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Abstract

In this thesis, we study the generation of two-dimensional optical tweezer
arrays via the phase modulation of a light field by means of a liquid crystal
spatial light modulator (LC SLM). The final goal of our main experiment is
to explore quantum simulation using Rydberg atoms of erbium trapped in
optical tweezer arrays generated by an LC SLM.

In the first part of the thesis, we explain the main properties of Rydberg
atoms and their interactions, followed by a review of erbium in Rydberg
physics. Subsequently, we discuss the theoretical basics of optical tweezer
arrays and how they can be realized experimentally via different optical de-
vices, e.g. an LC SLM. A significant portion of the first part of the thesis is
also dedicated to describing how to operate the LC SLM and how to calcu-
late its corresponding phase patterns via so-called phase retrieval algorithms.

In the second part, we present the optical setup used in our experiment.
We first perform aberration correction measurements with the use of Zernike
polynomials. We can report a significant improvement of the focal spot qual-
ity after the aberration correction procedure. Then, we generate different ge-
ometries of optical tweezer arrays, first via the Gerchberg-Saxton algorithm.
This algorithm yields a non-uniform reconstruction of trap intensities, such
that an adaptation in terms of the weighted Gerchberg-Saxton algorithm has
to be implemented instead. We find that the uniformity of the trap intensity
increases considerably, reaching values of up to ∼ 98%, dependent on the
trap geometry. We present the largest optical tweezer array we have been
able to generate successfully so far, which is a rectangular lattice of 10× 10
optical tweezers. Lastly, we briefly discuss the emergence of ghost spots in
the reconstructed image and the dependence of the spot quality on the spot
separation.
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Introduction

Motivation

In 1924, Satyendranath Bose gave foundation to Planck’s law, which was
derived a few years earlier in 1900. He elegantly developed its first complete
theoretical derivation using a statistical approach entirely based on the idea
that light is made up of photons (which are bosons) [1]. Albert Einstein later
picked up this approach and applied it to a mono-atomic ideal quantum gas.
In other words, Einstein was able to generalize the Bose statistic to (mas-
sive) bosons, leading to the introduction of the Bose-Einstein statistic [2].
Following Bose’s work, Einstein predicted that, at extremely low tempera-
tures, a gas of bosons undergoes an unprecedented phase transition into a
novel matter state, now called Bose-Einstein condensate (BEC).

For decades, Einstein’s prediction remained a mere theoretical concept. Its
experimental realization was mainly limited by the requirement of unimag-
inably low temperatures on the order of a few billionths of a degree above
absolute zero. Thus, it was not until 70 years later that the first experimental
observation of Einstein’s theoretical prediction took place. This remarkable
achievement was made possible by the invention of the laser in the 1960s and
the subsequent development of novel laser cooling and trapping techniques
in the 1980s [3]. In 1995, research groups were able to successfully realize
Bose-Einstein condensates of different atomic species, including Na [4], Rb
[5] and Li [6]. To honor this exceptional accomplishment, Eric A. Cornell,
Carl E. Wieman and Wolfgang Ketterle were awarded with the Nobel prize
in 2001 [7].

The technological approach used for the creation of BECs was then also
applied to fermions, yielding a fundamentally different statistical behaviour.
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Unlike bosons, identical fermions are not permitted to occupy the same state
when cooled to certain temperatures. Instead, they begin to occupy one by
one all the energy levels in the system, starting from the lowest one up to a
certain Fermi energy. The cloud of ultracold fermions is then referred to as
degenerate Fermi gas (DFG) and was first achieved in 1999 [8].

Within the past two decades, these ultracold atomic gases have revealed
themselves to be promising platforms for quantum simulation as their high
controllability allows for the simulation of exciting quantum phenomena,
which are too complex to simulate using a standard computer [9]. In general,
the construction of a useful, general-purpose quantum computer is found to
be an exceptionally challenging task, whereas building a quantum simulator
is a seemingly more realistic goal. Quantum simulators are well-controlled
artificial quantum systems that are used to model a quantum system of
interest by displaying the same characteristics. In particular, the combina-
tion of ultracold atomic gases either with optical lattices [10] or with moving
optical tweezer arrays [11] has been found to offer vast opportunities for ex-
ploring quantum simulation.

An optical lattice is an artificial periodic potential generated by standing
waves of light, which, in turn, are created by the interference of two or more
counter-propagating laser beams. Thus, an optical lattice exhibits a high
degree of flexibility as its configuration can easily be altered by tuning the
frequency and/or the intensity of its counter-propagating laser beams. As a
result, optical lattice systems are not only capable of storing fermionic and
bosonic atoms, but also provide the powerful feature of tailoring the Hamil-
tonian by harnessing the tunability of the tunneling and interaction energy
[10]. A first pioneering experiment reported the observation of the transition
from the superfluid phase to the Mott insulator phase using bosonic atoms
in a three-dimensional optical lattice [12].

Besides optical lattices, moving optical tweezer arrays have emerged as an-
other platform for cold atom quantum simulation and are also the platform
of choice in our experiment. In optical tweezer arrays, individual neutral
atoms are trapped in highly focused laser beams and their locations can be
controlled independently. Additionally, the optical tweezer platform is highly
scalable and offers great controllability of the interaction between atoms via
excitation to the Rydberg state. In this regard, a well-controlled quantum
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system of Rydberg atoms can be harnessed to achieve analog quantum simu-
lation by mimicking the respective Hamiltonian of choice [13]. In particular,
both the strong dipole-dipole and the van der Waals interaction between Ry-
dberg atoms, typically exceeding the MHz scale, are highly regarded and pave
unique and novel paths in quantum simulation. To give a few examples, in
an experiment studying quantum magnetism, it was possible to probe many-
body dynamics using a one-dimensional 51-atom quantum simulator [14].
More recently, Ising-type models were implemented and the corresponding
physical platform was scaled up to a regime of hundreds of Rydberg atoms,
which becomes infeasible to simulate on a classical computer [15, 16]. In
general, there exists a multitude of possible applications of Rydberg atoms
in quantum science and a thorough overview thereof is provided in Ref. [17].

Both physical platforms rely on techniques to precisely control the inten-
sity distribution of the light field experienced by the atoms. The use of light
to control the external degrees of freedom of a particle was first proposed in
the pioneering work of the American physicist Arthur Ashkin in the 1960s
and 1970s [18]. He demonstrated that one could trap and manipulate dielec-
tric particles using a focused laser beam, which established the foundation
for future optical tweezers. However, it was not until a few years later in
1986, when Ashkin, along with his colleague Steven Chu and others, success-
fully developed the first optical tweezer capable of trapping single particles
[19]. They used a high numerical aperture (NA) objective lens to very tightly
focus the laser beam, consequently generating an intense light spot. Counter-
intuitively, particles were drawn towards the focus of the beam rather than
being pushed away, and they would even follow the laser beam as they were
trapped in the focal spot at all times. A recent overview of optical tweezers
and their applications is presented in Ref. [11].

There are many different devices for the generation of optical tweezer ar-
rays, including acousto-optic deflectors (AODs), digital micromirror devices
(DMDs) and liquid crystal spatial light modulators (LC SLMs). In our exper-
iment, we have decided to use an LC SLM, which is a computer-controlled
optical device capable of generating arbitrary intensity patterns. The aim
of my master thesis now is to work towards the creation of two-dimensional
optical tweezer arrays using an LC SLM. In particular, the long-term goal of
the entire experiment is to achieve quantum simulation with erbium Rydberg
atoms in an optical tweezer array.
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Thesis overview

Chapter 1 first reviews Rydberg atoms, as we ultimately want to trap these
in our two-dimensional optical tweezer array. We first discuss their general
properties, followed by a section devoted to the interactions between Rydberg
atoms. Additionally, we explain the Rydberg blockade and its importance re-
garding quantum simulation. Lastly, we focus on erbium in Rydberg physics,
where we review its most relevant properties.

Chapter 2 introduces the basic concepts of atom-light interaction. We
describe fundamental notions necessary to understand optical tweezer ex-
periments and give an overview of different devices to create optical tweezer
arrays. The main devices we discuss and compare are acousto-optic deflec-
tors, digital micromirror devices and liquid crystal spatial light modulators.

Chapter 3 focuses on the basics for operating LC SLMs. We discuss how to
drive an LC SLM and review different phase retrieval algorithms as means
of retrieving phase patterns for the generation of optical tweezer arrays via
LC SLMs.

Chapter 4 is devoted to the experimental realization, where we first present
our optical setup, followed by a section focusing on the calibration of LC
SLMs. We discuss aberration correction via LC SLMs and present our first
results of rectangular optical tweezer arrays.

Chapter 5 gives an overview of our experimental results, where we discuss
the performance of the phase-retrieval algorithms. We additionally present a
gallery of different optical tweezer configurations and review the reconstruc-
tion quality and scalability of these algorithms.

Chapter 6 concludes the thesis with an outlook on how the LC SLM setup
could be implemented in the main experiment. Finally, we give a brief sum-
mary of the thesis.



Chapter 1

Rydberg atoms

In this chapter, we want to give a general overview of Rydberg atoms, in-
cluding their properties and interactions. Nowadays, Rydberg atoms find
wide application in many research areas, as they exhibit exaggerated state-
dependent properties [17]. In particular, one can benefit from these properties
when controlling ordered assemblies of Rydberg atoms at a single-particle
level. This is achieved via arrays of optical tweezers (see Chap. 2). Com-
bined with strong Rydberg interactions, this approach provides a promising
and attractive platform for quantum simulation [13]. In Sec. 1.1, we discuss
the general properties of Rydberg atoms. Section 1.2 instead reviews the
different interactions between Rydberg atoms, while Sec. 1.3 focuses on the
Rydberg blockade. Finally, Sec. 1.4 is devoted to erbium in Rydberg physics.

1.1 General properties

In Rydberg atoms, one of the valence electrons is excited into a state with
high principal quantum number n > 10. A high principle quantum number
implies that there is an outer electron with an orbit far from the nucleus.
In this case, the remaining core electrons shield this outer electron from the
electric field created by the nucleus. In good approximation, the electric
potential experienced by the outer electron then appears identical to that
experienced by the electron in a hydrogen atom. The properties of Rydberg
atoms therefore closely resemble the ones of hydrogen. The energy of an

5



GENERAL PROPERTIES 6

atom in the state |n, l, j,mj⟩ is given by

Enlj = − Ry

(n− δlj)2
, (1.1)

where l is the orbital angular momentum quantum number, j the total elec-
tronic angular momentum quantum number, Ry ≈ 13.6 eV the Rydberg con-
stant and δlj the quantum defect [17]. The quantum defect refers to energy
level corrections arising for multi-electron atomic species. Using the exam-
ple of an alkali atom, there is only one valence electron accessible, while the
atomic orbitals are fully filled with the remaining electrons. These electrons
lead to a shielding of the electric field of all except for one proton, which
is why the potential experienced by the valence electron resembles a point
charge, creating a Coulomb-like potential. However, compared to the single
proton in a hydrogen atom, the ionic core is much more complex. For alkali
atoms with small orbital angular momentum, there is a finite probability for
the valence electron to be inside the core or at least to penetrate the cloud
of non-valence electrons shielding the core. If this is the case, the shielding
is mitigated and the energy level structure changes. A study of the quantum
defects for erbium specifically is provided in Ref. [20].

Atomic properties, like their dipole moment, their polarizability and their
lifetime depend strongly on the principal quantum number n and they are
enhanced by working with large values of n. Some of these properties are
summarised in Table 1.1.

Table 1.1: Scaling of properties of Rydberg atoms with respect to the
principal quantum number n.

Property n-scaling

Binding energy n−2

Energy between adjacent n states n−3

Orbital radius n2

Dipole moment ⟨nl| er |n(l + 1)⟩ n2

Polarizability n7

Radiative lifetime n3
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For instance, the n2-scaling of the orbital radius leads to the atom size mas-
sively increasing for large n, reaching values of up to a few microns. Hence,
Rydberg atoms are also referred to as "giants" in the atomic world. Another
property of Rydberg atoms - making them attractive objects to study - is the
long radiative lifetime of the excited state scaling as n3. As a consequence of
the large dipole moment scaling as n2, Rydberg atoms are also very polariz-
able with the polarizability scaling as n7. Thus, they are strongly sensitive
to external electric fields, also including the electric field generated by neigh-
bouring Rydberg atoms. Together with the small spacing between Rydberg
levels, scaling as n−3, Rydberg atoms are expected to undergo very strong
interactions [21]. These strong interactions are governed by two mechanisms
– the dipole-dipole interaction and the van der Waals interaction. The for-
mer describes the interaction of two dipolar atoms (or molecules), while the
latter accounts for interactions of induced dipoles. More precisely, the van
der Waals interaction emerges as the fluctuations of the charge distribution
of one Rydberg atom give rise to instantaneous dipole moments, which sub-
sequently induce dipole moments in neighbouring atoms.

1.2 Interactions between Rydberg atoms

The following discussion of the interactions between Rydberg atoms is pri-
marily taken from Ref. [21], to which we refer the reader to for further infor-
mation.

Let us consider two atoms, atom 1 at position R1 and atom 2 at position R2

separated by a distance R = R2 −R1. We additionally assume the absence
of any external electric or magnetic fields. As already briefly mentioned in
the previous section, these atoms acquire a significant electric dipole moment
when being excited to the Rydberg state. For the case of the interatomic
separation R ≡ |R| being much larger than the extension of the electronic
wavefunction, the interaction between the atoms is governed by the dipole-
dipole interaction. The corresponding dipole-dipole interaction Hamiltonian
reads

Ĥdd =
1

4πϵ0

d̂1 · d̂2 − 3(d̂1 · n)(d̂2 · n)
R3

, (1.2)

where d̂1 and d̂2 denote the electric dipole operator of atom 1 and atom 2, ϵ0
the permittivity and n = R/R a unit vector pointing from atom 1 towards
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atom 2. In the following, the eigenstates of a single atom are labelled |α⟩,
|β⟩, . . . , where α and β summarize the respective quantum numbers n, l,
j and mj. The corresponding eigenenergies read Eα, Eβ, . . . . Without any
interaction present between the atoms, the eigenstate of the two-atom system
is simply the pair state |αβ⟩ = |α⟩ ⊗ |β⟩ with the energy Eαβ = Eα + Eβ.

1.2.1 Van der Waals interaction

We now assume that both atoms are prepared in the same initial state |α⟩,
resulting in the pair state |αα⟩. As depicted in Fig. 1.1 (a), this pair state is
generally expected to be non-degenerate with respect to any other pair state.
In this case, the mixing with other pair states is negligible, such that they
can all be ignored. Thus, the effect of the interaction Hamiltonian given in
Eq. (1.2) can be treated using non-degenerate perturbation theory.

To first order, the energy shift ∆E(1) of the given unperturbed pair state
|αα⟩ is zero:

∆E(1) = ⟨αα| Ĥdd |αα⟩ (1.3)

=
1

4πϵ0

⟨α| d̂1 |α⟩ ⟨α| d̂2 |α⟩ − 3 ⟨α| d̂1 · n |α⟩ ⟨α| d̂2 · n |α⟩
R3

= 0. (1.4)

The average value of the dipole moment vanishes for reasons of parity. While
the atomic state |α⟩ is of definite parity, the dipole operators d̂1 and d̂2

exhibit odd parity. Thus, the effect of the interaction Hamiltonian on the
system is of second order. Continuing the perturbative calculations to second
order results in

∆E(2) =
∑
β,γ,...

| ⟨αα| Ĥdd |βγ⟩ |2

Eαα − Eβγ

=
C6

R6
, (1.5)

where the pair state |αα⟩ is coupled to other pair states of different parity
via Ĥdd. The resulting non-zero shift scales as R−6 and the interaction giving
rise to this shift is referred to as van der Waals interaction. The C6-coefficient
takes the form

C6 =
∑
β,γ,...

| ⟨α| d̂1 |β⟩ ⟨α| d̂2 |γ⟩ − 3 ⟨α| d̂1 · n |β⟩ ⟨α| d̂2 · n |γ⟩ |2

(4πϵ0)2(2Eα − Eβ − Eγ)
, (1.6)
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where the summation takes into account all feasible pair states |βγ⟩ different
from |αα⟩, i.e. all interaction channels. The numerator of Eq. (1.6) is pro-
portional to a dipole moment to the fourth power, while the denominator
corresponds to the energy difference of adjacent pair states. Using Table 1.1,
a simple scaling argument shows that C6 scales as n11. Consequently, the
van der Waals interaction between two Rydberg atoms is very strong and
for interatomic separations of a few microns, it can reach tens of MHz. The
dependence of the van der Waals interaction on the distance of two Rydberg
atoms was directly measured in Ref. [22], while a more comprehensive descrip-
tion of the van der Waals interaction in general can be found in Refs. [13, 21].

As stated in Ref. [21], the effects of the van der Waals interaction are in
general pairwise additive for systems of N > 2 atoms. The corresponding
interaction Hamiltonian for a system of N atoms then takes the form

HvdW =
∑
i<j

C6

R6
ij

ninj, (1.7)

where ni = |r⟩ ⟨r|i denotes the projector on the Rydberg state of interest
of atom i. Along with introducing the spin operators σx,y,z, mapping the
ground state to the spin down state |↓⟩ = |g⟩ and the Rydberg state to the
spin up state |↑⟩ = |r⟩ leads to the relation ni = (1 + σi

z)/2. By adding
an additional laser coherently driving the transition |g⟩ ↔ |r⟩ with a Rabi
frequency Ω and a detuning δ, the Hamiltonian reads

HIsing =
ℏΩ
2

∑
i

σi
x +

∑
i

(ℏδ +Bi)σ
i
z +

∑
i<j

C6

R6
ij

σi
zσ

i
z, (1.8)

where Bi =
∑

j C6/R
6
ij [21]. In terms of quantum simulation, the Ising-like

Hamiltonian in Eq. (1.8) can be used to simulate a quantum Ising magnet.
Such simulations were conducted in Ref. [21] for a system of three Rydberg
atoms.

1.2.2 Förster resonance

Until now, we have assumed that the pair state |αα⟩ is a non-degenerate state.
However, for certain values of n, the pair state |αα⟩ turns out to be degener-
ate or quasi-degenerate with other pair states |βγ⟩, as shown in Fig. 1.1 (b).
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Figure 1.1: Different types of interactions between Rydberg atoms. (a)
Van der Waals interaction. (b) Förster resonance. (c) Resonant dipole-
dipole interaction.

If this is the case, the remaining non-degenerate states can be neglected and
the presence of Ĥdd gives rise to the new eigenstates |±⟩ = (|αα⟩±|βγ⟩)/

√
2,

which are coherent superpositions of the two pair states. The dipolar inter-
action now manifests itself at first order and the corresponding eigenenergies
are E± = ±C3/R

3, where C3 = R3 ⟨βγ| Ĥdd |αα⟩. Hence, the atoms do not
interact via the van der Waals interaction scaling as R−6, but instead via
the resonantly enhanced long-range Förster resonance scaling as R−3 [21].
The Förster resonance is particularly useful for the realization of very strong
Rydberg blockades [23, 24], as we will see in Sec. 1.3.

Typically, the pair states are only degenerate in good approximation, mean-
ing they are quasi-degenerate. The corresponding difference in energy ∆ =
Eαα −Eβγ is referred to as Förster defect and usually takes on values on the
order of a few MHz [21]. However, one can make use of the fact that the
states |α⟩, |β⟩ and |γ⟩ generally exhibit different polarizabilities and hence are
affected by an external electric field differently. Thus, the relative position of
the pair states |αα⟩ and |βγ⟩ can be tuned individually via the Stark effect
by applying an electric field. If the strength of the electric field is chosen ap-
propriately, it is possible to obtain exact resonance between the pair states,
i.e.∆ = 0. Experimentally, this means that one can switch between the
non-resonant weak van der Waals interaction and the comparatively strong
resonant dipole-dipole interaction by tuning the external electric field accord-
ingly [21].
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1.2.3 Resonant dipole-dipole interaction

Instead of preparing the pair state |αα⟩, we now assume the atoms are pre-
pared in the pair state |αβ⟩, which is degenerate with |βα⟩. As a con-
sequence of this degeneracy as presented in Fig. 1.1 (c), a resonant dipole-
dipole interaction between the distinct Rydberg atoms emerges. This gives
rise to the new eigenstates |±⟩ = 1√

2
(|αβ⟩ ± |βα⟩) with the eigenenergies

E± = ±C3/R
3. The corresponding dipole-dipole Hamiltonian can hence be

expressed in terms of the basis {|αβ⟩ , |βα⟩} and takes the form

Ĥdd =
C3

R3
(|αβ⟩ ⟨βα|+ |βα⟩ ⟨αβ|). (1.9)

Accordingly, an atom initially prepared in the pair state |αβ⟩ will coherently
evolve into |βα⟩ and subsequently back to |αβ⟩. The corresponding "flip-
flop" oscillation frequency is proportional to R−3. The C3-coefficient is a
product of two matrix elements of the dipole operator between the states |α⟩
and |β⟩ and therefore scales as n4.

With regard to quantum simulation, the resonant dipole-dipole interaction
can be harnessed for the direct implementation of spin interaction, which is
explained in more detail in Ref. [21]. To do this, the pseudo-spin states |↑⟩
and |↓⟩ are encoded in |α⟩ and |β⟩, respectively, giving rise to the XY spin
Hamiltonian

HXY =
∑
i<j

C3

R3
ij

(σi
+σ

j
− + σi

−σ
j
+), (1.10)

where σ± = σx + ±iσy. Such spin Hamiltonians have been an interesting
subject of experimental research using ultracold polar molecules in optical
lattices [25] or dipolar BECs [26].

1.3 Rydberg blockade

The Rydberg blockade is based on the interactions between Rydberg atoms
as explained above, and was proposed in Ref. [27] as a means of implement-
ing quantum gates with neutral atoms. For the sake of argument, we again
look at a system consisting of two atoms, both in their ground state |gg⟩ as
shown in Fig. 1.2 (a). We furthermore consider a laser coherently coupling
the ground state |g⟩ to the Rydberg state |r⟩ with a Rabi frequency Ω. Using
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Figure 1.2: Rydberg blockade mechanism. (a) At short interatomic dis-
tances (R < Rb), the van der Waals interaction shifts the doubly-excited
state |rr⟩ out of resonance. The state is considered to be off-resonant when
its corresponding energy shift is larger than its linewidth γ. (b) The Ryd-
berg blockade also applies to an N -atom system, where the red dots represent
Rydberg atoms and the red-shaded circles indicate the respective blockade
volumes with a radius Rb.

this laser, one can now successfully drive the transition from the ground state
to the Rydberg state of one of both atoms, resulting either in state |gr⟩ or
in state |rg⟩. The state |rr⟩ is shifted by the van der Waals interaction by
an amount ∝ C6/R

6, where the strength of the energy shift depends on the
interatomic distance R. For large interatomic distances, the presence of one
Rydberg atom does not suppress the excitation of a new Rydberg atom as
the energy shift is negligibly small and the laser is still on resonance with the
excitation of the second atom.
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However, for smaller interatomic distances, i.e. when the atoms are close
enough, the van der Waals interaction shifts the energy levels of the neigh-
bouring atom significantly. As soon as this energy shift becomes larger
than the linewidth γ of the corresponding Rydberg state, as displayed in
Fig. 1.2 (a), the excitation of this atom to the Rydberg state is severely sup-
pressed. Consequently, one can define a volume surrounding the existing
Rydberg atom with the so-called blockade radius

Rb =

(
C6

γ/2

)1/6

, (1.11)

within which any Rydberg excitation to the doubly-excited state |rr⟩ is not
possible. Instead, the initial state |gg⟩ evolves to the entangled state

|ψ+⟩ =
1√
2
(|gr⟩+ |rg⟩). (1.12)

In this Rydberg blockade regime, both atoms are now coupled and will un-
dergo Rabi oscillations between the collective states |gg⟩ and |ψ+⟩ at a fre-
quency of

√
2Ω. Figure 1.2 (b) illustrates that this concept can also be ex-

tended to an ensemble of N atoms. Here, the presence of a single Rydberg
atom strongly suppresses the Rydberg excitation of not only one, but a large
number of atoms within its surrounding volume. Similarly, the N -atom sys-
tem then oscillates between the collective states |ggg . . . g⟩ and

|ψN⟩ =
1√
N

N∑
j=1

|ggg . . . rj . . . g⟩ (1.13)

at a frequency of
√
NΩ, where Ω is the single-atom Rabi frequency.

1.4 Erbium in Rydberg physics

In recent years, enormous progress has been made in studying the properties
and applications of Rydberg atoms in quantum simulation, both in theo-
retical work as well as experimentally [28]. However, the majority of these
studies has specifically put focus on investigating single- or two-electron sys-
tems like alkali [14, 29, 30], alkaline-earth [31, 32, 33] or alkaline-earth-like
[34] atomic species. Instead, we aim at extending this Rydberg toolbox to



ERBIUM IN RYDBERG PHYSICS 14

the more complex multi-valence-electron atomic species erbium.

Erbium (Er) belongs to the lanthanide series of the periodic table. It has
an atomic number of Z = 68 and an atomic mass of 167.259(3) amu [35].
Solid erbium has a silvery-white metallic luster and is naturally only found
in chemical combinations with other elements, hence it needs to be artifi-
cially isolated. Erbium in the form of Er+3 is an essential constituent in
many technological applications and is most commonly used as a dopant in
silica-glass fibers for laser light amplifiers [36].

Similar to many other lanthanides, erbium has a high melting point at
1529◦C, and boiling point at around 2900◦C. Erbium furthermore has six
stable isotopes, five of which are bosonic isotopes (162Er, 164Er, 166Er, 168Er,
170Er), and one fermionic (167Er). Table 1.2 gives an overview of the relative
abundance of each isotope and its corresponding type of quantum mechanical
statistic.

Table 1.2: Isotopes of erbium. Six stable isotopes are reported and the
relative abundances and statistics are listed according to Ref. [37].

Atomic mass number Natural abundance Quantum statistics
162 0.14% Boson
164 1.6% Boson
166 33.5 Boson
167 22.9% Fermion
168 27% Boson
170 14.9% Boson

1.4.1 Electronic configuration

Erbium atoms are composed of a total of 68 electrons, 14 of which are valence
electrons. The electrons are distributed among the electron shells as

(1s22s22p63s23p63d104s24p64d105s25p6)4f 126s2 = [Xe]4f 126s2, (1.14)

where the electronic configuration up to the 4f 12 and 6s2 shells correspond to
the electronic configuration of xenon (Xe). In accordance with the Madelung
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rule, the 6s shell is filled up before the 4f shell with an increasing number
of electrons. Because of this, all shells except for the 4f shell are completely
filled. The only partially filled inner f shell is surrounded by the outer s
shell and this type of configuration is therefore referred to as submerged-shell
configuration.

Figure 1.3 illustrates the two missing electrons in the partially filled 4f shell,
having an angular momentum projection quantum number of ml = +2 and
+3. Due to its large orbital angular momentum quantum number of l = 3, the
4f shell is additionally highly anisotropic, whereas the 6s shell exhibits spher-
ical symmetry with l = 0. Figure 1.3 also displays this highly anisotropic
angular dependence of the 4f shell, while the spherically symmetric 6s shell
is depicted for comparison.

Figure 1.3: Illustration of the angular dependence of the 4f wavefunction
for different ml states. The individual images depict the anisotropy and
isotropy in the probability density of the 4f and the 6s valence electrons
of erbium, respectively. The arrows indicate the arrangement of these 14
valence electrons. Taken from Ref. [38].

The electrons occupy the 4f shell according to Hund’s rule, satisfying the
following set of criteria:

1. The multiplicity, defined as 2S+ 1, needs to be maximized. Here, S is
the total spin angular momentum for all electrons.
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2. For a given multiplicity, i.e. a fixed S, the orbital angular momentum
L has to be maximized.

3. For atoms where the outermost shell is more than half-filled, the level
with the lowest value of the electronic angular momentum J lies lowest
in energy, i.e.J needs to be maximized.

Taking these criteria into consideration, the ground state of erbium has the
properties

L = 5, S = 1, J = 6.

The bosonic isotopes of erbium have an even number of protons and neutrons,
thus resulting in a nuclear spin of I = 0. Due to the nuclear spin being
zero, the bosonic isotopes only exhibit fine structure splitting. Its fermionic
isotope on the other hand has an even number of protons, but an odd number
of neutrons, leading to a nuclear spin of I = 7/2 instead. The electronic
angular momentum J couples with this non-zero nuclear spin, resulting in
the total angular momentum F = 19/2, which gives rise to a large hyperfine
manifold. Here, it is interesting to point out that odd-even or even-odd nuclei
will always have half-integer spin, whereas even-even and odd-odd nuclei have
zero nuclear spin and integer nuclear spin, respectively [39].

1.4.2 Multielectron Rydberg properties

As already mentioned before, alkali atoms have been a common choice to
study in the field of Rydberg physics for a long time. Alkali atoms belong
to the first group of the periodic table and therefore hold one valence elec-
tron. Their relatively sparse atomic structure renders them easy to describe
and additionally enables the implementation of robust cooling and trapping
schemes. However, their simplicity comes at the expense of a limited degree
of freedom for studying and controlling their Rydberg atoms. Alkaline-earth
atoms on the other hand feature two valence electrons and therefore offer less
restricted opportunities in this regard. Here, the key paradigm shift is that,
after exciting one of the available valence electrons to the Rydberg state, the
core remains optically active. This means that there still remains the second
valence electron to work with, as we will discuss in a moment. The goal now
is to push these boundaries even further by exploring the Rydberg physics
of atoms with more than two valence electrons, e.g. lanthanides.



17 ERBIUM IN RYDBERG PHYSICS

In general, multi-valence-electron atomic species such as erbium hold an ex-
tremely rich energy level structure and their unusual electronic configuration
enables new forms of controlling these lanthanides [40]. In particular, the
optically active core exhibits large remaining ionic-core polarizability, which
is expected to allow for:

1. Direct trapping: One can leverage the polarizability for trapping
the Rydberg atoms in conventional red-detuned optical tweezers (see
Sec. 2.1.1) despite the repulsive ponderomotive action of the Rydberg
electron [41].

2. New excitation schemes: The multiple valence electrons present in
lanthanides give access to a rich plethora of possibilities for laser cool-
ing, optical manipulation and also Rydberg excitation, ranging from
ultra-narrow near-infrared (few Hz) optical transitions to broad near-
ultraviolet (tens of MHz) ones [40].

3. Large hyperfine manifold: Thanks to the large angular momentum
of lanthanides, the fermionic isotope’s hyperfine structure can be used
to encode large Hilbert spaces when doing quantum simulation [40].

In recent work, the excitation of erbium atoms to Rydberg states has been
demonstrated. In Ref. [20], the Rydberg spectrum of 166Er was studied, where
a two-photon excitation scheme based on electromagnetically induced trans-
parency (EIT) on a hot atomic beam was used. Figure 1.4 displays a scheme
of the electronic levels of erbium, where electronic levels of odd and even
parity are represented in black and red, respectively. The arrows indicate
the corresponding dipole-allowed transitions of the valence electrons. The
two-photon excitation scheme employed in Ref. [20] involves a 401-411 nm
transition. Here, an atom initially in the 4f 126s2 state was excited to the
intermediate 4f 126s6p state. Subsequently, the 411 nm transition was used
to excite the atom to the final 4f 126sns/nd state, i.e. to either the ns or the
nd Rydberg series. As a result, approximately 550 different states of the
ns and nd Rydberg series with n ranging from 14 up to 140 were identified
successfully.
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Figure 1.4: Scheme of electronic levels of erbium. The black electronic levels
have odd parity, while the red ones have even parity. The arrows indicate
dipole-allowed transitions, which can be used for Rydberg excitation via a
two-photon excitation scheme. For instance, the 401-411 nm transitions can
be used for Rydberg excitation of a 6s valence electron. Code provided by
Ref. [42] and data taken from Refs. [43, 44].



Chapter 2

Optical tweezer arrays

While Chap. 1 provides an introduction to Rydberg atoms, this chapter fo-
cuses on optical tweezer arrays as a powerful tool in cold atom experiments.
In Sec. 2.1, we first present an overview of the basic mechanism at the founda-
tion of atom-light interaction based on Ref. [45], while a more comprehensive
discussion can be found in Ref. [46]. Afterwards, we discuss different ap-
proaches for the generation of optical tweezer arrays in Sec. 2.2, involving
acousto-optical deflectors (AODs), digital micromirror devices (DMDs) and
liquid crystal spatial light modulators (LC SLMs). Finally, Sec. 2.3 provides
a comparison between LC SLMs and DMDs.

2.1 Basics on optical tweezers

2.1.1 Trapping atoms with light

We can obtain a first intuitive picture of how trapping with light works by
considering the case of a classical oscillator. When a neutral atom is subjected
to laser light, i.e. an oscillating electric field E⃗(r⃗), the laser light induces an
electric dipole moment p⃗(r⃗) in the atom. As a result, the induced electric
dipole moment oscillates at the laser driving frequency ω and is given by

p⃗(r⃗) = α(ω)E⃗(r⃗), (2.1)

where α denotes the complex polarizability and is dependent on the driving
frequency ω, the atomic species and the polarization of the electric field. The
interaction between the electric field and the dipole moment gives rise to the

19
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atom-light interaction potential

Udip(r⃗) = −1

2
⟨p⃗(r⃗) · E⃗(r⃗)⟩ = − 1

2ϵ0c
Re(α)I(r⃗). (2.2)

Here, I(r⃗) = 2ϵ0c|E⃗(r⃗)|2 describes the intensity of the electric field, while ϵ0
denotes the dielectric constant, c the speed of light in vacuum and ⟨·⟩ the
time average. The real part of the polarizability Re(α) accounts for in-phase
oscillations of the atom. Consequently, a spatial variation of the intensity
(e.g. a focused laser beam) generates a trapping potential, governed by the
so-called dipole force

F⃗dip(r⃗) = −∇Udip(r⃗) =
1

2ϵ0c
Re(α)∇I(r⃗). (2.3)

We can see that, for the dipole force to be non-zero, an intensity gradient is
strictly required. Such a gradient is typically obtained when using a tightly-
focused Gaussian laser beam, which we discuss further in Sec. 2.1.3. The
strength of the dipole force is then determined by the intensity gradient and
its corresponding direction is determined by the real part of the polarizabil-
ity. For the case of Re(α) > 0, a net force towards the intensity maximum
emerges.

In addition to being trapped in the generated potential, the oscillating atom
also absorbs the power Pabs from the driving light field, which is subsequently
emitted as dipolar radiation. This absorption can now be described using the
imaginary part of the polarizability accounting for out-of-phase oscillations,
leading to

Pabs = ⟨ ˙⃗p(r⃗) · E⃗(r⃗)⟩ = ω

ϵ0c
Im(α)I(r⃗). (2.4)

The amount of photons scattered by the atoms in the light field can be
expressed by the scattering rate

Γsc(r⃗) =
Pabs

ℏω
=

1

ℏϵ0c
Im(α)I(r⃗), (2.5)

where ℏ is the Planck constant divided by 2π, while the quantity ℏω gives the
energy of a single photon. These photons carry a momentum of p⃗ = ℏk⃗, and
the atom therefore experiences a kick along the wavevector k⃗ of the incoming
photons. The resulting scattering force takes the form

F⃗sc(r⃗) = ℏk⃗Γsc(r⃗). (2.6)
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To find an expression for the polarizability α, one typically refers to one of
two distinct theoretical models. Firstly, one can use the Lorentz-oscillator
model, where an electron is elastically bound to the nucleus at an eigenfre-
quency equivalent to the frequency of the optical transition ω0. By integrat-
ing the corresponding equation of motion ẍ + Γẋ + ω2

0x = −eE(t)/me, the
polarizability reads

α(ω) = 6πϵ0c
3 Γ/ω2

0

ω2
0 − ω2 − i(ω3/ω2

0)Γ
. (2.7)

Here, Γ denotes the damping rate associated with the radiative energy loss
and me the electron’s mass. Alternatively, one can use a semiclassical ap-
proach by considering a two-level system with a spontaneous decay rate Γ.
Both methods yield the same result and are nicely discussed in Ref. [45]. In
the case of large detuning, the following explicit expressions for both the
dipole potential and the scattering rate can be derived:

Udip(r⃗) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r⃗), (2.8)

Γsc(r⃗) =
3πc2

2ℏω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r⃗), (2.9)

where Γ denotes the damping rate and ω0 the atomic resonance. These
expressions describe the most important relations for understand the physics
behind optical tweezers experiments. If the detuning from the resonance
∆ ≡ ω − ω0 is not too large by satisfying the condition |∆| ≪ ω0, one can
assume ω/ω0 ≈ 1, i.e. apply the rotating-wave approximation. As a result,
the expressions for both the dipole potential and the scattering rate simplify
to

Udip(r⃗) =
3πc2

2ω3
0

Γ

∆
I(r⃗), (2.10)

Γsc(r⃗) =
3πc2

2ℏω3

(
Γ

∆

)2

I(r⃗). (2.11)

These equations provide important information regarding the features of op-
tical trapping. More specifically, Eq. (2.10) indicates that the sign of the
dipole potential is dependent on the detuning ∆ of the laser light. If the
detuning is negative (red detuned, ∆ < 0), implying a laser light frequency
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smaller than the atomic transition, the dipole potential becomes negative
and atoms are drawn towards high intensity regions. For a positive detuning
(blue detuned, ∆ > 0) on the other hand, atoms are repelled by high intensity
regions. When looking at the simple relation

ℏΓsc(r⃗) =
Γ

∆
Udip(r⃗) (2.12)

we obtain when comparing Eq. (2.10) and Eq. (2.11), it becomes clear why
usually far-detuned laser light is used for optical tweezers. As the dipole
potential scales as Udip ∝ I/∆, while the scattering rate scales as Γsc ∝ I/∆2,
it is shown that by increasing both the intensity of the light and the detuning,
one can achieve the same trap depth with a lower scattering rate. This
clearly shows the advantage of using optical dipole traps at high power as
well as large detunings, as one can effectively suppress the scattering rate
and subsequently reduce heating while maintaining the trap depth.

2.1.2 AC Stark effect

Instead of considering the atom as a classical oscillator, its motion in a
far-detuned light field can alternatively be treated quantum mechanically.
Mathematically, the influence of the oscillating light field on the atomic en-
ergy levels can be treated via perturbation theory as a second-order time-
independent perturbation for non-degenerated states. The corresponding
interaction Hamiltonian operator is given by Ĥ = −µ̂E⃗, where µ̂ = −er⃗ de-
fines the electric dipole operator. Considering a two-level system coupling to
a far-detuned light field, the resulting energy shift of the ground state reads

∆E = ±| ⟨e|µ |g⟩ |2

∆
|E|2 = ±3πc2

2ω2
0

Γ

∆
I(r⃗), (2.13)

with | ⟨e|µ |g⟩ | being the dipole matrix element between the ground state
|g⟩ and the excited state |e⟩. The ± sign corresponds to the shift of the
ground state and the excited state, respectively. Figure 2.1 (a) illustrates
the AC Stark shift by showing how the ground state shifts down and the
excited state up when applying red-detuned light (∆ < 0). In particular,
Fig. 2.1 (b) displays how a spatially inhomogenous field, e.g. a Gaussian laser
beam, gives rise to a ground-state potential well, in which an atom can be
trapped. Comparing Eq. (2.13) to Eq. (2.10), we find that both treatments
give the same result.
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Figure 2.1: Schematic of the AC Stark shift for a two-level atom. (a) Red-
detuned light (∆ < 0) shifts the ground state down and the excited state
up. (b) When using a Gaussian laser beam with spatially inhomogenous
intensity, the light shift gives rise to a trapping potential drawing the atom
towards the high-intensity region in the center.

2.1.3 Gaussian beam

As the dipole force in Eq. (2.3) relies on an intensity gradient of the light
field and only traps atoms successfully for negative detunings, the simplest
realization of an optical tweezer is a focused red-detuned Gaussian beam.
The Gaussian beam provides three-dimensional confinement and its spatial
intensity distribution propagating along the z-axis is given by

I(r, z) =
2P

πw2(z)
exp

(
−2

r

w2(z)

)
, (2.14)
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where P is the total power, r the radial coordinate and w(z) the 1/e2 radius.
This radius can be expressed as

w(z) = w0

√
1 +

(
z

zR

)2

, (2.15)

where w0 denotes the minimum beam waist, z the axial coordinate and zR =
πw2

0/λ the Rayleigh range. Knowing the intensity distribution in Eq. (2.14),
one can derive the optical potential U(r, z) ∝ I(r, z) using Eq. (2.10). As the
maximum intensity of a Gaussian beam is located directly in the center of
its focal point, the resulting trap depth then is Û = |U(r = 0, z = 0)| [45].

We now consider an atomic sample with the thermal energy kBT , where
kB denotes the Boltzman constant and T the temperature. If the thermal
energy is considerably smaller than the potential depth Û , the atoms tend
to only populate the center of the trap. Thus, the spatial extension of the
sample turns out to be radially small compared to the beam waist and axially
small compared to the Rayleigh range. In good approximation, the optical
potential experienced by the atomic sample can then be described by a simple
cylindrically symmetric harmonic oscillator reading

U(r, z) ≃ −Û

[
1− 2

(
r

w0

)2

−
(
z

zR

)2
]
. (2.16)

The corresponding trapping frequencies in the radial and axial direction are
then given by

ωr =

√
4Û

mw2
0

, ωz =

√
2Û

mz2R
. (2.17)

Because the Rayleigh length zR is larger than the beam waist w0 by a factor
of πw0/λ, the axial confinement is much weaker than the radial confinement.
Knowing that Û ∝ P/w2

0 and zR ∝ w2
0, the trap frequencies can alternatively

be expressed as

ωr ∝
√
P

w2
0

, ωz = ωr
λ√
2πw0

. (2.18)

Once you measure the radial and axial trap frequencies, e.g. via parametric
heating, Eq. (2.18) provides a way of inferring the beam waist w0 [47]. By
doing this, one is able to quantify the quality of an optical tweezer, e.g. by
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obtaining information about how Gaussian it is. More precisely, one can
determine how Gaussian the beam is by checking that the ratio of the ex-
perimental values of the trap frequencies corresponds to the fraction in the
second equation of Eq. (2.18).

2.2 Methods to create optical tweezer arrays

As we have briefly discussed in the beginning of this chapter, a single optical
tweezer can be generated by focusing a red-detuned Gaussian beam. To focus
the laser beam to the atoms, people usually use high NA objectives (0.5 or
above is typical) [11]. The production of multiple optical tweezers though
requires the application of so-called spatial light modulation techniques. These
techniques enable the control over the phase and intensity distribution of
the light field incident on the high NA objective. The basic idea of spatial
light modulation is presented in Fig. 2.2, where the main ingredients for the
generation of multiple optical tweezers are depicted schematically.

Figure 2.2: Illustration of a simple optical setup for spatial light modula-
tion. The main ingredients are a laser beam, a spatial light modulator, and
a lens or objective to be able to observe the modulated beam in a specific
plane.
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Spatial light modulators have a broad range of applications covering different
areas of science. For instance, in astronomy spatial light modulators aid the
correction of wavefront aberrations [48]. In biology, established application
spaces include imaging in turbid media [49], optogenetics [50] and volumetric
imaging [51]. In physics, spatial light modulators can for example be used
for femtosecond pulse shaping [52]. However, the thesis focuses on its appli-
cation in ultracold atom experiments, where many outstanding results have
been reported within the last few years. These results include the creation of
impurities by individually manipulating atomic spins [53], the realization of
strongly correlated quantum walks in optical lattices [54] and, just recently,
dynamic high-resolution optical trapping of ultracold atoms [55].

There are different approaches to achieve spatial light modulation. The main
ones are acousto-optic deflectors, digital micromirror devices and liquid crys-
tal spatial light modulators. In the following, we discuss these techniques in
more detail.

2.2.1 Acousto-Optic Deflector (AOD)

An AOD is a device utilizing the interaction between acoustic waves and
light waves to deflect a laser beam. Such devices consist of a crystal with
a piezoelectric transducer attached to one of its edges. The piezoelectric
transducer generates acoustic radio-frequency (RF) waves acting as a phase
grating, travelling through the crystal at an acoustic velocity determined by
the material. Here, the acoustic wavelength is dependent on the frequency
of the RF tone and any laser incident on the AOD will be diffracted by this
grating accordingly. When applying multiple RF tones, one is able to gen-
erate phase gratings of different wavelengths and each RF tone consequently
causes the formation of a diffracted beam with a different diffraction angle,
each of which can then be used for a distinct optical tweezer.

Even though they are intrinsically the same, AODs should not be confused
with acousto-optic modulators (AOMs). As for AODs, we have already
briefly explained that one alters the frequency of the RF tone to change
the diffraction angle of the diffracted light. Here, the intensity of the corre-
sponding output light remains unaffected. In the case of AOMs though, one
instead alters the power of the RF driver, while maintaining the same RF
tone. As a result, the intensity of the diffracted light experiences modulation,
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while the respective diffraction angle does not change.

Figure 2.3: Creation of a two-dimensional optical tweezer array using two
perpendicular AODs. Here, the spacing of the array in the x- and y-direction
is determined by the driving radio-frequency signals RF1 and RF2, respec-
tively. Taken from Ref. [56].

A single AOD can only produce a one-dimensional array of optical tweez-
ers [14, 57]. However, by positioning two AODs consecutively perpendicular
to each other as displayed in Fig. 2.3, a two-dimensional array of optical
tweezers can be produced [58, 56]. Its geometry though is limited to rect-
angular/square arrays, which makes AODs unsuitable for the production of
arrays of arbitrary geometry. Furthermore, there are not enough degrees of
freedom to independently control the position of each trap. However, the
fast and real-time control of the tweezer position when using AODs allows
dynamic sorting of the atoms for assembling defect-free arrays [57, 29].

2.2.2 Digital Micromirror Device (DMD)

A digital micromirror device consists of a grid of several hundred thousand
miniaturized mirrors, each of which corresponds to a pixel of the image to
be displayed. By steering these microscopic mirrors individually, one can
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modulate the light reflected off the mirror array. For this to be possible,
each mirror is mounted on a yoke attached to a torsion hinge as shown in
Fig. 2.4. This allows for the mirrors to be tilted in two angles, either −12◦

or +12◦, corresponding to an OFF or ON state, respectively. Depending
on which position the mirror is set to, the incident beam is deflected into
one of two distinct beam paths. This operational position is determined
by two electrodes, where one electrode is positioned on each side of the
hinge across the diagonal of the mirror. For a more detailed description of
the working principle, we refer the reader to Ref. [59]. In general, the two-
dimensional mirror array as employed by DMDs offers a greater variety of
feasible geometries than two perpendicular AODs.

Figure 2.4: Schematic sketch of a DMD. A mirror is mounted on a yoke
attached to a torsion hinge and has two operational positions, corresponding
to a tilt of either −12◦ or +12◦. This position is determined by electrodes
positioned underneath the diagonal of the mirror. Taken from Ref. [60].

2.2.3 Liquid Crystal Spatial Light Modulator (LC SLM)

In 1888 Friedrich Reinitzer investigated cholesteryl benzoate when he un-
expectedly observed two melting points, with the substance exhibiting a
mesophase between these melting points. The first melting point was reached
at a temperature of 145◦C, where the substance melted and became milky
and viscous. Upon reaching the second melting point at 179◦C, the sub-
stance would become perfectly transparent. He reported his findings to Otto
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Lehmann, who further studied the material, and after discovering that it
shared both liquid and crystal properties, he eventually coined the term liq-
uid crystal [61].

Liquid crystals

Materials that exhibit a liquid crystal phase are typically composed of molecules
that can be visualized as uniaxial ellipsoids with a single long axis about
which they possess circular symmetry in any transverse plane. Typically,
molecules forming liquid crystals tend to have polar or at least polarizable
groups, which give rise to strong dipole-dipole or dipole-induced dipole in-
teractions, and/or hydrogen bonds. In the solid phase, these rod-shaped
molecules hold both orientational and positional order, meaning they sit at
a distinct place and display a certain orientation. Conversely, the molecules
neither possess orientational nor positional order in the liquid phase, both are
random instead. In between, there exists this mesophase where the molecules
still have residual orientational order, while having lost their positional order.
As shown in the center of Fig. 2.5, this means that the molecules have ar-
bitrary relative position, but still prefer to orient themselves along each other.

There are three major classes of liquid crystals, each different in its respective
molecular order:

• Nematic: The nematic phase is presented in the center of Fig. 2.5.
Here, the molecules tend to self-align themselves and exhibit long-range
orientational order as their long axes are roughly parallel to each other.
On average, the molecules are therefore aligned along a certain direc-
tion, called director, while still being able to move randomly.

• Smectic: In the smectic phase, the molecules organize themselves in
well-defined layers along their long axes. The layers display a periodic
structure along the direction perpendicular to the layers. Thus, a po-
sitional order in one dimension is present, while there is no positional
order of the molecules within the layers.

• Twisted nematic phase: Unlike in the previous phases, molecules
do not align parallel to each other in the twisted nematic phase, also
called cholesteric phase. Instead, they form a helical structure, where
a twisting of the molecules perpendicular to the director occurs.
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Figure 2.5: Phases of a liquid crystal material. At low temperatures, the
material exhibits crystalline properties as it has both positional and orienta-
tional order. At high temperatures though, the material behaves like a liquid
and displays neither positional nor orientational order. In between, it has a
liquid crystalline mesophase with no positional, but orientational order.

For a more thorough description of these liquid crystal phases, we refer the
reader to Ref. [62].

Light modulation with liquid crystals

LC SLMs can operate either in transmission or in reflection, but we will only
explain the latter, as we also employ a reflective LC SLM in the experiment.

Figure 2.6 shows a schematic of a liquid crystal cell and serves to illustrate
the working principle of an LC SLM. To achieve spatial light modulation,
the liquid crystal layer is embedded between a glass plate and a reflective
silicon substrate layer. On top of the silicon substrate, a layer of aluminium
electrodes is arranged. Each of these electrodes makes up a pixel of the LC
SLM display and its electric potential can be controlled independently. Addi-
tional alignment layers on each side of the liquid crystal layer set the natural
orientation of the molecules. Typically, the liquid crystal molecules are ini-
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tially set to align in parallel. The electric field across the liquid crystal layer
can be controlled independently pixel by pixel, which causes the elongated
liquid crystal molecules to tilt accordingly, dependent on the strength of the
electric field.

Figure 2.6: Schematic of the SLM chip structure. The liquid crystal layer is
embedded between a glass plate and a reflective silicon substrate layer, where
the latter contains pixels in the form of aluminium electrodes for controlling
the orientation of the molecules. Taken from Ref. [63]

The refractive index experienced by the input light depends on the tilt of
these liquid crystal molecules, as we will explain in more detail shortly. The
phase modulation imprinted on the input light is therefore determined by
the respective electric field applied to each pixel. Here, the linearly polarized
light can only be modulated if its direction of polarization, i.e. the direction
in which its electric field modulates, is aligned parallel to the initial align-
ment direction of the liquid crystal molecules. Proper phase modulation is
infeasible if the incident light is either not linearly polarized, or its direction
of polarization is not aligned with the liquid crystal molecules.

We have mentioned above that the refractive index experienced by the in-
cident light beam is dictated by the orientation of the liquid crystal molecules.
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More precisely, this is a result of the uniaxial anisotropy exhibited by molecules
due to their elongated rod-like shape. Here, uniaxial anisotropy means there
is one symmetry axis in the long direction of the molecules, while all re-
maining axes perpendicular to that axis are equivalent. The corresponding
dielectric constant can be described by the tensor

ε⃗ =

 ε⊥ 0 0
0 ε⊥ 0
0 0 ε∥

 , (2.19)

where ε∥ denotes the dielectric constant in the axis of symmetry along the
z-direction, and ε⊥ along the x- and y-direction, respectively. In general,
∆ε = ε∥ − ε⊥ > 0 holds. When an electric field E⃗ is now applied, the liq-
uid crystal molecules rotate and their orientation changes with respect to
their natural direction set by the alignment layers. Their director n⃗, i.e. the
average orientation of the liquid crystal molecules, realigns along E⃗ due to
∆ε > 0.

The dielectric constant and the index of refraction are now closely linked by
the relations ε⊥ = n2

o and ε∥ = n2
e, where no and ne stand for the ordinary and

extraordinary index of refraction, respectively. If light now travels through
the liquid crystal layer of an LC SLM, its different components of polariza-
tion will experience different indices of refraction, dependent on the angle
between its direction of propagation and the orientation of the molecules.
In this regard, the so-called index ellipsoid shown in Fig. 2.7 (a) provides a
concise representation of the refractive indices and associated polarizations
as a function of the direction of propagation of the light beam.

In Fig. 2.7 (b), the laser beam is given by its wavevector k⃗ and is drawn
as a line starting from the origin, enclosing an angle α with the extraordi-
nary axis. Its associated polarization is defined in a plane passing through
the origin perpendicular to k⃗, and can be decomposed into the components
E⃗o and E⃗e. The resulting intersection of this plane with the index ellipsoid is
an ellipse, as displayed in Fig. 2.7 (c). As one can see, E⃗o and E⃗e lie along the
minor and major axis of this ellipse and the associated indices of refraction
are given by the length of the semi-minor and semi-major axis, respectively.

The index of refraction for the ordinary axis is found to be independent of
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Figure 2.7: Index ellipsoid. (a) The long axis of the elongated liquid crystal
molecule is oriented in the z-direction. The z-axis, or extraordinary axis, has
an index of refraction denoted ne, while the remaining x- and y-axis are the
ordinary axes with an index of refraction given by no (b) The laser beam indi-
cated by its wave vector k⃗ is propagating through the liquid crystal molecule
at an angle α with the extraordinary axis. Its polarization components E⃗o

and E⃗e span a plane perpendicular to the direction of propagation (c) The
intersection of the plane with the index ellipsoid results in an ellipse, which
is used to determine the indices of refraction experienced by the respective
polarization components.

the angle α, while the extraordinary index of refraction follows

1

n2
e(α)

=
cos2(α)

n2
o

+
sin2(α)

n2
e

. (2.20)

Consequently, to be able to modulate the light by changing the index of
refraction it experiences, one has to change the angle α. There are two ap-
proaches for doing so, one of which involves changing the wave vector k⃗ and
thus changing the direction of propagation of the light beam, which is rather
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impractical from an experimental point of view. The second approach, as also
applied in LC SLMs and explained above, entails changing the orientation of
the molecules instead. The optical property of a material having an index of
refraction dependent on the direction of propagation and polarization of the
light is referred to as birefringence.

For light polarized in a plane perpendicular to the optical axis, the liquid
crystal molecules appear isotropic and the light only experiences the refrac-
tive index no, regardless of its specific polarization within the plane. Instead,
if the light is only polarized in the z-direction, it does not exhibit any com-
ponent with a polarization along the ordinary axis of the molecule and the
resulting index of refraction is ne(α), where α is a function of the applied
voltage U . The phase shift of a reflected light beam is then given by

ϕ(U) = ne(U)
2πD

λ
, (2.21)

where D is the thickness of the liquid crystal layer in the LC SLM and λ the
wavelength [64].

2.3 Comparing LC SLM and DMD

LC SLMs certainly outplay DMDs when it comes to the degrees of freedom
per pixel. While LC SLMs typically exhibit 256 voltage levels per pixel,
DMDs operate using only binary pixels. The overall number of indepen-
dently controllable pixels then dictates the extent of modulation complexity
that can be achieved.

Alongside the degrees of freedom, there are several other factors determining
the achievable performance of LC SLMs and DMDs. Especially in applica-
tions where high speed is required, the refresh rate of the device needs to
be taken into consideration. Here, DMDs have a large advantage due to
their extremely high refresh rate, reaching a maximum of up to 32 kHz [65].
These refresh rates are significantly faster than the typical trap frequencies,
which enables the transport and rearrangement of atoms [66]. As opposed
to DMDs, the main limitation of LC SLMs is their comparatively low refresh
rate of typically less than 120Hz, which is mainly limited by the LC respon-
siveness. Thus, LC SLMs are unable to operate on timescales required for
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dynamic atom sorting.

Additionally, when exposed to a constant electric field, the liquid crystals
of LC SLMs undergo chemical reactions that can eventually destroy them.
Thus, LC SLMs are typically operated by alternating the polarity of the
electric field across the liquid crystal layer. Dependent on the device, this
cycling rate lies between a few Hz and kHz. This continuous switching of
the polarity simultaneously alters the phase of every pixel periodically each
time and therefore gives rise to temporal fluctuations in the phase, i.e. phase
flicker. This phase flicker can affect the optical performance of the system
by resulting in intensity fluctuations in the reconstructed light field. A com-
prehensive review of phase flicker associated with LC SLMs can be found in
Ref. [67].

A significant advantage of LC SLMs is their light utilization efficiency, which
is defined as the ratio of the first order diffraction light intensity to the in-
put light intensity. The power that can typically be diffracted into the first
order is limited mainly by diffraction loss due to the pixelated display. Here,
the pixelated structure of the LC SLM gives rise to higher-order diffraction
terms, which, in turn, are modulated by an envelope function arising from
the finite pixel size [68, 69]. The presence of these useless higher-order im-
ages, also referred to as ghost spots, takes the light away from the useful
first diffraction order and therefore slightly decreases the light utilization ef-
ficiency. These ghost spots will be discussed further in Sec. 5.4, while a com-
prehensive mathematical derivation of these higher-order diffraction terms
as well as approaches regarding their suppression can be found in Ref. [70].
Additionally, the diffraction loss is dependent on the design of the LC SLM,
i.e. the anti-reflection coating and the fill factor. Here, an imperfect anti-
reflection coating of the front electrode yields an unmodulated beam because
a fraction of the incident light is not able to pass through the liquid crys-
tal layer and therefore does not experience modulation. Furthermore, the
LC SLM exhibits a non-functional area due to a fill factor less than 100%,
which additionally contributes to an unmodulated so-called zero order spot.
A more detailed discussion about the importance of the fill factor is pre-
sented in Sec. 3.2. Regardless of these seeming disadvantages, in Ref. [71] it
was found that 42% of the incident light can be redirected into the first order
when applying a diagonal blazed grating with a periodicity of 4 pixels per
period to the LC SLM. Subsequently, a binary amplitude grating of the same
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periodicity was applied to a DMD, yielding a light utilization efficiency of
just 8%. The reason why DMDs suffer from poor light utilization efficiency
is the fact that all the beam power incident on mirrors in the OFF state is
simply dumped. More precisely, the DMD creates a certain intensity pattern
by removing light in specific locations, while the LC SLM uses constructive
interference to redirect the optical power to the specific regions, where it is
needed to reconstruct the image correctly.

Last but not least, spatial light modulation via LC SLMs has the unique
feature of being very robust against local defects in the plane of the LC
SLM, e.g. dead pixels. Each point of the reconstructed image is modelled
by the entire LC SLM surface, which is why dead pixels do not significantly
degrade the quality of the reconstructed image in the Fourier plane [68].

Taking everything into consideration, we have eventually decided to use an
LC SLM. In the experiment, we generally want to work with dynamic optical
tweezer arrays. However, the idea is to use the LC SLM to create only a static
pattern, which will then be overlapped with the output of two perpendicular
AODs to move the atoms around and therefore make the arrays dynamic.
Thus, we accept the comparatively low refresh rate of the LC SLM, with the
advantage of having significantly more degrees of freedom and a much better
light utilization efficiency.



Chapter 3

Basics of operating LC SLMs

While Chap. 2 provides a general introduction to the different methods to
spatially shape light and create arrays of identical tweezers, this chapter
focuses on the particular realization we chose in our experiment. In Sec. 3.1
we briefly explain how to drive and address an LC SLM. In particular, we
discuss the properties and different constituents of the input signal the device
requires. In Secs. 3.2, 3.3 and 3.4, we review these constituents in greater
detail one by one. Lastly, Sec. 3.5 is devoted to the calculation of target
patterns, which are in turn used for the calculation of the input signal for
the LC SLM.

3.1 Driving an LC SLM

In the experiment, we use the Hamamatsu X15213-16L LCOS-SLM. As
shown in Fig. 3.1, the device consists of a head connected to its controller.
The head is driven by the controller, which is connected to a PC via a stan-
dard digital video interface (DVI). In general, the controller is identified as
a second PC screen and receives digital images from the PC, which are then
converted into analog signals to send to the LC SLM head. The digital im-
ages we send to the controller are typically 8-bit grayscale image. The analog
signal the controller sends to the head then corresponds to a two-dimensional
array filled with values from 0 to 255, where a phase modulation value from
0 to 2π radians can be achieved. From now on, we refer to the grayscale im-
ages as phase patterns, while the values from 0 to 255 are denoted gray levels.

37



DRIVING AN LC SLM 38

Figure 3.1: Hamamatsu LCOS-SLM X15213 series. Taken from Ref. [72].

Typically, the phase pattern ϕtotal we use to drive the LC SLM has several
contributions, which are added as follows:

ϕtotal = (ϕfactory + ϕblaze + ϕaberration + ϕtarget) · mod(255) · g

255
. (3.1)

In this equation,

(a) ϕfactory is a compensation pattern provided by the manufacturer to cor-
rect for the optical non-flatness of the LC SLM backplane;

(b) ϕblaze denotes a blazed grating, which is used in order to block the
zero order spot of the LC SLM, which emerges due to its imperfect
diffraction efficiency;

(c) ϕaberration corrects for aberrations introduced by the optical system; and

(d) ϕtarget accounts for the phase pattern giving rise to the intensity distri-
bution of the desired final image.

Each of these patterns has values in between 0 and 255, such that after
adding them, one has to calculate the modulus of the result with respect
to 255 as the LC SLM demands an 8-bit input image. Here, the parame-
ter g is for rescaling the gray level values dependent on the input wavelength.

In the following, we will review the different constituents as introduced above
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in more detail one by one. Section 3.2 focuses on both the compensation
pattern ϕfactory and the blazed grating ϕblaze. In Sec. 3.3, we instead present
the algorithm we use for aberration correction to obtain ϕaberration. Finally,
Sec. 3.4 introduces so-called phase retrieval algorithms, which we utilize to
calculate the phase pattern ϕtarget.

3.2 Flatness correction and blazed grating

Due to fabrication limitations, the silicon substrate as depicted in Fig. 2.6
may not always be perfectly flat nor parallel. Since the phase shift given in
Eq. (2.21) is proportional to the optical thickness, this inherent non-flatness
consequently gives rise to an unwanted spatially varying phase delay over the
entire LC SLM surface.

One can compensate for this fabrication imperfection by displaying a com-
pensation pattern. Previous studies suggest three different techniques to
obtain this compensation pattern, including interferometry, linear polarizers
and diffraction based measurements [73]. In our case, this compensation pat-
tern is already provided by the manufacturer and we therefore do not have
to conduct additional correction measurements.

Figure 3.2 shows the compensation pattern as provided by the manufac-
turer, which was obtained using interferometry [63]. Here, it is important to
note that due to the wavelength-dependence of the phase shift in Eq. (2.21),
the flatness correction is consequently also wavelength-dependent and there-
fore needs to be chosen accordingly. The manufacturer though only provides
compensation patterns in steps of 10 nm, and we therefore use the next clos-
est one for a wavelength of 490 nm instead of the desired 486 nm. We assume
that the deviation of 4 nm does not make a significant difference. This com-
pensation pattern always has to be applied because it corrects a permanent
deformation of the device.

Additionally, a common concern that unfortunately needs to be dealt with
when using LC SLMs for holographic beam shaping is the occurrence of a
strong zero order spot. For technical reasons, the LC SLM exhibits gaps
at the junctions between adjacent pixels, where no phase modulation is fea-
sible as the corresponding liquid crystal molecules cannot be addressed. In
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Figure 3.2: Compensation pattern for the non-flatness of the LC SLM
backplane. This phase pattern is provided by the manufacturer and is specific
to a wavelength of 490 nm. The manufacturer only provides compensation
patterns in steps of 10 nm, which is the reason why no compensation pattern
specifically for 486 nm is available. However, we consider the effect resulting
from a difference of 4 nm to be negligible.

Fig. 3.3, the phase modulating pixels contributing to the active surface of the
LC SLM are represented by the light gray squares, while the dark gray area
corresponds to these non-addressable inter-pixel gaps. This feature translates
to a fill factor F < 100%, where the fill factor is given by the ratio between
the active surface of the LC SLM and its entire surface. For a fill factor of
F = 100%, the pixel pitch and the pixel size would have to be equal. As the
light hitting the gaps does not experience any type of phase modulation by
the LC SLM, it consequently contributes to the zero order beam along the
optical axis [74]. This unwanted effect not only uses up light, but as a result
also creates a high intensity region of unmodulated light, which can interfere
with the target pattern and compromise its reconstruction quality.

There are multiple approaches to bypass this effect, one of which is sim-
ply utilizing a region far away from the zero order spot by shifting the target
pattern away from the optical axis. However, this technique would be very in-
efficient as it limits the size of the functional area and also reduces diffraction
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Figure 3.3: LC SLM pixel array. The gray squares illustrate individual
pixels, while the dark gray area resembles a non-functional area between the
pixels. Light incident on these gaps is not modulated and instead gives rise
to a bright zero order spot that can negatively affect the quality of the final
image.

efficiency. As described in Refs. [75, 76], one could also create a cancellation
beam with the same profile as the zero order beam combined with the target
pattern. By forcing a π-phase shift between the cancellation beam and the
zero order beam, one can successfully suppress the zero order beam as the
beams would destructively interfere. However, this process turns out to be
rather slow when trying to apply it to more complex target patterns. The
reason is that the calculation of the phase pattern for the cancellation beam
is based on the iterative Gerchberg-Saxton algorithm (see Sec. 3.4.1) and is
therefore time consuming, especially for more complex target patterns. An-
other approach involves applying a blazed grating to selectively deflect the
higher orders and subsequently using a physical beam block, e.g. an iris, to
fully remove the zero order beam in a conjugate plane. This technique though
limits the accessible region in the final reconstruction, since any part of the
target pattern close to the zero order beam could also be affected. In spite of
limiting the accessible region, we have decided to use the latter approach as it
is easy to realize experimentally and does not have any significant drawbacks
when compared to the other techniques.
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3.3 Aberration correction

Aberrations are errors in the phase of the wavefront and are commonly ex-
pressed as an expansion in so-called Zernike polynomials [77], which were
first derived by the Dutch physicist Frits Zernike in 1934. The wavefront
can be decomposed into a superposition of orthogonal Zernike polynomials,
where each polynomial accounts for a specific aberration.

In general, any arbitrary wavefront can be expanded in terms of a sequence
of Zernike polynomials using the polar coordinates (ρ, ϕ), resulting in

W (ρ, ϕ) =
∑
m,n

Cm
n Z

m
n (ρ, ϕ). (3.2)

Here, Z denotes the Zernike polynomials and C the corresponding Zernike
coefficient, while m and n are non-negative integers obeying the relation n ≥
m ≥ 0. One now distinguishes between even and odd Zernike polynomials.
Even Zernike polynomials are defined as

Zm
n (ρ, ϕ) = Rm

n (ρ) cos(mϕ), (3.3)

meaning that they are even with respect to the azimuthal angle ϕ. Odd
Zernike polynomials are consequently odd with respect to ϕ and therefore
take the form

Z−m
n (ρ, ϕ) = Rm

n (ρ) sin(mϕ). (3.4)

The radial distance ρ is restricted to the unit circle (0 ≤ ρ ≤ 1), and the
azimuthal angle ϕ is measured clockwise from the y-axis. The radial polyno-
mials Rm

n are defined as

Rm
n (ρ) =

n−m
2∑

k=0

(−1)k(n− k)!

k!(n+m
2

− k)!(n−m
2

− k)!
ρn−2k (3.5)

for n−m being even, while Rm
n (ρ) = 0 for an odd number of n−m. Figure

3.4 displays the first 10 orders of Zernike polynomials, ordered horizontally
by the azimuthal degree and vertically by the radial degree.

To correct for optical aberrations, we can make use of the orthogonality of
the Zernike polynomials. For every Zernike polynomial, we can adjust its
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Figure 3.4: Surface plot of the first 10 orders of Zernike polynomials. The
name of the associated optical aberrations is provided. Taken from Ref. [77].
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coefficient (both negative and positive) in predefined steps. After every step,
we apply the slightly changed hologram to the SLM and the camera records
an image of the intensity distribution of the first order diffraction beam in
the Fourier plane. The image providing maximum intensity, i.e. an optimized
Strehl ratio, is then determined and its corresponding coefficient is regarded
as the optimal value. Once this value is set, we repeat the same procedure
for the next Zernike polynomial. The aberration correction algorithm as
explained above is summarized in the flow chart in Fig. 3.5.

Figure 3.5: Flow chart of the algorithm used for aberration correction. We
initially set the coefficients of all Zernike polynomials to zero, meaning we
do not assume any wavefront aberration (WA). We then select a Zernike
polynomial Zi and vary its corresponding coefficient Ci by a certain step size
in every iteration, where i accounts for both n and m. After each step, we
measure the intensity of the first order beam and eventually, the coefficient
resulting in the intensity maximum Imax is set as the ideal value. This pro-
cedure is then repeated for the next Zernike polynomial Zi+1 and can be
terminated as desired.
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3.4 Phase retrieval algorithms

The creation of arbitrary light patterns using phase-only LC SLMs turns
out to be quite challenging and the reason for this is as follows: assuming
one knows both the phase and the amplitude of the input light field (e.g. a
Gaussian laser beam), what is the hologram one needs to apply to the LC
SLM to obtain the correct phase modulation producing the desired intensity
pattern in the far field? Here, the Fourier transform is employed to model this
far-field diffraction and it can be experimentally realized either by focusing
the modulated beam with a lens, or by observing the diffracted light at
large distances. The task of recovering a signal from its Fourier transform
magnitude is now referred to as phase retrieval and can mathematically be
achieved by solving the equation

F{A0(x, y)e
i(θ(x,y)+ϕ(x,y))} = AT(u, v)e

iφ(u,v), (3.6)

where F denotes the Fourier transform. The expression A0(x, y)e
iθ(x,y) de-

scribes the input beam, AT(u, v)e
iφ(u,v) the target field and ϕ(x, y) the cor-

responding phase modulation.

Naively, one would approach this problem by simply taking the inverse
Fourier transform of the target field to calculate the required phase mod-
ulation at the LC SLM. However, this approach is not feasible as it would
eventually require a modulation of both the phase and the amplitude of the
input light, whereas only phase modulation is possible. Instead, one usually
attempts to numerically calculate a phase modulation that results in an op-
timized intensity pattern in the Fourier plane. Here, the most conventional
phase retrieval methods used are iterative Fourier transform algorithms (IF-
TAs).

3.4.1 Gerchberg-Saxton (GS) algorithm

The GS algorithm is very powerful and arguably the most common IFTA.
It is a numerical method and its implementation relies on linking the SLM
plane and the Fourier plane by simulating the light propagation back and
forth via the Fourier transform. When using a lens of focal length f to
create the Fourier transform, the lens is placed a distance f away from the
SLM plane and the corresponding Fourier plane is defined as the plane a
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distance 2f away from the LC SLM. After every propagation between these
two planes, one imposes the appropriate amplitude constraint in the corre-
sponding plane, while leaving the phase to converge. As a result of the phase
freedom in both planes, the phase eventually evolves towards an acceptable
solution after a sufficient number of iterations.

A diagram of the GS algorithm is shown in Fig. 3.6 and for reasons of brevity,
we omit the use of spatial coordinates and additionally assume θ(x, y) = 0,
i.e. the incident light field is modelled to have a uniform phase. The starting
point of the calculation is now formed by the input light field

E
(1)
in = A0e

iϕ0 , (3.7)

where A0 denotes the incident amplitude and ϕ0 an initial guess of the phase
modulation to be calculated. Here, the algorithm is typically initialized using
a random phase pattern for ϕ0, where the value of every pixel is randomly
distributed in the range from 0 to 2π. The second step consists of going from
the SLM plane to the Fourier plane by realizing the far-field diffraction of
the LC SLM. This step is achieved by applying the Fast Fourier Transform
(FFT) to the input light field and results in

E
(1)
out = FFT

(
E

(1)
in

)
= A

(1)
oute

iφ(1)

, (3.8)

where A(1)
out is the amplitude of the output light field and φ(1) its corresponding

phase. The first amplitude constraint is then imposed by replacing A(1)
out with

the target amplitude AT =
√
I, while the phase is left unchanged, taking the

form
G

(1)
out = ATe

iφ(1)

. (3.9)

The next step now is propagating back to the SLM plane via the Inverse Fast
Fourier Transform (IFFT), leading to

G
(1)
in = IFFT

(
G

(1)
out

)
= A

(1)
in e

iϕ(1)

, (3.10)

where A(1)
in is the resulting amplitude and ϕ(1) the phase. Subsequently, the

second amplitude constraint is imposed by replacing the resulting amplitude
with the amplitude A0 of the incident light field, which gives

E
(2)
in = A0e

iϕ(1)

. (3.11)
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Figure 3.6: Diagram of the GS algorithm. The Fourier transform links the
SLM plane to the Fourier plane. After each propagation, one imposes the
amplitude constraints Ain = A0 and Aout = AT, while leaving the phase ϕ to
converge. Numerous iterations typically need to be conducted to be able to
reconstruct the target image satisfactorily.

The procedure as described above forms the first iteration of the GS algo-
rithm. Typically, further iterations are required in order to obtain a satisfac-
tory result for the phase modulation. Termination of the calculation process
occurs either after a specified limit in terms of its number of iterations, or
after the deviation between the output amplitude Aout and the target ampli-
tude AT falls below a certain threshold.

Note that both the phase pattern, as well as the target image, which are
used as an input for the GS algorithm, need to have identical height and
width. If this is not the case, the reconstructed optical image stretches or
shrinks accordingly, dependent on the ratio between its height and width.
Therefore, we choose the size of these input images to be 1024 × 1024 LC
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SLM pixels. However, as the final phase pattern needs to cover the entire
area of the LC SLM, which are 1024× 1272 pixels, the calculated phase pat-
tern is concatenated and subsequently cut to the appropriate size.

A significant drawback of the GS algorithm is that the recreated intensity
distributions typically suffer from imperfections in the form of intensity non-
uniformities, which can pose a major problem when trying to generate an
array of identical optical tweezers. In order to improve the uniformity of the
target image, several modifications of the GS algorithm have been proposed
so far. The so-called weighted Gerchberg-Saxton algorithm has proven to
be an efficient approach and is based on the additional incorporation of the
reconstructed image as feedback.

3.4.2 Weighted Gerchberg-Saxton (WGS) algorithm

As a means of increasing the uniformity of the reconstructed image, the
WGS algorithm was recently proposed [78, 79]. It is an approach where the
deviation between the intensity of the target image and the intensity of the
reconstructed image is calculated. This deviation is then used as feedback to
restrict the intensity of the image plane by weighting each spot accordingly.
The way we define the weight w reads

w = eG(IT−Iout), (3.12)

where IT and Iout denote the intensity of the target image and the recon-
structed image, respectively. The parameter G is in the following referred to
as gain and it can increase the speed of convergence when chosen appropri-
ately. Here, our definition of the weight w used for feedback is based on the
comprehensive discussion presented in Ref. [80]

The only difference between the GS algorithm and the WGS algorithm lies
in the amplitude restriction in the Fourier plane. As shown previously, in the
GS algorithm in Fig. 3.6, the first amplitude constraint in the Fourier plane
is imposed by simply replacing Aout with the target amplitude AT =

√
IT. In

the WGS algorithm on the other hand, the target amplitude is additionally
weighted accordingly using the weight w, resulting in the amplitude con-
straint Aout = w ·AT instead. This procedure is done for every iteration, and
the weights need to be calculated again after every iteration as they keep
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changing. Again, the algorithm can either be stopped by setting a limit to
the number of iterations, or after the reconstructed amplitude Aout resembles
the target amplitude AT well within a certain error.

3.5 Calculation of target patterns

In the previous section, we have discussed how to calculate the phase patterns
via phase retrieval algorithms. In our case, these algorithms require input in
the form of an 8-bit grayscale image in the size of 1024 × 1024 pixels. This
image reflects the intensity distribution we would like to create, e.g. a rect-
angular lattice of 6× 6 traps with a separation of 10 pixels, where each trap
corresponds to exactly one pixel. However, we have not yet discussed how
the spot separation in terms of pixels in the SLM plane actually transfers
to a separation in terms of microns in the focal plane. We now discuss the
mathematical relation between these two planes, as it provides a convenient
way of choosing the separation in the SLM plane according to experimental
needs in the focal plane.

As illustrated in Fig. 3.7, the LC SLM we are using is comprised of dis-
crete pixels in a grid of Nξ × Nη = 1024 × 1272, with a pixel size of
∆ξ×∆η = 12.5µm×12.5µm. Following the treatment of Ref. [81], ∆ξ×∆η
defines a unit cell in the SLM plane. Similarly, the maximum physical size
of the incident light in the SLM plane is determined by the active area of
the LC SLM and reads Lξ ×Lη = Nξ∆ξ ×Nη∆η = 15.9mm× 12.8mm. We
now are interested in how these parameters transform when being viewed in
the focal plane of the lens (f3 in Fig. 4.1) focussing down on the camera. In
this focal plane, as depicted in Fig. 3.7, the physical dimension of a unit cell
reads

∆x×∆y =
λfeff

Nx∆ξ
× λfeff

Ny∆η
=
λfeff

Lξ

× λfeff

Lη

, (3.13)

where feff denotes the effective focal length, λ the wavelength of the incident
light and Nx×Ny the number of "pixels" or unit cells in the focal plane. The
effective focal length accounts for all lenses after the LC SLM as included in
the optical setup (see Fig. 4.1) and therefore takes the form

feff =
f1
f2

· f3. (3.14)
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For computational reasons, one chooses Nx ×Ny = Nξ ×Nη, where we refer
the reader to Ref. [81] for further explanation. Similar to the SLM plane,
there exist Nx ×Ny such unit cells in the focal plane, giving rise to a "signal
window" of the size Lx×Ly = Nx∆x×Ny∆y. The size of the signal window
defines the area in the focal plane within which we can ultimately create the
desired intensity distribution.

Figure 3.7: The display of the LC SLM is comprised of Nξ × Nη pixels of
the size ∆ξ × ∆η. In comparison, the field in the focal plane has an equal
amount of unit cells, but with the size ∆x×∆y. Taken from Ref. [81]

As we can see, the discretized grid of pixels in the SLM plane yields a dis-
cretized grid of unit cells in the focal plane. Consequently, the unit cell
∆x ×∆y corresponds to the smallest possible shift. Assuming that the en-
tire LC SLM is illuminated, the unit cell in the focal length amounts to
∆x × ∆y = 14.3µm × 11.51µm. However, we need to keep in mind that,
in our experiment, the diameter of the beam incident on the LC SLM mea-
sures approximately 13mm and therefore does not cover the active area of
the LC SLM horizontally. For our calculations, we consequently decide to
use Lξ ×Lη = 12.8mm× 12.8mm as an approximation. The unit cell in the
focal plane then takes the values ∆x×∆y = 14.3µm× 14.3µm, setting the
smallest scale with which we can ultimately control the optical tweezer array.
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Note that the size of the unit cell in the focal plane as we report above
is a result we obtain while testing the LC SLM, and is much too big for our
actual experimental needs. However, according to Eq. (3.13), one can easily
adjust the size of the unit cell, either by modifying feff by using different
lenses, or by altering the diameter of the incident beam correspondingly.



Chapter 4

Generating holographic 2D optical
tweezer arrays

After reviewing how to operate the LC SLM and providing an overview of the
requirements of its input image in Chap. 3, this chapter presents the exper-
imental implementation of the LC SLM and some first results. In Sec. 4.1,
we discuss our optical setup. While Sec. 4.2 focuses on the calibration of
an LC SLM, we briefly discuss our choice of blazed grating in Sec. 4.3. In
Sec. 4.4, we present the results we obtain when conducting our aberration
correction procedure. Finally, Sec. 4.5 demonstrates our first optical tweezer
arrays, where we generate a rectangular array of 6×6 traps and compare the
results we obtain via the GS algorithm with the ones of the WGS algorithm.

4.1 Optical setup

We first begin by presenting the optical setup shown in Fig. 4.1. We use
a 486 nm laser, which we couple into a polarization-maintaining fiber. The
light emitted by the fiber is then directed to the LC SLM. When building
the setup, one has to pay attention to a few aspects: Firstly, the incidence
angle of the laser beam on the LC SLM head should be less than or equal
to 5 ◦ to maintain good phase modulation [82]. Secondly, the laser beam
should be incident with horizontal polarization, i.e. perfectly parallel to the
plane containing the incident and reflected beam. The required direction of
polarization is set by the polarizing beam splitter (PBS) cube. An additional
half-wave plate (λ/2) is implemented to be able to control the intensity, which
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Figure 4.1: Optical setup. The light comes from a polarization-maintaining
fiber and its polarization is cleaned by a polarizing beam splitter (PBS)
cube. The PBS cube in combination with the half-wave plate (λ/2) allows
for controlling the polarization and intensity of the light incident on the LC
SLM. An additional set of lenses is employed after the LC SLM to change
the beam size and block the unmodulated zero order spot before hitting the
CCD camera.

is either reflected or transmitted by the PBS cube, dependent on the light’s
polarization. The phase-modulated light reflected off the LC SLM is then
focused using an achromatic lens with the focal length f1 = 125mm. This
lens is a distance f1 away from the LC SLM and performs a Fourier transform
of the beam (corresponding to the Fourier transform in the GS algorithm in
Sec. 3.4.1). The intensity distribution associated with the phase modulation
is obtained in the Fourier plane a distance f1 away from the lens (2f1 away
from the LC SLM). We then use an iris in the Fourier plane to block the zero
order spot without significantly affecting the desired image. Subsequently,
a 4f system with a magnification of 3 (f2 = 50mm and f3 = 150mm) is
used to both recollimate the beam and change the size of its focal spot. The
final measurements of the intensity distribution are taken by placing a CCD
camera in the Fourier plane of the last lens.



LC SLM CALIBRATION 54

4.2 LC SLM calibration

Note that the LC SLM we are using is designed to achieve a phase modula-
tion of up to 2.28π at the maximum design wavelength. Independent of the
specific wavelength, this design therefore always ensures a phase modulation
of at least 2π. As we have discussed in the previous chapter, the phase mod-
ulation of the LC SLM varies dependent on the wavelength of the input light,
which essentially means that applying the same gray level to two different
wavelengths yields different phase modulation depths. We can correct for
this by introducing the parameter g in Eq. (3.1), which corresponds to the
gray level value yielding a phase shift of 2π at the wavelength of interest. In
our case, this parameter is already provided by the manufacturer, i.e. we do
not have to carry out the calibration procedure ourselves. The manufacturer
suggests g = 194 for a wavelength of 486 nm. In case the value is not pro-
vided and for completeness, we briefly want to present how these calibration
measurements could be conducted.

In general, the goal of calibrating the LC SLM is to obtain a relation be-
tween the input gray level values and the corresponding phase pattern of
the LC SLM. A variety of different calibration procedures has been proposed
in literature, which can be sorted in two distinct categories: the diffractive
phase calibration and the interferometric phase calibration. Both methods
are widely applied and a comprehensive explanation can be found in Ref. [83].

In Ref. [84], an interferometric phase calibration method is proposed, which
entirely relies on the LC SLM itself and, unlike other methods, does not
require additional optical components. It is therefore commonly used and
is worth discussing. In brief, the LC SLM is configured to simultaneously
display a different phase pattern on each half. As depicted in Fig. 4.2 (a)
(left panel) and Fig. 4.2 (b) (left panel), one half is addressed with a uniform
gray level value, while the other half displays a vertically-oriented binary
diffraction grating. While the uniform gray level value of the first half is var-
ied during the calibration procedure, the diffraction grating remains static.
When illuminating these specific phase patterns with a collimated beam, the
binary grating diffracts a considerable amount of the incident beam into the
±1 diffraction orders under certain angles (dependent on the grating period),
whereas the uniform half results in a non-deflected beam with a certain phase
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shift (dependent on the gray level value). Both beams then overlap and yield
an interferometric pattern in the form of interference fringes, as shown in
Fig. 4.2 (a) (right panel) and Fig. 4.2 (b) (right panel). Here, the entire phase
shift information is carried by the non-deflected beam. Figure 4.2 shows that,
upon changing the gray level value of the uniform half, the position of the
fringes changes accordingly. By determining the fringe position, the desired
relation between the displayed gray level value and the corresponding phase
shift can be obtained [84].

Figure 4.2: Examples of phase patterns and corresponding interference
fringes for different gray levels of the right half of the LC SLM. (a) 0. (b)
63. The red line is added to confirm the displacement of the fringe position.
Adapted from Ref. [84].

4.3 Choosing the blazed grating

In Sec. 3.2, we have already discussed the reason for additionally having to
add a blazed grating to the phase pattern of the LC SLM. Figure 4.3 shows
the blazed grating we apply to the LC SLM, which has a period of 10 LC
SLM pixels or 10 gray levels, respectively.
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Figure 4.3: Blazed grating with a period of 10 pixels. The image is a
grayscale image and therefore has values in the range of 0 to 255. A period
of 10 pixels corresponds to 10 different gray levels per period.

When choosing the period of the grating, there is a trade-off between the
diffraction efficiency and the diffraction angle. On the one hand, we want to
have a large diffraction efficiency so we do not "waste" light. On the other
hand, we also desire to obtain a large enough separation between the zero
and first order to be able to block the zero order successfully. To determine
the diffraction efficiency, we display blazed gratings with a different number
of pixels per period, each pixel corresponding to a gray level between 0 and
255, i.e. an 8-bit signal. For each grating, the first order diffraction intensity
is measured and the resulting diffraction efficiency is presented in Fig. 4.4.

Note that we did not specifically determine the separation between the indi-
vidual diffraction orders as a function of the spatial frequency of the blazed
grating. Instead, we tried different values for the grating period and eventu-
ally decided to use a period of 10 pixels, as it led to a satisfactory separation
between the spots on the camera. For the future though, we strongly suggest
to measure the correspondence between the spot separation on the camera
and the grating period. Furthermore, note that, dependent on the size of the
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intensity pattern one wants to display, a different grating period might has
to be chosen such that the zero order beam and the modulated first order
beam do not overlap.

Figure 4.4: Measured diffraction efficiency as a function of the spatial
frequency expressed in line pairs per millimeter (lp/mm). The dashed line
shows a linear fit of the form f(x) = kx + d with the fit parameters k =
−1.89(2) %

lp/mm
and d = 96.6(2)%.

4.4 Aberration correction

We correct for aberrations in our system as presented by the flow chart in
Fig. 3.5. Figure 4.5 (a) displays the resulting Zernike coefficients. Here, we
conduct the aberration correction measurements starting with the radial or-
der n = 2, corresponding to the third row in Fig. 3.4. We skip the first two
rows with n = 0 and n = 1 in the aberration correction procedure as these
are not "true" optical aberrations. More accurately, they do not model the
actual curvature of the wavefront, but rather characterize its surface position-
ing. Here, the constant n = 0 order (=piston aberration) only corresponds
to an offset in height, while the n = 1 order (=tilt aberration) accounts for
misalignment or tilts.
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Figure 4.5: Aberration correction via Zernike polynomials. (a) The mea-
sured Zernike coefficients are shown, where we do not take into account the
first two orders of Zernike polynomials (n = 0 and n = 1) as they are not
"true" aberrations. We determine aberrations in the form of vertical pri-
mary astigmatism (C2

2 = 0.4), vertical coma (C−1
3 = −0.1), vertical trefoil

(C−3
3 = −0.1) and horizontal trefoil (C3

3 = 0.1). (b) The phase pattern cor-
responding to the measured Zernike coefficients is an 8-bit grayscale image
with a resolution of 1024× 1272.

The Zernike polynomial with the orders n = 2 and m = 0, where its corre-
sponding Zernike coefficient is denoted C0

2 in Fig. 3.4, accounts for defocus as
a wavefront aberration. As shown in Fig. 4.5 (a), we determine C0

2 = 0, which
means that our optical system does not exhibit any defocus. Similarly, we
find that C−2

2 = 0 and C2
2 = 0.4, with these Zernike coefficients accounting for

oblique primary and vertical primary astigmatism, respectively. While there
appears to be no optical aberration in the form of oblique primary astigma-
tism, vertical primary astigmatism in the optical system can be identified.
The presence of this type of astigmatism typically indicates misalignment of
the optical components. Additionally, large angles of incidence on the LC
SLM could also introduce astigmatism, where the effective pixel structure
ends up being slightly denser in one direction [68]. Moving on to third order
aberrations, we have the Zernike polynomials describing vertical coma with
the Zernike coefficient C−1

3 = −0.1, horizontal coma with C1
3 = 0, vertical

trefoil with C−3
3 = −0.1, and horizontal trefoil with C3

3 = 0.1. We can de-
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termine that both the vertical coma and the vertical trefoil exhibit non-zero
Zernike coefficients and are therefore present in the optical system. Pres-
sure on mounting elements in particular can give rise to some form of trefoil,
which can also be thought of as a three-winged form of astigmatism, as nicely
illustrated in Fig. 3.4.

Figure 4.5 (b) displays the phase pattern corresponding to these Zernike co-
efficients. This phase pattern needs to be superimposed with both the com-
pensation pattern (Fig. 3.2) and the blazed grating (Fig. 4.3) when applied to
the LC SLM. Figure 4.6 (a) displays the first order diffracted beam without
aberration correction. Note that the spot has an elliptical shape as a result
of the aberrations as listed above. We analyze the quality of the spot by
fitting a two-dimensional Gaussian function in the form of

G(x, y) = z0 + A exp

(
−
(
(x− x0)

2

2σ2
x

+
(y − y0)

2

2σ2
y

))
(4.1)

to the data. Here, the coefficient z0 denotes the offset, A the maximum
intensity, x0 and y0 the center, and σx and σy the standard deviations in
the x- and y-direction, respectively. The relation with the full width at half
maximum (FWHM), which is denoted as W in the following, is given by

Wi =
√
2 ln(2)σi, (4.2)

with i = x, y. Accordingly, we determine FWHMs of Wx = 14.36(4)µm and
Wy = 18.90(6)µm for the spot in Fig. 4.6 (a), where no aberration correction
is applied. Figure 4.6 (b) on the other hand shows the spot when additional
aberration correction is applied. We see a significant improvement of the
beam quality as we obtain Wx = 15.12(2)µm and Wy = 15.26(2)µm instead.
As mentioned before, the aberration correction scheme is based on finding the
Zernike coefficients resulting in the maximum intensity of the first diffraction
order. This condition of maximizing the intensity is also nicely reflected by
the maximum intensity A as a fit parameter. Normalizing to the maximum
intensity Imax after the aberration correction, we find that the intensity before
the aberration correction is Ibefore = 0.817(5)Imax, while we obtain Iafter =
1.000(3)Imax afterwards.
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Figure 4.6: First order diffraction spot before and after aberration correc-
tion. (a) The first order diffraction spot before correcting for aberrations
exhibits an elliptical shape, where the quality is determined by fitting a
two-dimensional Gaussian function as indicated by the white lines. (b) The
quality of the spot improves significantly when correcting for aberrations.
Again, the two-dimensional Gaussian fit is indicated by the white lines.

4.5 Rectangular optical tweezer array

GS algorithm

We first test the functioning of the GS algorithm as introduced in Sec. 3.4.1.
Here, the target pattern is a rectangular lattice of 6× 6 traps with a separa-
tion of 10 pixels, where each trap corresponds to one pixel. Figure 4.7 shows
what the phase pattern (ϕtarget in Eq. (3.1)) looks like after 50 iterations of the
GS algorithm. For its computation, we additionally assume A0 = 1, which
means the input beam has spatially uniform intensity. The assumption of
uniform illumination of the LC SLM is not completely true, as the incident
beam is actually Gaussian. However, initially assuming Gaussian illumina-
tion would add three additional free parameters, i.e. the width in the x- and
y-direction, as well as the position of the beam on the LC SLM. Alternatively,
if the Gaussian beam impinging on the LC SLM is significantly bigger than
the active area of the LC SLM, one can assume uniform illumination. In
our case, the diameter of the incident beam measures approximately 13mm,
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Figure 4.7: Phase pattern after 50 iterations of the GS algorithm for a
target pattern of 6× 6 traps with a separation of 10 pixels.

which is about the same size as the shorter side of the rectangular active area
(15.9mm × 12.8mm) and is therefore not "significantly" bigger. Neverthe-
less, after testing either option, we are not able to determine a considerable
difference. Thus, we implement uniform illumination for reasons of simplicity.

Figure 4.8 (a) displays the image one would expect to see in the Fourier
plane when applying Fig. 4.7 to the LC SLM, which is |Eout|2 after the last
iteration (see Fig. 3.6). In comparison, Fig. 4.8 (b) shows the actual image as
recorded by the camera when applying the phase pattern given in Fig. 4.7 to
the LC SLM (in addition with the flatness correction, the blazed grating and
the aberration correction).

In Fig. 4.8 (b), we can clearly see an undesired non-uniformity in the in-
tensity of the generated optical tweezer array. We attempt to minimize this
issue by using the WGS algorithm instead.
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Figure 4.8: Expected and actual image on the camera using the GS algo-
rithm for phase retrieval. (a) Using the final |Eout|2 after the last iteration,
one can check what the expected image on the camera when applying the
corresponding phase pattern should look like. (b) The intensity distribution
of the actual image on the camera looks similar to the theoretical prediction
on the left. However, both the reconstructed image and the expected image
have a non-uniformity in intensity, which can be dealt with by implementing
the WGS algorithm instead.

WGS algorithm

We conduct the WGS algorithm for exactly the same random phase guess and
the same target image as for the GS algorithm previously. To better demon-
strate the difference in results of both algorithms, Fig. 4.9 (a) again shows the
reconstructed image when using the GS algorithm, while Fig. 4.9 (c) depicts
the final image on the camera for the WGS algorithm. By eye, we can already
observe a significant improvement of the uniformity of the traps, which we
quantify by introducing the uniformity

u = 1− Imax − Imin

Imax + Imin
, (4.3)

where Imax and Imin denote the maximum and minimum intensity of the
spots, respectively. More precisely, we select an area of a certain size in-
cluding each spot (e.g. the spot position ± 20 camera pixels in the x- and
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y-direction), where the summation of the signal within the area is regarded
the intensity of the respective spot. By additionally conducting the fitting
procedure using a two-dimensional Gaussian function as given in Eq. (4.1),
we can analyze the quality of the spots in terms of their spot size. Here,
we also want to determine the homogeneity of the spot size. As a measure
of the homogeneity of a set of data x, we therefore introduce the standard
deviation, which is given by

S(x) =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2, (4.4)

where n is the number of spots and xi the set of data, e.g. the parameter W .

For the spots we obtain via the GS algorithm as shown in Fig. 4.9 (a), we
determine a mean spot size of W x = 15.6(4)µm and W y = 15.6(4)µm in
the x- and y-direction, respectively. The corresponding uniformity takes a
value of around u = 72.54%. As for the spots created via the WGS algorithm
displayed in Fig. 4.9 (c), we find a mean spot size of W x = 15.5(4)µm and
W y = 15.5(5)µm. Here, the uniformity reads approximately u = 98.15%.
These results demonstrate that we indeed are able to achieve much better
trap uniformity.

Figure 4.9 (b) and Fig. 4.9 (d) display the individual trap intensities for the
GS algorithm and the WGS algorithm, respectively. Here, the standard devi-
ations are plotted as shaded areas, while the mean spot intensity is indicated
by the dashed lines. It can clearly be seen that the trap intensities vary much
less for the WGS algorithm, which confirms the improvement in uniformity
as mentioned above.
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Figure 4.9: Rectangular lattice of 6×6 traps with a separation of 10 pixels.
(a) The image is reconstructed via 50 iterations of the GS algorithm and
shows considerable non-uniformity in the intensity of the spots. (b) The
intensities of the individual traps for the GS algorithm exhibit significant
non-uniformity as they vary dramatically. (c,d) We can correct the non-
uniformity by utilizing the WGS algorithm. Here, 46 iterations of the WGS
algorithm result in an improved uniformity.



Chapter 5

Performance and quality

In this chapter, we want to further analyze the performance of the WGS
algorithm and the quality of the reconstructed spots. In Sec. 5.1, we discuss
the performance of the weighted Gerchberg-Saxton algorithm (WGS) algo-
rithm using the example of the rectangular 6 × 6 lattice from the previous
chapter. Section 5.2 instead demonstrates the functioning of the WGS al-
gorithm by showing various complex geometries of optical tweezer arrays we
are able to generate. Here, we use the same analytical procedure as for the
rectangular lattice in the previous chapter to quantify the performance of the
WGS algorithm and the quality of the spots. In Sec. 5.3, we very briefly re-
view the scalability of the WGS algorithm, i.e. how many traps we can create
with reasonable quality. In the end, Secs. 5.4 and 5.5 focus on the emergence
of ghost spots, and the dependence of the spot quality on spot separation,
respectively.

5.1 Performance of WGS algorithm

Equation (4.3) quantifies the uniformity of the spot intensities. In Fig. 5.1 (a),
we show how the uniformity increases as a function of the number of iterations
for the case of the 6× 6 rectangular array. Here, the algorithm is set to stop
when the deviation between the weakest and brightest spot is less than or
equal to 3% of the latter. An alternative method is based on the root mean
squared error (RMSE) for all n spots as a condition of termination. The

65
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normalized RMSE is defined as

RMSE =

√√√√ n∑
i=1

(
IT,i − Iout,i

IT,i

)2

, (5.1)

and is a measure of the deviation between the reconstructed intensity Iout

and the desired target intensity IT. Referring to the 6× 6 rectangular array,
the WGS algorithm conducts 46 iterations until it reaches its terminating
condition. Figure 5.1 (a) shows that the corresponding uniformity converges
towards 100% with an increasing number of iterations, where we obtain a
final uniformity of approximately 98.15%. In addition to the convergence
of the uniformity, the convergence of both the weight and the RMSE also
indicate that the reconstructed intensity Iout approaches the target intensity
IT. We compute the weight as given in Eq. (3.12) and the RMSE as defined
in Eq. (5.1). Both results are shown in Fig. 5.1 (b), where the RMSE and the
maximum value of the weight w are represented by the blue and green data
set, respectively.

Figure 5.1: Results of the WGS algorithm. (a) The uniformity converges to
a value of one, i.e. 100% as the number of iterations increases. Upon reach-
ing the terminating condition after 46 iterations, the uniformity amounts to
around 98.15%. (b) As the number of iterations increases, the maximum
value of the weight converges to a stable value of one, while the correspond-
ing RMSE approaches zero.
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Note that the RMSE gradually converges to a value of zero, which is rea-
sonable, considering that the reconstructed intensity Iout is set to approach
the target intensity IT. Furthermore, as the number of iteration increases,
the weight converges to a stable value of one, as eG(IT−Iout) ≈ 1 when Iout

approaches IT. For the above results, we use a gain of G = 10. Generally,
the choice of the gain depends considerably on how many spots the target
image consists of. Empirically, the gain should be increased for an increas-
ing number of spots. If the gain is too low or too high, it might occur that
the WGS algorithm does not converge and either undershoots or overshoots
instead.

5.2 Gallery of optical tweezer arrays

Besides the creation of rectangular optical tweezer arrays as already dis-
cussed, we can create a wide variety of different trap geometries. For instance,
Fig. 5.2 displays circular, kagome and Lieb trap geometries. These geometries
are particularly relevant for quantum simulation applications. For example,
quantum phases have recently been theoretically investigated by arranging
Rydberg atoms on a kagome lattice [85]. Another example involves quantum
simulation of a topological Mott insulator by utilizing Rydberg atoms in a
Lieb lattice [86].

The left column of Fig. 5.2 shows the reconstructed image using the GS algo-
rithm, while the right one displays the results of the WGS algorithm. In all
three considered geometries, we observe that the latter provide better per-
formances, as we quantify comparatively in Table 5.1 and 5.2. The analysis
of the spot quality and the performance of the WGS algorithm for all three
trap configurations is exactly the same as explained previously.

For the GS algorithm, we always set the number of iterations to 50, while for
the WGS algorithm this number is set by the 3% tolerance explained above.
The number of iterations varies for the different trap geometries. The trap
uniformity has significantly increased for the WGS algorithm with respect to
the GS algorithm.
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Table 5.1: Mean spot size (W x, W y), uniformity u and root mean square
error (RMSE) for different trap geometries using the GS algorithm.

Configuration Iterations W x (µm) W y (µm) u (%) RMSE (%)

Rectangular 50 15.6(4) 15.6(4) 72.54 16.12

Circular 50 15.5(5) 15.3(5) 78.22 18.54

Lieb 50 15.2(4) 15.3(4) 65.04 31.92

Kagome 50 15.0(3) 15.1(3) 66.01 13.98

Table 5.2: Mean spot size (W x, W y), uniformity u and root mean square
error (RMSE) for different trap geometries using the WGS algorithm.

Configuration Iterations W x (µm) W y (µm) u (%) RMSE (%)

Rectangular 46 15.5(4) 15.5(5) 98.15 6.55

Circular 23 15.6(4) 15.6(4) 98.56 3.02

Lieb 35 15.5(4) 15.4(4) 98.18 6.59

Kagome 30 15.3(3) 15.1(3) 98.64 3.84

We want to point out that, especially in Fig. 5.2 (d) and Fig. 5.2 (f), one can
observe the emergence of so-called ghost spots. These are weaker replicas
of the desired spots, which are located in between them and are further
discussed in Sec. 5.4. Additional discussions and figures on the different ge-
ometry and convergence can be found in App.A.
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Figure 5.2: Circular (a, b), Lieb (c, d) and Kagome (e, f) lattice geometries
using the GS (left column) and the WGS (right column) algorithm.
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5.3 Scalability of WGS algorithm

We now focus on the scalability of the WGS algorithm with respect to the
number of spots that can be reconstructed with reasonable quality. The
largest number of spots we have been able to create successfully so far is 100
in the form of a 10 × 10 rectangular array. Note that this is not the upper
limit of what is feasible with our system, but rather simply the largest array
we have investigated so far.

Similar to before, we first apply the GS algorithm and extract the inten-
sity uniformity and then determine its improvement thanks to the WGS
algorithm. Figure 5.3 shows the reconstructed image on the camera via the
GS algorithm, while Fig. 5.4 depicts the reconstructed image using the WGS
algorithm. For 50 iterations of the GS algorithm, we find a uniformity of
only around u = 8.46% and a mean spot size in the x- and y-direction of
W x = 15.3(5)µm and W y = 15.1(4)µm. Instead, the WGS algorithm yields
an improved uniformity of u = 97.64% after 128 iterations. The mean spot
size roughly remains the same with W x = 15.2(5)µm and W y = 15.2(4)µm.

Figure 5.3: 10×10 rectangular optical tweezer array. The image is obtained
after 50 iterations of the GS algorithm and suffers from substantial intensity
non-uniformity, as clearly shown in the inset figure.
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Figure 5.4: 10× 10 rectangular optical tweezer array. The WGS algorithm
terminates after 128 iterations and results in a great improvement of the
intensity uniformity.

Note that the outperformance of the WGS algorithm over the GS algorithm
becomes very evident when scaling up the lattice size. For instance, in the
case of the 6 × 6 lattice, we obtain a uniformity of u = 72.54%, while for
a moderate scaling up to 10 × 10, the uniformity obtained with the GS
algorithm drops to u = 8.46% as mentioned before. However, for the WGS
algorithm, reasonable uniformities of around 98% can be achieved for both
lattice sizes. The corresponding graphs displaying the convergence of the
uniformity, and of the RMSE and the maximum value of the weight can be
found in Fig.A.2 in App.A.

5.4 Ghost spots

As mentioned, the intensity patterns we obtain can be polluted by undesired
ghost spots. As an example, Fig. 5.5 shows ghosts spots for the specific case
of the Lieb lattice. These ghost spots typically emerge as a side effect of
the phase-only nature of LC SLMs. Due to the fact that the LC SLM is
only able to modulate the phase, but not the intensity, it does not always
accurately reconstruct the desired intensity distribution in the focus. As a
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result, ghost spots may appear. As briefly discussed in Sec. 2.3, another set of
ghost spots appears as a result of the pixelated structure of LC SLMs [87, 88].

In general, ghost spots resemble fainter replicas of the desired image and re-
flect specific symmetries thereof, as their location of formation is dependent
on the symmetry of the target intensity pattern. Moreover, the ghost spots
can interfere with the desired spots and consequently cause errors in the in-
tensity distribution and reconstruction. This issue is particularly pronounced
for highly symmetric spot configurations. Here, unwanted ghost spots usually
exactly coincide with the position of the desired spots, leading to unequal
spot intensities. As a result, the presence of ghost spots not only reduces
the diffraction efficiency, but also severely degrades the uniformity of the fi-
nal image. Besides giving rise to non-uniform intensity distributions, ghost
spots can pose an additional issue when their intensity becomes comparable
to the intensity of the desired spots. In that case, one can unintentionally
trap particles in these unwanted spots during the experiment.

Depending on the trap geometry, the intensity of most of our ghost spots

Figure 5.5: Lieb lattice of optical tweezers. The lower spot in the inset
figure is one of many ghost spots, emerging due to the pixelated structure of
the LC SLM and its phase-only nature.
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is found to take values of around 10-15% of the intensity of the desired spots
with outliers reaching even 35%. Different approaches aiming their suppres-
sion have been shown so far, one of which is presented in Ref. [88].

In Ref. [88], the authors employ a so-called virtual lens on the LC SLM only
affecting the modulated light, where the virtual lens is essentially an addi-
tional phase pattern. The virtual lens configuration subsequently focuses the
modulated light into the Fourier plane of the unmodulated light and vice
versa. Accordingly, moving the first order diffraction beam with the desired
pattern into the Fourier plane of the zero order beam comes with multiple
benefits, one of which is that the zero order beam does not specifically have
to be eliminated. Another benefit is the ability to remove undesired ghost
spots by displacing them axially into other focal planes. As a result, using a
virtual lens configuration yields fewer and lower intensity ghost spots.

5.5 Separation of spots

Besides the emergence of ghost spots, we identify an additional characteristic
of the LC SLM that might cause issues in the reconstruction of images. If
the separation of the spots as defined in the input target image is chosen too
small, the spots are distorted significantly. As shown in Fig. 5.6, we recon-
struct multiple images with different spot separations via the WGS algorithm
to illustrate this problem.

As can be seen, the spot quality gets worse the smaller the separation is. We
again fit each spot with a two-dimensional Gaussian function to determine
its size and position. All the results are summarized in Table 5.3. Note that
we are not able to conduct the fitting procedure for a separation of 2 pixels
and 1 pixel. Additionally, the WGS algorithm can not be conducted prop-
erly for these two separations as the spot uniformities do not converge. As
for the reason why this might be the case, we assume the following: When
the distance between the spots decreases, we can observe a change of both
their intensity and their shape. Since the exact intensity between the spots
is quite random, the resulting interference is also rather random. As a re-
sult, an inhomogeneity of the power of the spots emerges and a distortion
of their shape becomes visible. These effects are particularly prominent for
smaller separations, which is why the WGS algorithm breaks down when try-
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Figure 5.6: Rectangular lattice for different spot separations. We inves-
tigate the dependence of the spot quality for different separations of pixels
(pxl) in the input target image. A significant decrease in quality can be ob-
served for smaller separations.

ing to obtain uniform spot intensities. When running the WGS algorithm,
we always make sure that the area surrounding each spot, which is used for
evaluating its intensity, is chosen small enough such that it would not overlap
with other areas or include neighbouring spots.

In Table 5.3, the separation in pixels is denoted ∆x, while the calculated
and measured separation in microns is denoted ∆xc and ∆xm, respectively.
The calculation of the separation was conducted with the help of Eq. (3.13).
The increase in uncertainty of the mean spot size in the x-direction for smaller
separations might indicate a deformation of the spots. As depicted Fig. 5.7,
we additionally find that the uniformity slightly decreases, while the cor-
responding RMSE increases with decreasing separation. Even though the
results suggest a reduction in spot quality for decreasing separations, more
measurements would have to be conducted for us to be able to support this
statement, or might even define a threshold separation beyond which the
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spots are deformed considerably. Nevertheless, Table 5.3 shows that the cal-
culated spot separation coincides nicely with the measured one. Therefore,
we are able to reliably reconstruct desired spot separations by choosing the
target pattern accordingly.

Table 5.3: Calculated separation (∆xc), mean measured separation (∆xm),
mean spot size (W x, W y), uniformity (u) and RMSE for different trap sep-
arations of a 3× 3 rectangular array using the WGS algorithm.

∆x (pxl) 10 8 6 4

∆xc (µm) 142.96875 114.375 85.78125 57.1875

∆xm (µm) 143.0(2) 114.4(2) 85.80(17) 57.2(2)

W x (µm) 15.2(2) 15.0(3) 15.3(4) 15.0(8)

W y (µm) 15.1(4) 15.2(4) 15.3(5) 15.2(4)

u (%) 99.06 98.92 98.82 98.80

RMSE (%) 1.73 2.11 2.27 2.33

Figure 5.7: Trap uniformity and RMSE as a function of the spot separation.



Chapter 6

Conclusion and Outlook

The aim of this thesis was to generate two-dimensional optical tweezer arrays
using an LC SLM for the main experiment in the T-REQS lab. In the main
experiment, we generally want to work with dynamic optical tweezer arrays,
which we want to harness for quantum simulation using erbium Rydberg
atoms. Here, the idea is to use the LC SLM to create only a static pattern,
which will then be overlapped with the output of two perpendicular AODs
to move the atoms around and consequently make the arrays dynamic. A
simplified idea of how overlapping the beam coming from the AODs and
the one from the SLM setup could be realized is schematically depicted in
Fig. 6.1, where we use polarizing beam splitter (PBS) for overlapping, while
we use waveplates to control the intensity and the polarization.

Figure 6.1: Schematic diagram of the overlap between the static pattern of
the LC SLM and the moving optical tweezer of the AODs.
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At the time of writing this thesis, we are able to generate a one-dimensional
optical tweezer array using a single AOD. We are able to successfully trap
erbium atoms in these optical tweezers, and at the moment, we are working
towards achieving single atom trapping and optimizing our imaging sequence.

Within the scope of this thesis, we first put focus on reviewing Rydberg
atoms, as we ultimately want to use these for quantum simulation. The gen-
eral properties and interactions between Rydberg atoms were covered, where
different quantum systems one can simulate were briefly mentioned. In par-
ticular, we put emphasis on discussing the Rydberg blockade as a special
feature of Rydberg atoms. Here, we talked about the great importance of
the Rydberg blockade in terms of quantum simulation. Eventually, we shed
light on erbium in Rydberg physics and listed its most relevant properties.
Erbium is especially interesting for these types of experiments as its multiple
valence electrons give rise to a great variety of new excitation schemes, while
its large angular momentum enables the encoding of large Hilbert spaces
when doing quantum simulation.

Next, we introduced the basic concepts of atom-light interaction. Within this
chapter, we put focus on describing the basic notions needed to understand
optical tweezer experiment. Additionally, the majority of this part of the the-
sis was dedicated towards presenting an overview of different optical devices
capable of generating optical tweezer arrays. We discussed the main devices,
which include acousto-optic deflectors (AODs), digital micromirror devices
(DMDs) and liquid crystal spatial light modulators (LC SLMs), where the
working principle of the latter in particular was discussed extensively. Lastly,
we compared the advantages and disadvantages of these devices, arguing why
we have eventually decided to use an LC SLM.

After that, we presented the optical setup we used for testing the LC SLM.
Subsequently, the generation of holographic two-dimensional optical tweezer
arrays using an LC SLM was discussed, followed by an overview of the dif-
ferent phase patterns which are typically necessary to drive the LC SLM.
In particular, we focused on the Gerchberg-Saxton (GS) algorithm and the
weighted Gerchberg-Saxton (WGS) algorithm as means of retrieving phase
patterns. At that point, we also presented our first reconstructed images and
started comparing the corresponding reconstruction quality in dependence of
the algorithm which was used.
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The next chapter was entirely devoted to presenting the experimental re-
sults and continuing the discussion of the reconstruction quality as started
in the previous chapter. Here, we analyzed the performance of the WGS
algorithm and evaluated the quality of the resulting spots. We tested the
functioning of both the GS algorithm and the WGS algorithm for a variety
of different trap geometries. While the GS algorithm gave rise to considerable
non-uniformities of the trap intensities for every geometry, the WGS algo-
rithm on the other hand resulted significantly improved uniformities of trap
intensities. However, we were able to identify two major problems in our re-
constructed images, one of which was that the quality of the spots was found
to decrease with a decreasing spot separation. Additionally, we observed the
emergence of ghost spots in our reconstructed images. These ghost spots can
pose serious issues regarding the implementation of the LC SLM setup in
the main experiment, as it might occur that particles are trapped in these
undesired spots.

In the future, it would therefore definitely be interesting to further investi-
gate the negative influence of these ghost spots an address their suppression.
As reported at the end of the previous chapter, we have not yet been able
to explicitly determine a minimum separation beyond which the spots are
distorted too much for us to be of any use. Thus, it would be intriguing to
work out a reasonable threshold by conducting more/different measurements.
Another parameter that is worth testing in the future is the scalability of the
WGS algorithm in terms of the number of traps. At this point in time, we
have been able to successfully reconstruct 100 traps, but have not yet tested
the actual limit, which would be of great interest for the implementation in
the main experiment. The way the aberration correction has been conducted
until now is another factor that needs to be taken into consideration in the
future. While we have put a camera directly in the focus of the traps and
measured their intensity thus far, this will unfortunately not be feasible in
the main experiment due to limitations in the optical setup. Instead, we
are planning on using the light shifts of the optical tweezers for aberration
correction.



Appendix A

This chapter includes additional information regarding the choice of wave-
length and presents supplementary figures related to the data analysis as
conducted in Chap. 5.

A.1 486nm light

The reason for using a 486 nm laser for our optical tweezer arrays is that,
due to the polarizability of erbium, we predict magic conditions for all our
main cycling transitions at this wavelength. These cycling transitions are
indicated by the arrows in Fig. 1.4 and the most relevant ones are briefly
summarized in Table A.1.

In our case, "magic" refers to a specific ellipticity angle that nulls the dif-
ferential light shift emerging due to the optical trap. Mathematically, this
can be expressed as Uν/Ug = 1, where Ug is the light shift experienced by
the ground state and Uν the light shift of the respective excited state. Here,
the excited state is different for every cycling transition, with ν denoting
whether it is the 401 nm, 583 nm or 841 nm transition. The differential light
shift takes the form

∆U(r) = Uν − Ug = −∆α(ν, χ)

2ϵ0c
I(r), (A.1)

where ∆α denotes the difference in polarizability of both states and I the
intensity of the trapping potential. As can be seen, the differential light
shift can be modified by tuning the trapping light polarisation ellipticity χ
accordingly.
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Table A.1: Most relevant cycling transitions in the main experiment.

401 nm 583 nm 841 nm

Γ/2π 28MHz 190 kHz 8 kHz

Cooling, fast
imaging

MOT,
non-destructive

imaging

Narrow-line
cooling

Figure A.1 displays the ratio between the the light shifts of the ground state
and excited state as a function of the ellipticity angle χ. For all three cycling
transitions, we can determine an intersection with the horizontal line at a
value of one. These three points of intersection correspond to the ellipticity
angle at which the magic condition is reached.

Figure A.1: Dependence of the differential light shift on the ellipticity angle
of the trapping light. For all three relevant cycling transitions, we are able
to determine magic conditions at different ellipticity angles, as indicated by
the dashed circles.
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A.2 Performance of WGS algorithm

Figure A.2: Results of the WGS algorithm for the 10×10 rectangular array.
(a) The uniformity after 128 iterations of the WGS algorithm amounts to
about 97.64%. (b) With an increasing number of iterations, the associated
RMSE and maximum value of the weight approach the values zero and one,
respectively.
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Figure A.3: Uniformity, RMSE, and weight as a function of the number
of iterations for different trap geometries. Circular (a, b), Lieb (c, d) and
Kagome (e, f).
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Figure A.4: Individual trap intensities for different trap geometries ob-
tained via the GS (left column) algorithm and the WGS (right column)
algorithm. Circular (a, b), Lieb (c, d) and Kagome (e, f).
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