 G and 7.2 G. Depending on
the background scattering length abg, the overall magni-
tude of as(B) changes. We can get an estimate of abg

from literature. In Fig. S5, we use the value of as from
Ref. [25] obtained at 1.58 G close to the B-region inves-
tigated in our experiment, as = 92(8) a0. By reverting
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the as(B) formula, we set abg = 87(8) a0. For the mea-
surements of Figs. 4-5, we ramp B linearly from 2.5 G in
20 ms to a final value ranging from 1.8 to 2.1 G, for which
we estimate as ranging from 97(9) a0 to 105(10) a0. We
calibrate our magnetic field using RF spectroscopy, with
a stability of about 2 mG. In the Dy case, we do not apply
an additional stabilization time. This is justified because
of the more mellow as-to-B dependence in the B-range
of interest as well as of the wider as-range of the super-
oslid regime (see Fig. 1) compared to the Er case. For the
measurements of Figs. 6–7, we use two B-values, namely
2.43 G and 2.55 G, at which we perform the evaporative
cooling scheme. Here we estimate as = 109(10) a0 and
as = 134(12) a0, respectively.
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FIG. S5. Estimated scattering length tuning in 164Dy
Estimated dependence of as on B for 164Dy. The FR po-
sitions and widths have been extracted from trap-loss spec-
troscopy measurements, the background scattering length is
estimated to abg = 87(8) a0, see text. The blue dashed line
gives an error-estimate considering only the errorbar on abg

from the mere as measurement of Ref. [25] and not account-
ing for uncertainty of the Feshhach scan. For Figs. 4-5, we
use B between 1.8 G and 2.1 G (red area); for Figs. 6–7, we
keep at two constant B-values, namely 2.43 G and 2.55 G (red
arrows).

ATOM LOSSES IN 166Er AND 164Dy

As pointed out in the main text, in the time evolu-
tion of the quantum gases in both the supersolid and the
ID regime, inelastic atom losses play a crucial role. The
atom losses are increased in the above mentioned regime
as (i) higher densities are required so that a stabiliza-
tion under quantum fluctuation effects becomes relevant
and (ii) the magnetic field may need to be tune close to
a FR pole to access the relevant regime of interaction
parameters. (i) is at play for all magnetic species but
more significant for 166Er due to the smaller value of add.
(ii) is relevant for both 166Er and 162Dy but conveniently
avoided for 164Dy thanks to the special short-range prop-

erties of this isotope.
To quantify the role of these losses, we report here

the evolution of the number of condensed atoms, N , as a
function of the hold time in parallel to the phase coherent
character of the density modulation observed. We count
N by fitting the thermal fraction of each individual image
with a two-dimensional Gaussian function. To ensure
that only the thermal atoms are fitted, we mask out the
central region of the cloud associated with the quantum
gas. Afterwards we subtract this fit from the image and
perform a numerical integration of the resulting image
(so called pixel count) to obtain N .
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FIG. S6. atom number and coherence decays in 166Er
Time evolution of N and AΦ for 166Er at different as, in-
cluding points before th = 0 ms in the experiment. The cor-
responding scattering lengths are 53.3(2) a0 (a,b), 54.0(2) a0

(c,d), 54.2(2) a0 (e,f).

166Erbium - In the Er case, a 15 ms stabilization time
is added to ensure that as is reached up to 0.3 a0. Dur-
ing this time, i. e. for th < 0, we suspect that the time-
evolution of the cloud properties is mainly dictated by
the mere evolution of the scattering length. Therefore,
in the main text, we report on the time evolution for
th ≥ 0. We note that because of the narrow as-range
for the supersolid regime, the long stabilization time for
as is crucial. However, because of the significant role of
the atom losses in our system, in particular for 166Er,
the early evolution of N and the cloud’s properties are
intimately connected. Therefore, the early time evolu-
tion at th < 0 is certainly of high importance for our
observations at th ≥ 0.

To fully report on this behavior, we show the evolution
of N and AΦ during both the stabilization and the hold-
ing time in Fig. S6 for three different as values – either in
the ID (a, b) or supersolid regime (c-f). The time evolu-
tion shows significant atom loss, prominent already dur-
ing the stabilization time, and levels off towards a remain-
ing atom number at longer holding times in which we re-
cover small BECs. Simultaneously, in each case reported
here, we observe that during the stabilization time AΦ

increases and a coherent density modulated state grows.
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TABLE I. Extracted 1/10-lifetime of 166Er atom number
decay for th ≥ 0 and remaining atom number at long holding
time for data in Fig. S6.

as(a0) tN (ms) Nr(104) tΦ (ms)

53.3(2) 32(5) 1.03(5) -

54.0(2) 51(9) 1.29(11) 25(6)

54.2(2) 46(12) 1.7(2) 32(9)

This density modulation starts to appear at a typical
atom number of N >∼ 6 × 104 and consecutively decays.
For the lower as = 53.3(2) a0 case, we observe that the
coherent state does not survive the as stabilization time,
and decays faster than the atoms loss; see Fig. S6 (a, b).
This behavior corresponds to the ID case discussed in
the main text. The central point of the present work is
to identify a parameter range where the coherence of the
density modulated state survives for th > 0 and its decay
time scale is similar to the one of the atom loss. In order
to quantify a timescale for the atom number decay, we
fit an exponential decay to th ≥ 0 ms. Here we allow an
offset Nr of the fit, accounting for the BEC recovered at
long holding times. In Table I, we report on the typical
1/10-decay times of the atom number, which are up to
50 ms. These values are of the order as the extracted tΦ,
see Table I and Fig. 5 of the main text. This reveals that
in 166Er the extracted lifetime of the coherent density
modulated states are mainly limited by atom loss.

Furthermore we note that the extracted Nr values for the
recovered BECs are smaller than 2 × 104, which is con-
sistent with the BEC region found in the phase diagram
of Fig. 1(f).

164Dysprosium - Differently from the 166Er case, for
164Dy, we operate in a magnetic-field range in which the
three-body collision coefficients are small and only mod-
erate atom losses occur. This enables the observation
of an unprecendented long-lived supersolid behavior. To
understand the effects limiting the supersolid lifetime, we
study the lifetime of the condensed-atom number for dif-
ferent B. We perform this detailed study for the data of
Fig. 5 of the main text, which are obtained after prepar-
ing a stable BEC and then ramping B to the target value.
Fig. S7 shows the parallel evolution of N and AΦ for three
different magnetic field values 1.8 G, 2.04 G and 2.1 G.
Here we observe that, for all B values, AΦ seems to de-
cay faster than the atom number. This suggests that the
lifetime of the density-modulated state in our 164Dy ex-
periment is not limited by atom losses. To confirm this
observation, we extract the 1/10 lifetimes of both N and
AΦ; see Table II. The values confirm our observation and
shows an atom number lifetime larger than tΦ at least by
a factor of ≈ 5. In addition, we find that the ratio tN/tΦ
varies, indicating that atom losses are not the only mech-

anism limiting the lifetime of the supersolid properties in
Dy.
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FIG. S7. atom number and coherence decays in 164Dy
Time evolution of N and AΦ for 164Dy at different B for the
data of Fig. 5. The corresponding magnetic fields are 1.8 G
(a,b), 2.04 G (c,d), 2.1 G (e,f).

TABLE II. Extracted 1/10-lifetime of 164Dy atom number
decay and AΦ decay for data in Fig. S7.

B (G) tN (ms) tΦ (ms)

1.8 300(12) 12(5)

2.04 728(34) 152(13)

2.1 926(36) 133(25)
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We report on the observation of heteronuclear magnetic Feshbach resonances in several isotope mixtures of
the highly magnetic elements erbium and dysprosium. Among many narrow features, we identify two resonances
with a width greater than one Gauss. We characterize one of these resonances, in a mixture of 168Er and 164Dy, in
terms of loss rates and elastic cross section, and observe a temperature dependence of the on-resonance loss rate
suggestive of a universal scaling associated with broad resonances. Our observations hold promise for the use of
such a resonance for tuning the interspecies scattering properties in a dipolar mixture. We further compare the
prevalence of narrow resonances in an 166Er - 164Dy mixture to the single-species case, and observe an increased
density of resonances in the mixture.

DOI: 10.1103/PhysRevA.102.033330

I. INTRODUCTION

Ultracold quantum gases are a highly successful platform
for physics research largely because it is possible to create
simplified and controllable versions of condensed matter sys-
tems [1]. As the field has advanced, great progress has been
made by reintroducing complexity in a carefully controlled
manner. This complexity can manifest in the form of inter-
particle interactions [2–4], the species and statistics of the
particle under study [5–7], or in the form of the potential
landscape, control protocols, and imaging techniques applied
to the system [8,9]. In this work, we explore interspecies Fesh-
bach resonances as a means of generating tunable interactions
between two different species of complex dipolar atoms.

Atoms with large magnetic dipole moments, such as the
lanthanide series elements erbium and dysprosium, interact
in a manner that is both long-range and anisotropic. This
is in contrast to more commonly used atomic species, such
as alkali and alkaline earth metals, which primarily interact
in a short-range and isotropic way. The recent creation of
degenerate Bose and Fermi gases of such atoms [10–13] has
enabled the observation of a wealth of phenomena including
quantum-stabilized droplet states [14–16], roton quasiparti-
cles [17], supersolid states [18–20], and a nonisotropic Fermi
surface [21].

In a separate direction, degenerate mixtures of multiple
atomic species have also provided diverse opportunities for
the study of physical phenomena. Examples include studies
of polarons that arise when an impurity species interacts with
a background gas [22–27], and the formation of heteronuclear
molecules with large electric dipole moments [28–31].

We expect that combining dipolar interactions with het-
eronuclear mixtures will lead to a rich set of physical

*Corresponding author: Francesca.Ferlaino@uibk.ac.at

phenomena, the exploration of which has only recently be-
gun. In particular, dipolar interactions are expected to have
dramatic consequences for the miscibility of binary conden-
sates [32–34], and in turn on vortex lattices that arise in
such systems [35]. Further, certain properties of polarons are
predicted to emerge when either the background [36] or both
background and impurity [37] particles experience dipolar
interactions [38].

Dipolar heteronuclear mixtures have recently been demon-
strated [39], but so far the interspecies scattering properties
have not been explored, either experimentally or theoreti-
cally. In these complex dipolar species, scattering properties
are dictated by both anisotropic long-range dipolar interac-
tions, which can be tuned through a combination of system
geometry and magnetic field angle, and by contact interac-
tions, which can be tuned through the use of interspecies
Feshbach resonances. While scattering models and exper-
imental demonstrations exist for mixtures of single- and
two-valence electron atoms (which lack strong dipolar inter-
actions) [40,41], the scenario of two multivalence electron
atoms has yet to be considered, and represents a frontier for
our understanding of ultracold scattering. In many commonly
used atomic systems, the strength, character, and location of
magnetic Feshbach resonances can be predicted with high
precision through coupled-channel calculations [3]. However,
the complexity of the internal level structure and coupling
mechanisms present in lanthanide atoms lead to significant
challenges for the development of a microscopic theory with
predictive power, and so necessitate an experimental survey to
find resonances with favorable properties [42–46].

To this end, we searched for heteronuclear Feshbach reso-
nances broad enough to provide a practical means for tuning
the interspecies interaction in Bose-Bose and Bose-Fermi
dipolar quantum mixtures. Using atomic-loss spectroscopy to
identify resonances, we perform surveys of fermionic 161Dy
and bosonic 164Dy together with 166Er, 168Er, and 170Er over
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TABLE I. Comparatively broad resonances found in specific iso-
tope mixtures together with estimated center positions and widths
(FWHM) from Gaussian fits to atom loss spectra. Each value is an
average between the fit values of Er and Dy.

Combination Resonance magnetic field (G) Width (G)

168Er - 164Dy 13.32(4) 1.7(1)
166Er - 164Dy 34.09(3) 1.5(1)
166Er - 161Dy 161.31(3) 0.84(9)
168Er - 161Dy 161.30(2) 0.93(5)
170Er - 161Dy 161.26(3) 0.91(8)

a magnetic-field range from zero to several hundred gauss
(the exact range varies by isotope combination due to avail-
ability of favorable evaporation conditions). We also explored
a Fermi-Fermi mixture of 167Er and 161Dy, but observed no
broad resonances there. In Table I we summarize positions
and widths of these features observed in our surveys. As an
exemplary case, we present a more detailed characterization
of the resonance near 13.5 G in the 168Er - 164Dy Bose-Bose
mixture, through measurements of interspecies thermalization
and the dependence of atomic loss on temperature.

In addition, our dipolar mixtures host a large number of
narrow interspecies resonances. In previous experiments with
single species, the density and spacing of these narrow reso-
nances has been studied to reveal a pseudorandom distribution
that can be modeled well using random matrices [43,45,46].
By performing high resolution scans over specific magnetic-
field ranges, we find that the average density of interspecies
resonances exceeds the combined density of intraspecies res-
onances, perhaps indicating the contribution of odd partial
waves or molecular states with antisymmetric electron con-
figurations for the interspecies case, which are not present in
the scattering of identical bosons.

Finally, in each Fermi-Bose mixture involving 161Dy we
observe a correlated loss feature between fermionic Dy and
bosonic Er atoms. Strangely, the loss feature is present at
the same magnetic-field value for all three bosonic erbium
isotopes studied. Such behavior is inconsistent with a typical
interspecies Feshbach resonance, where the magnetic field
at which the resonance occurs is strongly dependent on the
reduced mass of the atoms involved [47]. The mechanism
behind this unusual feature is as of yet unknown and calls for
further experimental and theoretical investigations.

II. OBSERVATION OF INTERSPECIES RESONANCES

Our experimental sequence is similar to the one intro-
duced in our previous works [39,48]. After cooling the desired
isotope combination of erbium and dysprosium atoms in a
dual-species magneto-optical trap (MOT), we load the atoms
into a crossed optical dipole trap (ODT) created by 1064-nm
laser light. Here we perform evaporative cooling down to the
desired sample temperature. During the whole evaporation se-
quence, we apply a constant and homogeneous magnetic field
(Bev), pointing along the z direction opposite to gravity. Bev

preserves the spin polarization in the lowest Zeeman sublevel

of both species. We use different values of Bev to optimize
the evaporation efficiency depending on the isotope combi-
nation and on the range of the target magnetic field (BFB) to
be investigated. The final ODT has trap frequencies ωx,y,z =
2π × (222, 24, 194)s−1. We typically obtain mixtures with
atom numbers ranging from 3 × 104 to 1 × 105 atoms for each
species. The sample is in thermal equilibrium at about 500 nK,
which corresponds to about twice the critical temperature for
condensation. Typical densities are up to a few ×1012 cm−3

for each species. After preparing the mixture, we linearly
ramp the magnetic field from Bev to BFB in 5 ms, either in
an increasing or decreasing manner. The current flowing in
the coils that generate the magnetic fields can be changed on
the millisecond time scale, and the field at the position of the
atoms settles to the part-per-thousand level in approximately
10 ms. We hold the mixture for a time ranging between 5 ms
and 400 ms depending on the experiment. At the end of the
hold time, we release the atoms from the ODT in a 15 ms time-
of-flight (TOF) expansion after which we record an image of
the atoms using a standard low-field absorption imaging tech-
nique [12]. Note that we adjust the relative amount of erbium
and dysprosium in the final thermal mixture for the specific
experiments by independently tuning the MOT loading time
for each species between 0.5 and 5 s.

In the isotope combinations and range of magnetic fields
that we explore here, we observe two interspecies resonances
with widths greater than 1 G (see Table I). We now turn to
a more detailed characterization of a feature present in the
168Er - 164Dy combination, for which atom loss is shown in
Fig. 1(a). We chose to focus on this feature because it is
relatively isolated from the many narrow homonuclear and
heteronuclear resonances typical of lanthanides. In this ex-
periment, the starting mixture contains 6.2 × 104 erbium and
9.1 × 104 dysprosium atoms and it is prepared by evapora-
tion at Bev = 10.9 G. In order to compensate for loss during
magnetic-field ramps and slow drifts of the atom number, we
normalize measurements performed with 200-ms hold times
at BFB to interleaved measurements at 10-ms hold time at
the same field. We further performed independent trap-loss
spectra in single-species operation to confirm the interspecies
nature of the resonance. Moreover, such scans allow us to
identify intraspecies resonances and exclude them from the
fit [see empty symbols in Fig. 1(a)]. As shown in the inset for
erbium, a high-resolution scan reveals a narrow region with
less loss near the center of our broad loss feature, probably due
to the influence of a second interspecies resonance—because a
resonance contributes a scattering length with a different sign
on either side of its pole, the contributions from two nearby
resonances may counteract in between them, leading to a re-
duction in loss. This structure is also visible on the dysprosium
loss feature but it is not shown in the inset for ease of reading.

A Gaussian fit to the loss profiles, with known narrow
single-species resonance excluded, returns a center value of
13.31(2) and 13.33(4) G and a full width at half maximum
(FWHM) value of 1.95(5) and 1.3(1) G for erbium and dys-
prosium, respectively. The observed difference in the fitted
width of the two species can be explained by the imbalance
in atom number: because this measurement was performed
with fewer erbium atoms than dysprosium, the fractional loss
of erbium is higher than that of dysprosium, leading to a
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FIG. 1. (a) Trap loss from the 13.5 G resonance in the Bose-
Bose mixture 168Er - 164Dy (red circles and blue squares points,
respectively). Empty symbols correspond to narrow single-species
resonances, which we exclude from fits. Each point is an average
over four experimental repetitions. For each magnetic field, the atom
number recorded after 200 ms of hold time is normalized to that at a
short hold time of 10 ms. The lines are the Gaussian fits to the data.
The inset shows erbium loss measured in a different dataset with
5-mG resolution, and highlights the structure present on the center
of the feature. The same structure is visible also for the dysprosium
atoms in the mixture. (b) Interspecies elastic cross section σErDy

measured across the Feshbach resonance using cross-species ther-
malization. Each value of σErDy is extracted from thermalization data
using a numerical model for thermalization that includes temporal
variation in atom number and temperature; see main text and the
Appendix.

greater saturation of loss and broadening of the erbium loss
feature.

III. INTERSPECIES THERMALIZATION

To get insights on its effective strength and width, we per-
form cross-species thermalization measurements across the
resonance [see Fig. 1(b)]. Interspecies thermalization exper-
iments are well established techniques to extract effective
thermalization cross sections, which in turn depend on the
scattering length [49–51]. While inferring a precise value
of the scattering length would require the development of
a detailed and rigorous model that accurately captures the
temperature dependence of the interspecies and anisotropic
dipolar scattering [52], and would go beyond the scope of this
work, we are able to determine a thermally averaged scattering
cross-section from which we can estimate the width of the
resonance.

In this cross-thermalization experiment, we selectively heat
dysprosium by means of a near-resonant 421-nm light pulse

along the vertical direction. We confirmed that the light pulse
has no direct measurable effect on erbium. The magnetic field
is then jumped to the desired value BFB and held for a variable
amount of time, during which the temperature of erbium rises
to equilibrate with dysprosium due to elastic collisions. We
record the temperature of the two species along a direction
orthogonal to the heating pulse, as the effects of center of mass
motion are less prevalent here [53], and use a numerical model
to extract a cross section from the rate of thermalization. This
simple model assumes an energy independent cross section,
an assumption which may break down near resonance where
unitarity limits on scattering may become significant.

From these thermalization measurements, we can see a dra-
matic increase in the scattering cross section near resonance,
as one would expect for an interspecies Feshbach resonance.
Further, we observe a significant modification of the cross sec-
tion associated with the resonance over a Gauss-scale range
of magnetic fields, similar to the width we observe in loss
measurements. For comparison, the expected contribution to
the scattering cross section due to dipolar interactions is 2.4 ×
10−16 m2, over an order of magnitude below what we infer
near resonance. While the exact relationship between the mea-
sured cross section and scattering length is complicated by
the finite temperature of our atoms and anisotropic nature of
the interactions, an approximate value can be attained through
the simple expression for s-wave scattering σ = 4πa2

s , where
as is the s-wave scattering length [3]. Our largest measured
cross sections, near resonance at 13.5 G, imply a scattering
length of roughly 400 a0, substantially greater than the dipolar
length aD = mμ0μErμDy/4π h̄2 � 139 a0 associated with in-
terspecies collisions (a0 is the Bohr radius). In this expression,
m = mErmDy/(mEr + mDy) is the reduced mass, and μEr, μDy

are the ground-state magnetic dipole moments for erbium and
dysprosium, respectively.

For an isolated resonance and pure contact interactions, a
common way to characterize the resonance width is the pa-
rameter �, given by the difference in magnetic field between
the pole of the resonance, at which the thermalization rate is
maximal, and the nearest zero crossing in the thermalization
rate, which would correspond to a lack of scattering [3]. In
lanthanides, the presence of anisotropic dipolar interactions
leads to a scattering cross section that does not completely
vanish. In addition, multiple narrow and overlapping reso-
nances may be present, which may influence the interpretation
of such a width measurement. However, to get a rough es-
timate of the width of the resonance, we can consider the
distance between the resonance pole and the apparent mini-
mum in the thermalization rate at 17 G. This suggests a width
of � � 3.5 G.

IV. DEPENDENCE OF LOSS ON TEMPERATURE

The dependence of the loss feature on the cloud temper-
ature can provide additional information on the nature of
the resonance. For broad resonances, a universal regime is
expected to emerge near resonance where the scattering cross
section and loss are dictated primarily by the atomic momen-
tum, rather than the scattering length [54]. In this regime, the
three-body loss parameter L3 follows a nearly universal form
scaling as 1/T 2, where T is the temperature. Such scaling has
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FIG. 2. Three-body loss coefficient L3 extracted from on-
resonance loss measurements at the resonance position for different
temperatures (black circles), along with a fit to a 1/T 2 scaling (black
line), as expected for universal three-body loss. The inset shows
the resonance width extracted as FWHM from Gaussian fits to the
trap-loss spectra versus cloud temperature for a different dataset. Red
circles and blue squares refer to erbium and dysprosium, respectively.
The reported temperature comes from a TOF estimation.

been observed in broad resonances of several atomic species
[54–56].

We observe a temperature dependence of the loss rate near
resonance that is suggestive of such universal behavior. By
varying the final depth of the ODT reached during evapora-
tion, we tune the temperature of the atomic mixture. For each
temperature, we measure atom loss on resonance at 13.4 G as
a function of the hold time. We then use a numerical model to
extract the rate of interspecies three-body loss, and L3.

These loss coefficients are plotted as a function of temper-
ature in Fig. 2, along with a fit to a 1/T 2 dependence, which
provides a reasonable description of our data. The universal
temperature dependence arises from a maximum value of L3

possible at a given temperature, given by

L3,max = λ3,max

T 2
� h̄5

m3

36
√

3π2

(kBT )2
. (1)

Factors associated with Efimov physics can lead to a lower
value for L3, but not higher [54,57,58]. From our fit to a
1/T 2 dependence for our data, we extract a value of λ3 =
1.0(2) × 10−24μK2cm6 s−1, which is compatible with the pre-
dicted bound of λ3,max = 2.4 × 10−24 μK2cm6s−1.

A reduction in the peak loss rate with increasing tempera-
ture can also result from thermal broadening of the resonance,
especially for very narrow resonances [45]. This is unlikely
to be the dominant effect here, as for typical differential
magnetic moments between entrance and closed channels in
our lanthanide system [59], we would expect broadening on
the scale of a few times 10 mG for temperatures near 1 μK,
much narrower than the Gauss-scale width of our feature.
Further, suppression of peak loss is typically accompanied by
a commensurate broadening and shift of the loss feature on the
scale of its width, which we do not observe (inset in Fig. 2).

V. SURVEY OF NARROW RESONANCES

In addition to the few relatively broad resonances, the
lanthanides exhibit many narrow resonances, whose statisti-
cal properties have been investigated for single-species gases
[43,45,46]. In this section we compare the abundance of
interspecies resonances to single-species resonances by per-
forming high-resolution trap-loss spectroscopy on the isotope
combination 166Er - 164Dy (see Fig. 3). Here, we investi-
gate four different magnetic-field ranges, each 10 G wide,

FIG. 3. High-resolution trap-loss spectroscopy for a balanced mixture of 166Er and 164Dy (red and blue curves respectively), with initial
atom numbers of roughly 105 per species at a temperature of 500 nK after 400 ms of interaction time. The magenta ticks indicate the
heteronuclear resonance positions as extracted by our analysis (see main text). The measurement is composed of four datasets [0, 10] G,
[22, 32] G, [50, 60] G, and [60, 70] G with a stepsize of 5 mG. Each point is an average over four experimental repetitions. Atom numbers are
normalized to the maximum of each dataset for ease of reading. The broad loss feature in Dy near 68.8 G was not observed in previous work
[45], and may result from a technical source of loss in our experiment.
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FIG. 4. (a)–(d) Staircase function describing the number of Fesh-
bach resonances as a function of the four investigated magnetic-field
ranges: [0, 10] G, [22, 32] G, [50, 60] G, and [60, 70] G respectively.
The black line shows the number of heteronuclear resonances. The
red and blue lines show the number of homonuclear resonances
for 166Er and 164Dy, respectively. The shaded areas represent our
confidence intervals (see main text).

with a resolution 40 times higher than the one used for the
exploratory surveys. To enable direct comparison with the
previous works performed on single species [43,45], we use
similar experimental conditions (isotope, atom number, tem-
perature, and hold time).

As expected, we observe many narrow homonuclear res-
onances [43,45]. In addition, we also identify many narrow
heteronuclear resonances. To distinguish these two types of
resonance, we first label features with a fractional loss above
30% as resonances. We then categorize these resonances as
interspecies if erbium and dysprosium loss features occur
simultaneously within a range of ±10 mG and with a loss
amplitude ratio in the range 0.5–2. Features that do not meet
both of these criteria, are labeled either as homonuclear or am-
biguous, based on comparison with separate scans performed
with single species, either within this work or from previously
published data [43,45]. The numbers of ambiguous features
define our confidence intervals.

In order to visualize the number of resonances, we
construct the staircase function N (B), which describes
the cumulative number of resonances from the start of
a scan range up to a given magnetic field BFB. Fig-
ures 4(a)–4(d) shows N (B) for the four investigated
magnetic-field ranges. The black lines represent heteronu-
clear Feshbach resonances, while the red and the blue lines
represent the homonuclear 166Er and 164Dy resonances, re-
spectively. The shaded regions represent our confidence

interval defined by the total number of ambiguous Feshbach
resonances.

Our analysis results in a total number of heteronuclear
resonances of NErDy(tot) = 339(16), counting all magnetic-
field ranges, and a number of homonuclear resonances of
NEr(tot) = 116(16) and NDy(tot) = 144(16). Within our con-
fidence intervals, we detect a total number of homonuclear
resonances comparable with those of previous works [43,45].
The corresponding total density of resonances ρ̄, given by
the total number of resonances divided by the total range
of magnetic fields scanned are ρ̄ErDy = 8.5(4) G−1, ρ̄Er =
2.9(4) G−1, and ρ̄Dy = 3.6(4) G−1.

For our combined dataset, we find that the total number
of heteronuclear resonances exceeds the combined number of
homonuclear resonances for the two species: ρ̄ErDy = α(ρ̄Er +
ρ̄Dy), with α = 1.3(2). We would expect that the average
density of heteronuclear resonances should be greater than
the sum of the two homonuclear resonance densities. This
is because each species contributes a set of internal states
that can be coupled to, and the heteronuclear resonances are
not subject to the same symmetrization requirements as the
homonuclear resonances. In resonances involving distinguish-
able particles, both gerade and ungerade Born-Oppenheimer
molecular potentials contribute, as well as both even and odd
partial waves for the entrance channel. Our data is consistent
with this expectation (α > 1). Note that we do observe a lower
number of interspecies resonances in the range 50–60 G, per-
haps as a result of the nonrandom distribution of resonances as
observed in the single-species case [43,45], or to the presence
of broad homonuclear erbium resonances that could obscure
the observation of interspecies resonances.

VI. COINCIDENT LOSS FEATURE
IN DIFFERENT ISOTOPES

Finally, we have also searched for broad (Gauss-range)
resonances in Bose-Fermi mixtures consisting of fermionic
161Dy combined with different bosonic isotopes of erbium–
166Er, 168Er, and 170Er, as well as Fermi-Fermi mixtures of
161Dy and 167Er. For these combinations, we perform only
coarse scans and thus only resolve broad features. In mixtures
involving the bosonic isotopes of erbium we observe a corre-
lated loss feature between erbium and dysprosium near 161
G (see Fig. 5). This loss feature is not present at our level
of measurement sensitivity with either species alone, or in
the mixture with the fermionic 167Er. Surprisingly, the loss
feature is centered at the same magnetic field (to within our
resolution of 0.1 G) for all bosonic isotopes of erbium. This is
quite unexpected as the magnetic-field value of the resonance
position is typically highly sensitive to the reduced mass of
the atoms involved [47].

To shed more light on this puzzling feature, we conducted
further investigations on the exemplary case of 168Er - 161Dy.
For such a mixture, we performed loss measurements with
erbium numbers ranging from 1.3 × 104 to 3 × 104 (with the
number of dysprosium fixed at 2.5 × 104). We found in each
case that the number of erbium lost was roughly equal to
the number of dysprosium lost, and that the number of total
atoms lost was roughly proportional to the number of erbium
present. We further varied the temperature of the mixture from
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FIG. 5. Trap loss spectra for fermionic 161Dy in combination
with bosonic 166Er, 168Er, and 170Er, and fermionic 167Er (a)–(d),
respectively. Red circles represent erbium, blues squares represent
dysprosium, and lines are Gaussian fits to the losses. The solid verti-
cal gray lines highlight the peak centers from the fit over dysprosium
losses. For the plots with bosonic erbium, the atom number after
100 ms of interaction time is normalized to a short hold time of 5
ms. In the plot with 167Er, the normalization is performed using the
maximum value in the dataset. For all panels, each point is an average
over four experimental repetitions.

600 to 2000 nK, and did not find a dramatic dependence of the
loss coefficient on temperature (modeling loss as either two-
body Er-Dy loss or three-body loss with equal coefficients for
Er-Er-Dy and Er-Dy-Dy).

Several physical mechanisms could be consistent with such
a feature. One possibility is that the resonance we observe is
associated with a bound state of a shallow molecular potential
[60]. Mechanisms to create such potentials have been pro-
posed for species with dipolar interactions [61,62]. However,
none are obviously applicable to magnetic atoms in the lowest
energy entrance channel. Further, given the level of insensitiv-
ity to the mass of erbium, we would expect to see additional
resonances of a shallow potential in the magnetic-field range
over which we survey, which we do not. A second possibility
is that the feature we observe is not a true interspecies res-
onance, but rather an intraspecies resonance in dysprosium
whose loss rate is enhanced by the presence of bosonic er-
bium atoms. A similar effect was reported in a mixture of
fermionic lithium and bosonic rubidium atoms [63]. Finally,
it is possible that this feature is not a Feshbach resonance at
all, but rather the result of spin-changing processes resulting
from unintentional radio-frequency tones in the laboratory, or
of an interspecies photoassociation resonance. We have ruled
out the most likely culprits for the last effect by varying the
relative detuning between our horizontal and vertical dipole
traps and observing no change in the resonance position. We
hope that our presentation of this mysterious feature may spur
theoretical exploration of possible physical mechanisms.

VII. CONCLUSIONS

In conclusion, we have reported experimental observation
of heteronuclear magnetic Feshbach resonances in several
isotope mixtures of erbium and dysprosium. Among the
Gauss-broad features identified in our surveys, we have char-
acterized one in the combination 168Er - 164Dy by means of
cross-species thermalization measurement and temperature
dependence analysis. We performed high-resolution trap-loss
spectroscopy in the combination 166Er - 164Dy to compare the
average resonance density of the mixture with respect to
the single-species case. In mixtures of fermionic 161Dy and
bosonic erbium atoms, we observed a correlated loss feature
which appears to be insensitive on the erbium isotope used
but absent in dysprosium alone. Our observations pave the
way to realize tunable interactions in quantum degenerate
mixtures of dipolar atoms. Knowledge of the range of tun-
ability of these interspecies interactions is a key ingredient
for varied opportunities including studies of the miscibility of
binary condensates, of vortex lattices, and of dipolar polarons
[32–37].
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APPENDIX: MEASUREMENT AND ANALYSIS DETAILS

1. Cross-species thermalization

As an exemplary case, we study in more detail the reso-
nance found in the 168Er - 164Dy Bose-Bose mixture near 13.5
G. To reliably quantify the value of the interspecies cross
section, we developed the following scheme for cross-species
thermalization measurements [49–51]. To avoid heating of the
sample by crossing Feshbach resonances, we evaporate the
mixture at Bev close to resonance. Specifically, when measur-
ing on the low(high)-field side of the feature we evaporate
at Bevap = 10.8 G(16.4 G). Once the sample is prepared as
previously described (here we use an unbalanced mixture with
twice as much Dy as Er), we compress the trap by linearly
increasing the horizontal ODT power by a factor of 5 and the
vertical ODT power by two in 500 ms to prevent any plain
evaporation. The final trap frequencies in the compressed trap
are ωx,y,z = 2π × (409, 26, 391)s−1. Subsequently, we ramp
the magnetic field in 5 ms to either 10 or 16 G. Here, a pulse
of near-resonant 421-nm light propagating along the magnetic
field direction (z) is used to selectively heat dysprosium. We
fix the duration of the pulse at 5.5 ms to roughly match the trap
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FIG. 6. Sample temperature traces for erbium (filled circles) and
dysprosium (hollow squares) after dysprosium is heated. Purple,
green, and orange correspond to magnetic fields of 12, 13.5, and
17 G, respectively. Fit lines represent the results of the numerical
integration of Eq. (A2), which fits the temperature profile of erbium
based on its initial value and the dysprosium temperatures. Different
evaporation conditions cause the curves to have slightly different
initial and final conditions (see main text).

oscillation period along this direction and set the pulse inten-
sity to give the desired temperature increase of the dysprosium
cloud (up to 4 μK). We confirmed that the light pulse has no
direct measurable effect on erbium. Finally, with a quench
fast compared to the shortest thermalization rate, the magnetic
field is set to the desired value BFB and held for a variable
amount of time, during which the temperature of erbium rises
to equilibrate with dysprosium due to thermalizing collisions
(Fig. 6). We note that in the temperature evolution of the
clouds, the initial temperatures are slightly different. This
behavior is mainly due to different evaporation conditions
on the two sides of the resonance, the different strength in
the quench to the final BFB, and the heating caused by the
resonance itself. By comparing the two species’ temperature,
we ensure that these different conditions are consistent with
general offsets on the single measurement thus not affecting
the final estimation of the cross-section.

To extract a scattering cross section from our cross-species
thermalization data, we use a fit to a numerical model for
the thermalization of two species. In principle, a simple ex-
ponential fit to the temperature difference between the two
species could also be used, but does not account for changes
in the atom number or average temperature of the sample that
may arise from residual evaporation during the thermalization
time. Our numerical model follows that of Ref. [49]. We treat
the scattering cross section as independent of the energy of the
colliding particles, an assumption that greatly simplifies the
analysis, but inevitably breaks down near enough to resonance
where unitarity considerations bound the scattering cross sec-
tion. This assumption leads to a collision rate for each atom

of species 1 with atoms of species 2 given by

γ12 = N2m3/2
1 ω̄3

1

π2kB(T1 + β−2T2)3/2

√
T1

m1
+ T2

m2
σ12, (A1)

where m1, m2, T1, and T2 are the masses and temperatures
of species 1 and 2, ω̄ = (ωxωyωz )1/3 characterizes the fre-
quency of the trap, β2 = m2ω̄

2
2/m1ω̄

2
1, and σ12 is the effective

interspecies cross section. We assume that the energy ex-
changed per collision is given by �E = ξkB(T2 − T1) where
ξ = 4m1m2/(m1 + m2)2, and that the heat capacity of each
atom is 3kB. This leads to a differential equation for the
temperature of erbium:

dTEr

dt
= ξkB(TDy − TEr )NDym3/2

Er ω̄3
Er

3π2kB(TEr + β−2TDy)3/2

×
√

TEr

mEr
+ TDy

mDy
σErDy, (A2)

which we can numerically integrate using the instantaneous
values for TDy and NDy, and from this extract the scattering
cross section σErDy that yields a thermalization profile that
best matches our data, as determined through a least-squares
difference. Examples of three such fits, for 12, 13.5, and 17 G
are shown in Fig. 6, and generally describe our thermalization
data well.

2. Temperature dependence of loss

We quantify the temperature dependence of three-body
loss in terms of the interspecies three-body loss coefficient.
For a single species, the three-body loss coefficient L3 can
be defined by Ṅ/N = −L3〈n2〉, where N is the total number
of atoms, and 〈n2〉 = ∫

d3r n3(r)/N represents the average
squared density of scattering partners for an atom in the gas.
n(r) is the local density of the gas.

We define analogous quantities for our two-species mix-
ture, containing particles denoted i and j. In this case,

Ṅi

Ni
= −1

3Ni

∫
d3r (2Li,i, j

3 n2
i (r)n j (r) + L j, j,i

3 ni(r)n2
j (r)).

(A3)

Here, Li,i, j
3 represents the loss rate due to collisions involving

two atoms of species i and one of j.
To arrive at simple expressions, we make several as-

sumptions and approximations. First, we treat the mass,
temperature, and polarizability of the two atomic species as
equal, which is a reasonable approximation for erbium and
dysprosium isotopes in our 1064-nm wavelength ODT [39].
This assumption implies equivalent spatial distributions for
the two species, which we assume to be thermal in our three-
dimensional harmonic trap. We next set Li,i, j

3 = L j, j,i
3 ≡ Li

3
near resonance, essentially assuming that the loss process is
primarily determined by the two pairwise interactions be-
tween the minority participant and the two majority atoms.
We find this assumption leads to a model consistent with
our observed relative loss between the two species. With
these simplifications in place, we define Li

3 using Ṅi/Ni =
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−Li
3〈n2〉i

eff , where

〈n2〉i
eff = (2NiNj + N2

j )m3ω̄6

3
5
2 8π3(kBT )3

(A4)

and ω̄ = (ωxωyωz )1/3 is the geometric mean of the trap oscil-
lation frequencies.

We extract the resonant value of L3 by measuring remain-
ing atom number versus hold time in mixtures prepared at
different temperatures, with the magnetic field set near reso-
nance at 13.4 G. We then fit the resulting data by numerically
integrating Eq. (A3). Because we observe significant single-
species loss of erbium (the majority species), we treat the
erbium atom number measured at each time step as inputs
to our fit, and extract the value of L3 that best predicts the
loss of dysprosium. Here, we assume that Li,i, j

3 = L j, j,i
3 ≡ L3.

We bound the effects of single-species loss in dysprosium by
repeating the same measurement and analysis protocol off
resonance at 11.5 G and 16.5 G. The error bars in Fig. 2
of the main text include a contribution corresponding to the
extracted L3 in the off-resonant condition, which contain
both the effects of single-species loss and the small effect

of off-resonant interspecies loss. Also included are errors as-
sociated with the observed change in temperature during the
loss measurement, and relating to the approximations made in
estimating the density.

In a regime where the scattering length a exceeds the
thermal wavelength λth = h/

√
2πmkBT , and thermal broad-

ening is small compared to the width of the loss feature, we
expect roughly L3 ∝ 1/T 2, as has been observed in several
experiments involving single atomic species [54–56]. This
picture becomes complicated somewhat in the case of a bi-
nary mixture due to stronger Efimov effects, which lead to
a temperature-dependent modulation of loss relative to the
simple 1/T 2 prediction. In particular, the parameter s0, which
characterizes the strength of the three-body Efimov poten-
tial, is equal to approximately 1.006 for identical bosons,
but approximately 0.41 for our binary mixture [57,58]. The
fractional importance of these temperature-dependent modifi-
cations scale as e−πs0 [54], making them a minor correction
for identical bosons, but a potentially important effect in mix-
tures. It is possible that such effects contribute to deviations
of our data from a 1/T 2 form, but a true calculation would
require knowledge of short-range inelastic processes in our
system.

[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[2] C. Menotti, M. Lewenstein, T. Lahaye, and T. Pfau, in Dynamics
and Thermodynamics of System with Long Range Interactions:
Theory and Experiments, edited by A. Campa, A. Giansanti, G.
Morigi, and F. S. Labini, AIP Conf. Proc. No. 970 (AIP, New
York, 2008), p. 332.

[3] C. Chin, R. Grimm, P. S. Julienne, and E. Tiesinga, Rev. Mod.
Phys. 82, 1225 (2010).

[4] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82,
2313 (2010).

[5] B. DeMarco and D. S. Jin, Science 285, 1703 (1999).
[6] Z. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W.

Zwierlein, A. Görlitz, and W. Ketterle, Phys. Rev. Lett. 88,
160401 (2002).

[7] M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K.
Dieckmann, Phys. Rev. Lett. 100, 010401 (2008).

[8] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner,
Nature (London) 462, 74 (2009).

[9] C. Gross and I. Bloch, Science 357, 995 (2017).
[10] M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, Phys. Rev.

Lett. 107, 190401 (2011).
[11] M. Lu, N. Q. Burdick, and B. L. Lev, Phys. Rev. Lett. 108,

215301 (2012).
[12] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R.

Grimm, and F. Ferlaino, Phys. Rev. Lett. 108, 210401 (2012).
[13] K. Aikawa, A. Frisch, M. Mark, S. Baier, R. Grimm, and F.

Ferlaino, Phys. Rev. Lett. 112, 010404 (2014).
[14] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-

Barbut, and T. Pfau, Nature (London) 530, 194 (2016).
[15] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L.

Santos, and F. Ferlaino, Phys. Rev. X 6, 041039 (2016).

[16] M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T.
Pfau, Nature (London) 539, 259 (2016).

[17] L. Chomaz, R. M. W. van Bijnen, D. Petter, G. Faraoni, S.
Baier, J.-H. Becher, M. J. Mark, F. Wächtler, L. Santos, and
F. Ferlaino, Nat. Phys. 14, 442 (2018).

[18] F. Böttcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T.
Langen, and T. Pfau, Phys. Rev. X 9, 011051 (2019).

[19] L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C.
Politi, G. Durastante, R. M. W. van Bijnen, A. Patscheider, M.
Sohmen, M. J. Mark, and F. Ferlaino, Phys. Rev. X 9, 021012
(2019).

[20] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C.
Gabbanini, R. N. Bisset, L. Santos, and G. Modugno, Phys. Rev.
Lett. 122, 130405 (2019).

[21] K. Aikawa, S. Baier, A. Frisch, M. Mark, C. Ravensbergen, and
F. Ferlaino, Science 345, 1484 (2014).

[22] S. Ospelkaus, C. Ospelkaus, O. Wille, M. Succo, P. Ernst, K.
Sengstock, and K. Bongs, Phys. Rev. Lett. 96, 180403 (2006).

[23] S. Will, T. Best, S. Braun, U. Schneider, and I. Bloch, Phys.
Rev. Lett. 106, 115305 (2011).

[24] J. Heinze, S. Götze, J. S. Krauser, B. Hundt, N. Fläschner, D.-S.
Lühmann, C. Becker, and K. Sengstock, Phys. Rev. Lett. 107,
135303 (2011).

[25] N. Spethmann, F. Kindermann, S. John, C. Weber, D.
Meschede, and A. Widera, Phys. Rev. Lett. 109, 235301 (2012).

[26] N. B. Jørgensen, L. Wacker, K. T. Skalmstang, M. M. Parish, J.
Levinsen, R. S. Christensen, G. M. Bruun, and J. J. Arlt, Phys.
Rev. Lett. 117, 055302 (2016).

[27] M.-G. Hu, M. J. Van de Graaff, D. Kedar, J. P. Corson, E. A.
Cornell, and D. S. Jin, Phys. Rev. Lett. 117, 055301 (2016).

[28] T. Köhler, K. Góral, and P. S. Julienne, Rev. Mod. Phys. 78,
1311 (2006).

033330-8



FESHBACH RESONANCES IN AN ERBIUM-DYSPROSIUM … PHYSICAL REVIEW A 102, 033330 (2020)

[29] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B.
Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S.
Jin, and J. Ye, Science 322, 231 (2008).

[30] T. Takekoshi, L. Reichsöllner, A. Schindewolf, J. M. Hutson,
C. R. Le Sueur, O. Dulieu, F. Ferlaino, R. Grimm, and H.-C.
Nägerl, Phys. Rev. Lett. 113, 205301 (2014).

[31] P. K. Molony, P. D. Gregory, Z. Ji, B. Lu, M. P. Köppinger, C. R.
Le Sueur, C. L. Blackley, J. M. Hutson, and S. L. Cornish, Phys.
Rev. Lett. 113, 255301 (2014).
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The notion of phase coherence lies at the foundation of quan-
tum physics. It is considered a key property in understanding 
many-body quantum phenomena, ranging from superfluidity 

and the Josephson effect to the more applied examples of matterwave 
interference, atom lasing processes and quantum transport in meso- 
and macroscopic systems1,2. Although phase-coherent states are 
well studied at equilibrium, understanding their out-of-equilibrium 
dynamics remains an open problem at the forefront of statistical and 
quantum physics, especially when interactions are present3.

Rephasing dynamics of an initially incoherent many-body quan-
tum system requires, first, the system to be conducting such that 
different parts can exchange energy and particles, and second, an 
efficient mechanism to dissipate the phase excitations. As for the 
first requirement, a famous example illustrating the inhibition of 
thermalization is many-body localization4. The second ingredient—
dissipation—is more subtle and multifaceted, relating, for instance, 
to the growth of thermal correlations in isolated systems5, com-
plex interaction-mediated dynamics6,7 or the exponential growth 
of unstable modes and topological defects in connection with the 
Kibble–Zurek mechanism8–10.

The interplay among coherence, self-localization and relaxation 
dynamics is an intriguing problem. In this respect, the recently dis-
covered11–13 supersolid states in dipolar quantum gases can poten-
tially provide a new twist in studying non-equilibrium quantum 
phenomena, about which very little is known so far. A supersolid 
combines phase coherence and periodic localization in space, prop-
erties corresponding to the spontaneous and simultaneous breaking 
of both gauge and translational symmetry. Intuitively, a supersolid 
can be viewed as a fully coherent state, which self-establishes com-
pressible density modulation. In this Article, we explore the evo-
lution of a supersolid of ultracold dysprosium (Dy) atoms when 
brought out of equilibrium after an interaction quench that destroys 
its global phase coherence. Due to the dynamic formation of the 
supersolid, an interesting question is whether its phase dynamics 
are similar to or different from comparable rigid structures, such as 

a Bose–Einstein condensate (BEC) spliced in an optical lattice14–16, 
or if new phenomena can manifest.

In a dipolar supersolid, the particle self-arrangement in space is 
largely dictated by the many-body interactions17–22 and can be mod-
ified by either tuning the interatomic potentials or changing the 
atom number (N) in the system. Figure 1a shows the phase diagram 
of a cigar-shaped quantum gas of bosonic Dy atoms with trans-
verse dipole orientation. It is constructed from the ground-state 
wavefunctions obtained by numerically solving the extended 
Gross–Pitaevskii equation (eGPE)11,13,21 (Methods). Three distinct 
quantum phases can be accessed by changing N or the s-wave scat-
tering length as, which parametrizes the contact interaction. For a 
given N and large enough as, the ground state of the system is a 
non-modulated dipolar BEC (grey region). By lowering as, the influ-
ence of the dipolar interaction increases. When reaching a critical 
value of as, the system undergoes a phase transition to a supersolid 
phase (SSP). Here density modulation at a wavelength close to the 
roton excitation23,24 appears in the ground-state density profile (red 
region). By further lowering as, the system evolves into an array of 
insulating droplets (IDs) with an exponentially vanishing density 
link between them (blue region).

Our eGPE calculations, following a standard non-stochastic 
approach, are inherently phase coherent and thus cannot capture 
uncorrelated local phases. However, recent experiments have shown 
a connection between the strength of the density modulation and 
the coherence properties of the system, revealing a clear difference 
between the SSP and ID phase11–13,25. In the SSP, the whole system 
shares a global phase. In contrast, in the ID case, any fluctuation or 
excitation can lead to a locally different evolution of the phase. The 
absence of particle tunnelling between the droplets leads to dephas-
ing of the system.

By performing interaction quenches and moving across the 
phase diagram, one can create random phase excitations (‘phase 
scrambling’) and thus distinguish between the different coherence 
characters of the ID and SSP, as shown in Fig. 1b. Our experimental 
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A supersolid is a counterintuitive phase of matter that combines the global phase coherence of a superfluid with a crystal-like 
self-modulation in space. Recently, such states have been experimentally realized using dipolar quantum gases. Here we inves-
tigate the response of a dipolar supersolid to an interaction quench that shatters the global phase coherence. We identify a 
parameter regime in which this out-of-equilibrium state rephases, indicating superfluid flow across the sample as well as an 
efficient dissipation mechanism. We find a crossover to a regime where the tendency to rephase gradually decreases until the 
system relaxes into an incoherent droplet array. Although a dipolar supersolid is, by its nature, ‘soft’, we capture the essential 
behaviour of the de- and rephasing process within a rigid Josephson junction array model. Yet, both experiment and simulation 
indicate that the interaction quench causes substantial collective mode excitations that connect to phonons in solids and affect 
the phase dynamics.
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protocol starts by preparing a supersolid state by evaporative cooling 
from a thermal sample (Fig. 1b, left) (ref. 13). We then decrease as to 
enter into the ID regime (Fig. 1b, middle). Here the system ground 
state is an array of IDs, each with a phase that is expected to evolve 
independently in time. After these phases have become fully uncor-
related, we jump as back to its initial value (Fig. 1b, right). We then 
study the time evolution of the out-of-equilibrium system. We mea-
sure phase coherence and density modulation, whose coexistence is a 
hallmark of supersolidity, using a matterwave interference technique 
(Methods and refs. 11,13,26–29). In brief, for each experimental real-
ization i, we take an absorption image after a time-of-flight (TOF) 
expansion. The recorded image exhibits an interference pattern if 
in-trap density modulation is present. Via Fourier transform, we 
extract the phasor Pi ¼ ρi e

�iΦi

I
 with amplitude ρi and phase Φi at 

the spatial frequency of the interference pattern (cf. Extended Data  
Fig. 1a). Averaging over an ensemble of q realizations, the mean of 
the phasor amplitudes, AM = 〈∣Pi∣〉, characterizes the degree of density 
modulation, whereas the amplitude of the complex mean, AΦ = ∣〈Pi〉∣, 
contains information about the global phase coherence. As an addi-
tional measure of coherence, we calculate the circular variance of the 

phase ΔΦ = 1� 1
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq
i¼1 cos Φið Þ

� 2 þ Pq
i¼1 sin Φið Þ

� 2q

I

 (ref. 30). 

For a perfect supersolid (resp. ID) state and in the limit q → ∞, 
one expects AΦ = AM > 0 (respectively AΦ = 0, AM > 0) and ΔΦ = 0 
(respectively ΔΦ = 1). In the following, we describe and character-
ize each step of our phase-scramble-and-rephase protocol (Fig. 1b).

We initially prepare the supersolid state (Fig. 1b, left) of 164Dy 
atoms13 (N = 1.4 × 104) in an axially elongated optical dipole trap 
(ODT) with the final harmonic frequencies ωx,y,z = 2π × (225, 37, 
165) s−1. From our interferometric analysis, we see that this ini-
tial state is long lived and has a high degree of phase coherence  

(Fig. 1c–f). The characteristic quantities of AΦ and AM (Fig. 1c) and 
ΔΦ (Fig. 1d) are constant over hold times th up to 100 ms. The small 
mean value 〈ΔΦ〉 = 0.142(8) (the value in parentheses gives the 
standard error of the last digit) over the entire range of th reveals 
a constantly narrow spread in the phase distribution, as shown for 
th = 100 ms in the polar plot (Fig. 1e) of the phasors Pi and the cor-
responding histogram (Fig. 1f) for Φi.

In the next step of our protocol (Fig. 1b, middle), namely, the 
phase-scrambling excitation, we tune as via magnetic Feshbach 
resonances by varying the external magnetic field B (Methods and 
Extended Data Fig. 2). From the initial supersolid state (~87.9a0, 
where a0 denotes the Bohr radius), we transfer the system into the 
ID regime (~76.9a0) using a 20 ms linear B-field ramp. Here the 
atoms are expected to spatially arrange in an array of almost isolated 
droplets with exponentially small particle tunnelling between them. 
We then let the system evolve for a variable scrambling time tS.

Figure 2 shows the evolution of ΔΦ, AΦ and AM with tS. After 
completion of the B-field ramp, ΔΦ initially keeps rapidly increas-
ing for 20 ms and then slowly saturates to a large ΔΦ value. Here 
the droplets develop uncorrelated phases, as illustrated by the polar 
plot of Pi at tS = 100 ms (Fig. 2a, inset). We extract a saturation value 
of 〈ΔΦ〉sat = 0.92(1) (simple mean for tS > 50 ms). We highlight that 
ΔΦ is not expected to reach unity because of the finite sample 
size in the experiment (q ∈ [90, 100] repetitions; slight variations 
are due to a post-selection by atom number). It is evident that the 
measured 〈ΔΦ〉sat agrees with the expectation for a sample with 
the same q and uniformly random phases (grey shading in Fig. 2a, 
Extended Data Fig. 1b and Methods). As ΔΦ increases and the 
global phase coherence is lost, AΦ decreases quickly towards zero 
(Fig. 2b), whereas the density modulation persists as evidenced by 
AM remaining large.
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indicates a non-modulated BEc, whereas the red and blue regions correspond to the SSP and ID phase, respectively. The insets show the density profiles 
along the weak axis for the different phases. b, Illustration of the phase-scrambling sequence: starting from an SSP (left) prepared at 2.43 G (as = 87.9a0), 
we reduce as to enter the ID regime (middle). During tS the phases of the droplets evolve independently, leading to phase scrambling between the droplets. 
Eventually, we jump as back into the supersolid regime (right), where the time evolution of the global phase coherence is studied. c,d, Amplitudes AM and 
AΦ (c) and ΔΦ (d) for our initial SSP (left panel in b) when simply held for time th. Each data point is derived from q ∈ [80, 90] individual experimental 
realizations. The error bars (partly covered by plot symbols) are the 1σ confidence intervals from BcA bootstrapping (Methods)39. e,f, Polar scatter plot for 
Pi (e) and histogram of the probability density function (PDF) (f) for Φi at th = 100 ms.
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The interaction quench into the ID phase is a robust method to 
create phase-scrambling excitations. It is natural to ask how the rela-
tive phases between the individual droplets evolve once the density 
links between them are restored and whether the system relaxes into 
an equilibrium supersolid state. To address this question, we per-
form the last stage of our protocol (Fig. 1b, right). After a scrambling 
time of tS = 20 ms, we couple the droplets back together by jumping 
the B field and thus quenching as to 87.9a0, where the system ground 
state is a supersolid. However, after the quench, our state is out of 
equilibrium in terms of both phase and density distribution: since 
the density-modulated states in dipolar gases are self-assembled, 
they can deform after a sudden change in the many-body interac-
tions31–33. As shown in Fig. 3a, we first observe a rapid reduction 
in ΔΦ and then slower dynamics towards an equilibrium value 
with ΔΦ reaching 〈ΔΦ〉sat = 0.13(2) (simple mean for th > 50 ms). 
Simultaneously, AΦ approaches AM on the same timescale, whereas 
AM remains nearly constant. These observations show that the sys-
tem efficiently rephases by dissipating the phase excitation.

Our system of multiple superfluid droplets with individual 
phases, interconnected via weak links, is reminiscent of a Josephson 
junction array (JJA)34. Motivated by this analogy, we investigate 
whether a simple JJA model can adequately describe the observed 
phase dynamics. This is a non-trivial question, since in contrast to 
a rigid JJA, our droplet array is ‘soft’ in the sense that the droplet 
shapes and their distances change with as. We construct our model 
from a one-dimensional (1D) array of four coupled grains. For each 
grain, the number of particles is Nj and phase is θj. The Hamiltonian 
of this system is

H ¼
X4

j¼1

Nj � Nj

� 2

2Cj
�
X3

j¼1
Jj cos θjþ1 � θj

� 
; ð1Þ

where the overline denotes an ensemble average. The first term is the 
‘charging’ energy of the droplet (corresponding to its mean inter-
action energy) with the capacitance Cj. The second term describes 
the tunnelling of particles between the droplets with the Josephson 
amplitude Jj. The JJA model is appropriate if the droplets are reason-
ably well separated in space. For simplicity, we assume that Cj and 
Jj are identical for all the droplets and later denote them as C and J. 
Note that this Hamiltonian describes a quantum evolution since Nj 
and θj are connected via canonical commutation relations.

We describe the time evolution of the system via a Langevin for-
malism35,36. The phase of the droplet j follows

η
dθj
dt

¼ J½sinðθjþ1 � θjÞ � sinðθj � θj�1Þ þ ξjðT; η; tÞ; ð2Þ

where the friction parameter η is a phenomenological way to account 
for dissipative mechanisms. The temperature T is introduced via the 
thermal noise ξj(t), which shows Gaussian uncorrelated fluctuations 
at times t and t' given by ξjðtÞξiðt0Þ ¼ 2ηkBTδij δðt � t0Þ

I
, where δij 

is the Kronecker delta and δ(.) denotes the Dirac distribution. The 
thermal energy scale kBT (for T = 150 nK in the experiment and the 
Boltzmann constant kB) is much higher than the estimated capaci-
tance effect, allowing to neglect the second-order time derivative 
term related to C in the evolution of equation (2) (Methods).

This JJA model provides an intuitive understanding of the 
dephasing and rephasing dynamics shown in Figs. 2 and 3, respec-
tively. It encapsulates the essential physics of a rigid droplet situa-
tion at a finite temperature T in terms of the two phenomenological 
parameters J and η. The timescale of de- and rephasing is dictated by 
the dissipation η. The dissipation mechanisms include atom losses 
(cf. Extended Data Fig. 3), energy and particle exchange with the 
thermal component of the gas or with some internal degrees of free-
dom of the droplets, as discussed later. In contrast, the phase fluctu-
ations in the equilibrium state, namely, the stationary value of ΔΦ, 
are set by the competition between J and T and are independent of η.

We develop a parameter-free theory–experiment comparison 
for the rephasing dynamics by first fixing the value of J and η from 
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independent measurements. Taking advantage of the fact that η and 
J play different roles at different stages of the protocol, we fix J by 
reproducing the ΔΦ measured at the end of evaporation (Fig. 1d). 
The parameter η is instead extracted from the dephasing dynamics 
of ΔΦ during tS (Fig. 2 and Methods). We find that J = 6,000 Hz and 
η = 60 ± 10.

With all the values of the parameters fixed, we now compare the 
rephasing dynamics from the JJA theory and the experiment. As 
shown in Fig. 3, we observe that despite its simplicity, the model 
qualitatively predicts the rephasing curve well. In particular, the pla-
teau value at large th as well as the time to reach the plateau are con-
sistent with the experiment. In addition, we note that in the early 
time evolution (th < 30 ms), the experimental data is systematically 
slightly above the JJA curve, namely, the system seems to rephase 
slower than predicted by the model. This indicates that other phe-
nomena beyond our rigid JJA model are important to fully capture 
the out-of-equilibrium physics.

To elucidate why the observed experimental rephasing is 
slower than expected from the JJA model, we simulate the system’s 
real-time evolution (RTE)24 in the simplified zero-temperature and 
zero-atom-loss case, with a quench sequence mimicking the experi-
ment. Different from the phenomenological JJA model, the ab initio 
RTE approach can additionally account for the ‘soft’ nature of the 
supersolid, namely, the crystal and phase phonons31–33. As shown in 
Fig. 4a, the RTE simulation shows that the collective modes are ini-
tially excited by the interaction quench. The positions and heights 
of the high-density peaks evolve in time, especially during the initial 
tens of milliseconds, resulting in time-dependent density links. At 
longer times, we observe a damping of the collective motion, which 
can be attributed to an initial redistribution of the population from 
a few modes to many higher-lying modes over time. This suggests 
a possible dissipation mechanism of the phase excitations for our 
experiment. Even though the finite temperature, atom loss and pres-
ence of a normal component affect the precise dynamics and damp-
ing in the experiment, the RTE calculation strongly indicates that 
the droplet dynamics play an important role at early times. This is 
compatible with the observed deviations from the rigid JJA model.

In the experiments, we do not have direct access to the in-trap 
density evolution. However, by repeating our experiment in a tighter 
trap, which gives more distinct side peaks in the TOF interference 
patterns, we observe the indications of collective mode excitations. 
In Fig. 4b, we plot the time evolution of ΔΦ following the rephasing 
protocol. Here, on top of a global decrease in ΔΦ, a low-amplitude 
oscillating behaviour is evident, as highlighted by plotting the resid-
uals of an exponential fit to the data. We extract an oscillation fre-
quency of 50(5) Hz (cf. Extended Data Fig. 4 and Methods).

By comparing the predictions of the JJA and RTE approach to our 
experimental data, we conclude that the phase dynamics is largely 
described by a dissipative and ‘rigid’ JJA picture. We speculate that 
the phase excitations primarily dissipate via coupling to excited 
modes37. Moreover, the droplet dynamics seems to play an impor-
tant role, affecting the rephasing efficiency. Note that one could 
modify the JJA model to take the droplet dynamics into account, at 
least to a certain degree (Methods). Such coupling between the two 
types of degree of freedom usually leads to additional dissipation 
channels38. Besides being of intrinsic theoretical interest, this could, 
for example, open the perspective to using supersolids to study 
similar dynamics in regular solids between electronic and phononic 
degrees of freedom. This, however, goes beyond the scope of the 
present work and will be addressed in future studies.

In a final set of experiments, we investigate the role of the 
density-link strength between the droplets, namely, the Josephson 
coupling, in the rephasing dynamics. After phase scrambling  
(Fig. 1b, middle), we quench as to different values and record ΔΦ 
as a function of the hold time th (Extended Data Fig. 5a). For each 
as, we quantify the strength of the density link via L

I
, which was 

determined from a ground-state calculation (Fig. 1a). We study 
the short- and long-time evolution of ΔΦ by the determination 
of the initial rephasing rate ∣R∣ (the slope of a linear fit to ΔΦ for 
th ≤ 20 ms) and the saturation value 〈ΔΦ〉sat (simple mean of ΔΦ for 
th > 50 ms), respectively, as shown in Fig. 5a,b (for AM and AΦ see 
Extended Data Fig. 5b).

We observe different rephasing dynamics depending on L
I

. For 
extremely weak density links (L

I
 < 10–3), which we associate with 

the ID regime, the system is unable to rephase and it remains inco-
herent over the whole time evolution as indicated by a low ∣R∣ and 
large 〈ΔΦ〉sat ≈ 0.9. As L

I
 slightly increases, the system shows a 

partial rephasing with 〈ΔΦ〉sat decreasing to about 0.5. By further 
increasing the density-link strength, there exists a critical value of 
L
I

 above which the system recovers its full phase coherence after 
a long time (〈ΔΦ〉sat = 0.15). In this regime, ∣R∣ ≈ 30 s−1 is large and 
seems relatively independent of L

I
.

To compare the JJA predictions with our experimental obser-
vations, we first extract J for each as. For this purpose, we look at 
the long-time behaviour after scrambling and rephasing when the 
system has equilibrated, matching the theoretical and experimen-
tal 〈ΔΦ〉sat values. This is justified by the long-time agreement 
observed in Fig. 3. As expected from the increasing density-link 
strength L

I
 between the droplets, J globally grows with as (Fig. 5a, 

inset). Using these J values and the single calibrated value of η = 60 
(Fig. 2), we extract the rephasing rate ∣R∣JJA from the short-time 
evolution of ΔΦ within our JJA framework (Fig. 5b, inset). Despite 
the simplicity of the JJA approach, the ∣R∣JJA values are of the same 
order of magnitude as our experimental data and show the same 
qualitative behaviour with respect to as. As observed in Fig. 3, ∣R∣JJA 
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generally predicts rephasing faster than that measured in the experi-
ment, suggesting the presence of non-negligible processes beyond 
the rigid JJA model.

It is interesting that despite the JJA being able to consistently 
model the phase dynamics in the experiment, the extracted depen-
dence of J on as is mild in comparison to the expected ground-state 
density link L

I
 (Fig. 5a). For instance, J changes only by a factor of 

two whereas L
I

 changes by two orders of magnitude. Further, J seems 
to effectively saturate for increasing strength of the ground-state 
density link L

I
, which is in agreement with the observed plateaus 

of both 〈ΔΦ〉sat and ∣R∣ for large as. Possible explanations include 
the breakdown of the JJA model for a low-contrast supersolid, the 
impact of finite temperature on both the equilibrium supersolid 
state itself and the experimental measurement, or the role of col-
lective dynamics.

In conclusion, we have performed a study of the out-of-equilibrium 
dynamics of a dipolar supersolid after an interaction-driven phase 
excitation that fully destroys its phase coherence. We have dem-
onstrated that if the inter-droplet density links are sufficient, this 
phase-scrambled system relaxes into an equilibrium phase-coherent 
state. With decreasing link strength, the rephasing substantially 
slows down and eventually ceases in the ID regime. We find an over-
all consistency between the phase dynamics observed in the experi-
ment and an intuitive, theoretically easily tractable rigid JJA model. 
However, both ab initio simulations and experimental observations 
indicate post-quench collective excitations of the droplet array, 
which can affect the phase dynamics. Our study shows the evidence 
of particle flow across a dipolar supersolid, connecting to its super-
fluidity. It also suggests the efficient dissipation of phase excitations, 

whose microscopic mechanism is still under question. Future exper-
imental works, combined with advanced out-of-equilibrium theo-
retical models, will be crucial to understand the relaxation dynamics 
at play in isolated and open supersolid states of quantum matter.
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value of the phase variance 〈ΔΦ〉sat as a function of the scattering length  
as and the corresponding L
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. We calculate 〈ΔΦ〉sat and the error bars as  

the mean and standard deviation of ΔΦ over the three longest hold times 
(Fig. 3 and Extended Data Fig. 5). The grey-shaded rectangle indicates  
the theoretical 1σ confidence interval for uniformly random phases. The  
inset shows the J values for which the JJA simulations yield a 〈ΔΦ〉sat 
matching the experimental value at as, and the grey shading represents  
its confidence interval. b, Initial rephasing rates ∣R∣ for the different as 
values as extracted from the experimental data by using a linear fit.  
The error bars are the 1σ confidence intervals of the fitted slopes.  
The inset shows the theoretical ∣R∣JJA (as) expected from a linear fit to  
the initial decrease in the JJA rephasing curves (theory line in Fig. 3); the 
grey shading represents the confidence interval. The red filled points  
correspond to the dataset shown in Fig. 3.

NATure PhySICS | VOL 17 | MArch 2021 | 356–361 | www.nature.com/naturephysics360



ArticlesNAtuRE PHYsics

 26. Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of 
fringe-pattern analysis for computer-based topography and interferometry.  
J. Opt. Soc. Am. 72, 156–160 (1982).

 27. Hadzibabic, Z., Stock, S., Battelier, B., Bretin, V. & Dalibard, J. Interference of 
an array of independent Bose–Einstein condensates. Phys. Rev. Lett. 93, 
180403 (2004).

 28. Kohstall, C. et al. Observation of interference between two molecular 
Bose–Einstein condensates. New J. Phys. 13, 065027 (2011).

 29. Chomaz, L. et al. Emergence of coherence via transverse condensation in a 
uniform quasi-two-dimensional Bose gas. Nat. Commun. 6, 6162 (2015).

 30. Fisher, N. I. Statistical Analysis Of Circular Data (Cambridge Univ. Press, 1993).
 31. Natale, G. et al. Excitation spectrum of a trapped dipolar supersolid and its 

experimental evidence. Phys. Rev. Lett. 123, 050402 (2019).
 32. Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations 

in a dipolar quantum gas. Nature 574, 382–385 (2019).
 33. Hertkorn, J. et al. Fate of the amplitude mode in a trapped dipolar supersolid. 

Phys. Rev. Lett. 123, 193002 (2019).

 34. Fazio, R. & van der Zant, H. Quantum phase transitions and vortex dynamics 
in superconducting networks. Phys. Rep. 355, 235 (2001).

 35. Risken, H. The Fokker–Planck Equation (Springer, 1961).
 36. Ambegaokar, V. & Halperin, B. I. Voltage due to thermal noise in the dc 

Josephson effect. Phys. Rev. Lett. 22, 1364–1366 (1969).
 37. Dalla Torre, E. G., Demler, E. & Polkovnikov, A. Universal rephasing 

dynamics after a quantum quench via sudden coupling of two initially 
independent condensates. Phys. Rev. Lett. 110, 090404 (2013).

 38. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. 
Phys. 59, 1–85 (1987).

 39. Efron, B. Better bootstrap confidence intervals. J. Am. Stat. Assoc. 82, 
171–185 (1987).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

NATure PhySICS | VOL 17 | MArch 2021 | 356–361 | www.nature.com/naturephysics 361



Articles NAtuRE PHYsics

Methods
Ground-state phase diagram and contrast. Our numerical calculations of the 
ground-state phase diagram of a cigar-shaped 164Dy dipolar quantum gas follow 
the procedure described in our earlier works13,24. In brief, the calculations are 
based on minimizing the energy functional of the eGPE using the conjugate 
gradient technique40. The eGPE includes the anisotropic trapping potential, the 
short-range contact and long-range dipolar interactions at the mean-field level and 
the first-order beyond-mean-field correction in the form of a Lee–Huang–Yang 
term41–43. From the derived three-dimensional wavefunction ψ(r) at positions r, 
we calculate the 1D in situ density profile as n(y) = ∫∣ψ(r)∣2dxdz. We evaluate the 
in situ density contrast as C = (nmax − nmin)/(nmax + nmin) for profiles that feature 
density modulations by searching the central extrema of n(y) and determining 
the maximum (nmax) and minimum (nmin) values. For profiles without density 
modulation (ordinary BEC), we set C = 0. We use the quantity L ¼ 1� C

I
 to 

estimate the density link between the droplets, which is related to the tunnelling 
strength13.

RTE. We perform the RTE based on the eGPE and mimicking the experimental 
parameters and sequence. In particular, in Fig. 4a, we use the parameters of the 
experimental data shown in Fig. 4b, using a gas of 164Dy atoms (N = 2 × 104) in a 
trap of frequencies ωx,y,z = 2π × (229, 37, 135) s−1. We start from the eGPE ground 
state ψ(r) at as = 92a0 and calculate the time evolution of the wavefunction 
ψ(r,t) according to the eGPE using a split-operator technique24. For the 
scramble-and-rephase protocol, the scattering length is linearly ramped from the 
SSP (as = 92a0) to the ID regime (as = 80a0) in 1 ms, kept constant for tS = 20 ms, 
ramped back to as = 92a0 in 1 ms and finally held constant for a variable th. We 
compute the 1D integrated density profile nðy; tÞ ¼

R
ψðr; tÞj j2dxdz;

I
, and its time 

evolution is shown in Fig. 4a. Similar to the work in refs. 12,25, we gain further 
insights into the rephasing process by extracting the global spatial variation α of 
the phase of the wavefunction along y defined as

αðtÞ ¼
R
Ynð0; y; 0; tÞjθð0; y; 0; tÞ � hθð0; y; 0; tÞijdyR

Ynð0; y; 0; tÞdy
; ð3Þ

where ψðr; tÞ ¼ jψðr; tÞj exp i θðr; tÞð Þ
I

 and r = (x, y, z). Here the average 
hf ðyÞi ¼

R
Y f ðyÞdy

I
 for any function f and Y* denotes the inner region  

Y* = [−5, 5] μm.
Extended Data Fig. 4a shows the evolution of α with th, namely, after ramping 

as back to the SSP. Here, α first quickly decreases, transiently reaching a value 
close to zero (green filled dot), before increasing again up to an intermediate 
value (blue filled dot) and finally smoothly decreasing towards zero, setting to a 
low saturation value (α* = 0.027 × 2π). After long times, only small variations of α 
persist (orange filled dot), indicating that an equilibrium distribution is reached. 
The density and phase profiles corresponding to the coloured filled dots are shown 
in the inset of Extended Data Fig. 4a. Although α first reaches a low value within 
a short time, we observe that the corresponding density profile is strongly out of 
equilibrium (green curve), differing from both the initial ground state (not shown) 
and the long-time equilibrium state (orange curve). The phase variations are only 
transiently suppressed here. In contrast, when α reaches the next local maximum, 
the density profile appears very close to the equilibrium expectation, yet with a 
remaining phase pattern of large amplitude (blue curves). This opposite behaviour 
of the phase and density in the early time is reminiscent of the quadrature 
oscillations of phase and density perturbations associated with a given elementary 
excitation in the linear regime31. The initial oscillatory behaviour of the RTE is 
also reminiscent of the behaviour of ΔΦ from repeated instances of experimental 
interference patterns observed in Fig. 4b. Here we subject α to a similar analysis as 
ΔΦ, performing an exponential fit and calculating the residuals (Extended Data 
Fig. 4b). The extracted decay time is 6.3(2) ms; from the residuals, we find the main 
frequency components in the interval of [50, 100] Hz. We note that this frequency 
is similar to the low-lying mode of the SSP excitation spectrum, as computed from 
Bogoliubov theory31. The observed frequency of oscillation and the time evolution 
of phase and density profiles in apparent quadrature suggest an important role of 
the low-lying collective mode of the SSP in the rephasing dynamics.

Experimental sequence. We apply our phase-scrambling protocol to the 
evaporatively cooled SSP of 164Dy atoms13. For this, we initially load our 
five-beam open-top magneto-optical trap for 3 s and apply a magneto-optical 
trap compression phase, which lasts for 400 ms (ref. 44). We then load about 
8 × 106 atoms into a single-beam horizontal ODT, propagating along the y axis. 
The horizontal ODT is derived from a 1,064 nm focused laser beam. After 
loading, we apply forced evaporative cooling by exponentially reducing the optical 
power in the horizontal ODT for 0.9 s. Subsequently, we switch on a second ODT 
beam along the vertical z axis to form a crossed ODT and continue with the last 
stage of evaporative cooling for 2 s (ref. 45) until the SSP is reached. During the 
evaporation sequence, a vertical magnetic field of B = 2.430(4) G sets the dipole 
orientation. The final trap geometry is axially elongated with harmonic frequencies 
ωx,y,z = 2π × (225, 37, 165) s−1. After the initial-state preparation (SSP), we apply our 
phase-scrambling protocol. For that, without any additional waiting time after the 
evaporative cooling, we change the B field to 1.65 G deep in the ID regime. Here 

we allow the system’s global phase to freely evolve for tS = 20 ms. We have explored 
two types of protocol: jumping, which results in an effective ~1 ms change in the B 
field due to the finite time response of the system, and ramping within 20 ms. We 
observe a similar scrambling behaviour in ΔΦ for both jump and ramp protocols. 
We complete our phase-scrambling sequence by jumping the B field back to its 
initial value and by letting the system evolve for a variable hold time th. Finally, we 
perform a matter–wave-interference-type experiment during TOF expansion and 
record the resulting interference pattern by absorption imaging. A TOF duration of 
26.5 ms ensures sufficient mapping onto the momentum space. The imaging beam 
propagates in the horizontal x–y plane at an angle of ~45° with respect to the weak 
trap axis y.

Tuning the scattering length. To connect the experimental B-field values to 
the contact scattering length as, we use the established formula for overlapping 
Feshbach resonances: as Bð Þ ¼ abg

Q
i 1� ΔBi= B� B0;i

� � 

I
 (ref. 46), where B0,i 

denotes the poles; ΔBi, the corresponding distance from the pole to the zero 
crossing; and abg, the (local) background scattering length. We determine the poles 
and zero crossings in our B-field region of interest by performing loss spectroscopy 
and thermalization measurements. Starting from a thermal cloud prepared at 
2.55 G, we first ramp the magnetic field to the final value within 5 ms and then 
lower the trap depth to its final value within 50 ms; we wait an additional hold time 
of about 400 ms. In the absence of Feshbach resonances, we typically end up with a 
thermal gas of 5 × 105 atoms at about 500 nK. When scanning the magnetic field in 
our region of interest, we observe several atom loss features together with peaks in 
the atom cloud temperature, which we fit by Gaussians to extract the positions of 
the poles B0,i and widths ΔBi.

The value of the background scattering length of 164Dy is a more subtle topic, 
as several measurements have reported different values in the range between 
60a0 and 100a0 (ref. 47). These measurements were performed using different 
methods (for example, cross-thermalization and theory–experiment comparisons 
of oscillation frequencies), for different initial states (thermal gases and quantum 
droplets) and at different magnetic fields. In particular, the existence of very broad 
resonances at higher magnetic fields48 affects the measured local background 
scattering lengths. Therefore, we set the value of abg in such a way that the B-to-as 
conversion reproduces the calculated critical scattering length of as = 91a0 at the 
experimentally estimated phase transition point between the BEC and SSP around 
2.5 G. This gives a value of abg = 73a0, which lies within the error bars of the latest 
published value of abg = 69(4)a0 (ref. 47). Extended Data Fig. 2 shows the resulting 
calculated B-to-as conversion from which we estimate as,SSP = 88a0 at 2.43 G in the 
SSP and as,ID = 76.9a0 at 1.65 G in the ID phase, as used in the experiment.

Interference pattern analysis. Our analysis is similar to the one described in 
ref. 13. We record q ∈ [30, 100] experimental repetitions for each parameter set 
P. Each recorded TOF picture i (i = 1,…,q) is processed by first subtracting the 
thermal background via a symmetric 2D Gaussian fit to the wings of the density 
distribution. Next we recentre the image of the degenerate cloud and integrate 
its central region, where the matter–wave interference signal is concentrated, 
along the z direction within ±2 μm−1. We obtain a momentum density profile 
that we normalize by its sum. From such a momentum profile, a fast Fourier 
transform yields the 1D density profile ni ~yð Þ

I
. An in situ density modulation in 

an atomic cloud leads to side peaks in ni ~yð Þ
I

, symmetrically centred around the 
peak at zero. To isolate the centre of this specific modulation, we calculate the 
incoherent and coherent means of ni ~yð Þ

I
, which are denoted as nM ~yð Þ ¼ hjni ~yð ÞjiP

I
 

and nΦ ~yð Þ ¼ jhni ~yð ÞiPj
I

, respectively. The incoherent mean (nM) reflects the 
mean modulation amplitude of the cloud at the respective wavelength ~y. The 
coherent mean (nΦ ≲ nM) if the phases of the interference pattern among the 
q repetitions at the respective ~y are roughly constant, and nΦ → 0 (and hence 
nΦ ≪ nM) if the phases are random. Therefore, the most pronounced difference 
nM − nΦ is observed for the ID regime (Extended Data Fig. 1a). From the maximum 
of this difference, the modulation wavelength (or ‘droplet distance’) can be 
determined as ~y � d

I
. The fast Fourier transform phasors at d can be expressed 

as Pi ¼ ni dð Þ ¼ ρie
�iΦi

I
, yielding the sets fP1; ¼ ; PqgP

I
. To characterize the 

distribution of phases Φi within our sets, we calculate the circular variance 
ΔΦ = 1� 1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq
i¼1 cos Φið Þ

� 2 þ Pq
i¼1 sin Φið Þ

� 2q

I

 (ref. 30). For a phase-coherent 
sample, and hence interference fringes stable within the envelope, ΔΦ is small, 
whereas for an incoherent sample, it approaches unity. To estimate the confidence 
intervals of ΔΦ, we apply a bias-corrected and accelerated (BCA) bootstrapping 
scheme39 for each P, resampling 106 times from the respective q experimental 
values. We note that possible non-ballistic (namely, interaction-driven) evolution 
during the early TOF might have a residual systematic effect on the measured 
values of nM, nΦ and ΔΦ.

Effect of finite sample size. Even the circular variance ΔΦ of a sample of q angles 
(Φ1,…,Φq) drawn from a completely random distribution approaches unity only 
when q → ∞. To estimate the fully incoherent limit of ΔΦ for our finite q, we 
calculate 106 values for ΔqΦ, each for q independent draws from a theoretical, 
uniform distribution in [0, 2π). The histograms of ΔqΦ are shown in Extended 
Data Fig. 1b. The indicated 1σ confidence intervals are [0.77, 0.93] for q = 35 draws 
and [0.86, 0.96] for q = 100 draws. We note that the histograms of ΔqΦ seem 
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to closely follow a beta distribution49, even if one generalizes the underlying 
distribution of phases Φi to a von Mises distribution, of which the uniform 
distribution is just a degenerate case.

Interference pattern quantities for a simple model of a droplet array. For 
simplicity, let us consider here that the state is made of ND identical droplets. In this 
case, the full wavefunction of the system would be

ψ x; y; zð Þ ¼
XND

j¼1
f x; y � Rj; z
� 

eiθj ; ð4Þ

where Rj is the spatial coordinate of the jth droplet, θj is its phase (taken to be 
uniform over the droplet) and f is the wavefunction of a single droplet localized 
around y = 0. With such a wavefunction, the phasor extracted from one realization 
would be

Pi ¼
Z

dky
XND

j1 ;j2¼1
eiky Rj1�Rj2�dð Þei θj1�θj2ð Þj~f ky

� 
j2; ð5Þ

where ~f  is the Fourier transform of the function f and d is the distance between the 
neighbouring droplets d = 〈Rj+1 − Rj〉. It simplifies to

Pi ¼
XND

j1 ;j2¼1
g Rj1 � Rj2 � d
� 

ei θj1�θj2ð Þ ð6Þ

 g 0ð Þ
XND�1

j¼1
ei θjþ1�θjð Þ; ð7Þ

where g yð Þ
I

 is the Fourier transform of j~f ky
� �

j2
I

, which is thus a peak function with 
a width of the order of the droplet size.

Equation (7) yields

AM ¼ hjPijiP ¼ ðND � 1Þgð0ÞlΔθ  ðND � 1Þgð0Þ; ð8Þ

which shows only a weak dependence on the phase relation between the droplets 
and on the droplets’ shape. We note that the residual information on the droplets’ 
phase relation is contained in AM via the length of the mean phase-difference 
vector lΔθ = hjhexpðiΔθjÞijjiP

I

. In the fully coherent (resp. incoherent) case, lΔθ = 1 
(resp. lΔθ = 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ND � 1

p
I

 on average). The change in lΔθ with the degree of coherence 
remains limited, especially for the relatively small ND relevant for our experimental 
situation (Fig. 1). Here h:iP

I
 denotes the average over an ensemble of realizations P 

and 〈.〉j denotes the average over the droplet array.
On the contrary, the function AΦ ¼ jhPiiPj

I
 contains the average of the phases 

with

AΦ

AM
’ jhhei θjþ1�θjð ÞijiPj: ð9Þ

Therefore, the ratio AΦ/AM essentially measures the mean difference in the phases 
between two neighbouring droplets in the array.

From equation (7), it is also evident that the phase of the phasor is 
Φ  hθjþ1 � θjij
I

. The circular variance ΔΦ for q realizations can be expressed as

ΔΦ ¼ 1� 1
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

i1¼1
eiΦi1

Xq

i2¼1
e�iΦi2

q
: ð10Þ

For a totally phase-coherent state, Φ = 0 for all the realizations leading to ΔΦ = 0, 
while for a totally phase-incoherent sample, only the diagonal terms in equation 
(10) survive, leading to ΔΦ = 1� 1ffiffi

q
p

I

 for q independent measurements.

Langevin formalism for the JJA model. To model the self-modulated dipolar 
gas, we use the JJA whose Hamiltonian H is given in equation (1). To describe 
the dynamics, we use a Langevin formalism (example in ref. 36), where the time 
dependence of the phases obeys

η
dθj
dt

¼ � dH
dθj

þ ξjðT; η; tÞ; ð11Þ

where the two sites are indexed using i and j and the thermal noise is denoted as 
ξi(t), which is uncorrelated from grain to grain and at different times shows the 
correlations

ξjðtÞξiðt0Þ ¼ 2ηkBTδij δðt � t0Þ; ð12Þ

where kB is the Boltzmann constant. This thermal noise ensures that in equilibrium, 
the configurations are realized with a probability proportional to the Boltzmann 
weight e�H=ðkBTÞ

I
.

To determine the parameters of the JJA model, we use the procedure described 
in the main text. With J fixed by the equilibrium value of ΔΦ, we determine η by 
comparing to the dephasing timescale.

Discussion on the quantum part of the Hamiltonian. The JJA model contains 
both quantum evolution and thermal noise. In our case, one can make the 

additional simplification to neglect the term related to the capacitance leading to 
quantum fluctuations compared with thermal fluctuations.

To justify this approximation, we estimated the interaction energy cost with a 
wavefunction given by a variational principle50. We obtain an energy to add one 
particle to the droplet of the order of a few hertz, which is very small compared 
with the temperature of 150 nK.

This allows to drop the second-order time derivative of the phase in the 
Langevin equations, leading to equation (2). For a system of four droplets, we 
have four equations for the phases. For the equations describing the evolution of 
the droplets at the edge of the array (namely, j = 1 or j = 4), we drop the terms of 
equation (2) containing the phases of non-existent neighbours (namely, θ0 or θ5).

Numerical solution of the equations. To solve our system of equations, we 
discretize the time dependence with a time step adapted to the considered value of 
J. For J/h up to 6,000 Hz, we used a time step of 10−5 s. For larger J, we used a time 
step of 5 × 10−6 s.

To relate the phases of the four individual droplets to the observables, equation 
(7) and the phasor definition, we use

Φ ¼ argð
X3

j¼1
eiðθjþ1�θjÞÞ: ð13Þ

To obtain a ΔΦ value that can be compared to the experimental one, we compute 
the evolution over q = 100 independent realizations, determine Φ for each 
realization and compute the evolution of ΔΦ from these 100 values.

For the scrambling, we initialize each of the 100 runs with random phases 
and let the system evolve for 80 ms with a finite J to reach the corresponding 
equilibrium state. We then ramp J down to 0.002 Hz in 20 ms and let the system 
evolve for 100 ms.

For the rephasing, we initialize 100 configurations with random phases, which 
corresponds to the equilibrium state for the system with a small J (0.002 Hz). We 
then let the system evolve with J = 6,000 Hz.

Modified JJA model with droplet dynamics. One can phenomenologically 
modify the JJA model to take the droplet dynamics into account. Each droplet is 
characterized by a position uj. The dynamics of the droplets could be modelled by a 
phonon-like Hamiltonian:

HD ¼
X

j

p2j
2M

þ 1
2
Mω2

0ðujþ1 � ujÞ2
" #

; ð14Þ

where M denotes the mass of the droplet, pj is the momentum conjugate to uj 
and ω0 is the characteristic energy depending on the interactions between the 
droplets. This motion would be coupled to the degrees of freedom of the phase in 
the Hamiltonian in equation (1) by introducing a uj dependence of the Josephson 
coupling: if two droplets get closer, J should increase. The precise form would 
need to be determined, but some exponential dependence seems plausible. If 
the displacements of the droplets are very small, one can expand the Josephson 
coupling as a function of the displacements of the droplets to obtain the Josephson 
coupling between the droplets j and j + 1 via

J jþ1;j ¼ J0 � Aðujþ1 � ujÞ; ð15Þ

where A is a positive quantity. Therefore, the two Hamiltonians in equations (14) 
and (1) with the coupling in equation (15) would, in principle, allow to incorporate 
the coupled dynamics of the degrees of freedom of the phase and the vibrations of 
the droplet ‘lattice’.

Time traces of ΔΦ and behaviour of AM and AΦ. We have studied the rephasing 
dynamics at different scattering lengths. Extended Data Fig. 5a shows the full time 
evolution of the experimentally measured ΔΦ as a function of the calculated L

I
. 

From this data, we also extract the initial rephasing rate ∣R∣ and the saturation 
value 〈ΔΦ〉sat, as shown in Fig. 5. For L

I
 within the ID regime, ΔΦ remains large 

(>0.5) for the entire th (blue region); therefore, we can conclude that rephasing 
is absent. As L

I
 increases, ΔΦ gradually approaches small final values (~0.15) at 

longer evolution times (red region), that is, the system rephases.
From the time traces, we also analyse the long-time behaviour of AΦ and AM as 

a function of L
I

. As demonstrated in previous works13,25, at equilibrium, AΦ and AM 
are powerful parameters to pinpoint the different quantum regimes in the phase 
diagram. In the SSP, AΦ/AM ≈ 1, whereas in the ID phase, this ratio tends to zero 
since AΦ vanishes. As shown in Extended Data Fig. 5b, the value of AM at a longer 
hold time (th = 100 ms) is substantial in the whole range investigated, indicating the 
persistence of density modulation in the system, and it varies only weakly with L

I
. 

Differently, AΦ has a clear dependence on the density link. Its value at th = 100 ms 
nearly vanishes for L

I
 < 0.001, evidencing a final phase-incoherent state (ID 

regime), whereas at large L
I

 > 0.01, AΦ and AM are nearly equal.
The exact dependence of AM on L

I
 is not completely obvious and deserves 

some explanation. From equation (7), we see that AM, which is expressed as 
AM ¼ hjPiji ¼ gð0ÞhjPND�1

j¼1 expðiΔθjÞji
I

, contains (1) information on the 
individual droplet density profile via g(0) and (2) residual information on 
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the coherence of the system via the averaged length of the vector of the phase 
difference hjPj expðiΔθjÞji

I
. In the fully coherent case, this length is identically 

equal to ND − 1, whereas in the fully incoherent case, it has an average of only ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ND � 1

p
I

. This change explains the abrupt jump in AM observed when the droplet 
array becomes partially incoherent. We note that the observed jump with a value 
divided by ~1.5 is compatible with the predicted number of droplets in our array, 
namely, ND = 4. We also note that the smooth increase in AM for decreasing as both 
in the incoherent (L

I
 < 0.01) and in the coherent (L

I
 > 0.01) regions are expected 

from the proportionality to g(0). Here g(0) indicates the individual droplet peak 
density and typically scales as the inverse of the droplet size. It is thus expected 
to increase for decreasing as. We highlight again, as stated in Methods, that the 
information on the phase coherence of the array contained in AM is much less 
dominant than that in AΦ, where the length of the phase-difference vector is 
measured after performing the ensemble average, jhPj expðiΔθjÞij

I
. Therefore, AΦ 

is expected to cancel in a fully incoherent case rather than simply being reduced by 
a factor of 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ND � 1

p
I

.

Atom number evolution. When connecting the rephasing behaviour shown in 
Fig. 4, where 〈ΔΦ〉sat depends on L

I
, to the phase diagram, the atom numbers 

of the thermal and coherent part may also show differences after the complete 
phase-scrambling sequence. To this end, we extract the total atom number, Ntotal, 
via a pixel count from each unprocessed TOF absorption image. We then subtract 
the thermal background via a 2D Gaussian fit (Methods) to obtain the atom 
number in the coherent part, Ncoherent. The width of the thermal background at the 
given TOF allows to determine the temperature T. Extended Data Fig. 3 shows 
Ntotal, T, Nthermal and Ncoherent as a function of the hold time th for three exemplary 
rephasing B fields, namely, 1.65 G (blue), 2 G (light blue) and 2.43 G (red). These 
correspond to L ’

I
 4 × 10–6, 4 × 10–4 and 1 × 10–1 and thus to the ID, intermediate 

and SSP regimes, respectively. Regardless of the chosen value of L
I

, the individual 
Ntotal, Nthermal and T essentially coincide and decrease continuously with increasing th 
in a similar manner. This behaviour suggests the remaining plain evaporation from 
the ODT during th.

From the description of an ideal BEC, we can simply approximate

Ncoherent ¼ N total 1� T
TC

 3
 !

; ð16Þ

where the phase transition’s critical temperature TC mainly depends on the trapping 
frequencies ωx,y,z and Ntotal. From our measured Ntotal and T, we would expect a 
decrease in Ncoherent for all the rephasing B fields. However, similar to AΦ, AM, 〈ΔΦ〉sat 
and ∣R∣ (Fig. 5d), we observe three distinct behaviours for Ncoherent depending on 
L
I

. For small L
I

 < 0.001 (ID regime) Ncoherent decreases with th, whereas for large 
L
I

 > 0.01 (SSP regime), Ncoherent increases, with relative changes of up to 30% at 
th = 100 ms compared with the respective initial values. In the intermediate-L

I
 

regime, Ncoherent remains almost constant. A possible explanation for the occurrence 
of these three behaviours might be the differences in their rate of three-body loss. 
Although in the investigated B-field regime, the three-body loss coefficient is 
almost constant, the increased peak density expected in the ID regime results in a 
higher three-body loss rate, which can surpass the plain evaporation rate and thus 
result in a decreasing Ncoherent. The lower peak density in the SSP, on the contrary, 
could result in a lower three-body loss rate and thus lead to an increasing Ncoherent 
via plain evaporation.

Data availability
Source data are available for this paper51. All other data that support the 
plots within this paper and other findings of this study are available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 1 | Wavelength of the modulation and finite-sampling effect. a, Difference between incoherent and coherent mean of the density 
profiles in the ID regime (1.65 G), peaking at the modulation wavelength d ≃ ± 2 μm (dashed lines). b, histograms of 106 realisations (each) for 
calculations of ΔqΦ from uniformly random phases Φi, for q = 35 (green) and q = 100 (yellow) draws, respectively. The dashed vertical lines reflect the 
confidence interval enclosing 68.3 % (‘one σ’) of the calculated values. The solid lines depict a Beta distribution with same mean and variance as the 
drawn distribution of ΔqΦ (no free fit parameters).
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Extended Data Fig. 2 | estimated scattering length. calculated B-to-as conversion for 164Dy. red and blue shaded areas indicate the SSP and the ID region, 
respectively. The grey area indicates the BEc region, while the yellow areas indicate regions around the two narrow Feshbach resonances located at  
2.174 G and 2.336 G where we observe increased atom loss. We estimate as,SSP = 88 a0 in the SSP at 2.43 G and as,ID = 76.9 a0 in the ID at 1.65 G.
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Extended Data Fig. 3 | Temporal evolution of the atom numbers and temperature in the ID regime and SSP. a, Total atom number Ntotal, b, temperature T 
and atom numbers of c, the thermal and d, the coherent part, Nthermal and Ncoherent, as a function of the hold time th. The data sets at 1.65 G (blue) and 2.43 G 
(red) correspond to the ID regime and the SSP, respectively, whereas the one at 2 G (light blue) corresponds to the intermediate regime.
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Extended Data Fig. 4 | The global phase variation α from the rTe simulation of a scramble-and-rephase protocol. a, Evolution of α over the hold time th. 
The solid orange line depicts an exponential fit to the data. In the inset, the integrated density n and the phase profile θ are exemplarily shown for t* = [3.5, 
9.5, 60.5] ms (note the corresponding color filling of the plot markers). b, residuals from the exponential fit to α.
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Extended Data Fig. 5 | Dependence of experimental rephasing dynamics on the density link strength L
I

. a, Temporal evolution of ΔΦ (color map) at 
different L

I
 starting from phases scrambled in the ID regime. For each th we record q≥35 individual experimental realizations. For large L

I
 the system 

recovers its global phase coherence (ΔΦ ≃ 0), whereas for small L
I

 it does not (ΔΦ ≃ 1). b, AM (circles) and AΦ (diamonds) for the same data set at 
long hold time, th = 100 ms. The error bars (partly covered by plot markers) are statistical standard errors of AM and AΦ. The red filled pair of symbols 
corresponds to the data set presented in Fig. 3.
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Observation of vortices and vortex stripes in 
a dipolar condensate

Lauritz Klaus    1,2,4, Thomas Bland    1,2,4, Elena Poli    2, Claudia Politi1,2, 
Giacomo Lamporesi    3, Eva Casotti    1,2, Russell N. Bisset    2, 
Manfred J. Mark    1,2 and Francesca Ferlaino    1,2 

Quantized vortices are a prototypical feature of superfluidity that have 
been observed in multiple quantum gas experiments. But the occurrence of 
vortices in dipolar quantum gases—a class of ultracold gases characterized 
by long-range anisotropic interactions—has not been reported yet. Here 
we exploit the anisotropic nature of the dipole–dipole interaction of 
a dysprosium Bose–Einstein condensate to induce angular symmetry 
breaking in an otherwise cylindrically symmetric pancake-shaped trap. 
Tilting the magnetic field towards the radial plane deforms the cloud into an 
ellipsoid, which is then set into rotation. At stirring frequencies approaching 
the radial trap frequency, we observe the generation of dynamically 
unstable surface excitations, which cause angular momentum to be pumped 
into the system through vortices. Under continuous rotation, the vortices 
arrange into a stripe configuration along the field, in close agreement with 
numerical simulations.

Since the first experiments on gaseous Bose–Einstein condensates 
(BECs), the observation of quantized vortices has been considered 
the most fundamental and defining signature of the superfluid nature 
of such systems. Their very existence sets a unifying concept encom-
passing a variety of quantum fluids from liquid helium1 to the core of 
neutron stars2 and from superconductors3 to quantum fluids of light4. 
Their classical counterparts have as well fascinated scientists from dif-
ferent epochs and fields as vortices are found in many scales of physical 
systems, from tornadoes in the atmosphere to ferrohydrodynamics.

In the quantum realm, a quantized vortex may emerge as a unique 
response of a superfluid to rotation. It can be understood as a type 
of topologically protected singularity with a 2π phase winding that 
preserves the single-valuedness of the superfluid wave function and 
the irrotational nature of its velocity field. In contact-interacting BECs, 
vortical singularities have been observed experimentally in the form of 
single vortices5,6, vortex–antivortex pairs7, solitonic vortices8,9, vortex 
rings10 and vortex lattices6,11 using a number of different techniques. 
Moreover, vortices play a fundamental role in the description of the 
Berezinskii–Kosterlitz–Thouless transition in two-dimensional (2D) 

systems12, as well as in the evolution of quantum turbulence13,14, and 
have been observed in interacting Fermi gases along the Bose-Einstein 
condensate to Bardeen-Cooper-Schrieffer crossover8,15.

Recently, a new class of ultracold quantum gases are being created 
in various laboratories around the world, using strongly magnetic 
lanthanide atoms16,17. Such a system, providing a quantum analogue 
of classical ferrofluids, enables access to the physics of dipolar BECs, 
in which atoms feature a strong long-range anisotropic dipole–dipole 
interaction (DDI)18,19 on top of the traditional contact-type isotropic 
one. This intriguing platform provided the key to observe, for exam-
ple, extended Bose–Hubbard dynamics20, roton excitations21–23, the 
quantum version of the Rosensweig instability24 and supersolid states 
of matter25–28, and is foreseen to host novel phenomena for quantum 
simulation and metrology18,19.

The dipolar interaction is predicted to also intimately change the 
properties of vortices in quantum gases29. For instance, theoretical 
works predict single vortices to exhibit an elliptic-shaped core for a 
quasi-2D setting with in-plane dipole orientation30–33 or the presence 
of density oscillations around the vortex core induced by the roton 
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smoking gun of superfluidity in supersolid states41–43. However, despite 
these intriguing predictions, vortices in dipolar quantum gases have 
not been observed until now.

This Article presents the experimental realization of quan-
tized vortices in a dipolar BEC of highly magnetic dysprosium (Dy) 
atoms. Following a method proposed in ref. 40, extended to arbitrary 
magnetic-field angles in ref. 44, we show that the many-body phenom-
enon of magnetostriction45, genuinely arising from the anisotropic 
DDI among atoms, provides a natural route to rotate the systems and 
nucleate vortices in a dipolar BEC. We carry out studies on the dynam-
ics of the vortex formation, which agree very well with our theoretical 
predictions. Finally, we observe one of the earliest predictions for 
vortices in dipolar BECs: the formation of vortex stripes in the system.

In non-dipolar gases, quantized vortices have been produced using 
several conceptually different techniques, for instance, by rotating 
non-symmetric optical6,11 or magnetic46 potentials, by rapidly shaking 
the gas14, by traversing it with obstacles with large enough velocity7,47, by 
rapidly cooling the gas across the BEC phase transition48,49 or by directly 
imprinting the vortex phase pattern50. Dipolar quantum gases, while 
able to form vortices with these same standard procedures29, also offer 
unique opportunities that have no counterpart in contact-interacting 
gases. Crucially, the DDI gives rise to the phenomenon of magnetostric-
tion in position space45. When dipolar BECs are polarized by an external 
magnetic field B—defining the dipole orientation—the DDI causes an 
elongation of the cloud along the polarization direction. This is a direct 
consequence of the system tendency to favour head-to-tail dipole 
configurations, which effectively reduces the interaction energy19.

Such a magnetostrictive effect provides a simple method to induce 
an elliptic effective potential and drive rotation with a single control 
parameter. This modification of the effective potential is shown in 
Fig. 1a for a BEC in an oblate trap with cylindrical symmetry about the 
z axis. While a non-dipolar BEC takes the same shape as the confining 
trap (Fig. 1a(i)), introducing dipolar interactions with polarization axis 
along z stretches the cloud along this axis yet maintains cylindrical 
symmetry (Fig. 1a(ii)). Tilting the magnetic field leads to a breaking 
of the cylindrical symmetry, resulting in an ellipsoidal deformation 
of the cloud shape, as seen from the density projection onto the x–y 
plane (Fig. 1a(iii)). Finally, under continuous rotation of the magnetic 
field, which we coin ‘magnetostirring’, the condensate is predicted to 
rotate (Fig. 1a(iv)). This unique approach to stir a dipolar condensate 
can eventually lead to the nucleation of vortices40,44, realizing genuinely 
interaction-driven vorticity through many-body phenomena.

We explore this protocol using a dipolar BEC of 162Dy atoms. We 
create the BEC similar to our previous work51 with the distinction that 
here the magnetic-field unit vector, B̂, is kept tilted at an angle of θ = 35° 
with respect to the z axis both during evaporative cooling and magne-
tostirring (Fig. 1a(iii) and Methods). After preparation, the sample 
contains about 2 × 104 condensed atoms confined within a cylindrically 
symmetric optical dipole trap (ODT) with typical radial and axial trap 
frequencies (ω⊥, ωz) = 2π × [50.8(2), 140(1)] Hz. Here, before stirring, 
the magnetostriction is expected from simulations to increase the 
cloud aspect ratio (AR) in the horizontal plane from 1 up to 1.03, whereas 
the trap anisotropy is negligible. We use a vertical (z) absorption imag-
ing to probe the radial (x,y) atomic distribution after a short 
time-of-flight (TOF) expansion of 3 ms. The atom number is instead 
measured using horizontal absorption imaging with a TOF of 26 ms.

Similarly to a rotation of a bucket containing superfluid helium or 
of a smoothly deformed ODT for non-dipolar BECs, magnetostirring 
is predicted to transfer angular momentum into a dipolar BEC40,44. In 
response to such an imposed rotation, the shape of an irrotational 
cloud is expected to elongate with an amplitude that increases with 
the rotation frequency Ω. This phenomenon is clearly visible in our 
experiments, as shown in Fig. 1b. Here we first revolve the tilted B̂ 
around the z axis with a linearly increasing rotation frequency 
(Ω̇ = 2𝜋𝜋 × 50Hz s−1) and observe that the dipolar BEC starts to rotate 

minimum in the dispersion relation30–34. For vortex pairs, the aniso-
tropic DDI is expected to alter the lifetime and dynamics33,35 and can 
even suppress vortex–antivortex annihilation33. These interaction 
properties are predicted to give rise to a vortex lattice structure that can 
follow a triangular pattern30,34, as is typical for non-dipolar BECs11, or a 
square lattice for attractive or zero contact interactions36–38 when the 
DDI is isotropic (dipoles aligned with the rotation axis). A very striking 
consequence of the dipoles tilted towards the plane is the formation of 
vortex stripes30,39,40. Moreover, vortices could provide an unambiguous 
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Fig. 1 | Magnetostirring of a Dy dipolar BEC and evolution of the cloud aspect 
ratio. a, 3D simulations and corresponding shadow on the x-y plane of a 
non-dipolar (i) and dipolar BEC with B ≠ 0 (ii–iv) in a cylindrically symmetric, 
oblate trap. The magnetic-field (green arrows) angle with respect to the z axis 
varies from θ = 0° (ii) to θ = 35° (iii) and rotating at θ = 35° around z (iv). b, Left 
panels show the experimental sequence for the stirring procedure. The grey areas 
indicate the stage during which the images in the right panels were taken. The 
right panels are representative axial absorption images showing the dipolar BEC 
while spinning up the magnetic field for tΩ̇ = [140,430,627,692]ms (top) and 
subsequent constant rotation at Ω = 2π × 36 Hz for tΩ = [0, 6, 11, 17] ms (bottom). 
The rotation of the magnetic field in the x-y plane is indicated by the white line.  
c, (left) Time evolution of the magnetic field rotation frequency. Ω is linearly 
increased to its final value at a speed of Ω̇ = 2𝜋𝜋 × 50Hz s−1. (right) Cloud AR for 
different final rotation frequencies. To mitigate influences of trap anisotropies on 
the AR, a full period at the final rotation frequency is probed. The error bars, 
representing the standard error on the mean after 100 trials per point, are smaller 
than the symbol size. The solid (dashed) black line shows the corresponding eGPE 
simulations with a 2 s (1 s) ramp and as = 110a0, (ω⊥, ωz) = 2π × [50, 130] Hz, and 
N = 15,000. Different colors of the experimental point in the right panel indicate 
the corresponding time during the ramp in the left panel.
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at the same angular speed as the field and deforms with increasing 
elongation (Fig. 1b, top). We then stop the adiabatic ramp at a given 
value of Ω and probe the system under continuous rotation. We now 
find that the cloud continues rotating in the radial plane with an almost 
constant shape (Fig. 1b, bottom). Note that B is held constant at 
5.333(5) G, where we estimate a contact scattering length of about 
as = 111a0, where a0 is the Bohr radius (Methods).

We further explore the response of our dipolar BEC to magneto-
stirring by repeating the measurements in Fig. 1b (top), but stopping 
the ramp at different final values of Ω. The maximum value used for Ω 
approaches ω⊥, corresponding to a ramp duration of 1 s. We quantify 
the cloud elongation in terms of the aspect ratio AR = σmax/σmin, where 
the cloud widths σmax and σmin are extracted by fitting a rotated 2D 
Gaussian function to the density profiles. Figure 1c summarizes our 
results. We observe that initially the AR slightly deviates from 1 due to 
magnetostriction. It then slowly grows with increasing Ω, until a rapid 
increase at around 0.6ω⊥ occurs, as this allows the angular momentum 
to increase, which decreases the energy in the rotating frame52. Sud-
denly, at a critical rotation frequency Ωc ≈ 0.74ω⊥, the AR abruptly col-
lapses back to AR ≈ 1, showing how the superfluid irrotational nature 
competes with the imposed rotation. This critical frequency is close to 
the value found in non-dipolar gases with a rotating elliptical harmonic 
trap, associated with a resonance at the quadrupole frequency53.

To substantiate our observation, we perform numerical simula-
tions of the zero-temperature extended Gross–Pitaevskii equation 
(eGPE)54 (Methods). Quantum and thermal fluctuations are added to 
the initial states, which are important to seed the dynamic instabilities 
once they emerge at large enough Ω; see later discussion. The lines in 
Fig. 1c show our results. The dashed line is obtained through the same 
procedure as the experiment, whereas for the solid line, we halve the 
ramp rate, spending more time at each frequency. Both ramp proce-
dures show quantitatively the same behaviour up to Ω = 0.8ω⊥ and are 
in excellent agreement with the experimental results. The stability of 
the 1 s ramp exceeds the experimentally observed critical frequency. 
We partly attribute this discrepancy to asymmetries of the rotation in 
the experiment that are not present in the simulations, which may lead 
to an effective speed-up of the dynamical instabilities. However, in all 
cases, the AR rapidly decreases to about 1.

The growing AR and subsequent collapse to 1 is a signature of the 
dynamical instability of surface modes, known for being an important 
mechanism for seeding vortices and allowing them to penetrate into 
the high-density regions of rotated BECs52,53,55, as also predicted for 
our dipolar system40. To search for quantum vortices in our system, we 
perform a new investigation where we directly set Ω close to Ωc, aiming 
to trigger the instability at an earlier time when more atoms are con-
densed. We then hold the magnetic-field rotation fixed at this constant 
frequency for a time tΩ. As shown in Fig. 2 (bottom), the cloud rapidly 
elongates, and the density starts to exhibit a spiral pattern, emanating 

from the tips of the ellipsoid. As early as tΩ = 314 ms, clear holes are 
observed in the density profile, forming in the density halo around the 
centre, the first clear indication of vortices in a dipolar gas. These vorti-
ces, initially nucleated at the edge of the sample, persist as we continue 
to stir and eventually migrate towards the central (high-density) region. 
Vortices are still visible in the experiment after 1 s of magnetostirring, 
although our atom number decreases throughout this procedure.  
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Our observations bear a remarkable resemblance to the simulations; 
Fig. 2 (top) shows the in situ column densities. Taking a fixed atom num-
ber of N = 8,000, but otherwise repeating the experimental sequence, 
we observe many similar features. In the first 100 ms, the system elon-
gates, consistent with Fig. 1, and a spiral density pattern appears before 
the instability, forming two arms that are filled with vortices close to the 
central density. Next, turbulent dynamics ensue as the density surface 
goes unstable and vortices emerge in the central high-density region. 
For this scattering length and atom number, the relaxation timescale 
to a stable vortex lattice is longer than the experimentally available 
(see Extended Data Fig. 3 for more images from this dataset). Note 
that at angles θ deeper into the plane, more atoms align head-to-tail 
in the loose radial confinement direction. Thus, when performing the 
rotation procedure, we find that the BEC is resilient to instability on 
the timescales of the experiment.

The observed evolution of the system under constant rotation 
shows some concurrence between the appearance of vortices in the 
absorption images and the formation of a round density pattern in the 
radial plane with AR ≈ 1 (Fig. 2). Note that the drop in AR observed in 
Fig. 1 is concurrent with the creation of vortices, but they reside in the 
low-density regions at this time, and we do not see them. To study this 
dynamical evolution in more detail, we adopt an analysis protocol for 
both the experiment and theory that allows us to quantitatively track 
the evolution of the average number of vortices, 𝒩𝒩v (Methods). The 
result is shown in Fig. 3a. In brief, for each single image (Fig. 3a, left), 
we create a blurred reference image by applying a 2D Gaussian filter56,57. 
We then calculate the difference between each single image (Fig. 3a, 
left) and the corresponding reference (Fig. 3a, middle) to obtain the 
residual image (Fig. 3a, right), from which we count 𝒩𝒩v by finding local 
minima below a certain threshold.

For the experimental density profiles, which are affected by both 
the limited resolution of the imaging system and the weak contrast in 

the low-density zones (halo) where the vortices initially nest, we expect 
𝒩𝒩v to be underestimated relative to the true value and the number 
expected by theory. However, to carry out a quantitative comparison 
with the simulations, we apply a blurring filter and add noise to the 
latter that mimics the actual resolution in the experiment 
(Methods).

Figure 3b shows both the evolution of 𝒩𝒩v and cloud AR as a function 
of rotation time, tΩ. Solid lines are the results from the eGPE simulations 
without any adjustable parameters. For tΩ < 200 ms, 𝒩𝒩v is below 1, where 
vortices, if present, are at the edge of the cloud. For longer times, 𝒩𝒩v 
increases and saturates to an average value of about three and a maxi-
mum of six vortices (see Fig. 3a for an example of five vortices). The 
observed saturation might be due to the decreased visibility and to the 
atom-loss-induced shrinking of the BEC size, which is not accounted 
for in the theory. We also compare the course of the average vortex 
number with the AR of the cloud. After initial large oscillations, due to 
the sudden jump in rotation frequency, the AR declines towards ~1  
(ref. 53). This happens as the vortex number simultaneously increases.

One fascinating prediction with vortices in a strongly dipolar gas 
under the influence of a rotating magnetic field relates to the struc-
ture of the resulting vortex lattice. Due to magnetostriction and the 
anisotropic vortex cores, the resulting vortex configuration is also 
anisotropic, producing a stripe phase in the strongly dipolar regime29,30, 
instead of the usual triangular lattice in non-dipolar BECs6. The ground 
state stripe lattice solution for our parameters is shown in Fig. 4a, 
with a cloud AR = 1.08. In the vortex stripe phase, vertical planes of 
high-density regions, parallel to the magnetic field, alternate with 
low-density ones, which host rows of vertical vortex filaments. Such 
a configuration promotes head-to-tail dipolar attraction within the 
high-density ridges, and this acts to lower the energy. It should be noted 
that these states are distinct from the oscillating vortex sheets states, 
which appear after squeezing a triangular vortex lattice58.
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To explore this prediction, we perform two new surveys. First, 
we slightly reduce the magnetic-field value, reducing the scattering 
length to as ≈ 109a0 and hence making the system relatively more 
dipolar. We magnetostir the BEC at a constant rotation frequency 
Ω = 0.75ω⊥ for 500 ms, but during TOF, we stop the magnetic-field 
rotation and keep it in place at θ = 35°. The stripe structure is revealed 
in Fig. 4b (left) for a single experimental run and is clearly visible in 
the residual image (Fig. 4b, middle) where the vortices align along 
three stripes. The spatial structure of the residual image can be 
assessed through the absolute value of 2D Fourier transform (FT). 
After taking the FT of each residual image, we then average the result 
(Fig. 4b, right), finding a clear peak at the wave number k of the 
inter-stripe spacing. This shows that the stripe spatial structure 
survives the averaging, implying that the majority of images show 
stripes with the same spacing, and they also have the same orienta-
tion as set by the magnetic field, as evidenced by the example images 
shown in the right of Fig. 4. Note that these observations do not 
rely on our ability to resolve individual vortices, as the stripes are 
an ensemble effect of many aligned vortices. In fact, by comparing 
with the numerical simulations of the dynamical procedure (Fig. 4c), 
we expect there are more vortices than detected here that fill in the 
stripes, forging out this structure. In general, our simulations show 
that the stripes appear faster when the scattering length is lower and 
when the atom number is larger. In the long time limit of the scenario 
presented in Fig. 2, we expect the stationary solution to also be the 
stripe state, but this is not observable on our timescales.

Remarkably, the stripe structure washes out when we subse-
quently tilt the magnetic-field orientation to θ = 0° (parallel to the 
trap symmetry axis), as shown in Fig. 4d (left). Here, after 600 ms of 
magnetostirring, we add another step in which we spiral up the mag-
netic field to θ = 0° (with Ω fixed) over 100 ms, before imaging. Under 
these conditions, all vortex properties are again isotropic within the 
plane. The non-equilibrium positioning of the vortices is arbitrary, 
and if we average the FT of the residuals directly, we observe a homo-
geneous ring in the average FT (Fig. 4d, right). Also, this behaviour is 
confirmed by the simulations, as shown in Fig. 4e. The vortices survive 
long after the magnetostirring has stopped (not shown), due to their 
topological protection.

By exploiting magnetostirring—a novel, robust method of gen-
erating angular momentum—we have observed quantized vortices 
in a dipolar quantum gas and the appearance of the vortex stripe 
configuration. Future works will focus on investigations of the indi-
vidual vortex shape and behaviour, such as the anisotropic nature 
of the vortex cores for in-plane magnetic fields30–33, the interplay 
between the vortex and roton excitations30–34 and exotic vortex pat-
terns such as square lattices29, and investigations into anisotropic tur-
bulence59. This work also opens the door to studying more complex 
matter under rotation, such as dipolar droplets60–62 and supersolid 
states41–43,51. Such proposals will be challenging due to the intricate 
density patterns63; however, such observations would provide con-
clusive evidence of superfluidity in supersolids. Rotating the mag-
netic field at frequencies far larger than the radial trap frequencies, 
but smaller than the Larmor frequency, has been observed to tune 
the sign and magnitude of the dipole–dipole interaction64—a method 
also employed in nuclear magnetic resonance spectroscopy— 
but there remain open questions on the stability of this proce-
dure65,66, which if rectifiable would unlock new research directions64. 
Other vortex generation methods, such as thermally activated 
pairs in quasi-two dimensions to assess the Berezinskii–Kosterlitz– 
Thouless transition and stochastically generated vortex tangles 
through temperature quenches to assess the Kibble–Zurek mecha-
nism, remain unexplored in dipolar gases29. The technique intro-
duced here is also applicable to a wide range of systems governed 
by long-range interactions through the manipulation of magnetic 
or electric fields.
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Methods
Experimental procedure
We prepare an ultracold gas of 162Dy atoms in an ODT. Three 1,064 nm 
laser beams, overlapping at their foci, form the ODT. The experimental 
procedure to BEC is similar to the one followed in our previous work51, 
but the magnetic-field unit vector, B̂, is tilted by an angle of θ = 35° with 
respect to the z-axis during the whole sequence. After preparation, the 
sample contains about 2 × 104 condensed atoms. The corresponding 
trap frequencies are typically (ω⊥, ωz) = 2π × [50.8(2), 140(1)] Hz. For 
all our measurements, the deviation of the trap AR in the x–y plane 
ARtrap = ωy/ωx from 1 is always smaller than 0.6%. We evaporate the atoms 
at B = 5.423(5) G and jump to the final magnetic-field value during the 
last evaporation ramp. After the preparation of the BEC, the magnetic 
field is rotated as described in the next section. We use standard absorp-
tion imaging to record the atomic distribution. We probe the vortices 
using the vertical imaging taken along the axis of rotation (z), for which 
the dark spots within the condensate correspond to the cores of indi-
vidual vortices. The vertical images are taken with a short TOF of 3 ms 
and a pulse duration of 3–4 μs. For the data in Figs. 1–3, we let the 
magnetic-field spinning during TOF, whereas for Fig. 4, we use a static 
field orientation.

Control of the magnetic field
Calibration. Three pairs of coils—each oriented along a primary axis in 
the laboratory frame—enable the creation of a homogeneous field with 
arbitrary orientations. The absolute magnetic-field value B of each pair 
of coils is independently calibrated using radio frequency (RF) spec-
troscopy. The RF drives transitions to excited Zeeman states, leading to 
a resonant dip in the atom number. The long-term stability—measured 
via the peak position of the RF resonance over the course of several 
days—is on the order of ΔB = ±1 mG, while shot-to-shot fluctuations, 
measured via the width of the RF resonance for a single calibration 
set, is ΔB = ±5 mG.

Rotation. We drive the rotation of the magnetic field by sinusoidally 
modulating the magnetic-field value components Bx and By with a 
phase difference of 90° between them. As we want to keep the absolute 
magnetic-field value B constant during rotation, we measure it for 
various values of the azimuthal angle ϕ and fixed θ = 35° by perform-
ing Feshbach loss spectroscopy around 5.1 G. We find an average shift 
of B of about 10 mG from the θ = 0° case, which we take into account. 
We also find small deviations as a function of ϕ of ΔB < 20 mG, which 
might appear due to slightly non-orthogonal alignment of the magnetic 
fields. We did not correct these deviations for the sake of simplicity.

Scattering length
The scattering length in 162Dy is currently not known with large accu-
racy67–70. To estimate the scattering length in the small magnetic-field 
range around B = 5.3 G, relevant to this work, we use the well-known 
relation as = abg∏i[1 − ΔBi/(B − B0,i)] (ref. 71), where B0,i and ΔBi are the 
centre position and the width of the i-th feature of the Feshbach loss 
measurement reported in ref. 70, respectively. The value of the back-
ground scattering length, abg, is empirically fixed by measuring the 
magnetic-field value at which the supersolid transition occurs and com-
paring it with the corresponding critical as predicted from simulations. 
Such an approach leads to as = 111(9)a0 at B = 5.333 G. Extended Data 
Fig. 1 shows the resulting scattering lengths for the relevant magnetic 
fields. Although such an approach gives very good agreement between 
theory and experiments, future works on a precise determination of as, 
similar to the one achieved with erbium72, would be desirable.

Magnetostirring
Tilting the magnetic-field vector B away from the symmetry axis of 
our cylindrical trap leads to an ellipsoidal deformation of the cloud45 
and therefore to a breaking of the cylindrical symmetry. This allows 

for the transfer of angular momentum to the sample by rotating the 
magnetic field (magnetostirring). In all our measurements, we use a 
B tilted with respect to the z axis by 35° and a constant value B. That 
value is B = 5.333(5) G for the surveys in Figs. 1–3 and B = 5.323(5 )G for 
Fig. 4. For these parameters, the deformed magnetostricted AR of the 
cloud is AR − 1 = 0.03. For all our measurements, the measured trap 
ARtrap − 1 < 0.006 is much smaller than the deformation due to magne-
tostriction. Additionally, we have confirmed with simulations that even 
with trap asymmetries of up to 10%, for example, (ωx, ωy) = (55, 50) Hz, 
this procedure can still generate vortices in a lattice configuration.

At the scattering lengths considered in this work, 35° is an optimal 
choice to see the vortices within ~500 ms of rotation and anisotropic 
enough to observe the stripe phase. From the simulations, we find that 
tilt angles smaller than 35° increase the timescale to vortex nucleation. 
Similarly, tilting the angle further into the plane increases the number 
of atoms that are aligned head to tail, making the dipolar interaction 
dominantly attractive. This attractive force holds the condensate 
together during the rotation, also increasing the time to vortex nuclea-
tion. From the experimental side, increasing the tilt angle reduces the 
contrast of the absorption imaging, since the magnetic field is not 
parallel to the imaging axis. As the TOF is only 3 ms, we do not rotate 
up the magnetic field before imaging to avoid undesired effects, such 
as losing the anisotropy given by θ ≠ 0°.

Adiabatic frequency ramp. We employ different magnetic-field rota-
tion sequences for the different datasets. For the dataset of Fig. 1c, the 
rotation frequency of the magnetic field is linearly increased to differ-
ent final values at a speed of Ω̇ = 2𝜋𝜋 × 50Hz s−1  and for a duration of 
tΩ̇ = 0−1 s. The ramp time is much longer than the period of the rotation 
Ω−1 for higher rotation frequencies Ω ≳ Ωc, and, therefore, the ramp is 
adiabatic for the regimes considered, until the onset of dynamical 
instabilities. After the ramp, the magnetic-field direction is rotated at 
the target rotation frequency Ω for one final period (as shown in  
Fig. 1b). We sample ten different final magnetic-field angles during this 
last rotation, measuring the corresponding AR and averaging the result 
to remove any potential biases due to latent trap anisotropies. Each 
data point is then obtained with eight to ten experimental runs.

Constant rotation frequency. For the dataset of Figs. 2, 3 and 4b, we 
directly start to rotate at the final rotation frequency Ω without any 
acceleration phase. The magnetic field is then rotated for a variable 
time tΩ, after which the atoms are released from the trap and a vertical 
image is taken.

Spiral up magnetic field. For the dataset of Fig. 4d, we employ a similar 
sequence as described above. However, after constantly rotating the 
magnetic field at Ω = 0.75ω⊥, the magnetic field is spiralled up in 100 ms 
to θ = 0° by linearly reducing θ while continuing rotating. Afterwards, 
the atoms are released from the trap and a vertical image is taken.

Theoretical model
We employ an eGP formalism to model our experimental set-up. In this 
scheme, the inter-particle interactions are described by the two-body 
pseudo-potential

U(r) = 4 ℏ2as
m δ(r) + 3ℏ2add

m
1 − 3(ê(t) ⋅ r)2

r3
, (1)

with δ(r) being the Kronecker delta function and r = (x, y, z). The first 
term describes the short-range interactions governed by the s-wave 
scattering length as, with Planck’s constant ℏ and particle mass m. 
The second term represents the anisotropic and long-range dipole–
dipole interactions, characterized by dipole length add = μ0μ2

mm/12 ℏ2, 
with magnetic moment μm and vacuum permeability μ0. We always 
consider 162Dy, such that add = 129.2a0, where a0 is the Bohr radius. 
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The dipoles are polarized uniformly along a time-dependent axis, 
given by

ê(t) = (sinθ(t) cosϕ(t), sinθ(t) sinϕ(t), cosθ(t)) (2)

with time-dependent polarization angle θ(t) and ϕ(t) = ∫t
0 dt′Ω(t′), for 

rotation frequency protocol Ω(t).
Beyond-mean-field effects are treated through the inclusion of a 

Lee–Huang–Yang correction term73

γQF =
128ℏ2
3m √ a5

s Re {𝒬𝒬5(ϵdd)} , (3)

with 𝒬𝒬5(ϵdd) = ∫1
0 du (1 − ϵdd + 3u2ϵdd)

5/2
 being the auxiliary function, and 

the relative dipole strength is given by ϵdd = add/as. Finally, the full eGPE 
then reads54,74–76

iℏ ∂Ψ(x,t)
∂t

= [−ℏ2∇2

2m
+ 1

2
m (ω2

xx2 + ω2
yy2 + ω2

z z2)

+ ∫d3x′ U(x − x′)|Ψ (x′, t)|2 + γQF|Ψ (x, t)|3]Ψ (x, t),
(4)

where ωx,y,z are the harmonic trap frequencies. The wave function Ψ is 
normalized to the total atom number N = ∫d3x∣Ψ∣2. The stationary solu-
tion for Fig. 4a is found through the imaginary time procedure in the 
rotating frame, introducing the usual angular momentum operator 
Ω ̂Lz into equation (4). The initial state Ψ(x, 0) of the real-time simula-
tions is always obtained by adding non-interacting noise to the ground 
state Ψ0(x). Given the single-particle eigenstates ϕn and the complex 
Gaussian random variables αn sampled with ⟨|αn|2⟩ = (en/kBT − 1)−1 + 1

2
  

for a temperature T = 20 nK and Boltzmann’s constant kB, the initial 
state can be described as Ψ (x,0) = Ψ0 (x) + ∑

n

′αnϕn (x), where the sum is 

restricted only to the modes with ϵn ≤ 2kBT (ref. 77). Throughout, the 
density images are presented in situ, with a scaling factor to account 
for the 3 ms TOF for the experimental images.

To obtain the average residual FT images for Fig. 4c,e, we first 
Fourier transform 115 frames from the simulation between 700 ms and 
1.1 s in the rotating frame before averaging the result.

Atom number
Extended Data Fig. 2 shows the condensed atom number Nc for the 
measurement with an adiabatic ramp of the magnetic-field rotational 
velocity (Ω̇ = 2𝜋𝜋 × 50Hz s−1 ), corresponding to the data of Fig. 1c. 
Three-body losses are negligible in the low-density BEC phase, with 
losses probably coming from imperfections in the rotation procedure 
and heating. To extract the atom number, we use the horizontal imaging 
with 26 ms of TOF. About 3 ms before flashing the imaging resonant 
light to the atoms, we rotate the magnetic field in the imaging plane 
and perform standard absorption imaging. From the absorption 
images, we extract Nc from a bimodal fit up to 700 ms. At later times, 
the system undergoes a dynamic instability (see discussion in the main 
text), and the density profile deviates from a simple bimodal distribu-
tion. During the observation time, we see a slight decrease of Nc, and 
for our theory simulations, we use a constant atom number of 
Nc = 15,000. Note that in all following datasets, in which we abruptly 
accelerate the magnetic-field rotation to the desired final velocity, we 
observe a faster decay, and our simulations are performed with either 
Nc = 8,000 or Nc = 10,000.

Vortex detection
Vortex detection algorithm. Since vortices appear as dark holes in the 
density profile of a BEC, which would otherwise have a smooth profile, 
our approach to extract the number of vortices is to look at deviations 
between the image and an unmodulated reference image. To extract 
the vortex number from the raw images, we proceed as follows.

First, we prepare the image nimg, the reference image nref and the 
residual image nres. The image is normalized such that the maximum 
density max(nimg) = 1. We create the reference image by blurring the 
image via applying a 2D Gaussian filter with σ = 5 pixel, corresponding 
to about 2.1 μm. This blurring smoothens any structure on the length-
scale of the filter width; therefore, any holes in the density profile 
wash out. We then normalize the atom number of the reference to be 
the same as from the image Nref = ∫∫nref ≐ Nimg = ∫∫nimg. The residual 
image is calculated as the difference between the image and the refer-
ence nres = nimg − nref . We additionally mask the region where the 
density of the reference is below a certain threshold (nres = 0, where 
nref ≤ 0.1).

Second, we identify local minima in the residual image  
and determine whether they are connected to vortices. For this, we 
create a list of local minima (xmin, ymin), defined by the condition that 
the pixel density nres(xmin, ymin) is lower than of all surrounding pixels. 
Then we remove minima with density values above zero 
nres(xmin, ymin) ≥ 0 or which are within one pixel distance of the mask 
border. Now we determine a local contrast for each minimum by cal-
culating the difference between its central density value and the  
mean of the density values ± 2 pixel values away from it 
ncon(xmin, ymin) = nres(xmin, ymin) −mean(nres(xmin ± 2px, ymin ± 2px)) , and 
remove minima above a certain threshold ncon > −0.11. As a last step, we 
check the distance d between all remaining minima to avoid double 
counting of minima too close to each other. In case d is below the 
threshold d < 5 pixel, the minimum with the higher residual density 
value nres is discarded.

Preparation of theory density profiles. For the direct comparison of 
the vortex number shown in Fig. 3b, we apply additional steps to the 
density profiles obtained from theory. First, we reduce the resolution 
by a 2 × 2 binning to make the pixel size of the theory density profiles 
ntheo
img  essentially the same as for the experimental images (sizes are 

within 5%). After normalizing to max(ntheo
img ) = 1, we apply Gaussian white 

noise with zero mean and a variance of 0.01 to each pixel, recreating 
the noise pattern from empty regions of experimental images. Then 
we blur the image using a 2D Gaussian filter with σ = 1 pixel (~0.42 μm); 
this recreates the same resolution condition as our experimental 
set-up. The resulting density profile is taken as the input image for the 
vortex detection algorithm described above.

Benchmarking the vortex detection algorithm. As the vortex posi-
tions for the simulation images are known a priori due to the avail-
able phase map, we can derive the fidelity of the vortex detection 
algorithm for simulation data. For the theory data shown in Fig. 3b in 
the time frame between 600 and 700 ms, the average detected vortex 
number in the simulated density profiles (applying the preparation 
scheme described above) is about 9, while the real number of vortices 
present in the same area of the image is about 33 in average. This mis-
match is explained by the conservative choice of the thresholds for 
vortex detection together with the added noise, which results in only 
counting clear density dips as vortices, throwing out many vortices 
in the low-density region. This conservative choice of thresholds on 
the other hand leads to a very high fidelity of >97%, where we define 
the fidelity as the percentage of detected vortices that correspond to 
actual present vortices in the data. For raw simulation data (without 
resolution reduction, added noise and blurring), the vortex detec-
tion algorithm would detect up to 80% of the vortices present with 
a fidelity of >95%.

Note that for the visualization of the vortex positions for Fig. 4, 
we slightly increased the local threshold ncon > −0.08 and decreased 
the minimum distance between vortices d < 3 pixel, which increases 
the overall number of vortices detected. For the density distributions 
obtained from theory, we additionally omit the resolution reduction, 
addition of noise and blurring steps.
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Extended Data Fig. 1 | Calculated B-to-as conversion for 162Dy. Scattering length as a function of the magnetic-field value with the background scattering length 
abg = 129(9) a0. We find as = 111(9) a0 at B = 5.333 G.
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Extended Data Fig. 2 | Condensed atom number Nc during magnetostirring (Fig. 1c). Condensed atom number as a function of spin-up time tΩ̇ for the same 
sequence as in Fig. 1c. The condensed atom number is extracted by fitting a two-dimensional bimodal distribution of Thomas-Fermi and Gaussian function to the 
horizontal density distributions.
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Extended Data Fig. 3 | Repeatability of the vortex generation protocol. Each 
row shows the simulated image (a, b, c) and the corresponding vertical TOF 
images from independent experimental runs (ai, bi, ci) for a different rotation 
time: ta = 127 ms, tb = 207 ms, and tc = 741 ms. The rotation frequency is Ω = 0.74ω⊥ 

with the trap frequencies being ωt = 2π × [50.7(1), 50.8(1), 129(1)] Hz. The 
magnetic field value is B = 5.333(5)G. For the simulation the scattering length 
used is 112 a0, the trap frequencies are (50, 50, 150) Hz, the condensed atom 
number is N = 8000 and the rotation frequency is 0.75ω⊥.
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