Bloch oscillations and matter-wave localization in erbium!

We study Er atoms in a one-dimensional lattice. We use Bloch oscillations to evaluate the role played by the different interaction terms, and in particular by the quantum fluctuations. We additionally observe a transition–driven by interactions–to a state localized to a single lattice plane. To benchmark our results, we developed a discrete one-dimensional extended Gross-Pitaevskii theory. This model is in quantitative agreement with the experiment, additionally revealing, in our parameter regime, the existence of many different phases: macrodroplets occupying single or many lattice sites and two-dimensional bright solitons.

See the open access paper here: Commun. Phys. 5, 227 (2022)