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The Flammarion engraving («Un missionnaire du moyen
âge . . . »). Unknown artist. [97, p. 163]

Nach all den Jahren kann ich immer noch nicht fassen:
Woraus hat sich dieser ganze Kram erschaffen?

Hat er sich von Null auf Hundert in den Raum gesetzt,
Ohne zu fragen, vom Nichts ins Jetzt?

[. . .]
Also kehren wir zurück

An den Ursprung des Ursprungs des Ursprungs des Ursprungs,
Zurück an den sogenannten Eisprung des Ursprungs.

Und was davor ist, ist dann quasi meine Quelle,
An die ich jetzt mal jene kühne Frage stelle:

“Warum?”

– Käptn Peng und die Tentakel von Delphi, “Sockosophie”

https://open.spotify.com/track/4bkVbtSNfCa8TgTKGf3OCW
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S Y N O P S I S

In experimental physics, quantum gases of ultracold atoms have proved, on the one hand,
an extremely productive subject of study for its own sake, and on the other hand, a help-
ful tool to simulate and understand other, less accessible quantum many-body systems.
The vast majority of quantum gas experiments so far has utilised atoms that interact
through an isotropic, short-ranged, contact-type interaction. More recently, experiments
using atoms of strongly magnetic elements such as chromium, erbium, and dysprosium
have been realised, whose physics can be heavily influenced by the anisotropic and long-
ranged dipole-dipole interaction.

One part of this thesis reports on studies of three-dimensional bulk quantum gases of
erbium and dysprosium sufficiently confined in the direction of dipole polarisation. In
such systems, a carefully balanced interplay between repulsive contact interaction, attrac-
tive dipole-dipole interaction, and fluctuations can lead to the spontaneous formation of
density-modulated states. Within a narrow parameter regime, these states can combine
features of a crystal (spatial periodicity) and of a superfluid (phase coherence), manifest-
ing a so-called supersolid – a counter-intuitive phase of matter whose existence has been
speculated about for more than 60 years. A first set of experiments demonstrates the cre-
ation of supersolid states from Bose–Einstein condensates of 166Er as well as 164Dy through
a ramp of the contact interaction, and allows comparison to a phase diagram calculated
from an extended Gross–Pitaevskii equation. Dysprosium supersolids are not only found
to be particularly long-lived, but also to be producible through direct evaporation from
a thermal gas. This process is studied more closely in a second set of experiments. It is
observed that during evaporation into the supersolid state the translational symmetry is
broken before the phase symmetry, and that thermal excitations enhance the measured
degree of density modulation. A third set of experiments is aimed at dysprosium super-
solids brought out of equilibrium. It is found that after a contact interaction quench that
breaks the supersolid into an incoherent array of isolated quantum droplets, global phase
coherence can be restored by increasing the Josephson coupling between the droplets.

Another part of this thesis reports on the development and construction of a quantum
gas microscope for dipolar erbium and dysprosium atoms. Single-atom-resolved imaging
of ultracold lattice gases has in the past enabled impactful studies of contact-interacting
many-body systems. The extension of this technique to dipolar systems will allow to probe
extended Bose–Hubbard and extended Fermi–Hubbard models, opening new research
perspectives and allowing for advanced quantum simulation scenarios.
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Z U S A M M E N FA S S U N G

In der Experimentalphysik haben sich Quantengase aus ultrakalten Atomen einerseits
selbst als extrem ergiebiges Forschungsobjekt erwiesen, andererseits können sie als hilf-
reiches Werkzeug dienen, andere, weniger zugängliche Quantenvielteilchensysteme zu
simulieren und besser zu verstehen. Die überwältigende Mehrheit von Quantengasexperi-
menten nutzt nach wie vor Atome, welche miteinander über eine isotrope, kurzreichwei-
tige Kontaktwechselwirkung interagieren. Demgegenüber wurden vor kürzerer Zeit auch
Experimente mit stark magnetischen Elementen wie Chrom, Erbium und Dysprosium
verwirklicht, deren Physik stark von der anisotropen und langreichweitigen Dipol-Dipol-
Wechselwirkung geprägt sein kann.

Ein Teil dieser Dissertation berichtet von Experimenten mit Erbium- und Dysprosium-
Quantengasen in dreidimensionalen optischen Fallen, welche deren räumliche Ausdeh-
nung in Dipolrichtung stark eingeschränken. In solchen Systemen kann ein sorgfältig
eingestelltes Wechselspiel zwischen abstoßender Kontaktwechselwirkung, anziehender
Dipol-Dipol-Wechselwirkung sowie Fluktuationen zur spontanen Ausbildung von dich-
temodulierten Vielteilchen-Quantenzuständen führen. Innerhalb eines engen Parameter-
regimes können solche Zustände gleichzeitig Charakteristika eines Kristalls (räumliche
Periodizität) sowie einer Supraflüssigkeit (Phasenkoheränz) aufweisen, und damit die Kri-
terien für einen sogenannten Suprafestkörper erfüllen – einen kontraintuitiven Materiezu-
stand, über dessen Existenz schon seit mehr als 60 Jahren spekuliert wird. In einer ersten
Reihe von Experimenten wird gezeigt, dass Bose–Einstein-Kondensate sowohl aus 166Er-,
als auch aus 164Dy-Atomen mittels einer Rampe der Kontaktwechselwirkungsstärke in su-
prafeste Zustände überführt werden können. Die experimentellen Ergebnisse werden mit
dem Phasendiagramm verglichen, welches sich aus einer erweiterten Gross–Pitaevskii-
Gleichung errechnen lässt. Es zeigt sich außerdem, dass Dysprosium-Suprafestkörper
nicht nur besonders langlebig sind, sondern auch durch direkte Evaporation aus einem
thermischen Gas hergestellt werden können. Dieser Prozess wird in einer zweiten Rei-
he von Experimenten eingehender untersucht. Dort wird beobachtet, dass während der
Evaporation zum suprafesten Zustand zeitlich die Translationssymmetrie vor der Pha-
sensymmetrie gebrochen wird, und dass thermische Anregungen den gemessenen Grad
an Dichtemodulation erhöhen. Eine dritte Reihe an Experimenten beschäftigt sich mit
Dysprosium-Suprafestkörpern außerhalb ihres Gleichgewichtszustands. Eine abrupte Ver-
änderung der Kontaktwechselwirkung wird genutzt, um den Suprafestkörper in einzelne,
regelmäßig angeordnete, jedoch voneinander isolierte Quantentröpfchen aufzubrechen.
Aus diesen kann der suprafeste Zustand wiederhergestellt werden, wenn die Josephson-
Kopplung zwischen den Tröpfchen erhöht wird.

Ein anderer Teil dieser Dissertation behandelt die Entwicklung und Konstruktion ei-
nes Quantengasmikroskops für dipolare Erbium- und Dysprosiumatome. Die einzela-
tomaufgelöste Bildgebung von ultrakalten Gasen in optischen Gittern hat in der Ver-
gangenheit bedeutende Studien kontaktwechselwirkender Vielteilchensysteme ermöglicht.
Die Ausweitung dieser Technik auf dipolare Systeme erlaubt die Erforschung erweiterter
Bose–Hubbard- und Fermi–Hubbard-Modelle, eröffnet damit neue Forschungsperspekti-
ven und Möglichkeiten für fortgeschrittene Quantensimulationsszenarien.

x



P U B L I C AT I O N S

Some of the concepts and results presented in this thesis have appeared previously within
the following publications:

A. Trautmann,* P. Ilzhöfer,* G. Durastante, C. Politi, Maximilian Sohmen, M. J. Mark,
& F. Ferlaino. “Dipolar Quantum Mixtures of Erbium and Dysprosium Atoms.” In: Physical
Review Letters 121 (2018). DOI: 10.1103/PhysRevLett.121.213601.

L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C. Politi, G. Durastante,
Rick M. W. van Bijnen, A. Patscheider, Maximilian Sohmen, M. J. Mark, & F. Ferlaino.
“Long-Lived and Transient Supersolid Behaviors in Dipolar Quantum Gases.” In: Physical
Review X 9 (2019). DOI: 10.1103/PhysRevX.9.021012.

G. Durastante, C. Politi, Maximilian Sohmen, P. Ilzhöfer, M. J. Mark, M. A. Norcia, &
F. Ferlaino. “Feshbach resonances in an erbium-dysprosium dipolar mixture.” In: Physical
Review A 102 (2020). DOI: 10.1103/PhysRevA.102.033330.

P. Ilzhöfer,* Maximilian Sohmen,* G. Durastante, C. Politi, A. Trautmann, G. Natale,
G. Morpurgo, T. Giamarchi, L. Chomaz, M. J. Mark, & F. Ferlaino. “Phase coherence in
out-of-equilibrium supersolid states of ultracold dipolar atoms.” In: Nature Physics 17 (2021).
DOI: 10.1038/s41567-020-01100-3.

Maximilian Sohmen, C. Politi, L. Klaus, L. Chomaz, M. J. Mark, M. A. Norcia, & F. Fer-
laino. “Birth, Life, and Death of a Dipolar Supersolid.” In: Physical Review Letters 126 (2021).
DOI: 10.1103/PhysRevLett.126.233401.

M. A. Norcia,* C. Politi,* L. Klaus, E. Poli, Maximilian Sohmen, M. J. Mark, R. N. Bisset,
L. Santos, & F. Ferlaino. “Two-dimensional supersolidity in a dipolar quantum gas.” To
appear in: Nature (2021). arXiv id: 2102.05555.

* These authors contributed equally.

xi

https://doi.org/10.1103/PhysRevLett.121.213601
https://doi.org/10.1103/PhysRevX.9.021012
https://doi.org/10.1103/PhysRevA.102.033330
https://doi.org/10.1038/s41567-020-01100-3
https://doi.org/10.1103/PhysRevLett.126.233401
https://arxiv.org/abs/2102.05555




Were I the bravest, it were hard, alone, [. . . ]
Light is the task, when many share the toil.

— Homer, Iliad, Book 12 [139]

A C K N O W L E D G E M E N T S

It is not that I had expected writing a thesis about quantum gases would be easy. Yet,
after more than four years in Innsbruck, I thought I had finally developped a positive and
pragmatic attitude towards problems. Oh, how naïve. Writing these lines, I find myself
faced with the greatest difficulty of all:

Doing justice to the people who have brought me this far.
Although failure, this time, is inevitable, I will once again draw from the wisdom of Pettis
and Stark [229] and try to get things done.

First and foremost, I need to thank Francesca for giving me the opportunity to work in
one of her labs. I count myself lucky to have worked in a lab with seemingly unlimited
resources, with high aspirations, and for the privilege of having been part of a creative
and passionate team that has managed to produce so beautiful results. I thank Francesca
for having built this team, and for always motivating me to give my very best.

Second, I owe great thanks to Andreas Läuchli, my co-supervisor, for his advice, for
support, and for always being available when I was struggling with questions or difficul-
ties.

Third, I am indebted to Markus Greiner, the third member of my thesis committee.
Above all, I thank him for inviting me to spend some time in his group at Harvard, where
I have learnt much about quantum gas microscopes and how to build them. Special thanks
go to Greg Phelps, Aaron Krahn, Anne Hébert and Sepehr Ebadi, who have warmly wel-
comed me in the Harvard Erbium team and with whom work has been both fruitful and
fun.

Fourth, I have to thank Jean Dalibard and Jérôme Beugnon for the opportunity to spend
some time at Collège de France in Paris. I am grateful for a steep learning curve, for seeing
the coq gaulois imprinted on a 2D Bose gas, and to have found coworkers as well as friends
in the rubidium lab – Brice Bakkali-Hassani, Édouard Le Cerf, Raphaël Saint-Jalm, Patricia
Castilho, Silvain Nascimbene – as well as in all other people I have had the pleasure to
meet there, in particular those who have introduced me to the traiteur libanais. Of course,
Rapha, it was a special delight to meet you again after our time on the island, and to learn
that our disposition towards Belgian beers had not withered.

Fifth, I want to thank Immanuel Bloch, who has made my research stay with his groups
at LMU and MPQ in Munich possible. It has been a great opportunity to see the differ-
ent labs, learn about lattice physics in general, and (more) quantum gas microscopes in
particular. I want to thank all people I was lucky enough to meet and chat with, and es-
pecially the NaK molecule team for hosting me: Xin-Yu Luo, Roman Bause, Marcel Duda,
and Frauke Seeßelberg. On the social side, I need to state that the ambitions of the Bloch
group members in table football are certainly not less than in science, and remain thankful
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for proud affirmations as well as empirical evidence that the local brew is – at least – up
on a par with the Belgian produce.

I fear, at this point, I have already given the unshakable impression that my PhD has
been a single long series of happy research trips and holidays, and every counter-argument
now pointed out in my defence must only strengthen this impression. In the spirit of Pettis
and Stark [229] (“there is no editing stage”), I’ll swallow this and just continue.

In the intervals between and after my research trips, I was lucky enough to spend some
time1 in Innsbruck working with brilliant colleagues. Above all, I need to mention my lab
seniors. Manfred Mark, a man of quiet expertise, has granted us unwavering support in
all questions of technology, and has, as one contribution among many, written the control
software in the lab, in a way so proficient and intricate that it took time for us mortals to
learn how to wield it.

H. Arno Trautmann, the postdoc during my early time, Heidelberg alumnus and there-
fore vegetarian2 has left on me a deep impression of dedication to science, and of a diligent
work ethic unbothered by the time of day or night. Further, I have to acknowledge his su-
periority in karaoke, as well as his continuous strives to disclose to me the infinite benefits
of Arduinos and LATEX.

Matt Norcia has been our succeeding postdoc since 1 1
2 years now, and has injected an

awesome JILA ‘let’s do it’ flair of casual pragmatism, intuitive brilliance, and straight goal
orientation into the lab. I am infinitely grateful for everything that I have learnt from you,
particularly in the broad fields of physics, technology, and diplomacy.

Lauriane Chomaz has formally acted as the postdoc of our group’s Erbium Lab, but
behind the scenes also contributed greatly to the Er–Dy work, as evidenced by the fact
that she is co-authoring all three papers presented in the main body of this thesis. She
is, together with Matt, the person I have learnt the most from, and will forever stay an
unreachable authority for me in dipolar physics, in climbing, and the science of french
cheese.

Now I turn to my motley band of fellow PhD students. First, there is Philipp3 Ilzhöfer,
who has fathered most of the nuts and bolts of today’s Er–Dy machine, and made sure
each of them is properly tightened. None of the experiments presented in this thesis
could have been performed without his devotion to thorough Swabian engineering, fu-
elled mainly by sugared lemonades and chemical confectionery of diverse kind. May his
stern labelling and cable-tying policy forever live on in our lab.

Second, there is Gianmaria Durastante, who was not only the official ‘master of tubes
and pipes’, but has also built a great part of the rest of our setup, while always infusing a
healthy level of dolce vita into the lab. Here, he has strived to balance the shouting-oriented
music of Philipp and H. Arno with some ĜĜ†, has repeatedly saved me from starvation
through his uncanny instincts for spotting free food, and taught me that, worn with his
unerring sense of style, every laser goggle can look like a vintage piece from Dolce &
Gabbana. Outside the lab, he has been my main companion in ski, bike, and mountain
adventures, the majority of them ending up in some sort of river.

1 According to a quick estimate, around 95.47(2) % of my PhD time. The number in parentheses represents the
uncertainty of the last digit, arising from how long it might still take me to finish my acknowledgements.

2 The vegetarian ratio among the numerous Heidelberg alumni in Innsbruck known to us is 100 %.
3 Please forgive the eternal uncertainty about the distribution of l’s and p’s in your forename. I hope I got it right.
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Third, there is Claudia Politi, who is, despite her level of experience, still a young PhD
student. Often has she saved me using her supernatural memory for numbers, by remem-
bering the value of a variable in an analysis script of a measurement set on a certain day
where we changed a certain parameter and the weather was bad, or other things the like.
I am also grateful for her endless (but ultimately unsuccessful) attempts to introduce me
to the universe of dos and do’nts in the Italian cuisine.

Finally, there is Lauritz Klaus, the vegetarian Heidelberg alumnus who joined our lab
most recently. As a flatlander from the far north, he has not only lifted our level of the ‘real’
German language again,4 but also proved a motivated and skilled apprentice. With him, I
deem the experiment and especially some unfinished instrumentation in the preparatory
Lab 6

5 in good hands for the future. I also need to acknowledge his lunch loyalty to
Bresso® from M-Preis, in which he has remained steadfast despite harassment, ridicule,
and health advice.

I could go on like this, but in the sake of Pettis and Stark [229], I might have to humble
myself and hurry up a bit. I would like to thank all other postdocs – Bing Yang, Tom
Bland, and אדרי! חגי – as well as PhD students – Simon Baier, Jan-Hendrik Becher, Giulia
Faraoni, Dani Petter, Alex Patscheider, Gabriele Natale, Elena Poli and Julián Maloberti –
of the Ferlaino group for creating such a friendly, productive, and motivating nest.

This circle is incomplete without our past and present master students, Guillaume Chau-
veau, Elise Declerck who has helped me test our vertical imaging, Sandra Brandstetter6,
Amal El-Arrach and Nefeli Sonnberger.

On the next larger level, I would like to thank all students of the ultracold community
in Innsbruck, especially Marian Kreyer, Elisa Soave, Vincent Corre, Cornee Ravensbergen,
Deborah Capecchi, Govind Unnikrishnan, Milena Horvath, Gregor Anich, Erich Dobler,
Cosetta Baroni, et al.: it was always a pleasure to exchange know-how, gossip and spare
parts with you guys, and I will certainly miss our after-work beers which I already miss
due to the pandemic. A special thanks goes to Isi Fritsche who knows our institutes’
internal affairs, processes and apparatchik better than anyone and has been a driving
force in the organisation of seminars, journal clubs, and other PhD events.

I am extremely grateful for many discussions with Emil Kirilov, some of them about
physics. In particular, he has been a constant source of advice in the development of my
microscope objective, the glass cell, and indium sealing procedures.

Further, I am indebted to Dimitrios Trypogeorgos from Trento, from whose experiences
in developping a magnetic shielding we have profited enormously.

Similarly, I would like to take the opportunity to thank all past and current paper
collaborators. Without everybody’s true dedication, I cannot imagine we could have hit
this level of quality. In particular, I want to acknowledge co-authors Thierry Giamarchi
and Giacomo Morpurgo (both Geneva), Luis Santos (Hannover) and Russell Bisset (Inns-
bruck), as well as valuable discussions with Misha Baranov and Rick van Bijnen (both
Innsbruck), Santo-Maria Roccuzzo, Alessio Recati, Giacomo Lamporesi (all Trento), Blair
Blakie (Dunedin), Massimo Boninsegni (Edmonton), Philippe Chomaz (Versailles), Thomas
Pohl (Aarhus), Boris Svistunov and Nikolay Prokof’ev (both Amherst).

4 Standards had rapidly declined after the departure of H. Arno.
5 A forlorn place feared by master and PhD students alike, its porch adorned by some lost soul with a telltale

quote from Dante’s Inferno: “Lasciate ogni speranza, voi ch’entrate!”
6 Sandra later joined the group of Selim Jochim in Heidelberg, and has, as I have learnt recently, consequently

become a vegetarian since.
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Russell and Jook Walraven (Amsterdam) deserve an extra thanks for their awesome
quantum gas lectures. Above that, Russell, I am infinitely grateful for your comments on
my theory part.

I must not forget all those restless backstage labourers of the science business which
keep our hands and minds free for the actual research work. First, I would like to thank
our administration, Markus Knabl, Elisabeth Huck, Klaus Falschlunger, Silvia Bonazza,
Leonarda Garcia Lopez, Gabi Holzer and Nicole Jorda for reminding us of what we would
have forgotten to do, for organising what we would have failed to do, and for ordering
continuous streams of packages from Thorlabs or elsewhere.

Second, I would like to thank our silent heros in the mechanical workshop, Stefan
Haslwanter, Andreas Strasser and Bernhard Öttl, our electronics-technician-in-chief, Ger-
hard Hendl, and our IT engineers David Jordan and Valentin Staubmann, who can make
almost anything possible using their magic passwords.

Third, I need to thank Heide Streicher, Alex Kaiser and Eric Endres for their great job
in managing the doctoral programme ‘Atoms, Light and Molecules’, of which I have been
lucky enough to be a member, and without which my stays abroad would have been less
straightforward, less smooth, and above that, impossible.

Fourth, I want to warmly thank Georg Moser and Thomas Franosch, the past and
present Deans of Studies at my faculty, for their valuable advice and support.

While all benefactors and helping hands named so far have in some way, directly or
indirectly, contributed to this thesis, there is – controversial as this may sound – a life
outside the lab. I was very fortunate to have people around me that brought me back
down to earth (or at least closer), cheered me up when needed, and generally made life
worth living. Whereas I was lucky to have some coworkers that also fall in this category
of social supporters, for other this was more of a full-time job.

First, there are the house mates that have lived with me for longer or shorter periods,
got settled or just passed through, everybody that visited for a few days or just spent an
evening with us, either in the past at KJ13 – Simon ‘7AL’ Schlünder, kleine Kahti Kämper,
Chachou Honiat, Wouter Buursma, Lulu Lütjohann, Robin Henninger, the Thermomix girl
whose name I forgot, et al. –, or now in the new headquarters in Bruneckerstraße – Dani
Stiehletto, Chrissi Straubinger, Emma Thoday, Wouter Buursma again, Remco Koeckhoven,
Paz Hernandez, Irene De Sandro, et al., and in particular the current members, Ing. Robert
Plumbaum, Mila Nikolova, and Charlotte von Hasslinger. I greatly enjoy having you folks
around, be it for merry evenings involving a cup or two, weekend ice climbs, or just to
have someone to steal food from when the fridge is empty.

Second, I want to thank my greater circle of friends in Innsbruck, the Schafkopf and
Willi-Geil syndicate, in particular 7Al, Danimaus and Laura Schmi(e)d, as well as all mem-
bers of the Heute-Abend whatsapp group. It was infinitely refreshing to pass time with
you, and to realise that sometimes the number and temperature of one’s atoms is not the
world’s biggest trouble.

Third, I want to thank my family back home, in particular my grandparents Wolfgang
and Thea, my parents Gerhard and Petra, my siblings Bastlwastl, Bacardrian and Nöli
with Tilman and Quirli, all other family and friends, close or distant: you have been a
continuous anchor and source of support for me, and without you, I would not be writing
these lines.
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Last in this category, but not least, I want to thank Ñíåæàíêà, not only for managing
and organising my social life, but also for yoga lessons for a hopeless case, for lunch
packets at work, for supporting me in all my crazy ideas, for your sunny personality and
love.

Now let me thank this crowd here which has helped me get over the past four years in
some way or another but escapes stringent categorisation: The train station M-Preis, the
Moustache bar, Süddeutsche Zeitung, the Alpenverein, the arXiv, Bäcker Ruetz, Covid-
19 test nose-poking staff, Jaroslav Hašek, Musikkapelle Schwangau e.V., the Arzler Alm
single trail, befriended trauma surgeons, Augustiner Bräu München, Anina Demmler, our
friendly Lady-O neighbours, James Joyce, the Alpsee, the Tirol Freizeitticket, Due Sicilie in
Höttingergasse, The Libertines, free software, Kater noster, Max Schwarz, Stack Exchange,
Keith Richards, L’Osteria, Hermann Hesse, The Greg Kihn Band, Gerhard Polt, YAO, Se-
bastian Harter, Thin Lizzy, ÖBB, Art Spiegelman, sunscreen, John Montagu bar, The Black
Keys, Library Genesis, Anthony Burgess, roasted peanuts, Bob Dylan, Gelateria Lago di
Garda, Albert Camus, the USI, The Big Lebowski, Kaspressknödel, Google, weekends,
Sport OK, Leopold Prantl, OSS 117, the Kletterzentrum Innsbruck, Spotify, the Pekara at
Boznerplatz, Stephan Ketterl, Tagesschau, Ana Podobnik, The Fratellis, any Bierzelt, fluter
magazine, Copa & Cabana, DHL, Martin Blay, the more and the less sticky Innsbruck Irish
Pub, Mark Knopfler, the Martinswand, Melvyn Bragg, snowy winters, the Minerva Foun-
dation, Kurt Vonnegut, weekends, the FAZ, Radiohead, the Mensa at Technik, the Schen-
gen agreement, Daniel Norgren, chocolate, Wolfmother, Canyon Bicycles, the Conrad bike
repair shop, Kasabian, the Bierstindl, Italian Spiderman, Heinz Rühmann, Graveyard, the
internet, Wagnersche Buchhandlung, anyone who ever reads these lines, Tatort, the IQOQI
coffee machine, Lukas Lewerentz, Wikipedia, Dicht & Ergreifend, Iris Zernstein, Gelateria
Tomaselli, other music, Inndrinks, Thorlabs Lab Snacks, rain pants, the universe, peace,
destiny, health, history, life, friendship, fortune, and luck.

Finally, I would like to thank society, for promoting, funding, and believing in science.
It is my sincere hope and my deepest drive that one day this investment will pay back, for
the good of everyone.
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The ability to reduce everything to simple fundamental laws does not imply
the ability to start from these laws and reconstruct the universe.

— Philip W. Anderson, “More is different” [6]

W H Y S T U D Y Q U A N T U M G A S E S ?

The experimental realisations of Bose–Einstein condensates (BECs) [5, 45, 47, 74] and de-
generate Fermi gases [76, 198, 261, 285] more than twenty years ago marked important sci-
entific breakthroughs, which can be seen both as a finish line, the culmination of decades
of efforts in cooling and trapping of uncharged atoms, as well as the starting gun for an
entirely new research direction.

On the one hand, experiments on ultracold atoms are exciting in their own right, and
continue to deliver deep and sometimes surprising insights, as for example into the
decade-old debate about supersolidity.

On the other hand, ensembles of ultracold atoms can serve as universal model systems
for other quantum many-body systems since they are (i) experimentally accessible, offer
(ii) a high degree of controllability of system quantities over (iii) an extremely large pa-
rameter range, as well as (iv) efficient probing techniques. In these respects, for example,
studying atoms in an optical lattice has many advantages over studying electrons in a
metal [34, 35, 175]. Often, such quantum simulator approaches are also required from the
theory side since, as pointed out by Feynman [95], the computational power needed to
describe an ensemble of quantum particles scales exponentially with the number of con-
stituents, setting practical limits for numeric calculations. The current state of the art in
technology for quantum simulation using atoms in optical lattices is set by so-called quan-
tum gas microscopes, which allow to image single atoms on individual lattice sites (cf.,
e. g., Refs [34, 122], and references therein).

what is known about dipolar quantum gases , what not?

At the start of my work in the Er–Dy laboratory in the Ferlaino group, degenerate Bose
and Fermi gases of strongly magnetic elements had already been produced by our group
in Innsbruck, using erbium [2, 3], and by the Lev group at Stanford, using dysprosium [52,
184].1 Similar experiments of other groups, for example the dysprosium laboratories lead
by Tilman Pfau in Stuttgart or Giovanni Modugno in Pisa, had gone into operation a
bit later. None of these first-generation laboratories, however, has the capability to study
heteronuclear mixtures of two different dipolar elements.

In the field of bulk dipolar quantum gases, in 2016 a publication by the Stuttgart
group [145] attracted much attention for the surprising observation that after an interac-
tion quench to a regime where, according to traditional mean-field theory, the collapse of a

1 BECs of the comparatively weakly magnetic element chromium had already been obtained some time earlier in
Stuttgart [116] and Paris [22].

xxiii
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dysprosium BEC had been expected, instead arrays of stable, yet highly-excited and phase-
uncorrelated quantum droplets were found. Subsequent works, from both theory [28, 288]
and experiments by the Stuttgart [91, 259] and by our group [65, 66] helped associate the
underlying stabilisation mechanism to a beyond-mean-field effect. The crucial question
remained, however, whether the roton mode population leading to the formation of the
phase-incoherent dipolar droplet arrays in these early experiments was a mere result of
the high degree of excitation, introduced through the interaction quench as well as finite
temperature, or if, in principle, droplet arrays could also constitute a novel type of system
ground state. If so, it was immediately realised that an array of phase-locked droplets
could open an experimental path towards creating a supersolid state of matter. The na-
ture of such a – back then still hypothetical – dipolar supersolid was a subject of much
speculation, for example concerning its spectrum of excitations, its reaction to external
perturbations or a finite-temperature thermal bath, as well as the order of the transitions
between phases of different symmetry.

In the field of atoms in optical lattices, a major breakthrough has been the realisation of
the first quantum gas microscopes at Harvard and Munich in 2009/10 [18, 267], demon-
strating single-atom resolution for the bosonic isotope 87Rb. Microscopes for further, non-
dipolar bosonic and fermionic species have been demonstrated by other laboratories some
time later [60, 84, 129, 197, 211, 214, 297].

Specifically for dipolar atoms, extended Bose–Hubbard models [13] and strongly inter-
acting fermions in optical lattices [16] have been studied in our group using erbium atoms,
albeit without microscope resolution. A quantum gas microscope offering single-atom res-
olution for strongly dipolar species such as erbium or dysprosium does not yet exist.

outline of this thesis , and a peek at the main results

This thesis is a whole divided into three parts. The first part, §§ 1–4, provides an intro-
duction into the theory of dipolar quantum gases. This includes (§ 1) a recapitulation of
quantum statistics and one of its direct implications, Bose–Einstein condensation, (§ 2) par-
ticle interactions of contact and dipolar type, (§ 3) the influence of particle interactions on
the theory of Bose–Einstein condensates on mean-field and beyond-mean-field level, as
well as (§ 4) an introduction to basic notions underpinning the concept of supersolidity.

The second part (§§ 5–9) is devoted to experiments with dipolar quantum gases in the
bulk. In § 5 the Innsbruck Er–Dy experiment is described, the first and – so far – only
apparatus in the world capable of producing heteronuclear quantum mixtures of two
magnetic elements [82, 283]. A strong emphasis in the experiment description is put on
a newly developped and implemented high-resolution imaging system which allows to
probe quantum gases (and mixtures) of erbium and dysprosium directly in trap. In § 6, the
twisted path of historic key events leading up to the experimental realisation of dipolar
supersolids is sketched.

In § 7, our publication on observation transient and long-lived supersolid behaviour
in quantum gases of erbium and dysprosium is presented [67]. In this publication, we
report on the creation of dipolar quantum gases with supersolid properties and find a
remarkable degree of agreement between, on the one hand, experimental data samples
of both erbium and dysprosium, prepared via an interaction-ramp sequence, and, on the
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other hand, zero-temperature phase diagrams spanning the BEC–supersolid phase tran-
sition, computed from an extended Gross–Pitaevskii theory. Furthermore, we report the
first production of a quantum gas with supersolid properties not involving an interaction
quench, but through direct evaporation from a thermal gas.

In § 8, our publication on an in-depth study of the phase transition from a thermal
gas into a dipolar supersolid state is covered [272]. In this work, we find that during the
evaporation process, the translational symmetry is broken before the phase symmetry, and
we discuss the impact of temperature on the formation of density-modulated states.

Last, in § 9, our publication on phase coherence in dipolar supersolids out of equilibrium
is presented [143]. In this work, we investigate experimentally how the global coherence
in a dipolar supersolid state gets lost if, by a quench of contact interactions, collective
excitations are introduced and the density links between droplets are depleted. We find
that in the resulting incoherent state, global phase coherence can be re-established if the
droplet density links are restored by a second ramp of contact interactions. The essential
behaviour is found to agree well with a Josephson junction array model; effects that hint
at physics beyond the capabilities of this simple model are also elaborated on.

The third part (§§ 11–13) covers the development and engineering of a quantum gas
microscope for dipolar atoms. This includes the discussion of initial design variants, a pre-
sentation of the development and test of the microscope optics, a description of the com-
plete, newly engineered ultrahigh-vacuum system, the carefully tailored magnetic field
coil system as well as a custom multilayer passive magnetic shielding for protection from
external influences.

In the appendix, some important concepts and formalisms of (§ A) field theory for quan-
tum gases and (§ B) light propagation and imaging are presented for reference. Further-
more, (§ C) additional, hitherto published works which I have co-authored during my
doctoral studies in Innsbruck are presented.

Innsbruck, June 2021

M. S.

Throughout this thesis, if not stated otherwise, for numerical values a number in parentheses (if
present) indicates the statistical 1σ confidence interval of the last digit(s) of a calculated or measured
quantity.





Part I

B A C K G R O U N D T H E O RY O N D I P O L A R Q U A N T U M
G A S E S





A man cannot be too careful in the choice of his enemies.

– Oscar Wilde [296, Ch. 1]

1“ Q U A N T U M ” + “ G A S ”

This chapter serves to introduce the notion of an ideal quantum gas, to motivate why
ensembles of quantum particles must follow non-classical statistics, and to sketch how
quantum statistics for bosonic particles directly imply a condensation phenomenon at
high phase-space density.

1.1 tautologies

What is a quantum gas? Even though the name is short, it already entails many implica-
tions. In the following, let us therefore try to dissect it a little.

A quantum gas is a gas. This means, specifically:

1. The system contains many particles.

2. The sample is dilute.

“Many” in Point 1, for example in the context of cold atom experiments, can mean particle
numbers N often on the order of millions. Each out of these N particles has a position, a
momentum, and possibly other degrees of freedom such as angular momentum, where-
fore the number of degrees of freedom of the entire system is a multiple of N. To distil
from such a large number of degrees of freedom a few tractable and meaningful observ-
ables, statistical tools are needed.

Point 2 characterises a gaseous state insofar that typically the range of interparticle
interactions is much smaller than all other relevant length scales of the system, especially
than the mean interparticle distance. If this is true, interactions are dominantly two-body.

A quantum gas is quantum. This means our system is governed by rules arising from three
insights:

1. Some measurable properties may only take distinct values.

2. Matter has a wave nature.

3. Elementary particles are indistinguishable.

Point 1 can be traced back to Max Planck [235, 236], who realised that when we measure
certain properties like energy, momentum (and others) within a bound system, the out-
comes will not be continuously distributed, but discrete.
Point 2 was advanced by Luis de Broglie [75], demanding that a wave behaviour needs to
be attributed to all matter. Consequently, measurement outcomes for quantum particles

3



4 “quantum” + “gas”

are described probabilistically by the square of a wavefunction. A direct implication of
constructing particles from a wave basis is Heisenberg’s uncertainty relation: some prop-
erties of a particle, like position and momentum, are not sharply defined simultaneously.
In an ensemble of temperature T one must therefore ascribe to particles of mass m a spa-
tial extent given by the thermal de-Broglie wavelength

Λ = h̄
√

2π/mkBT, (1)

where h̄ is the reduced Planck constant and kB is the Boltzmann constant.
Finally, Point 3 must be attributed to Satyendra Nath Bose [43]. Intrinsic properties of

elementary particles, such as rest mass and electric charge, are identical. The uncertainty
relation prevents simply following particle trajectories at arbitrary precision. Therefore,
given two particles with identical intrinsic properties (and other quantum numbers, such
as angular momentum) and sufficiently close (∼ Λ) to each other, it is undecidable which
is which. Bose realised that indistinguishability implies non-classical particle statistics.

1.2 states , symmetry, and statistics

A single quantum particle is denoted by a Dirac ket which contains the full set of eigen-
states of the particle. An N-body system is then described by the tensor product of the
single-particle kets – or, if we pick a certain representation, a wavefunction (see §§ A.1–
A.2). If the particles are indistinguishable, by definition no measurement of a physical
quantity can reveal whether two particles have been exchanged or not. This exchange de-
generacy implies that the wavefunction has only two possibilities upon particle swapping,
to change or not to change sign (see § A.2).

Both of these possibilities are realised in nature. Wavefunctions antisymmetric upon
particle exchange belong to fermions, for which the Pauli exclusion principle forbids more
than one particle in the same single-particle state. Wavefunctions symmetric upon particle
exchange belong to bosons. Compared to classical particles, for indistinguishable bosons
the statistical weight of permutations is lost. Therefore, indistinguishable bosons tend to
accumulate in the same single-particle state (see Fig. 1).

When investigating systems of large numbers of particles, we have to rely on tools from
probability theory. In particular, if we want to calculate the macroscopic thermodynamic
properties of a large system from the statistics of the different microscopic particle arrange-
ments, we need the appropriate partition function.

In most experiments, the system under study is not completely isolated but can ex-
change energy as well as particles with the environment. The appropriate framework for
this situation is the grand canonical ensemble, where the chemical potential µ controls
the variation of particle number as a Lagrange multiplier with respect to the energy E. If
we choose the energy eigenstates of the non-interacting Hamiltonian with corresponding
eigenvalues εi as basis, the grand partition function (cf. § A.4.1) directly gives the average
occupation number of state i,

n̄i =
1

e(εi−µ)/kBT ± 1
, (2)
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(a) Classical particles (b) Bosons (c) Fermions

Figure 1: Distribution probabilities for two particles into two states, “left” and “right”. The two classical states “white
particle left, black particle right” and vice versa (a) merge into a single state “one particle left, one particle right”
for indistinguishable (grey) particles. For bosons (b) therefore the probablility of finding two particles at the
same site is enhanced from 1

2 → 2
3 . For identical fermions (c), the probablility for double occupancy vanishes

due to the Pauli exclusion principle, 1
2 → 0. Cf. Ref. [96, 106].

where the ‘+’ is for fermionic and the ‘−’ is for bosonic particles. The total number of
particles in the system and the total energy are, accordingly,

N = ∑
i

n̄i and E = ∑
i

εin̄i. (3)

For fermions, Eq. 2 is valid without restrictions. For bosons, in contrast, µ has to be
lower than the lowest energy level ε0 to avoid unphysical negative occupation numbers. If
we define our origin of energy as ε0 ≡ 0 without loss of generality, we see that for µ → 0
the ground state occupation diverges. The fact that this can only happen to the ground
state suggests to separate the total number of particles into ground and excited states,

N = N0 + NT , where N0 =
1

e−µ/kBT − 1
and NT = ∑

i>0
n̄i. (4)

As Einstein already pointed to in 1925 [85], under certain circumstances the number NT BEC of an ideal
gasof available thermal states is limited (see § A.4.3 sq.). All additional particles then must

go into N0. This can lead to a macroscopic occupation of the ground state, called Bose–
Einstein condensation.

Importantly, Bose–Einstein condensation is a purely statistical effect that does not re-
quire any particle interactions. It can occur at any temperature, if the density is high
enough, or reversely, at any density, if the temperature is low enough. In particular, con-
densation typically sets in at a critical temperature much higher than the energy gap to
the first excited state, kBTc ≫ ε1. This is in stark contrast to classical Maxwell-Boltzmann
statistics, where a macroscopic ground-state occupation is only expected for T ≪ ε1.
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1.3 field operators

In practice, for a many-body system with a large number N of indistinguishable particles
it can become a difficult task to decide whether the (anti-)symmetry of a state, e. g. in po-
sition space, |⃗r1, r⃗2, . . . , r⃗N⟩, is (i) correct and (ii) conserved when it is evolved into another,
|⃗r′1, r⃗′2, . . . , r⃗′N⟩.

Field theory approaches this problem by introducing field operators ψ̂(⃗r) and ψ̂† (⃗r)
which, respectively, annihilate and create particles at a certain position r⃗ and enforce con-
servation of the Bose (or Fermi) statistics naturally by the way they are constructed. This
means we can, on the one hand, generate any arbitrary but properly (anti-)symmetrised
many-body state from the vacuum |0⟩ ≡ |01, 02, 03, . . .⟩ by repeated application of the cre-
ation operator, and on the other hand transfer every many-body state into another using
combinations of annihilation and creation operators,

|⃗r′1, r⃗′2, . . . , r⃗′N⟩ = ψ̂† (⃗r′1)ψ̂(⃗r1) ψ̂† (⃗r′2)ψ̂(⃗r2) · · · ψ̂† (⃗r′N)ψ̂(⃗rN) |⃗r1, r⃗2, . . . , r⃗N⟩ .

The compliance with the (anti-)symmetry of the system is then naturally ensured through
the algebra defined through the (anti-)commutation relations of the field operators (see
§ A.2).

Moreover, it can be shown that with the aid of field operators, any operator in an N-
body Hilbert space can be extended into Grand Hilbert space, where N is allowed to vary
(e. g., Ref. [37, 290]). Thus, in a sense, many problems of transforming complicated many-
body states simply reduce to determining how the field operator transforms. In particular,
since all changes to a given state can be formulated by multiplying field operators to it,
the time evolution of a state is fully captured by the time-dependent field operator in the
Heisenberg picture, as can be seen straight-forward for a N-body ground state |GN⟩:

ψ̂H (⃗r, t) |GN⟩ = Û†(t)ψ̂(⃗r)Û(t) |GN⟩ = e−iE0(N)t/h̄Û†(t) |GN−1⟩ (5)

= e−iE0(N)t/h̄eiE0(N−1)t/h̄ |GN−1⟩ = e−iµt/h̄ψ̂(⃗r) |GN⟩

Here we have used (i) the usual time evolution operator U(t) = e−iĤt/h̄, (ii) the fact
that the N- and the (N−1)-body ground states are eigenstates of the Grand-Hilbert space
Hamiltonian1, Ĥ |GN⟩ = E0(N) |GN⟩, and (iii) that the definition of the chemical potential,

µ = E0(N) − E0(N − 1) ≈ ∂E0

∂N
, (6)

where the approximation on the right-hand side becomes valid for large enough particle
numbers.

A convenient way to circumvent the need for explicit (anti-)symmetrisation of statesFock
representation completely is switching to the Fock representation. In Fock representation, |n1, n2, . . .⟩,

only the occupation numbers ns of the single-particle states |s⟩ are listed (see § A.2); the
unphysical information (“which particle is which?”) then does not even show up.

1 Cf. the appendix, § A.2. Since in the following we will always be dealing with states whose particle number is
allowed to vary, we will omit marking the Grand-Hilbert space Hamiltonian explicitly, Ĥ ≡ ĤG, unless otherwise
noted. NB that Ĥg with a lowercase superscript is used to denote the grand-canonical Hamiltonian, in contrast.
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It is often advantageous to pick the specific Fock representation where the occupation
numbers refer to the energy eigenstates of the system, Ĥ |ns⟩ = εsn̂s |ns⟩ = εsns |ns⟩. The
corresponding bosonic single-particle raising and lowering operators are â†

s and âs, and
the number operator is n̂s = â†

s âs. In this representation, the field operator takes the form
ψ̂(⃗r) = ∑s φs (⃗r)âs, where φs (⃗r) is the single-particle wavefunction associated with state s.

Order, ORDER!

– John S. Bercow, MP

1.4 order , and how to parametrise it

As we have already touched upon in § 1.2, systems of ideal bosonic particles can exhibit
a macroscopic occupation N0 ≲ N of the ground state, whereas the occupation of excited
states Ns ̸=0 is always lesser than N0 and typically far below unity. This suggests to separate
the field operators into the single-particle ground and excited states,

ψ̂(⃗r) = φ0 (⃗r)â0 + ∑
s>0

φs (⃗r)âs. (7)

Following what is known as the Bogoliubov prescription, we can calculate the expectation Bogoliubov
prescriptionvalue2 of the annihilation operator with respect to a bosonic number state (with N0 ≡

n0 ≫ 1),

⟨ψ̂(⃗r)⟩ = ⟨N0, n1, . . . |ψ̂(⃗r)|N0, n1, . . .⟩ (8)

=
√

N0 φ0 (⃗r) ⟨N0, n1, . . . |N0 − 1, n1, . . .⟩︸ ︷︷ ︸
TDL−→ 1

+

+ ∑
s>0

√
ns φs (⃗r) ⟨N0, . . . , ns, . . . |N0, . . . , ns − 1, . . .⟩︸ ︷︷ ︸

≪1

(9)

≈
√

N0 φ0 (⃗r). (10)

In steps 9–10, we have made the Bogoliubov approximation. The reasoning is that for
N0 ≫ 1 the physical properties of the number state |N0, n1, . . .⟩ should change little (on
the order of 1/N0) if a particle is added to or removed from N0.3 Formally, this is only
true in the thermodynamic limit (TDL),4 but in practice already gives sensible results for
N0 on the order of tens of particles.

The Bogoliubov approximation (10) is equivalent to interpreting the ground-state ladder
operator as a c-number, â0 → √

N0. We can, in this spirit, rewrite Eq. 7 as

ψ̂(⃗r) =
√

N0 φ0 (⃗r) + ∑
s>0

φs (⃗r)âs ≡ Ψ(⃗r) + δ̂(⃗r) (11)

2 Mathematically, this procedure is somewhat imprecise and controversial (e. g., Ref. [172]), but the implications
we are aiming at are sound. In the spirit of Feynman (“it is the facts that matter, not the proofs”), one has to be
pragmatic sometimes.

3 Formally, the approximation of non-orthogonality of number states as above is equivalent to the Hartree-Fock
ansatz of a product state [20, 106, 223].

4 N → ∞ at N/V = const. and N0/N = const.
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We shall first concentrate on Ψ(⃗r), but later pay special attention to the sum δ̂(⃗r), known
as the fluctuations operator5.

Since the Bogoliubov approximation (10) is only valid if the ground-state is macroscop-Order parameter

ically occupied (N0 ≲ N), the complex field Ψ(⃗r) acts as an order parameter for the phase
transition to a BEC. It may not have been obvious from the beginning that a classical field
such as Ψ(⃗r) is sufficient to describe the collective properties of a many-body system while
properly accounting for the quantum correlations between particles [290].6 This presents
a welcome simplification for computations; however, it is important to note that the order
parameter is not an ordinary wavefunction. In particular, the time-evolution of ordinary
wavefunctions is governed by the energy, whereas the order parameter inherits its time-
evolution directly from the field operator (Eq. 5),

ΨH (⃗r, t) = Û†(t)Ψ(⃗r)Û(t) = e−iµt/h̄Ψ(⃗r), (12)

hence is governed by the chemical potential µ.

Reducing the treatment of the many-body quantum state to the order parameter and
neglecting the quantum fluctuations presents a zero-order approximation that works well
enough for describing many properties of of ultracold Bose gases. Sometimes, however,
certain phenomena cannot be explained without including the effect of quantum fluctua-
tions, as will be detailed in § 3.

5 Note that δ̂(⃗r) may contain both quantum and thermal fluctuations, cf. Refs [32, 201]
6 In this respect, the order parameter can be seen as an analogue to the classical Maxwell description of electro-

magnetic radiation, which becomes valid when the photon occupation numbers are high [234].



It would be a poor thing to be an atom in a universe without physicists. And
physicists are made of atoms. A physicist is the atom’s way of knowing about atoms.

– George Wald, “Life and mind in the universe” (1980s)

2PA RT I C L E I N T E R A C T I O N S

While the ideal gas model suffices to explain statistical effects such as Bose–Einstein con-
densation, other effects lie beyond its capabilities. An important example is the quantum
effect of superfluidity, which will be inspected more closely later in this thesis (§§ 4.1 sq.).
For non-interacting bosons, the Landau critical velocity (Eq. 67) is zero; without some sort
of attractive interaction, fermions cannot even pair up and condense [86]. We will now
inspect this missing ingredient: particle interactions.

2.1 characterising interactions

A vital of assumption in the context of quantum gases is diluteness, meaning that the Diluteness
conditionrange of interatomic forces r0 is much smaller than the mean interparticle distance, r0 ≪

n−1/d, where n is the number density of particles and d the dimensionality of the system.
Diluteness allows (i) to consider only pairwise interactions and safely neglect three- or
more-body processes and (ii) to always consider the asymptotic expression for the scatter-
ing amplitude (Eq. 15 below) [234].

An interaction is called short-range if the associated energy is extensive in the thermo- Interaction range

dynamic limit, i. e. when the energy depends only on the particle density n, whereas it
is called long-range if the energy is intensive, i. e. if the energy depends not only on n
but also on the total particle number N. An extensive (intensive) energy is obtained if the
integral of the interaction potential,

∫ ∞

R
U(⃗r)ddr, (13)

evaluated outside a short-distance cut-off R, converges (diverges) at long distance r (see
Ref. [163] and references therein). For central potentials falling off as U(⃗r) ∝ r−n this
implies

d

{
<

≥

}
n ⇐⇒ interaction

{
short

long

}
range. (14)

Generally, a scattering process between two particles is described by a two-body wave- Scattering Theory

function that solves the Schrödinger equation. Any elastic scattering process between two
particles, however, is equivalent to the scattering of one particle with reduced mass M in
a central potential U(⃗r). We therefore consider the centre-of-mass frame and a plane wave
representing a particle moving freely along z with energy h̄2k2/2M. Dropping normalisa-

9
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tions, the full wavefunction at position r⃗ may in the far field (r ≫ r0) be written as the
sum of the incoming plane and an outgoing spherical wave [167, § 123],

eikz + f (k, ϑ)
eikr

r
, (15)

where ϑ is the angle between r⃗ and the z-axis. The far-field scattering amplitude f (k, ϑ)Scattering
amplitude can be expanded in partial waves of angular momentum ℓ,

f (k, ϑ) =
∞

∑
ℓ=0

(2ℓ+ 1) fℓPℓ(cos ϑ) with fℓ =
1

2ik
(e2iδℓ − 1), (16)

where Pℓ(cos ϑ) are the Legendre polynomials and δℓ is a phase shift [ibid.]. The corre-
sponding scattering cross section between identical particles, integrated over the full solidScattering cross

section angle, is then

σ(k) =
∫

| f (k, ϑ) ± f (k, π − ϑ)|dΩ (17)

= ∑
ℓ even

odd

σℓ(k) with σℓ(k) = 4π(2ℓ+ 1)| fℓ|2,

where due to symmetry reasons, for bosons (fermions) we have to consider the ‘+’ (‘−’)
sign and the sum runs over even (odd) ℓ. For U(⃗r) ∝ r−n as above and low energies
(k → 0), the phase shifts δℓ scale as [167, 254]

δℓ ∝





k2ℓ+1 for ℓ < 1
2 (n − 3),

kn−2 otherwise.
(18)

In typical quantum gas experiments the length scales of interest are much greater thanScattering length

the range of interparticle forces (r0), such that the microscopic details of the inter-atomic
potential U(⃗r) are irrelevant. Instead, the interaction can be fully described by a single
parameter, the scattering length a, which is closely connected to the phase shifts δℓ(k) in
the low-k limit. Such an approach is called an effective field theory [33].

If the scattering length is small compared to the interparticle spacing, |a| ≪ n−1/d, theInteraction
strength gas is weakly interacting. The opposite case, |a| ≫ n−1/d, marks the strongly-interacting

or unitary regime [73].

2.2 the contact interaction

In many cases, the atomic interaction potential is of van-der-Waals type, scaling at long
distance as Uc (⃗r) ∝ −C6/r6 with a normalising coefficient C6. Such an interaction is always
short-ranged by the definition (14), irrespective of dimensionality.

We further see that at low energy (k → 0) the cross section (17) is dominated by the
term σ0(k) since σℓ>0(k) → 0. In this s-wave regime, the scattering is completely isotropic
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and it is legitimate to approximate the detailed, microscopic scattering potential by a delta
pseudo-potential1,

Uc (⃗r) → gδ(⃗r) (19)

with an interaction parameter g. It follows for the far-field scattering amplitude and the
total cross section

f (k)|(ℓ=0) = − as

1 + ikas
and σ(k)|(ℓ=0) =

8πa2
s

1 + k2a2
s

, (20)

respectively, with the s-wave scattering length

as = − lim
k→0

1
k

tan δ0(k) =
gM

2πh̄2 (21)

and M = m/2 for identical particles of mass m [73].
In an experiment, the scattering length can be set to (almost) arbitrary values if a suitable Feshbach

resonancesFeshbach resonance [88, 93] is at hand.2 Erbium and dysprosium, for example, feature
extremely rich Feshbach spectra with a wealth of resonances [82, 103, 189]. Setting a value
for the scattering length then only requires to tune the magnitude of a magnetic bias field.

The s-wave scattering rate (20) typically differs greatly between systems of cold bosonic
and of cold (identical) fermionic particles. For bosons, it determines, e. g., the rates of
thermalisation or three-body loss in a cloud of atoms, and therefore constitutes an impor-
tant experimental parameter. For fermions, in contrast, only odd ℓ are allowed, such that
σ(k) → 0 in the limit k → 0. Therefore, at low T, they will effectively not collide any-
more, such that there is neither thermalisation, nor three-body loss. However, this does
not mean that the scattering length a is meaningless for fermions: via Uc (⃗r) = gδ(⃗r) with
g = 4πh̄2/mas it still enters the Hamiltonian that describes the system.

2.3 the dipolar interaction

Two particles with magnetic dipole moments µ1, µ2 along the unit vectors e⃗1, e⃗2 and at Dipole-dipole
interactionrelative position r⃗ = r⃗2 − r⃗1 experience a potential associated to the dipole-dipole interac-

tion (DDI) that can be written as

Ud (⃗r) =
Cd
4π

(⃗e1 · e⃗2)r2 − 3(⃗e1 · r⃗)(⃗e2 · r⃗)

r5 with Cd = µ0µ1µ2, (22)

where µ0 is the vacuum permeability [282].
In experiments with ultracold dipolar atoms, often an external magnetic field is applied. Polarised sample

Such a bias field polarises the atoms in the sample (⃗e1 = e⃗2) and the dipole potential
simplifies to

Ud (⃗r) =
Cd
4π

1 − 3 cos2 ϑ

r3 , (23)

1 For subtleties about the regularity of such a potential, see Ref. [73] and references therein.
2 For background on Feshbach resonances see the review of Chin et al. [61], and references therein.
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where ϑ is the angle between r⃗ and the direction of polarisation (cf. Fig. 2).

Figure 2: Dipole-dipole interaction between two atoms polarised along B⃗. Depending on the angle ϑ (°), the DDI can
be either repulsive (red), attractive (blue), or nought (dashed lines). The colour code in (a) is truncated for visual
clarity. Figure modified from Ref. [16, § 3.1]

The DDI features some important differences from the contact interaction discussed in
the previous section. First, due to the r−3-dependence the DDI is long-range in 3D, butLong-range in 3D

short-range in 2D and 1D. Second, as we see from Eq. 18, the scattering phase shifts for
n = 3 scale as δℓ(k) ∝ k independent of ℓ. Therefore, all partial waves contribute to the
scattering amplitude attributed to the dipolar interaction, independent of temperature. In
particular, this has the consequence that identical dipolar fermions can scatter even at
k → 0, allowing to cool them via direct evaporation [2]. Third, within ϑ ∈ [0, π/2] theAnisotropy

factor (1 − 3 cos2 ϑ) varies between −2 and 1, so the interaction potential changes sign.
This is intuitively clear, since the dipoles should attract when they are head to tail, and
repel when they are side by side. At the magic angle ϑm = arccos(3−1/2) ≈ 55°, attraction
and repulsion cancel and the DDI vanishes.

Despite the long-range character of the DDI in 3D, we can associate a length scale to it,
the so-called dipolar length [163, 254]:

ad =
Cdm

12πh̄2 (24)

As we will see, the dipolar length is an important characteristic for deciding whether a
sample will behave dominantly dipolar or not.

2.4 scattering of dipolar atoms

In general, a dipolar atom creates both, a dipolar as well as a contact potential for another
atom. The relative strength between the two is quantified by the ratio

ϵd =
ad
as

=
Cd
3g

. (25)
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In principle, ϵd > 1 is required for a sample to behave predominantly dipolar, however,
even at ϵd ≪ 1 dipolar effects can already become non-negligible [254].

It is not at all obvious and has been intensely debated whether when two particles
interact via both, contact and dipolar interaction, the two contributions can be treated
separately and the approximation of the contact interaction by a pseudo-potential remains
valid. For the most relavant experimental parameter regions, however, away from so-called
shape resonances, it is now the accepted opinion that this is the case [163, 300, 301].

At temperatures low enough, in the universal regime [2], the scattering cross section Universal
scatteringdepends not on the particle energy but only on the dipolar length and – for bosons – on

the s-wave scattering length. Even though the DDI is anisotropic, we can calculate the mean
scattering cross-section of a particle in this universal regime. The 3D average over the full
solid angle yields

σ̄ =





32
45 πa2

d + 8πa2
s for bosons,

32
15 πa2

d for fermions,
(26)

wherefrom we see that in case of small s-wave scattering length, fermions scatter about
three times more [104].





Es lohnt sich doch, ein wenig lieb zu sein
Und alles auf das Einfachste zu schrauben.

– Joachim Ringelnatz [246]

3M E A N - F I E L D A N D B E Y O N D

We are now about to merge the insights from the previous chapters and allow particle
interactions in our many-body system. If we would naïvely try to build such a description
bottom-up, keeping track of the interactions of every particle with everyone else, we would
quickly be overwhelmed even at moderate particle numbers – not to mention the tens to
hundreds of thousands of atoms in a typical BEC. Instead, such a problem is typically
tackled in a mean-field manner.

Generally, a mean-field theory is the approach to study the behaviour of a complex
system by considering a much simpler system that approximates the original by averaging
over (typically many) degrees of freedom [57]. In our example, we may approximate the
system of interacting particles by a system of free particles moving in an effective ‘external
potential’ created by the others. Thus we reduce a computationally hard many-body to a
computationally easier, effective one-body problem. However, this intrinsically neglects
that each particle locally modifies the potential, i. e. the effect of fluctuations.

As we will see, in the case of a dipolar quantum gas, this deficit can be repaired by
simply adding a beyond-mean-field correction term derived using a local density approxi-
mation (LDA). Importantly, the result is still a mean-field equation, allowing for reasonably
fast computations. Nonetheless, the beyond-mean-field correction is essential for under-
standing certain intriguing phenomena that can be observed in dipolar quantum gases,
such as the formation of quantum droplets or supersolid phases.

3.1 the gpe framework

In mean-field theory, it is possible for ground-state bosons1 to construct a non-linear Schrö-
dinger equation that contains the interactions at a mean field level. We embark this venture
by considering the Heisenberg picture, where state vectors are static and the time evolu-
tion of any observable is given by the Heisenberg equation of motion: Heisenberg

equation of
motion

ih̄
d
dt

ÔH =
[
ÔH, ĤH

]
+
(

ih̄
∂

∂t
Ô
)

H
(27)

Here, ÔH(t) = Û†(t)ÔÛ(t) and Ô, respectively, are the Heisenberg- and Schrödinger-
picture operators.

We first try to find the right Hamiltonian. For a dilute sample (§ 2.1), we can safely
neglect contributions from higher than pairwise interactions, such that

Ĥ = Ĥ(1) + Ĥ(2) with Ĥ(i) =
∫

ψ̂† (⃗r)ĥ(i) (⃗r)ψ̂(⃗r)ddr. (28)

1 Unfortunately, there is no general analogue of the Gross-Pitaevskii equation for degenerate fermions.

15
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The single-particle Hamilton operator density is simplyOne-body
Hamiltonian

ĥ(1) (⃗r) = − h̄2

2m
∇2

︸ ︷︷ ︸
kin. energy

+ U(1) (⃗r)
︸ ︷︷ ︸
ext. pot.

= − h̄2

2m
∇2 +

1
2

m
d

∑
i=1

ω2
i r2

i , (29)

with the example of a d-dimensional harmonic trap of frequencies ωi given on the right-
hand side.

The Hamilton operator density ĥ(2) accounts for pairwise interaction. If the interaction
potential is short-ranged as in the van der Waals case, it may be replaced by the pseudo-
potential (19). Then, away from shape resonances, the pseudo- and long-range potential
can be treated separately [163] and we can write:Two-body

Hamiltonian

ĥ(2) (⃗r) =
1
2

∫
ψ̂† (⃗r′)U(2) (⃗r − r⃗′)ψ̂(⃗r′)ddr′ with U(2)(x⃗) = Uc(x⃗) + Ud(x⃗) (30)

Note that both the contact (Uc) and the dipolar term (Ud) can be either positive or negative,
and in particular they can be of opposite sign and partially (or completely) cancel each
other.

We now apply the Heisenberg equation of motion to the field operator ψ̂H (⃗r). For a
Schrödinger-picture field operator ψ̂(⃗r) without explicit time dependence, Eq. 27 simplifies
to ih̄dtψ̂H (⃗r, t) = [ψ̂H (⃗r, t), ĤH]. Using the commutation relations2 for the field operators
it follows

ih̄
d
dt

ψ̂H (⃗r, t) =
(

ĥ(1)
H (⃗r, t) + 2ĥ(2)

H (⃗r, t)
)

ψ̂H (⃗r, t). (31)

This expression holds very generally, but since all single-particle states are still coupled
through the field operators (Eq. 7), it is quite costly to solve and a greater simplification is
desirable for practical use.

Not only the ideal Bose gas, but also the interacting Bose gas undergoes condensationInteracting BECs

at sufficiently high phase-space density. This can be shown rigorously in 3D [87, 106, 177];
in lower dimensions, at least quasi-condensation occurs with phase coherence over the
experimentally relevant length scales (yet not truly long-range) [99, 128, 199]. The fact that
the condensate corresponds to the only eigenstate of the single-particle density matrix
that has a macroscopic eigenvalue motivates, for a first approximation, to leave all excited
states aside.

To do so, we insert the Bogoliubov approximation (11) for all field operators appearing
in Eq. 31 (i. e., also inside the Hamiltonians) and neglect the fluctuations δ̂(⃗r). With this
procedure, the operator equation (31) becomes a field equation, which we reflect in the
notation by dropping the hats:

ψ̂(⃗r) → Ψ(⃗r), ĥ(⃗r) → h(⃗r), Ĥ → H. (32)

2 These lead, in particular, to the factor of two in front of ĥ(2) (⃗r), cf. Refs [72, 234, 290].
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We further introduce as a short-hand notation the dipolar mean-field potential

Φ(⃗r) =
∫

Ud (⃗r − r⃗′)|Ψ(⃗r′)|2ddr′. (33)

The resulting field equation, originally derived in 1961 separately by Gross [125] and Mean-field GPE

Pitaevskii [233] for non-dipolar bosons, then reads

ih̄
d
dt

ΨH (⃗r, t) =
(

h(1)
H (⃗r, t) + 2h(2)

H (⃗r, t)
)

ΨH (⃗r, t) (34)

=

(
− h̄2∇2

2m︸ ︷︷ ︸
kinetic

+ U(1) (⃗r)
︸ ︷︷ ︸

trap

+ g|ΨH (⃗r, t)|2
︸ ︷︷ ︸

contact

+ ΦH (⃗r, t)
︸ ︷︷ ︸

dipolar

)
ΨH (⃗r, t)

This equation is called the time-dependent Gross–Pitaevskii equation (GPE). Although it
can strictly only be applied in the low-T and weakly interacting limit, it has proven to be
a very powerful tool in the description of various types of condensates [72, 149, 172, 223,
234]. Inserting the Heisenberg order parameter (12) into the time-dependent GPE (34), we
obtain the time-independent GPE, Stationary GPE

µΨ(⃗r) =

(
− h̄2∇2

2m
+ U(1) (⃗r) + g|Ψ(⃗r)|2 + Φ(⃗r)

)
Ψ(⃗r). (35)

Superfluid hydrodynamics

There is a deep connection between the mean-field theory of a Bose–Einstein conden-
sate (BEC) and hydrodynamic behaviour. To see this, we write the time-dependent order
parameter in the Madelung form, ΨH (⃗r, t) =

√
n0eiS, where density and phase are space-

and time-dependent fields, n0 (⃗r, t), S(⃗r, t). Inserting this form into the GPE yields the equa-
tions of motion for density and phase (Eqs 36 and 37 below, respectively). These two
equations are exactly equivalent to the “two” equations given by the GPE (34) for the real
and imaginary field, Ψ(⃗r) and Ψ∗ (⃗r) [194, 223].

The equation related to the density reads Continuity
equation

∂n0

∂t
= − h̄

m
∇⃗(n0∇⃗S) ≡ −∇⃗(n0v⃗). (36)

This is a continuity equation that essentially embodies conservation of particle number.
Moreover, in the second step, we have introduced the superfluid velocity field which de- Superfluid

velocitypends on the phase gradient, v⃗ = (h̄/m)∇⃗S. By definition, this velocity field is irrotational
since ∇⃗ × (∇⃗S) ≡ 0 for all S.

Also the equation related to the phase S can conveniently be written in terms of the
superfluid velocity [194, 234]: Euler equation

m
∂v⃗
∂t

= −∇⃗
(

1
2

mv2 + U(1) + gn0 + Φd − h̄2

2m
(∇2√n0)√

n0

)
(37)
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The last term on the right stems from the zero-point kinetic energy of the particles and
has no classical analogue. It is called the quantum pressure term; in the Thomas–Fermi
regime, where zero-point motion is small compared to interactions and external potential,
this term can be dropped. The equation (37) then takes the same form as the Euler equation
for the potential flow of a classical, inviscid fluid.

Note that in the derivation of Eqs (36–37) we have made no assumptions except the
existence of a classical field Ψ(⃗r) that obeys the Heisenberg equation of motion through
an equation like the GPE. From this already arises the relation between any quantum
condensation phenomenon and superfluidity, regardless of the precise system.

3.2 (in)stabilities

From construction we know that the GPE describes a bosonic condensate state. But for
which kind of parameters can such a state exist?

To answer this, we start from the full Hamiltonian (28), which in mean-field approxima-
tion directly reduces to the Gross–Pitaevskii energy functional,Energy functional

E[Ψ(⃗r)] = H(1) + H(2)

=
∫ (

− ih̄
2m

|∇⃗Ψ(⃗r)|2
︸ ︷︷ ︸

EK (⃗r)

+ U(1) (⃗r)|Ψ(⃗r)|2
︸ ︷︷ ︸

EP (⃗r)

+
g
2
|Ψ(⃗r)|4 +

1
2

Φ(⃗r)|Ψ(⃗r)|2
︸ ︷︷ ︸

EI (⃗r)

)
ddr (38)

≡ EK + EP + EI

The total mean-field energy for a given field Ψ(⃗r) is, accordingly, given by the kinetic
energy EK, trap potential EP, and interaction energy EI, which are the integrals over the
corresponding energy densities, denoted in cursive font. A scaling analysis in d dimen-
sions reveals, for the case of harmonic trapping,

EK ∝
N
L2 , EP ∝ NL2, EI ∝ ḡ

N2

Ld , (39)

where N is the condensate atom number, L is the mean characteristic size of the cloud and
ḡ is the averaged interaction strength (in our case, contact plus dipolar interaction). We
find, in the case of three dimensions (d = 3):

• For average repulsive interactions (ḡ > 0), there is always a global minimum in E
(stable solution) at finite L;

• For attractive interactions (ḡ < 0), the global minimum is at L = 0 since EI → −∞,
leading to a runaway collapse of the condensate if we wait long enough;

• In non-uniform systems (EK > 0), even for attractive interactions (ḡ < 0) there still
exists a local minimum (metastable solution) at finite L for particle numbers N below
a critical value Nc.

The energetic instability encountered here affects the whole BEC and is therefore associ-
ated with a length scale on the order of L. This corresponds to low-momentum excitations,
i. e., as we will see later (§ 3.4), the phonon branch of the excitation spectrum. For this rea-
son, this type of instability is also called a phonon instability.Phonon instability
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In the case of isotropic interactions, such as s-wave scattering, EK does not depend on
the system geometry, allowing to calculate a stability diagram in a straight-forward fash-
ion. For anisotropic interactions, such as the dipolar interaction (§ 2.3), the case is more
complex [28, 288, 289]. Let us call the polarisation direction of the dipoles z. Without going
into details [38, 157, 162, 163, 254], we can then state that in an oblate, ‘pancake-shaped’
BEC with Lz < Lx, Ly, the dipoles are on average more side-by-side and the DDI acts domi-
nantly repulsive, stabilising the cloud. In a prolate, ‘cigar-shaped’ BEC with Lz > Lx, Ly, in
contrast, the dipoles are on average more head-to-tail and the DDI acts dominantly attrac-
tive, destabilising the cloud.

In contrast to non-dipolar systems, the aspect ratio κx,y = Lx,y/Lz of a harmonically Magnetostriction

trapped dipolar BEC is not directly given by the trap aspect ratio λx,y = ωz/ωx,y =
(ℓx,y/ℓz)2, where ωi is the trap frequency along direction i and ℓi =

√
h̄/mωi is the

associated oscillator length. Following the tendency to minimise the system energy, the
dipoles will try to line up along z, resulting in κx,y <

√
λx,y [83, 209, 210]. This effect is

called magnetostriction.

Stationary solutions

With the GPE we already have the equation that governs the time-evolution of a given
field Ψ(⃗r). So far, however, we have no idea what such a state Ψ(⃗r) may look like. In
particular, we are interested in the shapes of the condensate Ψ(⃗r) which for a given trap
and scattering length as present stationary solutions to the equations of motion given
through the GPE. In general, such (meta-)stable states can correspond to (local) global
extrema or saddle points in the associated condensate energy.

For experiments, the states corresponding to energy minima are most relevant. They
can be found by minimising the energy functional E[Ψ(⃗r)] with respect to Ψ(⃗r) at con-
stant condensate particle number N0 =

∫
|Ψ(⃗r)|2ddr. We can deal with this constraint by

interpreting µ as a Lagrange multiplier and looking for the Ψ(⃗r) that makes the Lagrange
function stationary, δ(E − µN0) = 0. This procedure is equivalent to minimising Hg Ψ(⃗r)
at constant µ, since in the grand-canonical Hamiltonian, Hg = H − µN, the chemical po-
tential takes care of the particle number [179, 223].

In general (for arbitrary external potentials, etc.), the minimisation has to be performed
numerically, starting with a guess for the shape and then performing a gradient descent.
In selected cases, e. g. under the Thomas–Fermi approximation where the kinetic energy
is neglected, it is possible to obtain an analytical expression for the ground-state Ψ(⃗r).

An alternative way to find a Ψ(⃗r) that corresponds to a (local) minimum of Hg is to Imaginary-time
evolutionevolve a guessed shape with imaginary time (dt → −idt) by integrating Eq. 34 and renor-

malising after each time step. Since the lowest-energy mode decays the slowest, a good
guess will converge towards the ground state.

If the energy functional for a given set of experimental parameters does not possess a Collapse

nontrivial minimum at finite energy, e. g. when ḡ < 0 and N0 > Nc, there is no stable BEC.
Such a system is (formally) bound to collapse and shrink towards a zero-size and infinite-
density object; in an experiment, of course, at some point three-particle scatterings (which
we have neglected in our formalism) would become relevant, leading to recombination
processes and particle loss.
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A final comment on the simulation of dipolar systems. The long-range character of theNon-locality

DDI makes the second term in U(2) non-local [163, 254]. Therefore, the extended GPE is an
integro-differential equation and computationally much more costly to solve than a ‘usual’
GPE with purely short-ranged interactions.

3.3 excitations : many times bogoliubov

The GPE describes the dynamics of a BEC. This description is particularly insightful in
terms of the eigenmodes of the system. In the laboratory, one often encounters certain
types of excitations, such as breathing or sloshing modes. From the fact that a condensate
behaves like a fluid (§ 3.1), one might also expect excitations related to sound waves.

The concrete spectrum of excitations can be calculated right away using Bogoliubov
theory. For dipolar systems, this was first demonstrated by Santos et al. [255], and in
the following we will sketch the general procedure, adapting mainly the formulation of
Lima and Pelster [178, 179]. This will provide a framework for the kinds of excitations
mentioned above, and reveal that there can be also more exotic kinds, like the roton.

To start, we consider again the field operator in Bogoliubov approximation, ψ̂(⃗r) =
Ψ(⃗r) + δ̂(⃗r). To relax the constraint of constant particle number right away, we insert it
directly into the grand-canonical Hamiltonian,Grand-canonical

Hamiltonian

Ĥg = Ĥ − µN̂ =
∫

ψ̂† (⃗r)
(

h(1) (⃗r) + h(2) (⃗r) − µ
)

ψ̂(⃗r)ddr (40)

When carrying this out, we separate the contribution of condensate Ψ(⃗r) and quantum
fluctuations order by order in δ̂(⃗r). Restricting the expansion to zeroth order one recovers
the stationary GPE (35).

We will now go beyond this approximation and retain terms up to second order in fluc-Bogoliubov
transformation tuations. We apply the so-called Bogoliubov transformation and expand the fluctuations

operator (11) as follows:3

δ̂(⃗r) = ∑
i>0

(
ui (⃗r)b̂i + v∗i (⃗r)b̂†

i

)
with

∫
u∗

i (⃗r)uj (⃗r) − v∗i (⃗r)vj (⃗r)ddr = δij (41)

Here, the ground state (i = 0) is excluded from the sum and the construction opera-
tors b̂†

i , b̂i, which have no interpretation at this stage, obey the bosonic commutation rela-
tions. The resulting Hamiltonian is diagonal if the following pair of coupled Bogoliubov–
de Gennes (BDG) equations is satisfied (cf. Refs [32, 107, 250]):BDG equations

L
(

ui

vi

)
= εi

(
ui

vi

)
, (42)

where

L =

((
h(1) + 2h(2) − µ

)
+ X −X

X −
(
h(1) + 2h(2) − µ

)
− X

)
, (43)

3 By writing Eq. 41, the sign convention of Pitaevskii & Stringari [234] is chosen.
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εi is the excitation energy of mode i, and for compactness the dependence on r⃗ is not
explicitly noted. The plain h(2)-terms in Eq. 43 account for the usual direct interaction
between two condensate particles. The exchange operator X is defined by

Xwi (⃗r) = Ψ(⃗r)
∫

U(2) (⃗r − r⃗′)wi (⃗r′)Ψ∗ (⃗r′)ddr′ (44)

with wi ∈ {ui, vi} and accounts for the exchange interaction between one particle from the
condensate and one from an excited state.

The general recipe (42) allows to compute the Bogoliubov amplitudes ui (⃗r)vi (⃗r) and the
spectrum εi. In the general case, this has to be carried out numerically; in some special
cases, analytical solutions are known. An instructive example is the homogeneous gas
outlined in the next section.

3.4 spectrum of a 3d homogeneous bec

The basis states of the homogeneous system are plane waves. The associated plane-wave
momenta k⃗ are conserved and good quantum numbers [277, 290]. It is therefore convenient
to work in momentum space, where in three dimensions, the Fourier transform of the
interaction potential U(2) (⃗r) (cf. Eq. 30) takes the form

Ũ(2) (⃗k) = Ũc (⃗k) + Ũd (⃗k) = g
(
1 + ϵd(3 cos2 ϑ − 1)

)
. (45)

In a homogeneous system, the condensate field Ψ must be independent of position,
so the mean-field chemical potential has to take the form µ = n0 limk→0 Ũ(2) (⃗k), where
n0 = N0/V is the number density in a volume V. This expression can be inserted into
the BDG equations (42), finally allowing to solve (i) for the Bogoliubov amplitudes [179],
labelled by (discrete) momenta k⃗,

v2
k⃗

=
1

2ε⃗k

(
h̄2k2

2m
+ n0Ũ(2) (⃗k)

)
− 1

2
, (46)

through which by the Kronecker condition (41) also the u⃗k are fixed, as well as (ii) for the
Bogoliubov spectrum [179, 256]: Bogoliubov

spectrum

ε⃗k = (±)

√√√√ h̄2k2

2m

(
h̄2k2

2m
+ 2gn0

(
1 + ϵd(3 cos2 ϑ − 1)

))
(47)

where ϑ is the angle between k⃗ and the dipole orientation. Since ε(k) is either real or purely
imaginary, we can restrict ourselves to positive solutions. Negative mode energies would
simply swap the roles of the ladder operators b̂†

k⃗
, b̂⃗k and are hence not required for the

completeness of the Bogoliubov eigenbasis [106, 223].
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Let us inspect the low- and high-momentum limits of the spectrum (47):

ε⃗k →





c1(ϑ) k for k → 0 (phonon-like),
h̄2

2m k2 for k → ∞ (free-particle-like),
(48)

where

c1(ϑ) = c0
1

√
1 + ϵd(cos2 ϑ − 1) and c0

1 =
√

gn0/m. (49)

Here, c0
1 is the velocity of first sound in the non-dipolar limit (ϵd ≪ 1).

At low momenta (or long wavelengths), the excitations are collective and propagate like
sound waves. For dipolar gases, the speed of sound c1(ϑ) depends on direction due to
the anisotropy of the dipolar interaction, as has been verified in experiments in Paris [27]Anisotropic speed

of sound and Stuttgart [295]. Moreover, for ϵd > 1 there are angles ϑ where c1(ϑ) – and hence
the mode energy ε⃗k – can become imaginary. This dynamic instability on the phonon
branch connects directly to the energetic instability discussed in § 3.2. Instabilities will bePhonon instability

revisited in greater detail in § 3.6, where we will take a look at (i) finite systems, more
realistic from an experimental perspective, and will (ii) put a special focus on the regime
between the low- and the high-k branch. Here, for dipolar systems, a rotonic dispersion
can be observed.

At high momenta (i. e., short wavelengths), the excitations of a 3D homogenous system
are quadratic in k and again resemble the excitations of free particles.

Bogoliubov excitations as Nambu–Goldstone bosons

In a homogeneous system, the Hamiltonian diagonalised through the BDG approach takes
a particularly simple form:

Ĥ = E0 + ∑
k>0

ε⃗k b̂†
k⃗
b̂⃗k (50)

Here, E0 = Ĥ |GN⟩ is the N-body ground-state energy4 of the condensate and the ladder
operators b̂†

k⃗
, b̂⃗k add or remove Bogoliubov excitations of energy ε⃗k.

As discussed in § 1.4, the classical field Ψ(⃗r) acts as an order parameter for Bose–Einstein
condensation. The thermal phase has a U(1) symmetry, which is broken when crossing
the phase transition to the condensate and Ψ(⃗r) spontaneously takes a particular phase
value. By the Goldstone theorem [111], every symmetry breaking implies the existence of
excitations related to the broken symmetry, the so-called Nambu–Goldstone bosons. The
Bogoliubov excitations are the Nambu–Goldstone bosons of Bose–Einstein condensation
[106, 110, 174, 204]. The operators b̂†

k⃗
, b̂⃗k are the corresponding quasiparticle creators and

annihilators, for whom the N-body ground state acts as the vacuum, b̂k |GN⟩ = 0.

4 Including a beyond-mean-field correction, cf. § 3.5.2 and Ref. [234].
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3.5 quantum fluctuations in local-density approximation

Non-uniform systems, as in typical experiments, are harder to treat than the homogeneous
case. A popular approach is to make a local density approximation (LDA), where the
number density n(⃗r) is allowed to vary in space, but in each point, the calculation is
performed for a homogeneous system of volume V and density N/V = const. = n(⃗r) [28,
178, 179, 289]. Such a procedure leads to important insights, as will be presented in the
following.

3.5.1 Quantum depletion

The number of particles in the many-body ground state |GN⟩ is given by the expectation
value ⟨GN |N̂|GN⟩. For a diagonal Hamiltonian [178, 179], the particle density and total
particle number separate into

n(⃗r) = |Ψ(⃗r)|2 + ⟨δ̂† (⃗r)δ̂(⃗r)⟩ = n0 (⃗r) + ∆n(⃗r) and (51)

N =
∫

n(⃗r)ddr = N0 + ∆N, (52)

respectively. N0 is the number of particles in the single-particle ground state (k = 0).
We see that when interactions are present and ⟨δ̂† δ̂⟩ ̸= 0, even in a system in the N-
body ground state |GN⟩ at T = 0, a finite number ∆N of particles is depleted from the
single-particle ground state (described by Ψ) and occupies excited single-particle states. The
depleted particles are described by the fluctuations operator δ̂, such that we obtain in
local-density approximation5 [32, 179]:

∆n(⃗r) = ⟨δ̂† (⃗r)δ̂(⃗r)⟩ =

〈
∑

k,k′>0

(
u∗

k⃗
(⃗r)b̂†

k⃗
+ v⃗k (⃗r)b̂⃗k

) (
u⃗k′ (⃗r)b̂⃗k′ + v∗

k⃗′
(⃗r)b̂†

k⃗′

)〉

= ∑
k>0

∫
v∗

k⃗
(⃗r)v⃗k (⃗r)ddr (53)

Here, cross-terms vanish due to the commutation relations of b̂†
k⃗
, b̂†

k⃗
(cf. Eqs 111–112) and

the Kronecker condition (41).
In the thermodynamic limit, the spectrum discrete in k⃗ becomes continuous such that

we can replace the sum by an integral, ∑k>0 → V(2π)−3
∫

d⃗k, and insert the expression for
the Bogoliubov modes obtained earlier for the homogeneous system (Eq. 46). This yields

∆n(⃗r) =
8

3
√

π
Q3(ϵd)n1/2 (⃗r)a3/2

s (54)

[178, 179], where the auxiliary function is defined through

Qℓ(x) =
∫ 1

0
(1 − x + 3xy2)ℓ/2dy. (55)

5 NB that without LDA, momentum is not a good quantum number for an inhomogeneous system and we would
not be able to label the Bogoliubov modes by k⃗.
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This function increases monotonically with dipolarity ϵd from Q3(0) = 1 for a purely
contact-interacting system to Q3(1) ≈ 1.30 for a fully dipolar system.6 Compared to non-
dipolar systems, quantum depletion is therefore increased in dipolar systems; however, for
typical experimental parameters the depleted fraction is still on the low percent level, justi-
fying the theoretical treatment of the depleted fraction as a perturbation to the condensate.
This is in stark contrast to strongly interacting systems such as liquid helium, where the
range of interparticle interactions is on the order of the interparticle separation, leading to
a depleted fraction typically higher than 90 % [270, 271, 276]. Consequently, perturbation
theory fails for superfluid helium and more advanced approaches like Monte Carlo or
variational methods are necessary.

For arguments x > 1, the function Qℓ(x) takes imaginary values. This marks another
type of instability, as will be revisited a bit later (§ 3.6.2).

3.5.2 The LHY energy correction

Also the energy of the condensate is affected by the presence of quantum fluctuations.
In LDA for harmonic trapping, Eq. 38 takes the form E = EK + EP + EI + ∆E, where the
energy correction ∆E =

∫
∆E (⃗r)ddr is within Bogoliubov theory [28, 179] given by the

energy density

∆E (⃗r) =
2
5

γ n5/2 (⃗r) (56)

with the quantum fluctuation parameter

γ =
32

3
√

π
Q5(ϵd)g a3/2

s =
32

3
√

π
g a3/2

s

(
1 +

3
2

ϵ2
d + O(ϵ4

d)

)
. (57)

In this case, the auxiliary function varies from Q5(0) = 1 (purely contact-interacting) to
Q5(1) ≈ 2.60 (dipolar system).

For homogeneous density and a purely contact-interacting gas (ϵd = 0), one recovers
the 1957 seminal result of Lee, Huang & Yang [170], wherefore the energy correction (56)
is referred to as the LHY correction.

The LDA energy correction (56) further results in a local correction to the chemical poten-
tial [28, 178, 179, 289]:

∆µ(⃗r) =
∂(∆E)

∂n
(⃗r) = γ n3/2 (⃗r) (58)

3.5.3 The extended Gross–Pitaevskii equation

As we have seen, even though the quantum fluctuations δ̂(⃗r) are a genuine beyond-mean-
field effect, under the local-density approximation their effect can to a certain extent be
harnessed in form of mean-field correction terms ∆E (⃗r), ∆n(⃗r), ∆µ(⃗r). Continuing in this

6 For a plot of Q3(x) and Q5(x), see, e. g., Refs [178, 226].
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spirit, the effect of quantum fluctuations can be woven into the Gross–Pitaevskii equation
(34) that describes the system, in time-dependent as well as in stationary form:

ih̄
d
dt

ΨH (⃗r, t) =

(
− h̄2∇2

2m
+ U(1) (⃗r) + g|ΨH (⃗r, t)|2 + ΦH (⃗r, t) + γ|ΨH (⃗r, t)|3

)
ΨH (⃗r, t)

(59)

µΨ(⃗r) =

(
− h̄2∇2

2m
+ U(1) (⃗r) + g|Ψ(⃗r)|2 + Φ(⃗r) + ∆µ(⃗r)

)
Ψ(⃗r) (60)

These equations were originally proposed in Refs [28, 179, 289] and are called the extended
Gross–Pitaevskii equations.

The corrected energy functional associated with the extended GPE reads, accordingly,

E[Ψ(⃗r)] =
∫ (

EK (⃗r) + EP (⃗r) + EI (⃗r) + ∆E (⃗r)

)
ddr (61)

=
∫ (

− ih̄
2m

|∇⃗Ψ(⃗r)|2 + U(1) (⃗r)|Ψ(⃗r)|2+

+
1
2

g|Ψ(⃗r)|4 +
1
2

Φ(⃗r)|Ψ(⃗r)|2 +
2
5

γ|Ψ(⃗r)|5
)

ddr. (62)

3.6 (in)stabilities revisited

Let us now investigate the effects which quantum fluctuations can have on the stability
of a dipolar quantum gas. We will see that the dipolar interaction quantum can trigger
a roton instability, which in turn can be stabilised through a mechanism stemming from
the quantum fluctuations we have encountered in the previous section. In combination,
dipolar interactions and quantum fluctuations present the two essential ingredients for
the formation of arrays of dipolar quantum droplets and dipolar supersolid phases of
matter.

3.6.1 A quantum-fluctuation-driven stabilisation mechanism

In 2015 it was realised in a seminal paper by Petrov [225] that a mean-field unstable
quantum system could be stabilised by the Lee–Huang–Yang (LHY) term. In his study, a
Bose–Bose mixture with a repulsive intraspecies and an attractive interspecies interaction
was considered in three dimensions. If the attractive interactions are dominant, such a
mixture is expected to collapse according to the energy functional (38) in the zero-order
mean-field picture. If, however, the repulsive and attractive interactions can be controlled
independently, one can create a situation where they almost cancel and a gentle collapse
can be balanced by the repulsive LHY term in the corrected energy functional (cf. Eq. 61)
due to its higher scaling in density (cf. Eq. 39):

EI ∝ ḡ
N2

L3 vs ∆E ∝ n5/2L3 =
N5/2

L9/2 (63)
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Such a system stabilised by quantum fluctuations (QF) shows peculiar properties, un-
known at that point from any other ultracold-atom system [225]. For example, due to
the steeper scaling in density, it was predicted that a QF-stabilised system could become
self-bound such that it can stably exist in vacuum without any trapping. The particle
densities in such a QF-stabilised system are one to two orders of magnitude larger than
for conventional quantum gases. Even more uniquely, the peak density is expected to
saturate, resulting in a flat-top density profile and justifying the name quantum droplet, in
reminiscence of classical fluid droplets. Also the excitation spectrum of a quantum droplet
is peculiar, containing only few or no discrete modes. For untrapped droplets, there are
regimes where no collective modes are below the chemical potential, meaning that all ex-
citations must result in a spilling of particles, leading to a self-evaporation of the droplet
to zero temperature [44, 225].

It was soon realised after the publication of Petrov, that, similar to independently tun-
able intra- and interspecies interactions in a mixture, in dipolar Bose gases a balancing of
the attractive dipole-dipole interaction and a repulsive contact interaction could allow to
access a regime that would favour the formation of self-bound dipolar droplets [17].

These early works have sparked a wealth of following theoretical studies,7 and have
motivated several experimental groups, including ours, to set out and test their enthralling
predictions.

3.6.2 The dipolar roton

For finite dipolar systems, like an experimental BEC, there is an important difference com-
pared to the excitation spectrum (47) of the infinite 3D homogeneous gas. In an infinite 3D
homogeneous system, the Fourier transform of the dipole potential (cf. Eq. 45) depends
on the direction (ϑ), but not the modulus of momentum k⃗.

As was realised in the early 2000s [208, 255], if a dipolar system is confined in space,
this is not anymore the case. Suppose the system is confined harmonically in the direction
z of the dipoles with frequency ωz and oscillator length ℓz. Two theoretical models are
worthwhile to study in this context: the infinite pancake in the xy-plane (Fig. 3d), and the
infinite cigar along y (Fig. 3a). From an initial focus on the pancake geometry in early the-
oretical studies [208, 255] and experiments [145], the focus has later shifted more towards
the cigar geometry, which has proved more favourable for implementing experiments di-
rectly probing the excitation spectrum through a geometric focussing effect (higher peak
value in momentum distribution, cf. Fig. 3c, d).8

In either case, momentum along the infinite direction(s), transverse to the confinement,
is a good quantum number, and hence plane waves in density form a convenient choice
for the corresponding excitations.
For transverse wavelengths λ⊥ = 2π/k⊥ much greater than ℓz, the wave propagation is
essentially mediated exclusively via side-by-side repulsion between dipoles. These excita-
tions are phonons in an effective 2D geometry (bottom left cartoon in Fig. 3b).
For in-plane wavelenghts λ⊥ ≪ ℓz, in contrast, the excitations are of 3D character and
include attractive head-to-tail attractions, which lower the excitation energy (bottom right

7 See, e. g., the review of Böttcher et al. [44], and references therein.
8 Most recently, with a better understanding of the physics at play and a refined control of experimenal parameters,

interest is shifting back towards the pancake geometry [136, 207, 258].
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Figure 3: Dipolar particles in a
confined geometry. (a) An infi-
nite cigar trap with transverse
dipole alignment. (b) The cor-
responding excitation spectrum.
The roton mode softens for de-
creasing as and becomes imagi-
nary (dotted line depicts norm).
Cartoons on bottom illustrate
dipole configurations for low-
(left) and high-ky (right) momen-
tum. (c, d) Momentum distribu-
tion for equal roton mode pop-
ulations in a cigar (a, c) and
pancake (d) geometry, in identi-
cal colour scale. Figure modified
from Ref. [66].

cartoon in Fig. 3b). As a result, for increasing momentum k, the effective dipolar interac-
tion potential Ũeff

d (k⊥) decreases and turns negative for k⊥ > 1/ℓz. This has an important
effect on the excitation spectrum, sketched in Fig. 3b.

Let us divide the discussion of this dispersion curve in three distinct regions:

• At low momenta, k⊥ → 0, the DDI is dominantly repulsive and leads to a linear
phonon dispersion.

• At high momenta, k⊥ → ∞, the excitation spectrum is still quadratic and free-parti-
cle-like.

• At intermediate momenta, around k⊥ ∼ 1/ℓz, the attractive DDI lowers the excitation
energy, i. e. the mode becomes easier to excite and appears ‘softer’.

If strong enough, the mode softening around k⊥ ∼ 1/ℓz can lead to the development of
a characteristic maximum-minimum sequence, where the maximum and minimum are
referred to as maxon and roton9, respectively. These names were originally coined in the
context of superfluid helium, which exhibits a qualitatively similar dispersion [94, 164,
212, 260, 298]. Around the roton minimum, the dispersion curve can be approximated
quadratically. For the infinite cigar, this can be written as [66]

ε(ky)
∣∣∣
ky≈kR

≈ ∆2
R +

2h̄2k2
R

m
h̄2(ky − kR)2

2m
(64)

9 This denomination, despite sounding suggestive, does not have an intuitive interpretation connected to a rota-
tion.
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Figure 4: The dispersion of a dipolar quantum gas of 166Er atoms. From left to right, the sample becomes increasingly
dipole-dominated, with experimentally determined scattering lengths as ∈ {80.0, 60.5, 55.3, 52.5}a0, respectively.
Plot markers are experimental data from Bragg spectroscopy, the colour code reflects the normalised dynamic
structure factor S̃0(k, ω) predicted by zero-temperature theory. Figure modified from Ref. [227].

with the roton momentum kR =
√

2m(E′2 − ∆2
R)1/4, the roton gap ∆R =

√
E′2 − E′′2 and

energies E′2 = 2gn0ϵd(h̄2/2m)(X−2 + Z−2) and E′′ = (2/3)gn0(ϵd − 1). Here, n0 is the
density in the centre and X, Z are the Thomas–Fermi radii in the x- and z-direction.

In an experiment with ultracold dipolar atoms, both the roton momentum and the
roton gap can be varied. This is achieved, on the one hand, by control of the confinement
ℓz which determines the Thomas–Fermi radius Z, and, on the other hand, via the dipolar
parameter εd which depends inversely on the scattering length as. The scattering length
as can be tuned at a magnetic Feshbach resonance. This has been measured directly in our
group by Petter et al. [227] for erbium, using Bragg spectroscopy (see Fig. 4), and indirectly
by the Pfau group in Stuttgart [134] for dysprosium. In their approach, the Stuttgart group
relied on the statistical tools of density correlation and principal-component analysis, as
demonstrated by our group [205] and initially pioneered in non-dipolar systems [80, 264].

The possibility to tune the dispersion relation brings about great experimental opportu-
nities. Importantly, for suitable experimental parameters, it is possible to reach the regime
E′′2 ≥ E′2, so the roton gap can vanish and even become imaginary. To see what thisDynamic

instabilities entails, we write the fluctuation operator, which embodies all excitations of the system, in
Heisenberg form. Recalling that after the Bogoliubov expansion (41) the Hamiltonian is
of diagonal shape, application of the time-evolution operator Û(t) = exp(iĤt/h̄) simply
yields

δ̂H (⃗r, t) = Û†(t)δ̂(⃗r)Û(t) = ∑
k

(
uk (⃗r)b̂ke−iε(k)t/h̄ + v∗k (⃗r)b̂†

k eiε(k)t/h̄
)

. (65)

For real mode energies ε(k), this presents an oscillation with angular frequency ωk =
ε(k)/h̄, hence a stable mode. However, as we have seen, in the extreme case of strongly
dominating dipolar attraction the mode energy can become imaginary. The correspond-
ing exponents in Eq. 65 then turn real and we are faced with an unstable mode whose
occupation grows exponentially in time.

If this happens at low momentum k → 0, in the phonon branch, the associated length
scale is as large as the system, and the instability is of global character; this is the conden-
sate collapse described in § 3.2.
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(a) The dispersion relation from Rosensweig’s 1985

monograph [251]. The curves give the dispersion
for growing influence of the magnetic interaction
(along arrow M).

(b) A photograph of a classical ferrofluid beyond
the Rosensweig instability. Figure modified from
Ref. [156].

Figure 5: Dispersion and instability of a classical ferrofluid.

If, in contrast, it happens at intermediate momentum, as in the roton case (Eq. 64), the
associated length scale is appreciably smaller than the system itself and the instability has
a local character. We can try to get an intuition what such a local instability can look like
by considering an analogous system from classical physics.

A roton is not a phenomenon restricted to the quantum world. Also classical fluids Rotons in classical
ferrofluidscan show a drastic modification of the dispersion relation if they feature, for example, a

sufficient magnetic interaction. This can be demonstrated with so-called ferrofluids, which
consist of ferromagnetic nanoparticles suspended in a liquid solution. For ferrofluids, an
entirely classical analysis [251] predicts dispersion relations qualitatively similar to the
dipolar Bose gas, with a maxon and a roton between the linear (phonon) and the quadratic
(free-particle) branch. As illustrated in Fig. 5a, the dispersion of the ferrofluid depends on
the sample magnetisation, which can be manipulated through an external field. From
complete absence without magnetisation (M0 = 0), the roton mode increasingly softens
for growing magnetisation (following the arrow M).

At a critical magnetisation, the roton touches zero (black bullet). Something dramatic
happens to the ferrofluid at this “exchange of instabilities” [251]: Beyond this critical point,
the ferrofluid can no longer maintain a flat and smooth surface, but spontaneously devel-
ops sharp spikes arranged in a regular pattern, as shown in Fig. 5b. Physically, it is the
point where the surface tension, trying to minimise the surface area, is overcome by the
tendency of the nanoparticles to arrange head to tail instead of side by side. We see from
this classical example that the softening of a roton mode can lead to a breaking of the
translational symmetry of a system.

A similar instability can occur in dipolar quantum gases, leading to new phases of mat-
ter: quantum droplets, dipolar supersolids, and possibly more, still awaiting their discov-
ery, such as dipolar superglasses [136]. Peculiarities of these exotic states will be discussed
in the context of the publications presented in §§ 6 sqq.





I believe that truth has only one face:
that of a violent contradiction.

– Georges Bataille [79]

4C A N A S U P E R F L U I D B E S O L I D ?

The following chapter is intended to introduce the historic idea of a ‘superfluid solid’, to
provide formal definitions of quantities important in this context, and to review experi-
ments aimed at the detection of supersolids in systems other than dipolar quantum gases.

4.1 a short history of superproperties

The advent of superproperties is inseparably tied to the Dutch refrigeration pioneer Kam-
merlingh Onnes, who, in the early 1900s, established a cryogenic laboratory at Leiden
with the aim of testing thermodynamic predictions at low temperature. Already at that
time it was known that helium has the lowest boiling point of all materials. As we know
now, the reason why helium stays liquid at ambient pressure even for T → 0 is the com-
bination of a weak1 inter-atomic attraction and a large zero-point motion2 [86]. Unaware
of these peculiarities, in 1908 Kammerlingh Onnes succeeded in liquefaction of the more
abundant isotope 4He, mainly driven by the goal to use it as a refrigerant. This enabled
the discovery of the abrupt dissappearance of electrical resistance in solid mercury below
4.2 K on 8 April 1911. The immediate excitement about this doubtlessly groundbreaking
discovery made him and his coworkers attach only little significance to the fact that, later
the same day, when the temperature dropped below 2.17 K, the violent boiling of the he-
lium suddenly stopped and gave way to strong evaporation from a perfectly still surface,
signalling a leap in thermal conductivity [77].3 So on this momentous day, two quantum
phase transitions, superconductivity and superfluidity, had been observed for the first time,
but the significance of the latter was only realised much later.

A third phase transition was discovered in Leiden in 1926, when Keesom studied liquid
helium under externally applied pressure [148]. Differently from room pressure, if the
density of helium is increased, the atoms can come close enough for the van-der-Waals
force to take over such that solid bonds form and the helium freezes.

In 1938, finally, Kapitsa and, with an independent experiment, Allen and Misener took
attempts to study liquid helium below the λ-point more closely. Both of their experiments
yielded results consistent with a viscosity of zero [4, 147], and Kapitsa called this “special

1 Caveat: As the lightest noble gas, helium atoms have a particularly small diameter, wherefore orbitals are not
easily deformed and induced dipole-dipole attractions are too weak for solidification, in contrast to the metastable
BECs of metallic vapours, for which the true ground state is a solid. However, liquid helium is typically around
8 orders of magnitude more dense than the BECs of metallic vapours, and the mean spacing of helium atoms is
not large compared to the interaction range. Therefore, from a quantum-gas perspective it must be regarded as
a strongly-interacting system.

2 The zero-point energy scales inversely with the particle mass and is hence more relevant for light elements.
3 The extraordinary heat conductance stems from the fact that in 4He below the λ-transition (“helium-II”) heat is

not transported as usual via diffusion, but via entropy waves, the so-called second sound.
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state” a superfluid, in analogy to the electric superconductors.4 It took not long until Fritz
London drew an analogy between the scattering of fermions leading to electrical resistance
and the scattering of bosons leading to fluid viscosity [182]. Intuitively, he conjectured
that a process similar to the Bose–Einstein condensation of an ideal gas could prevent
particle scattering in helium-II and explain the dissipationless flow [181]. In 1941, finally,
Landau suggested a convincing model to explain the absence of viscosity [86, 164, 234].
His important insight was that for the creation of an excitation of wave vector k⃗ and energy
ε(k) to be created from the motion of the fluid, conservation of energy and momentum
require

ε(k) + h̄⃗k · v⃗ ≤ 0, (66)

which can only be fulfilled if the second term is negative and the velocity v is larger than
a certain minimum value [234]. The minimum velocity over all wave vectors k for which
an excitation can be created in the system is the critical velocity,

vc = min
k

ε(k)

h̄k
. (67)

Through this relation, the critical velocity vc depends on the excitation spectrum ε(k) of
the system.

In an ideal gas, particles follow the free-particle dispersion, ε(k) = h̄2k2/2m, yielding
vc = 0, allowing momentum transfer at infinitely small velocities and giving rise to dis-
sipation and viscosity. If, in contrast, the dispersion relation is phonon-like, ε(k) = c0

1h̄k,
where c0

1 is the (first) sound velocity, then ε(k)/h̄k = const. > 0 at low momentum and the
critical velocity vc stays finite. As we have seen in Eq. 48, the excitations of an interacting
Bose gas at small k are collective, giving rise to a phonon branch, whereas single-particle
excitations occur only at high k. This is the reason why interacting BECs are superfluid,
whereas the BEC of an ideal gas is not.

Historically, the theory of Bose–Einstein condensation in interacting systems was only
rigorously worked out in 1956 by Penrose and Onsager [220], finally setting the specu-
lations of London on firm grounds. This provided a framework which stimulated much
following work on superfluidity. A particular question was what happens to the superflu-
idity of helium at the phase transition from liquid to solid, and whether it could be, in
some way maintained [7, 59, 123, 124]. This led Legget to ask “can a solid be ‘superfluid’?”
in a famous article in 1970, which coined the counter-intuitive notion of supersolidity [171].

Motivated by the prospect of discovering an exotic phase of matter, generations of ex-
perimentalists have quested after the supersolid. However, as will be explained in § 4.3,
their search has long been in vain and only very recently started to bear fruit.

In particular, from solid helium, which has long been the prime candidate for a super-
solid, priorities have now shifted to the widely tunable ultracold atom systems such as
BECs. By this, the question of Legget may rather be rephrased in reverse, asking:

Can a superfluid be ‘solid’?

4 Nowadays, this intuition is rather turned around and superconductors are essentially considered charged super-
fluids [41].
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4.2 formal definition of supersolidity

Imagining a macroscopic substance that is solid and at the same time fluid can seem quite
puzzling to one’s intuition. Before talking about supersolids it is therefore important to
precisely define what is meant. In the following, we will recapitulate some key notions
about supersolidity. For greater detail, the reader is referred to the comprehensive collo-
quium by Boninsegni and Prokof’ev [41].

Order in a solid

Taking a microscopic view, the time-averaged local number density n(⃗r) of a crystalline
solid is periodic in space,

n(⃗r) = n(⃗r + R⃗) with R⃗ =
d

∑
i=1

mi⃗ai, mi ∈ Z, (68)

where the a⃗i denote the primitive lattice vectors of a d-dimensional Bravais lattice. This so-
called density long-range order (LRO) effectively constitutes a breaking of the translational
symmetry. Of course, in reality, solids are necessarily of finite extension, but it turns out
that many of the characteristic macroscopic features of solids are already present for small
crystals with mi on the order of a few.

It is fundamental for a substance to be called a solid that the density modulation devel-
ops spontaneously, as a consequence solely of the interactions between its constituents [41].
If the modulation is externally imposed, as for example for atoms trapped in an optical
lattice, it is therefore incorrect to speak of a solid.

Order in a superfluid

The defining property of a superfluid, in contrast, is frictionless flow. It is now widely ac-
cepted that superfluidity can be seen as a macroscopic manifestation of quantum particles
behaving collectively like a classical complex field [41, 109, 168]. Since the description in
terms of a classical field becomes valid in the limit of large occupation numbers, this is
intrinsically linked to Bose–Einstein condensation for three-dimensional systems, and the
related phenomena in lower dimensions.5

As shown by Penrose and Onsager [220], the first-order correlations of a many-body
system are, irrespective of interactions, fully described by the spatially-averaged one-body
correlation function

G(1) (⃗r) =
∫

⟨ψ̂† (⃗r′)ψ̂† (⃗r′ + r⃗)⟩ddr′ (69)

computed from the field operators ψ̂(⃗r) in position representation, and denoting by ⟨. . .⟩
the expectation value for a given many-body state. The momentum density, on the other

5 For uniform systems in d < 3 dimensions, thermal fluctutations prevent the establishment of a true order
parameter [69, 137, 195], but still, power-law correlations in the order parameter field allow to identify a transition
(BKT) corresponding to the BEC in three dimensions [24, 25, 41, 99, 128, 158]. See also the appendix, § A.4.4.
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hand, is given by n(⃗k) = ⟨ψ̂† (⃗k)ψ̂(⃗k)⟩ with the field operators in momentum representa-
tion. A straight-forward calculation6 then reveals the Fourier relation

n(⃗k) = F{G(1) (⃗r)}⃗k (70)

which immediately implies that if there is a delta-like peak δ(⃗k) somewhere in the momen-
tum density, such as for a Bose–Einstein condensate, then the one-body density matrix
does not go to zero over distance, and vice versa:

n(⃗k) =
N0

V
δ(⃗k) + nT (⃗k) ⇐⇒ G(1) (⃗r)

r→∞−→ N0

V
= const. > 0

This corresponds to an infinite correlation length in the system, where each condensate
particle must be imagined as essentially delocalised over the whole system [171]. Such
a type of order is called off-diagonal long-range order (ODLRO). Equivalently, in the lan-
guage of symmetry groups, the whole system shares a common condensate phase, which
constitutes a breaking of the U(1) gauge symmetry.

We have seen that superfluidity is intricately connected to a BEC-like phenomenon. ButSuperfluidity in
Fermi systems what about superfluid fermionic systems, like superfluid 3He or the electrons in a super-

conductor? In this case, the constituent Fermi particles have to pair up and form composite,
bosonic objects. These pairs then are allowed to multiply occupy the same state and can
undergo a process similar to Bose–Einstein condensation.

Order in a supersolid

A supersolid, finally, is a state of matter where LRO and ODLRO are simultaneously and
spontaneously present. This means that there is a finite fraction of superfluid atoms which
is delocalised over a density-modulated volume.

4.3 experiments with non-dipolar systems

Before the age of ultracold atoms since the mid-1990s, fluid helium has long been the only
neutral quantum fluid available to experiments.

The excitation spectrum of superfluid helium exhibits a longitudinal phonon branch at
low momentum and a free-particle branch at high momentum. In between those branches,
Landau proposed a maxon–roton dispersion, intitially only to improve the agreement
between his predictions and experimental data [164, 165, 166]. However, later neutron
scattering experiments directly verified the proposed spectral shape [212, 260, 298]. Ap-
plication of pressure leads to a softening of the roton mode, until the superfluid helium
eventually freezes [148, 260]. This phase transition has sparked long speculations about
superfluidity in crystalline helium and has for decades been at the centre of the quest for
evidence of supersolidity.

Indeed, past experiments have seemed to confirm supersolidity of helium by measure-
ment of non-classical rotational inertia using torsion pendula [19, 151, 152], or by searching
for mass transport through helium crystals in thin capillaries [242]. However, it turned out
later that these findings could equally be explained by other effects such as isotope impuri-

6 For greater detail, see the appendix, § A.3.
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ties or crystal dislocations [63, 64, 153]. So, whereas it seems to be the established opinion
that there is a weak effect of defect-mediated supersolidity in polycrystalline helium,7 it
remains an open question to-date whether monocrystalline (bulk) solid helium actually is
a supersolid, or not [19, 41].

Due to the difficulties with solid helium mentioned above, a growing amount of atten-
tion has therefore been directed to the field of ultracold atoms, where recently important
experimental steps towards the realisation of a supersolid state have been achieved. This
is maybe not too surprising, since dilute vapours of ultracold atoms present close to ideal
quantum many-body systems that offer two striking advantages over real solids:

• They are essentially free of impurities and imperfections that could obscure subtle
signals.

• The remarkable degree of freedom to change not only thermodynamic quantities
such as (i) temperature and (ii) density, but also to tune (iii) the geometry of the
system as well as (iv) the particle interaction potential.

The first experiments aiming at potential supersolid properties were conducted in the early
2010s in the Esslinger group at ETH Zürich, using 87Rb atoms interacting with the field
of an external optical cavity. In their initial experiment, they observed a spontanous self-
organisation of a Bose–Einstein condensate on a pre-imposed lattice structure [21, 202],
constituting the breaking of a discrete translational symmetry. Such a ‘lattice supersolid’
does not yet feature the continuous ground-state degeneracy that characterises a super-
solid as originally proposed. With a new experiment, the ETH group later also succeeded
in creating a state that breaks a continuous symmetry [173] and hence comes closer to the
original concept of a supersolid. Still, the periodicity of their density-modulated states is
set externally by a cavity mode, wherefore their states are inherently rigid and, for exam-
ple, do not support low-momentum phonon excitations. The same is true for an alternative
approach followed by the Ketterle group at MIT around the same time, which produced
a stripe-phase state via spin-orbit coupling in a 87Rb BEC [176].

So, while these experiments successfully showed that supersolid properties can be ob-
tained in a quantum gas by a smart coupling to light, there are coherent systems of ultra-
cold atoms where the interaction of atoms alone can give rise to a spontaneous density
modulation without the need for external light fields, resembling much more the super-
solid envisioned in the early days. This is where dipolar quantum gases enter the stage.

7 I. e., crystal vacancies delocalised over the lattice, which can Bose condense and move without friction.
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5T H E E R – D Y E X P E R I M E N T

In the following chapter, an overview of the Innsbruck Er–Dy apparatus is given, with a
special focus on the newly developped and implemented high-resolution imaging setup
for our steel ‘main’ science chamber.

5.1 the central apparatus

The critical temperatures to reach Bose–Einstein condensation in experiments with dilute
metallic vapours are typically in the range of tens to hundreds of nanokelvin. The rele-
vant energy scales for experimental quantum gases are hence many orders of magnitude
smaller than the ambient temperature of the surrounding laboratory, around 300 kelvin. To
avoid disturbances caused by the room-temperature environment, a quantum gas there-
fore needs to be well isolated, which is realised in experiments by confining it under
ultra-high vacuum (UHV). But how to cool, trap, how to peek and poke at something that
may not be touched? This is where lasers and magnetic fields come into play.

The central parts of the Innsbruck Er–Dy experiment, including the UHV apparatus, most
laser setups and the magnetic-field coils are laid out in great detail in the thesis of Philipp
Ilzhöfer [141]. Additional information on the magnetic-field system can be found in the
thesis of Gianmaria Durastante [81]. They have designed and constructed the majority of
the central apparatus, wherefore I am much indebted to them. In the following, only a
brief overview of this central apparatus1 and its capabilities is given.

The Er–Dy experiment was designed with the goal of maximum versatility for studies A versatile
mixture
experiment

of quantum gases of erbium, of dysprosium, as well as mixtures of both. Typically, adding
a second atomic species to a quantum gas experiment more than doubles the complexity
of the apparatus, since some components, like laser sources, are required twice, for other
components, like shared optics, complex solutions might be required to satisfy the needs
of both species. Luckily, due to the similarity of many atomic properties of the lanthanoid
elements erbium and dysprosium, it was possible to engineer a vacuum apparatus that,
at first glance, bears much of the simplicity of a single-species experiment. The apparatus
is divided in three modules separated by gate valves, which are closed manually, e. g.,
when erbium and dysprosium source material in the oven is used up and needs to be
replenished.

In the first module, evacuated to the low 10−10 millibar level, erbium and dysprosium Module 1: Atomic
beam sourceare evaporated in a single, commercial dual-filament effusion cell (‘oven’ in Fig. 6), where

the source granulate2 is stored and heated to typically 1100 °C and 1200 °C in the ‘bulk
zone’ and ‘hot lip’ region of a tantalum crucible, respectively (for details, see Ref. [141]).

1 This is, in particular, the modules of the apparatus needed for experiments conducted inside what is colloquially
termed the ‘main chamber’ see Fig. 6. For the lattice microscope, whose design forms an integral part of this
present thesis, the reader is referred to § 10.

2 In the past, we have used a granulated alloy of erbium and dysprosium in ratio 1 : 2 [141]. Since 2018, we have
switched to pure granulates of erbium and dysprosium, which allow to selectively adapt the ratio between the
two and their respective fluxes in the atomic beam.
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40 the er–dy experiment

Figure 6: A sketch of the central vacuum components of the Er–Dy experiment. Atoms are evaporated in the oven
on the right, travel leftward, are collimated via transverse cooling, slowed in the Zeeman slower and finally
captured in the MOT. Figure modified from Ref. [142].

The evaporated atoms pass through a series of apertures and form an atomic beam,
which is collimated by a 2D optical molasses stage (‘transverse cooling’) using the broad
atomic transitions (401 nm for erbium, 421 nm for dysprosium, with line widths Γ401/2π ≈
29.4 MHz and Γ421/2π ≈ 32.2 MHz).

After passage of the first gate valve, the atomic beam enters the second module, whereModule 2: Atomic
beam shutter a mechanical shutter allows to cut the atom flux (typically after each MOT loading step).

Additionally, this section acts as the middle stage of a differential pumping scheme. At a
pressure on the 10−11 millibar level, it separates the lower-vacuum oven region from the
higher-vacuum main chamber.

Through the second gate valve, the atomic beam enters the main chamber module. TheModule 3:
Main chamber atomic beam is decelerated using a Zeeman slower in decreasing–zero–increasing field3

configuration, using the broad blue transitions of erbium and dysprosium. Subsequently,
the atomic beam enters the main chamber. Here, at a pressure on the low 10−11 millibar
level, the atoms are finally captured in a magneto-optical trap (MOT) using the 583 nm andNarrow-line MOT

626 nm intercombination transitions of erbium and dysprosium, respectively, with line
widths Γ583/2π ≈ 186 kHz and Γ626/2π ≈ 135 kHz. An electro-optic modulator (EOM)
is used to modulate strong sidebands onto the carrier MOT light, which are spaced by
around 100 kHz and address atoms of different velocity classes from the atomic beam,
thus increasing the MOT capture efficiency [142].

The narrow-line character of the intercombination transitions brings about two major
advantages. First, in combination with the high atomic mass of erbium and dysprosium,
it allows to operate this MOT in a unique five-beam configuration, as first demonstratedFive-beam

configuration by our group in Ref. [142]. This is very advantageous, since it automatically guarantees
a spin-polarised sample in the lowest Zeeman sublevel, while at the same time it frees

3 Colloquially (but unfortunately not strictly correct from a physical perspective) such a design is often termed a
‘spin flip’ configuration.
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the optical access from above (see Fig. 6 on the facing page), allowing the close placement
of high-resolution imaging optics (described in the next section, § 5.2). The erbium and
dysprosium MOTs can be displaced vertically with respect to each other by independent
adjustment of the individual MOT detunings. Therefore, a negative cross-species influence
of the MOTs in mixture operation can be efficiently mitigated. Additionally, the narrow-
line character of the intercombination transitions leads to low Doppler temperature limits
below 5 µK. After typical MOT loading times of around 5 s, we apply a compressed-MOT

step by decreasing (i) the magnetic field gradient, (ii) the MOT light detuning and (iii)
power, yielding both a lower temperature (around 10 µK for both species [142]) and a
spatial compression of the sample, facilitating the direct loading into our optical dipole
trap (ODT). In our compressed MOT, we currently capture about (5 ± 2) × 107 atoms.

The ODT consists of two near-infrared laser beams4 crossed in the horizontal (xy) plane5 Optical dipole
trapunder 45°. The beam perpendicular to the Zeeman slower (along y) has a waist of wx,z ≈

18 µm, with the focus position in the Fourier plane of an acousto-optic deflector (AOD).
Fast scanning of the centre frequency of the AOD allows to paint time-averaged potentials6

along x (marked by an overline) and thus to tune the geometry of the harmonic trap aspect
ratio wx : wz between roughly 1 : 1 and 10 : 1. The diagonal, ‘static’ ODT beam has a waist
of about 60 µm.7

Once the atoms are loaded into the ODT, the MOT light is switched off and the homo- Evaporative
coolinggeneous magnetic bias field along the vertical direction (z) is set to a value where the

atomic scattering lengths are such that two-body collision rates are sufficiently high for
an efficient evaporative cooling, but losses due to three-body collisions are not too severe.
This magnetic bias field additionally ensures the preservation of spin polarisation of the
trapped atoms. Forced evaporation, down to quantum degeneracy, is then performed by
decreasing the laser power near-exponentially, approximated by piecewise linear ramp
sections, on a timescale of a few seconds.

Degenerate samples and mixtures

Natural erbium and dysprosium offer five bosonic (166Er, 168Er, 170Er, 162Dy, 164Dy) and Abundant
isotopesthree fermionic isotopes (167Er, 161Dy, 163Dy) with abundances above ten percent. Of those,

samples of the isotopes marked by the underline8 have been brought to quantum degen-
eracy on the Innsbruck Er–Dy machine to-date [283].

When producing heteronuclear mixtures, the slightly lower ODT depth experienced Degenerate
mixturesby erbium leads to preferential evaporation and a significant sympathetic cooling effect

4 At 1064 nm, delivered by a Mephisto MOPA (Coherent, Inc.) with 55 W nominal output power, split into two
branches and mode-cleaned in parallel through two photonic crystal fibres (Alphanov).

5 The laboratory coordinate system, centred at the crossing point of the ODT beams, is such that the atomic beam
propagates into the positive x-direction and z is counter-directed to gravity; cf. Fig. 6.

6 Details about the scanning ODTs implemented in the Ferlaino labs can be found in the Master theses of Simon
Baier [15] and Claudia Politi [237].

7 In March 2021, we have added a second diagonal ‘static’ ODT beam with roughly equal specifications as the first
one, which it crosses at right angle. In contrast to the former two-beam arrangement at 45°, the crossing of all
three beams now allows to create traps which are isotropically round in the horizontal xy-plane. The vertical
trap frequency along the z direction can additionally be varied via the ‘scanning’ beam.

8
167Er suffers from light-induced losses in a 1064-nm ODT, at least above the ultracold-temperature regime [2],
and hence requires an intermediate ODT stage of different wavelength (such as 532 nm or 1550 nm). 163Dy, due
to its inverted hyperfine structure, would most probably require a dedicated optical pumping scheme [283].
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on dysprosium [283]. In mixture operation, so far five heteronuclear double-BECs (166Er–
164Dy, 168Er–162Dy, 168Er–164Dy, 170Er–162Dy, 170Er–164Dy) and one heteronuclear degener-
ate Bose–Fermi mixture (168Er–161Dy) have been demonstrated [ibid.].

We have studied the interspecies Feshbach spectra of heteronuclear mixtures of erbiumInterspecies
Feshbach

resonances
and dysprosium in detail and were able to identify, among many narrow features, two
resonances of a width greater than 1 G (one for 166Er–164Dy, one for 168Er–164Dy), and an
on-resonance loss rate suggestive of the universal scaling relation associated with broad
resonances. Further, we have observed an increased density of Feshbach resonances in the
mixture compared to the single-species case. These results have been presented in Refs [81,
82].

5.2 a high-resolution imaging system for bulk dipolar quantum gases

The majority of quantum gas experiment relies on optical imaging techniques to read out
the density distribution of a sample.9 The most established approach for optical imaging
of quantum gases is absorption imaging (see § 5.2.3), which works well for samples that
are released from the trap and expand during a few to tens of milliseconds time of flight
(TOF). During expansion, with increasing TOF, the momentum distribution of the atoms is
mapped onto position space and can be read out from the image.10 Many groundbreaking
discoveries have been made using the TOF technique, including the demonstration of the
first Bose–Einstein condensates [5, 74], or the superfluid to Mott insulator transition [115].

The direct information about the in-trap density distribution, however, gets lost during
the TOF expansion.

To access this information, much interest has been directed towards imaging quantum
gases in trap. Alas, this is not a trivial task since trapped quantum gases are small objects
on the order of a few micrometres, and resolving their substructure requires imaging
optics with a sufficient numerical aperture (NA). This can present a technical challenge
for cold atom experiments, where typically long working distances are required due to
the confinement in UHV. Additionally, in-situ samples are typically too dense for standard
absorption imaging.

With the advancement of technology, however, much progress has recently been made
in imaging quantum gases in situ. The experimental strategies for this can be divided
into a top-down and a bottom-up approach. The top-down approach consists of imagingTop-down

approach many-body quantum systems with higher and higher precision. Iconic examples in this
context include partial-transfer absorption imaging of dense BECs for vortex studies [200,
239, 240], in-situ imaging of two-dimensional systems [68, 70, 252, 287, 305], the discov-
ery of quantum droplet states of dipolar gases [91, 145, 259], and – the ultimate limit –
quantum gas microscopes, capable of distinguishing (and typically also of manipulating)
individual atoms on an optical lattice [18, 267]. The bottom-up approach, in contrast, re-Bottom-up

approach lies on assembling many-body quantum systems one by one from individual particles.
Examples of this approach include the single-atom imaging of few-fermion systems in a

9 The BECs of metastable helium present an exemption, since they can imaged electronically using microchannel
plates [221, 248].

10 Non-ballistic (‘hydrodynamic’) expansion can influence the mapping, e. g., for strongly interacting systems (see
Refs [98, 284], e. g.), but does not present a fundamental obstacle for absorption imaging.
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(single) optical tweezer [23, 26, 138], or arrays of multiple optical tweezers that contain
single (often Rydberg) atoms (for recent reviews see, e. g., Refs [1, 51]).

Also with the Er–Dy experiment we have taken steps towards high-resolution imaging,
following above’s top-down approach.11 The development of a dipolar quantum gas mi-
croscope for erbium and dysprosium atoms on optical lattices is described in § 10 later in
this thesis. The design and implementation of a high-resolution optical system for in-situ
imaging of bulk quantum gases of erbium and dysprosium and their exotic phases such
as quantum droplets and dipolar supersolids is discussed in the following. Many features
of the imaging techniques applied by us have already been presented elsewhere in similar
form (Refs [8, 45, 46, 145, 293], and many others), nevertheless, important details are reca-
pitulated here for context.12 For a deeper theoretical background on how optical images
form, the reader is referred to the appendix, § B.

5.2.1 Light field modifications through a medium

In the following, let us briefly review the basic concepts of how light fields are modified
by the presence of an optical medium.

Figure 7: Schematic of the elements important for the image recording. A = probe beam of defined polarisation,
B = atomic sample, C = vacuum window, D = imaging objective, E = back focus, F = iris diaphragm, G = imaging
lens, H = optional linear polariser, J = camera.

A medium is characterised by the complex index of refraction13 nc = nr + iκ =
√

εrµr,
which quantifies the reduction of the speed of light in the medium compared to vacuum,
c′ = c/nc. Accordingly, the vacuum wave vector k = ω/c is modified to k′ = ω/c′ inside
the medium. If we consider light propagating along e⃗z, the field and intensity inside a
dielectric can thus be written as

E(z, t) = E0ei(k′z−ωt) = E0ei(kz−ωt)eiβ and (71)

I(z, t) = |E(z, t)|2 = I0e−ϵ, (72)

11 In our group’s T-REQS laboratory, the bottom-up approach is followed in the development of a tweezer array
for erbium Rydberg atoms.

12 Due to comparable requirements, our high-resolution vertical imaging setup shares much similarity with the
dysprosium experiment in Stuttgart. We have benefitted in many respects from the experiences of the Stuttgart
group, whose setup is well described in the thesis of Matthias Wenzel [293].

13 nr is the familiar, real part of the refractive index, κ(ω) is the extinction coefficient of the Beer–Lambert law
(dI/dz = −κ I), εr is the relative permittivity, µr the relative permeability and c the vacuum speed of light.
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with a complex phase

β = φ +
i
2

ϵ, (73)

whose real part φ = (nr − 1)kz is called the dispersive phase, and whose coefficient of the
imaginary part, ϵ = 2κkz, is called the optical depth (OD)14 of the medium [46].

In the case |nc| ∼ 1, as in a dilute vapour, the macroscopic quantities nr and κ are directly
connected to the real and imaginary part of the microscopic polarisability15 α by

β(ω, z) =
ω

2ε0c
n̄zα(ω), (74)

where

n̄z(x, y) =
∫ z

0
n(x, y, z′)dz′ (75)

is the column density of the dielectric medium, integrated up to the observation plane at
z.

At low light intensity, α can be derived from the Lorentz model of the atom as a classical
oscillator [118], however, a semiclassical16 correction is needed at high intensity when
the atomic ground state becomes increasingly depleted, leading to a saturation of the
scattering rate. Application of the rotating-wave approximation (RWA) for the polarisability
α(ω) and inserting the result into Eq. 74 yields, at position r⃗ = (x, y, z)⊺,

φ(⃗r, ∆) = − σ0n̄z(x, y)Γ∆
4∆2 + Γ2(1 + I/Is)

∝ ℜ{α(ω)} and (76)

ϵ(⃗r, ∆) = +
σ0n̄z(x, y)Γ2

4∆2 + Γ2(1 + I/Is)
∝ ℑ{α(ω)}, (77)

where Γ is the spontaneous excited-state decay rate, ∆ = ω − ω0 is the detuning from
the atomic resonance, σ0 = 6πc2/ω2

0 is the scattering cross section on resonance, and
Is = h̄Γω3

0/12πc2 is the saturation intensity on resonance [46, 102].
In Fig. 8, both ϵ(∆) and φ(∆) are plotted at low and at saturation light intensity, respec-

tively. Three important aspects become apparent:

• On resonance, the optical depth ϵ has its maximum, whereas the dispersive phase φ
vanishes.

• Away from resonance, ϵ approaches zero as (Γ/∆)2, whereas |φ| drops much more
slowly, as Γ/∆.

• High light intensity reduces both the optical depth and dispersive phase shift. Since
this increases the FWHM, such a line is called power-broadened.

14 The terms optical depth, absorbance and extinction denominating the quantity ln(I/I0) are often used interchange-
ably in literature, however, not always with consistent definitions, especially concerning the choice of natural or
decadic logarithm.

15 Throughout this work, the definition of Grimm et al. [118] is chosen, p⃗ = αE⃗.
16 I. e., quantum-mechanical modelling of the atom as a two-level system and classical treatment of the light field,

see, e. g., Ref. [102].
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Figure 8: The optical depth ϵ and dispersive
phase φ for light interacting with a gas of unit
column density (n̄z ≡ 1), at low and at saturation
intensity.

Equations 76–77 allow to calculate the sample column density n̄z(x, y) if either ϵ or φ
is known. As will be discussed in §§ 5.2.3–5.2.4, in an experiment ϵ can be determined by
absorption imaging, whereas φ can be determined by phase-contrast imaging. For many
situations in cold-atom experiments a theoretical model for the 3D density distribution
(either in trap or after TOF) is available, allowing to reconstruct the 3D density from the
2D column densities.

5.2.2 Birefringence of polarised atomic vapours

In the laboratory one is typically concerned with atoms oriented in an external (usually
magnetic) field. For the following discussion, we will assume the atoms at the coordinate
origin and call the quantisation axis the z-direction. The response of an atom to an oncom-
ing light field then depends on the relative orientation of the light propagation direction
(⃗k) and the quantisation axis, allowing to distinguish two limit cases [102]:

k⃗ ⊥ e⃗z atoms absorb/emit linearly polarised light

k⃗ ∥ e⃗z atoms absorb/emit circularly polarised light

The latter setting is used for imaging erbium and dysprosium in our experiments, since it
allows to cycle on a quasi-closed transition (see Fig. 9 on the next page).

As described earlier (§ 5.1), the five-beam MOT automatically provides atomic samples
fully spin-polarised in the lowest Zeeman sublevel of the electronic ground state. From
this state, light copropagating with the quantisation axis can excite σ± transitions to the
respective 1P1 state (Fig. 9). At typical magnetic fields, the splitting between adjacent Zee-
man sublevels (on the order of 1 MHz/G [16, 104]) is much less than the linewidth of the
transition.
Denoting angular-momentum eigenstates by |J, mJ⟩, the probabilities of a single σ± exci-
tation,

|J, mJ⟩ σ+

−→ |J + 1, mJ + 1⟩ or |J, mJ⟩ σ−
−→ |J + 1, mJ − 1⟩ ,
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(a) 401-nm σ± light driving the erbium |6,−6⟩ →
|7,−6 ± 1⟩ transition with the corresponding Clebsch-
Gordan coefficients.

(b) 421-nm σ± light driving the dysprosium
|8,−8⟩ → |9,−8 ± 1⟩ transition with the correspond-
ing Clebsch-Gordan coefficients.

Figure 9: The strongest transitions of erbium and dysprosium for k⃗ ↑↑ B⃗ from the lowest Zeeman sublevel of the
ground states to the respective 1P1 states. The blurred arrowheads indicate that the energy splitting is less than
the linewidth.

are given by the squares of the corresponding Clebsch–Gordan coefficients [196],

C± = ⟨J, mJ ; 1,±1|J + 1, mJ ± 1⟩ . (78)

This means that for erbium and dysprosium a σ+-interaction event of an atom in the
lowest Zeeman sublevel is suppressed by factors of C2

+ = 91 and C2
+ = 153 compared to

σ−, respectively, where C2
− = 1 (Fig. 9).

5.2.3 Absorption imaging

Absorption imaging relies on the imaginary part of the complex phase β. As seen in Eq. 72,
a finite optical depth leads to a reduction of light intensity on the image sensor; the sample
‘casts a shadow’.

We use absorption imaging to extract quantitative information on the density distribu-
tion information of samples of erbium and dysprosium atoms after time-of-flight (TOF)
expansion. To this end, we employ probe beams on resonance17 with the broad blue tran-
sitions at 401 nm and 421 nm, respectively. The short wavelength allows a high imaging
resolution according to the Abbé limit, the large linewidth allows for high scattering rates
and hence for short imaging pulses. The probe beam polarisation is chosen such that it
excites a σ− transition between two stretched Zeeman substates, as illustrated in Fig. 9.

Experimentally, pictures are recorded with an image sensor18, which, exposed to a true
intensity I, will typically give out a linear response

I′ = aI + b (79)

with the responsivity a and an offset b. To relate the measured intensity I′ to the sample
density it would be necessary to know the image sensor characteristics a and b with high

17 As seen before, on resonance the dispersive phase vanishes (Eq. 76) and the signal is purely absorptive.
18 Established sensor types for scientific experiments include charge-coupled device (CCD) and scientific comple-

mentary metal-oxide semiconductor (SCMOS) sensors.
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accuracy. It is scientific standard to circumvent this requirement by taking three pictures
per sample, one with atoms (I′1), one without atoms (I′2), and a dark picture without probe
light (I′3), such that [293]

I′1 = aI0 e−ϵ + b, I′2 = aI0 + b, I′3 = b. (80)

These three pictures can be combined to an image of the optical depth by

ϵ = − ln
(

I′1 − I′3
I′2 − I′3

)
, (81)

which is independent of the parameters a and b. On resonance, the absorption signal is
maximal (Fig. 8) and related to the column density by

ϵ0(x, y) ≡ ϵ(x, y; 0) =
σ0n̄z(x, y)

1 + I/Is
. (82)

The dynamic range of image sensors sets a technical limit to the detection range of the
OD for standard, low-intensity (I0 ≪ Is) absorption imaging, since signals for ϵ ≳ 3 are
often below the noise level, resulting in ‘saturated’ OD images. As mentioned, saturation
can be mitigated either by releasing the cloud into time-of-flight expansion, during which
the density decreases, or, alternatively, by using high-intensity probe beams (I0 ≫ Is) [245],
which reduces the effective OD via Eq. 77 (cf. Fig. 8 on page 45). Then, however, caution is
needed, since high intensities may lead to a strong heating of the sample.

An alternative approach that does not suffer from these limitations is phase-contrast
imaging, as described in the following section.

5.2.4 Phase-contrast imaging

Phase contrast imaging relies on the real part of the complex β (Eq. 73). At detunings
several Γ away from resonance, β becomes small and effectively purely dispersive. Since
photo detectors are only sensitive to intensity, not fields, the field variations caused by
dispersive phase shifts acquired in the sample first have to be converted into intensity
variations. This is achieved using interference.

For a birefringent medium, such as a polarised atomic cloud, there is a particularly
simple way to implement phase contrast imaging. For this method, linearly polarised
light is sent through the sample along the direction of the quantisation field (z). In this
case, the incident light, whose initial linear polarisation direction we will call x (without
loss of generality) is best described in terms of the Jones basis of right (+) and left (−)
circular polarisation,

E⃗0 = E0 e⃗x =
1√
2

E0 (⃗e+ + e⃗−) with e⃗± =
1√
2

(⃗ex ± i e⃗y) (83)

which induce atomic σ+ and σ− transitions, respectively [253, 293]. Due to the difference
in Clebsch–Gordan coefficients, the σ− component is much more likely to interact with the
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atoms and gets retarded, turning the initial linear polarisation into an elliptic polarisation
of the scattered light field E⃗s:

E⃗s =
1√
2

E0

(
eiβ+ e⃗+ + eiβ− e⃗−

) (∗)
≈ 1√

2
E0

(
e⃗+ + eiφ e⃗−

)
(84)

with β± =
C2
±

C2
+ + C2

−
β(∆±). (85)

The approximation (∗) is well justified in our case where the difference in Clebsch–Gordan
coefficients (C±) is large, the splitting beetween Zeeman sublevels is negligible compared
to the linewidth, and we are sufficiently detuned from resonance, i. e. |∆+ − ∆−| ≪ Γ ≪
|∆±|, where ∆± is the respective frequency detuning from the σ± transition.

If the scattered light field (85) is passed through a linear polariser, rotated by an angle
ϑ with respect to x, the two polarisation components (±) interfere and the resultant field
E⃗p reads, in Jones formalism:19

E⃗p = R(ϑ) · Ax · R−1(ϑ) · E⃗s (86)

=

(
C −S

S C

)
·
(

1 0

0 0

)
·
(

C S

−S C

)
· E⃗s =

(
C2 CS

CS S2

)
· E⃗s (87)

The intensity after the polariser then becomes, after some algebra,

Ip

I0
=

|E⃗p|2
|E⃗0|2

= cos2(
φ

2
− ϑ) = cos2 ϑ +

φ

2
sin(2ϑ) − φ2

4
cos(2ϑ) + O(φ3) (88)

when expanding for small angles φ. For polariser orientations ϑ at 45° and 90°, this yields:

Ip

I0
≈
{

1
2 (1 + φ)

1
4 φ2

for ϑ = 45°

for ϑ = 90°
(89)

The case ϑ = 90° is called dark-field imaging, since light that has not gained a phaseDark-field
imaging shift from interaction with the sample is blocked by the polariser and does not reach the

image sensor. It has been used, e. g., for nondestructive in-trap imaging of sodium BECs at
MIT early on [8], however, the signal is quadratic in φ and, since ϕ ≪ 1, small.20

At ϑ = 45°, the signal is linear in φ and hence easier to detect. This case constitutesFaraday imaging

Faraday phase contrast imaging in the narrower sense. It has been first employed at Rice
University to image small lithium BECs directly in their magnetic trap [45, 47], where due
to attractive interactions stable condensates are limited to around a thousand atoms, and
later in the context of dipolar quantum gases in Stuttgart [145, 293].

19 R is the rotation matrix, Ax is a polariser along x, C ≡ cos ϑ and S ≡ sin ϑ.
20 The implementation in the MIT experiment was in fact slightly different, without polariser but by simply block-

ing the unrefracted light in the back focus of the objective (element E in Fig. 7 on page 43). The effect is, however,
the same.
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We use the latter method (ϑ = 45°) at high detuning ∆ ∼ 18 Γ for in-situ imaging of our
dipolar quantum gases.21 At such a high detuning, Eq. 76 simplifies to

φ(⃗r, ∆) ≈ −1
4

σ0n̄z(x, y)
Γ
∆

, (90)

where we have exploited that at ∆ ≫ Γ typically I ≪ Is is easily fulfilled.

Similar to absorption imaging, by combination of three consecutive experimental pic-
tures the sensor characteristics can be eliminated from the sample image. Starting from
Eq. 89 for ϑ = 45°, the images with atoms (I′1), without atoms (I′2) and without probe beam
(I′3) read

I′1 =
a
2

(1 + φ)I0 + b, I′2 =
a
2

I0 + b, I′3 = b. (91)

From this we calculate ϕ and, via Eqs. 76–77, the off-resonant (low-intensity) OD as [293]

φ(∆) =
I′1 − I′2
I′2 − I′3

and ϵ(∆) = − Γ
∆

φ(∆). (92)

The corresponding OD which would be measured for a probe beam on resonance, ϵ0 ≡
ϵ(∆=0), can be calculated by comparison of Eqs 82 and 90, giving

ϵ0 = −4
∆
Γ

φ(∆). (93)

From ϵ0 it is straight forward to calculate the column density of the sample.

5.2.5 Experimental implementation

As depicted schematically in Fig. 7, our vertical imaging system consists of an imaging ob- Optical layout

jective, an imaging lens, and a camera. The objective itself is a custom, infinite-conjugate
system22 and achromatic for the three wavelengths 401 nm, 421 nm and 633 nm. It con-
sists of two singlet and one cemented doublet lens, each with a broad-band (and broad-
angle) dielectric anti-reflection coating from 375 to 650 nm.23 The objective specifications Coating

are listed in Table 1.
For the imaging lens, we have two options to pick from, depending on the requirements

of the current research project: a commercial broadband achromat24 with focal length
f ′ = 1.00 m, and a custom air-spaced doublet lens25 with f ′ = 1.75 m.

The sizes of an object (h) and its image (h′) are related by the lateral magnification Magnification

M of the optical system (cf. Fig. 33 on page XVI). In our case where both are at infinite

21 For erbium and dysprosium at low field ∆+ ≈ ∆−, so we may simply write ∆± ≡ ∆.
22 Special Optics, Inc., NJ/USA.
23 It is crucial that the MOT wavelengths are not reflected by the objective. When aligned, its concave front surface

can lead to a focussed reflexion of the vertical MOT beams onto the MOT and disturb it severely (cf. Fig. 11a).
24 ACT508-1000-A, Thorlabs, Inc., NJ/USA
25 Lens-Optics GmbH, Germany
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Table 1: Optical specifications of the vertical imaging objective. Values in parentheses give the statistical standard
uncertainty of the last digit.

quantity design value measured

working distance 55 mm

effective focal length 65 mm

magnification ×15.4 or
×27.0

×15.3(1) or
×27.3(2)

max. NA 0.45

resolution at 401 nma 0.54 µm 0.66(1) µm

resolution at 421 nma 0.57 µm 0.71(1) µm

∅ diffraction-limited FOVa 150 µm > 130 µm

a Evaluated at full NA.

conjugation (IC), M is simply determined by the ratio of the effective focal lengths of
objective ( f ) and imaging lens ( f ′),26

h′

h
≡ M

(IC)
=

f ′

f
. (94)

For in-situ imaging of quantum gases one generally aims for magnifications M ≫ 1 toImage sampling

guarantee a sufficient sampling of the image by the image sensor, which typically has a
pixel size of a few microns.27 An image is limited by the physical resolution, rather than
sampling, if the Nyquist-Shannon criterion is fulfilled [192, 193, 266]:

νs > νb ⇐⇒ 1
dpx

>
4 NA
|M|λ (95)

In Eq. 95, νs is the sampling rate of the image related to the sensor pixel size dpx, νb is the
bandwidth of the imaging system itself, whose cut-off depends on the object-space NA,
the magnification M and the imaging wavelength λ.

Of course, there is a practical limit to the magnification. The photon count rate per pixel
scales as ∝ M−2, therefore at some point the signal-to-noise ratio (SNR) will increase. For
typical magnifications, saturated atomic photon emission, and the noise levels of modern
scientific cameras, however, this is usually not the limiting factor.

Our 1-m achromat gives around ×15 magnification, which is below the Nyquist–Shan-
non criterion, but still good enough to adequately image arrays of quantum droplets, as
will be detailed later. This low magnification, however, allows for a larger field of view,
which is necessary, e. g., for sample thermometry, where we rely on the density profile
of the background thermal fraction after TOF expansion. If in the future it becomes nec-
essary to study structures on smaller scales, such as density fluctuations inside quantum

26 In the general case this needs not be true and M has to calculated from the ratio of object- and image space
numerical aperture (NA) [269, § 9.7], |M| = NA/NA′; cf. Fig. 33 in the appendix, § B.2.2.

27 In our case, an Andor Neo 5.5 SCMOS camera with dpx = 6.5 µm pixel size.
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droplets, we will switch to the 1.75-m achromat, giving ×27 magnification and meeting
the Nyquist–Shannon criterion up to NA ≈ 0.42.

As a first simple offline test of the newly designed objective, imaging of a USAF-1951 Resolution test of
the objectiveresolution test chart28 revealed an upper bound for the resolution of about 1.5 µm. For a

finer characterisation, more sophisticated methods are needed.
In general, the performance of an imaging system is fully described once we know

1. the object-space numerical aperture (NA), which determines the diffraction limit, and

2. the aberrations of the system, which determine how much the resolution of the
actual system is reduced compared to an ideal, aberration-free system.

While the NA of the system is typically known or relatively easy to estimate, the aberrations
have to be measured or, at least, simulated numerically. For any imaging system, the
aberrations can be thought of as the wavefront error W(x, y) compared to a perfectly Wavefront error

spherical wave in the exit pupil [112].29 A commonly used definition for a diffraction-
limited system is the Maréchal criterion [191], which corresponds to a root mean square
wavefront error

WRMS =

√
⟨W2(x, y)⟩ − ⟨W(x, y)⟩2 ≤ λ

14
. (96)

The wavefront error W(x, y) can be simulated if a numerical model of the imaging sys-
tem is at hand (cf. § 11.2), and also be measured in the laboratory. One measurement
approach is optical interferometry, as has been done for the microscope experiments at
Harvard [219] and MIT [241] using Fizeau interferometers. A different approach is phase
retrieval via nonlinear optimisation, as has been demonstrated in Innsbruck [193] follow-
ing a proposal by Brady & Fienup [48]. For this method, measurements of the light inten-
sity distribution in different planes around the focus are sufficient for reconstructing the
wavefront in the exit pupil, without a need for interferometry.

A complementary option to characterise the aberrations present in an optical system Point-spread
functionconsists in measuring its amplitude point-spread function (PSF), which is the Fraunhofer

diffraction pattern of the exit pupil and therefore directly connected to W(x, y) (see the
appendix, § B.3.2). If the input of an imaging system is an ideal point source, the produced
image is directly equal to the system’s PSF. Therefore, if a good approximation of a point
source is available, it is straight forward to measure the PSF in the laboratory.

Common choices for small sources include pinholes and nanoparticles. However, me-
chanical pinholes are typically available with diameters down to 1 µm and therefore not
small enough for testing high-resolution systems. In contrast, nanoparticles, for example
of gold or TiO2, have small diameters down to ∼ 20 nm, but the scattered light has typ-
ically very low intensity and an unknown polarisation. We therefore chose to follow a
less-known approach, originally demonstrated by the Meschede group in Bonn [49, 155,
247], imaging the tip of a SNOM fibre30 which has a nominal aperture of 50 to 100 nm and
an easily sufficient maximum output power of 400 µW.

28 Edmund Optics, Inc., NJ/USA
29 See the appendix, § B, for background theory on aberrations, and image formation in general.
30 Optical fibres for scanning near-field optical microscopy (SNOM); model MF001 from Tipsnano OÜ, Estonia.

Experience showed, however, that there is a large variance of the tip aperture diameters. It is worth checking
several fibres for maximum output divergence.
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(a) Test image at 401 nm.
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(b) Test image at 421 nm.

Figure 10: Resolution test of the vertical imaging objective. Images of a SNOM fibre tip (left) with distances (x, y)
w. r. t. the object plane. The corresponding azimuthally averaged intensity profiles (right) are plotted vs the radial
coordinate (ρ). The red lines are Gaussian fits.

Recorded images of the SNOM fibre tips are shown in Fig. 10, along with the azimuthally
averaged spot profiles, fitted by Gaussian functions. The resolution limit d0 according to
the Rayleigh criterion (first zero of the Airy function, Eq. 202) is related to the width σ
of the Gaussian that approximates it best by a simple numeric factor, d0 = (1.22/0.42) σ
[303]. For the recorded spots shown, we obtain

d0 =





0.66(1) µm for λ = 401 nm,

0.71(1) µm for λ = 401 nm,

close to the design values (cf. Table 1 on page 50). The discrepancies are probably mostly
due to residual imperfections of the experimental alignment; additionally, there is neces-
sarily a (small) effect of the finite size of the fibre aperture.

The objective lenses are mounted in a polyetherimide (Ultem®) thermoplastic tube, mak-Objective mount

ing the assembly inherently non-magnetic and non-conducting. This prevents magnetic
hysteresis and induction of eddy currents, which could influence the atomic sample. The
objective is mounted from above (see Fig. 11a), with two tilt and three translational de-
grees of freedom, to allow the necessary fine alignment with respect to the sample. The
translational motion in vertical (z) direction is driven by a high-resolution stepper motor31.
In laboratory practice, this is particularly useful for scans to find the exact focus position,Motorised

alignment or to reproducibly switch between the positions for in-situ and TOF imaging. The clearance
from the vacuum window permits to lower the objective by 12 mm at maximum (already
excluding a safety spacer) from the in-situ position, allowing times of flight up to around
50 milliseconds without levitation.

The imaging lens can be aligned about five axes with respect to the objective. Our align-
ment system, home-built from entirely non-magnetic components (Fig. 11b), then allows
to move the objective and imaging lens together, without changing their relative align-
ment. The exact steps of the alignment recipe are described in the appendix, § B.4.

31 M-229.26S, Physik Instrumente GmbH, Germany.
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(a) xz-cut through the Er–Dy experiment. Beam paths
of in-situ imaging (blue arrows) and vertical MOT
beams (yellow/red arrows) are indicated.

(b) The mechanical assembly including the align-
ment system for the imaging optics.

Figure 11: The main-chamber vertical imaging setup.

Example images of quantum gas samples recorded with the newly implemented vertical
imaging system are shown in Fig. 12 on the next page, both in in-situ (Faraday phase con-
trast; a–b) mode and in time-of-flight (absorption; c–d) mode. This new imaging system
has by now proved an indispensable tool in the study of quantum droplets and supersolid
states of ultracold dipolar atoms, as in our most recent publications (see Refs [207, 272]
and § 8) as well as in follow-up manuscripts currently in preparation.
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10 m

(a) Single-shot Faraday phase contrast
in-situ image.

10 m

(b) Average image over 20 in-situ shots
(without recentring).

10 m

(c) Single-shot absorption image after
36 ms TOF.

10 m

(d) Average image over 20 TOF shots
(without recentring).

Figure 12: Images of dipolar 2D supersolids of 164Dy atoms in trap (top row) and after time-of-flight expansion (TOF,
bottom row), imaged with the newly implemented vertical imaging system. Harmonic trap frequencies are ωx,y,z ≈
2π × (51, 49, 134) s−1, the magnetic field has a magnitude B = 1.92 G and points out of the image plane. The
blue-to-red colour map is linear in OD.
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Historically, research approaches from two initially independent directions, (i) a quan-
tum-fluctuation-driven stabilisation mechanism and (ii) the dipolar roton dispersion, later
joined to form the basis for the field now known as ‘quantum droplets and dipolar super-
solids’.

Initial interest in the quantum stabilisation mechanism (i) came from theory, triggered
by the proposal of Petrov [225] for attractive Bose–Bose mixtures (see § 3.6.1). The quantum
droplets predicted by him were realised experimentally not much later in Barcelona [53]
and Florence [265], both using mixtures of two hyperfine states of 39K. The closely re-
lated dipolar droplets [17] were observed even earlier by complimentary experiments in
Stuttgart [91, 259] and in our group [65]. Whereas the droplets of the Stuttgart group
were created by crossing a sharp phase transition via a quench of the scattering length at a
Feshbach resonance, and therefore highly excited, the macrodroplet studied in our group
was obtained by ramping through a smooth crossover regime, allowing the preparation of a
system much closer to the ground state.

Strong impetus for interest into the roton instability (ii) came, in contrast to the stabili-
sation mechanism, from experiment, when in 2016 Kadau et al. observed the Rosensweig
instability of a 164Dy BEC in a pancake-shaped trap [145]. This instability manifested in
a splitting of the BEC into small, dense, and highly-excited, isolated droplets which the
Stuttgart group was able to image in situ. The droplets repelled each other [91] and ar-
ranged in a regular array, not dissimilar to the periodic surface structure of a classical
ferrofluid beyond the critical magnetisation (see Fig. 5b on page 29). These early droplet
arrays were far from the ground state and in addition had a vanishing density overlap
between droplets, such that the system as a whole was entirely incoherent [294]. It was
at this point completely unclear whether such droplet arrays were a phenomenon caused
by and restricted to the excitation of the system, or whether they could also exist in the
zero-temperature limit. Nevertheless, it was immediately realised that the breaking of the
translational symmetry could open a path to realising a supersolid system from ultracold
dipolar atoms.

A key ingredient for the success of later experiments has been the exploration of a
cigar-shaped trap geometry in our group [65], where, as mentioned, for an axial field the
ground state is a macrodroplet. In combination with a transverse field, in contrast, the cigar
trap has allowed the direct observation of roton mode population in a dipolar BEC [66],
since the trap provided a geometric focussing effect in the momentum distribution (Fig. 3

on page 27). Through ground-state calculations based on the extended GPE we now have
strong indication that the state in which the early roton population measurements from
Ref. [66] had been performed might already have been a supersolid – at the time, however,
this was not realised and history took another path.

Soon after the observation of the dipolar Rosensweig instability in Stuttgart it had been
speculated whether by a less violent, carefully tuned interaction quench it might be possi-
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ble to realise a gently modulated state with sufficient density overlap between the droplets
to maintain coherence. The first experimental step in this direction was made 2019 in the
Modugno group in Pisa [279], working with the 162Dy isotope in a cigar-shaped trap. In
their experiment, they observed a density modulation along the cigar axis, which devel-
opped in about 10 ms and – for the first time – coexisted with global coherence for about
20 ms, limited by the short lifetime of their samples due to strong three-body loss.

Shortly after, similar results were published by the groups in Stuttgart [44] with 162Dy
and by our group [67] with both, 166Er and 164Dy. While the state with transient supersolid
properties in the Stuttgart experiment suffered from a limited lifetime of about 20 ms as
in Pisa, our group, working with the isotope 164Dy, was able to realise a system which
maintained phase-coherent modulation for more than 150 ms (see § 7) and therefore, for
the first time, long enough to actually perform manipulations of the supersolid state. Long
parameter scans on the experiment in combination with ground-state calculations using
code developped in our group by Rick van Bijnen and Gabriele Natale [66, 205] had been
necessary to identify a parameter regime where density modulation is already observable,
but peak densities not yet too high, to prevent severe, lifetime-limiting losses. In particular,
a careful setting of the trap parameters, atom numbers as high as possible, and a precise
tuning of the s-wave scattering length to the level of 1 a0 were required for our measure-
ments presented in Ref [67].

Figure 13 shows examples for the calculated ground states of 164Dy atoms in (a) the BEC

as well as (b) the supersolid regime.

Figure 13: Zero-temperature
ground states for 7×104 164Dy
atoms in a harmonic trap of fre-
quencies (ωx , ωy, ωz) = 2π ×
(128, 72, 30) s−1 at two different
s-wave scattering lengths as,
calculated from an extended
GPE. The plots show the den-
sity isosurfaces at both, 1 %
and 50 %, of the respective
peak density. (a) as = 98 a0. (b) as = 98 a0

Moreover, in the same publication we were able demonstrate the production of a super-
solid state of 164Dy by direct evaporation from a thermal sample, instead of quenching
the interactions in a BEC. This was the first strong experimental indication that not only a
highly excited quench product could feature density modulation paired with phase coher-
ence, but also a sample in thermal equilibrium and much closer to the ground state.

The promising results of these measurements motivated us, on the one hand, for a more
detailed, dedicated study of the supersolid formation via evaporation [272]. This proved
very insightful, since, in contrast to the zero-temperature phase diagram, the supersolid
phase and the transition into it from a thermal gas was and still is poorly understood due
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to a lack of adequate theory. In our study, we investigate the roles played by condensate
atom number and temperature in the evaporative formation of the supersolid, and observe
that the translational symmetry is broken before the phase symmetry. These results are
presented in § 8 and Ref. [272].

On the other hand, the comparatively long lifetime of more than a hundred milliseconds
for the supersolid state of 164Dy opened the gates for a follow-up study of the dynamics
of supersolid state when it is brought out of equilibrium. In the resulting publication, we
were able to demonstrate how the quantum droplets within an array dephase when the
density overlap between them is decreased, and how the phases re-lock if the density
overlap is replenished. See § 9 and Ref. [143].

Other important experimental studies of the dipolar supersolid have concentrated on
its excitation spectrum, mainly driven by the objective to demonstrate its superfluidity
directly, and not having to rely on the ‘indirect’ evidence through the system’s global
phase coherence, which becomes accessible after a time-of-flight expansion. These studies
included the measurement of the Goldstone mode in a supersolid in Stuttgart [126] ac-
companied by a theoretical study [132], as well as a PCA-based measurement of the roton
mode [133], the measurement of compressional oscillations and hints of non-classical ro-
tational inertia in Pisa [280, 281], and works of our group, combining theory and Bragg
scattering experiments on the low- [205] and high-energy [228] excitation spectrum of
dipolar supersolids of erbium.

Until this point, all experimentally produced dipolar supersolids had been 3D systems
in terms of their excitation spectrum, but had shown density modulation only along one
direction, the major axis of a cigar-shaped trap. Such a 1D supersolid typically features
a line of not more than four to six density peaks, which colloquially are continued to
be called ‘droplets’, even if they have a density connection to their neighbours and are
not fully self-bound. The logical but difficult next step was to extend such a system with
density modulation along one dimension to a system with density modulation along two
independent directions in the plane – 2D supersolidity. Also the Stuttgart group has been
pursuing this goal and published several theoretical studies [135, 136, 258]. However, in
their experiment they were limited by condensate atom numbers and so supersolidity in
2D stayed beyond reach for them.1

In 2021, finally, our group has found a suitable parameter regime and managed to tune
up the condensate atom numbers far enough to be able to observe evidence for a de-
parture from the strict 1D supersolidity – a linear-to-zigzag transition of a supersolid of
164Dy atoms. Increased efforts led to the observation of true 2D supersolidity (see Fig. 12

on page 54 ), beyond the zigzag state, and a publication [207] in close collaboration with
theorists Russell Bisset (Innsbruck) and Luis Santos (Hannover), who developped a fast
analytical simulation model. Further manuscripts on the excitation spectrum of a 2D su-
persolid, which turns out to be much more complex than in the 1D case, are currently in
preparation.

1 Tilman Pfau, private communication.
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By combining theory and experiments, we demonstrate that dipolar quantum gases of both 166Er and
164Dy support a state with supersolid properties, where a spontaneous density modulation and a global
phase coherence coexist. This paradoxical state occurs in a well-defined parameter range, separating the
phases of a regular Bose-Einstein condensate and of an insulating droplet array, and is rooted in the roton
mode softening, on the one side, and in the stabilization driven by quantum fluctuations, on the other side.
Here, we identify the parameter regime for each of the three phases. In the experiment, we rely on a detailed
analysis of the interference patterns resulting from the free expansion of the gas, quantifying both its
density modulation and its global phase coherence. Reaching the phases via a slow interaction tuning,
starting from a stable condensate, we observe that 166Er and 164Dy exhibit a striking difference in the
lifetime of the supersolid properties, due to the different atom loss rates in the two systems. Indeed, while in
166Er the supersolid behavior survives only a few tens of milliseconds, we observe coherent density
modulations for more than 150 ms in 164Dy. Building on this long lifetime, we demonstrate an alternative
path to reach the supersolid regime, relying solely on evaporative cooling starting from a thermal gas.

DOI: 10.1103/PhysRevX.9.021012 Subject Areas: Atomic and Molecular Physics,
Condensed Matter Physics,
Quantum Physics

I. INTRODUCTION

Supersolidity is a paradoxical quantum phase of matter
where both crystalline and superfluid order coexist [1–3].
Such a counterintuitive phase, featuring rather antithetic
properties, has been originally considered for quantum
crystals with mobile bosonic vacancies, the latter being
responsible for the superfluid order. Solid 4He has long
been considered a prime system to observe such a phe-
nomenon [4,5]. However, after decades of theoretical and
experimental efforts, an unambiguous proof of superso-
lidity in solid 4He is still missing [6,7].
In search of more favorable and controllable systems,

ultracold atoms emerged as a very promising candidate,
thanks to their highly tunable interactions. Theoretical
works point to the existence of a supersolid ground state
in different cold-atom settings, including dipolar [8]

and Rydberg particles [9,10], cold atoms with a soft-
core potential [11], or lattice-confined systems [7].
Breakthrough experiments with Bose-Einstein condensates
(BECs) coupled to light have recently demonstrated a state
with supersolid properties [12,13]. While in these systems
indeed two continuous symmetries are broken, the crystal
periodicity is set by the laser wavelength, making the
supersolid incompressible.
Another key notion concerns the close relation between a

possible transition to a supersolid ground state and the
existence of a local energy minimum at large momentum
in the excitation spectrum of a nonmodulated superfluid,
known as the roton mode [14]. Since excitations corre-
sponding to a periodic density modulation at the roton
wavelength are energetically favored, the existence of this
mode indicates the system’s tendency to crystallize [15]
and it is predicted to favor a transition to a supersolid
ground state [4,5,9].
Remarkably, BECs of highly magnetic atoms, in which

the particles interact through the long-range and anisotropic
dipole-dipole interaction (DDI), appear to gather several
key ingredients for realizing a supersolid phase. First,
as predicted more than 15 years ago [16,17] and recently
demonstrated in experiments [18,19], the partial attraction
in momentum space due to the DDI gives rise to a roton
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minimum. The corresponding excitation energy, i.e., the
roton gap, can be tuned in the experiments down to
vanishing values. Here, the excitation spectrum softens
at the roton momentum and the system becomes unstable.
Second, there is a nontrivial interplay between the trap
geometry and the phase diagram of a dipolar BEC. For
instance, our recent observations have pointed out the
advantage of axially elongated trap geometries (i.e., cigar
shaped) compared to the typically considered cylindrically
symmetric ones (i.e., pancake shaped) in enhancing the
visibility of the roton excitation in experiments. Last but
not least, while the concept of a fully softened mode is
typically related to instabilities and disruption of a coherent
quantum phase, groundbreaking works in the quantum-gas
community have demonstrated that quantum fluctuations
can play a crucial role in stabilizing a dipolar BEC [20–26].
Such a stabilization mechanism enables the existence,
beyond the mean-field instability, of a variety of stable
ground states, from a single macrodroplet [22,24,27] to
striped phases [28], and droplet crystals [29]; see also
related works [30–33]. For multidroplet ground states,
efforts have been devoted to understanding if a phase
coherence among ground-state droplets could be estab-
lished [28,29]. However, previous experiments with 164Dy
have shown the absence of phase coherence across the
droplets [28], probably due to the limited atom numbers.
Droplet ground states, quantum stabilization, and dipolar

rotons have caused a huge amount of excitement with very
recent advancements adding key pieces of information to
the supersolid scenario. The quench experiments in an
166Er BEC at the roton instability have revealed out-of-
equilibrium modulated states with an early-time phase
coherence over a timescale shorter than a quarter of the
oscillation period along the weak-trap axis [18]. In the same
work, it has been suggested that the roton softening
combined with the quantum stabilization mechanism
may open a promising route towards a supersolid ground
state. A first confirmation came from a recent theoretical
work [34], considering an Er BEC in an infinite elongated
trap with periodic boundary conditions and tight transverse
confinement. The supersolid phase appears to exist within a
narrow region in interaction strength, separating a roton
excitation with a vanishing energy and an incoherent
assembly of insulating droplets. Almost simultaneously,
experiments with 162Dy BECs in a shallow elongated trap,
performing a slow tuning of the contact interaction,
reported on the production of stripe states with phase
coherence persisting up to half of the weak trapping period
[35]. More recently, such observations have been con-
firmed in another 162Dy experiment [36]. Here, theoretical
calculations showed the existence of a phase-coherent
droplet ground state, linking the experimental findings to
the realization of a state with supersolid properties. The
results on 162Dy show, however, transient supersolid prop-
erties whose lifetime is limited by fast inelastic losses

caused by three-body collisions [35,36]. These realizations
raise the crucial question of whether a long-lived or
stationary supersolid state can be created despite the
usually non-negligble atom losses and the crossing of a
discontinuous phase transition, which inherently creates
excitations in the system.
In this work, we study both experimentally and theo-

retically the phase diagram of degenerate gases of highly
magnetic atoms beyond the roton softening. Our inves-
tigations are carried out using two different experimental
setups producing BECs of 166Er [22,37] and of 164Dy [38]
and rely on a fine-tuning of the contact-interaction strength
in both systems. In the regime of interest, these two atomic
species have different contact-interaction scattering lengths
as, whose precise dependence on the magnetic field is
known only for Er [18,22,39], and different three-body-loss
rate coefficients. Moreover, Er and Dy possess different
magnetic moments μ and masses m, yielding the dipolar
lengths, add ¼ μ0μ

2m=12πℏ2, of 65.5a0 and 131a0, respec-
tively. Here, μ0 is the vacuum permeability, ℏ ¼ h=2π the
reduced Planck constant, and a0 the Bohr radius. For both
systems, we find states showing hallmarks of supersolidity,
namely, the coexistence of density modulation and global
phase coherence. For such states, we quantify the extent of
the as parameter range for their existence and study their
lifetime. For 166Er, we find results very similar to the one
recently reported for 162Dy [35,36], both systems being
limited by strong three-body losses, which destroy the
supersolid properties in about half of a trap period.
However, for 164Dy, we have identified an advantageous
magnetic-field region where losses are very low and large
BECs can be created. In this condition, we observe that the
supersolid properties persist over a remarkably long time,
well exceeding the trap period. Based on such a high
stability, we finally demonstrate a novel route to reach the
supersolid state, based on evaporative cooling from a
thermal gas.

II. THEORETICAL DESCRIPTION

As a first step in our study of the supersolid phase in
dipolar BECs, we compute the ground-state phase diagram
for both 166Er and 164Dy quantum gases. The gases are
confined in a cigar-shaped harmonic trap, as illustrated in
Fig. 1(a). Our theory is based on numerical calculations of
the extended Gross-Pitaevskii equation [40], which
includes our anisotropic trapping potential, the short-range
contact and long-range dipolar interactions at a mean-field
level, as well as the first-order beyond-mean-field correc-
tion in the form of a Lee-Huang-Yang (LHY) term
[18,22–24,27]. We note that, while both the exact strength
of the LHY term and its dependence on the gas character-
istics are under debate [18,19,25,31,41], the importance of
such a term, scaling with a higher power in density, is
essential for stabilizing states beyond the mean-field
instability [18,25,41]; see also Refs. [8,42–44].
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Our theoretical results are summarized in Fig. 1. By
varying the condensed-atom number N and as, the phase
diagram shows three very distinct phases. To illustrate
them, we first describe the evolution of the integrated in situ
density profile nðyÞ with fixed N for varying as, Fig. 1(b).
The first phase, appearing at large as, resembles a regular
dilute BEC. It corresponds to a nonmodulated density
profile of low peak density and large axial size σy exceed-
ing several times the corresponding harmonic oscillator
length (ly ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωy

p
); see Fig. 1(e) and the region

denoted BEC in Figs. 1(f) and 1(g). The second phase
appears when decreasing as down to a certain critical value,
a�s . Here, the system undergoes an abrupt transition to a
periodic density-modulated ground state, consisting of an
array of overlapping narrow droplets, each of high peak
density. Because the droplets are coupled to each other via a
density overlap, later quantified in terms of the link strength
S, particles can tunnel from one droplet to a neighboring
one, establishing a global phase coherence across the cloud;
see Fig. 1(d). Such a phase, in which periodic density
modulation and phase coherence coexist, is identified as
the supersolid (SSP) one [10,34]; see the SSP region in
Figs. 1(f) and 1(g). When further decreasing as, we observe
a fast reduction of the density overlap, which eventually
vanishes; see Fig. 1(c). Here, the droplets become fully
separated. Under realistic experimental conditions, it is
expected that the phase relation between such droplets
cannot be maintained; see later discussion. We identify this
third phase as the one of an insulating droplet (ID) array

[27,28,45]; see the ID region in Figs. 1(f) and 1(g). For low
N, we find a single droplet of high peak density, as in
Refs. [24,27]; see dark blue region in Fig. 1(f). Generally
speaking, our calculations show that the number of droplets
in the array decreases with lowering as or N. The existence
of these three phases (BEC, SSP, ID) is consistent with
recent calculations considering an infinitely elongated
Er BEC [34] and a cigar-shaped 162Dy BEC [36], illustrat-
ing the generality of this behavior in dipolar gases.
To study the supersolid character of the density-modu-

lated phases, we compute the average of the wave function
overlap between neighboring droplets S. As an ansatz to
extract S, we use a Gaussian function to describe the wave
function of each individual droplet. This is found to be an
appropriate description from an analysis of the density
profiles of Figs. 1(b)–1(d); see also Ref. [46]. For two
droplets at a distance d and of identical Gaussian widths σy
along the array direction, S is simply S ¼ expð−d2=4σ2yÞ.
Here, we generalize the computation of the wave function
overlap to account for the difference in widths and
amplitudes among neighboring droplets. This analysis
allows us to distinguish between the two types of modu-
lated ground states, SSP and ID in Figs. 1(f) and 1(g).
Within the Josephson-junction picture [47–49], the tunnel-
ing rate of atoms between neighboring droplets depends on
the wave function overlap, and an estimate for the single-
particle tunneling rate can be derived within the Gaussian
approximation [46]; see also Ref. [40]. The ID phase
corresponds to vanishingly small values of S, yielding
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FIG. 1. Phase diagram of an 166Er and a 164Dy dipolar BEC in a cigar-shaped trap. (a) Illustration of the trap geometry with atomic
dipoles oriented along z. (b) Integrated density profile as a function of as for an 166Er ground state of N ¼ 5 × 104. In the color bar, the
density scale is upper limited to 4 × 104 μm−1 in order to enhance the visibility in the supersolid regime. (c)–(e) Exemplary density
profiles for an insulating droplet state (ID) at as ¼ 49a0, for a state with supersolid properties (SSP) at 51a0, and for a BEC at 52a0,
respectively. (f),(g) Phase diagrams for 166Er and 164Dy for trap frequencies ωx;y;z ¼ 2π × ð227; 31.5; 151Þ and 2π × ð225; 37; 135Þ Hz,
respectively. The gray color identifies ground states with a single peak in nðyÞ of large Gaussian width, σy > 2ly. The dark blue region
in (f) shows the region where nðyÞ exhibits a single sharp peak, σy ≤ 2ly, and no density modulation. The red-to-blue color map shows S
in the case of a density-modulated nðyÞ. In (g) the color map is upper limited to use the same color code as in (f) and to enhance visibility
in the low-N regime. The inset in (g) shows the calculated density profile for 164Dy at N ¼ 7 × 104 and as ¼ 91a0.
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tunneling times extremely long compared to any other
relevant timescale. In contrast, the supersolid phase is
identified by a substantial value of S, with a correspond-
ingly short tunneling time.
As shown in Figs. 1(f) and 1(g), a comparative analysis

of the phase diagram for 166Er and 164Dy reveals similarities
between the two species (see also Ref. [36]). A supersolid
phase is found for sufficiently high N, in a narrow region
of as, upper bounded by the critical value as�ðNÞ. For
intermediate N, a�s increases with increasing N. We note
that, for low N, the nonmodulated BEC evolves directly
into a single droplet state for decreasing as [50]. In this
case, no supersolid phase is found in between; see also
Refs. [24,27]. Despite the general similarities, we see that
the supersolid phase for 164Dy appears for lower atom
number than for Er and has a larger extension in as. This is
mainly due to the different add and strength of the LHY
term. We note that, at large N and for decreasing as, Dy
exhibits ground states with a density modulation appearing
first in the wings, which then progresses inwards until a
substantial modulation over the whole cloud is established
[51]; see inset of Fig. 1(g). In this regime, we also observe
that a�s decreases with increasing N. These types of states
have not been previously reported and, although challeng-
ing to access in experiments because of the large N, they
deserve further theoretical investigations.

III. EXPERIMENTAL SEQUENCE
FOR 166Er AND 164Dy

To experimentally access the above-discussed physics, we
produce dipolar BECs of either 166Er or 164Dy atoms. These
two systems are created in different setups and below we
summarize the main experimental steps; see also Ref. [40].
Erbium.—We prepare a stable 166Er BEC following

the scheme of Ref. [18]. At the end of the preparation,
the Er BEC contains about N ¼ 8 × 104 atoms at
as ¼ 64.5a0. The sample is confined in a cigar-shaped
optical dipole trap with harmonic frequencies ωx;y;z ¼
2π × ð227; 31.5; 151Þ Hz. A homogeneous magnetic field
B polarizes the sample along z and controls the value of as
via a magnetic Feshbach resonance (FR) [18,22,40]. Our
measurements start by linearly ramping down as within
20 ms and waiting an additional 15 ms so that as reaches its
target value [40]. We note that ramping times between 20
and 60 ms have been tested in the experiment and we do not
record a significant difference in the system’s behavior.
After the 15-ms stabilization time, we then hold the sample
for a variable time th before switching off the trap. Finally,
we let the cloud expand for 30 ms and perform absorption
imaging along the z (vertical) direction, from which we
extract the density distribution of the cloud in momentum
space, nðkx; kyÞ.
Dysprosium.—The experimental procedure to create a

164Dy BEC follows the one described in Ref. [38]; see also

Ref. [40]. Similarly to Er, the Dy BEC is also confined in a
cigar-shaped optical dipole trap and a homogeneous
magnetic field B sets the quantization axis along z and
the value of as. For Dy, we will discuss our results in
terms of magnetic field B, since the as-to-B conversion is
not well known in the magnetic-field range considered
[25,40,41,52]. In a first set of measurements, we first
produce a stable BEC of about N ¼ 3.5 × 104 condensed
atoms at a magnetic field of B ¼ 2.5 G and then probe the
phase diagram by tuning as. Here, before ramping the
magnetic field to access the interesting as regions, we
slowly increase the power of the trapping beams within
200 ms. The final trap frequencies are ωx;y;z ¼ 2π ×
ð300; 16; 222Þ Hz. After preparing a stable BEC, we ramp
B to the desired value within 20 ms and hold the sample for
th [40]. In a second set of measurements, we study a
completely different approach to reach the supersolid state.
As discussed later, here we first prepare a thermal sample at
a B value where supersolid properties are observed and then
further cool the sample until a transition to a coherent
droplet-array state is reached. In both cases, at the end
of the experimental sequence, we perform absorption
imaging after typically 27 ms of time-of-flight (TOF)
expansion. The imaging beam propagates horizontally
under an angle α of ≈45° with respect to the weak axis
of the trap (y). From the TOF images, we thus extract
nðkY; kzÞ with kY ¼ cosðαÞky þ sinðαÞkx.
A special property of 164Dy is that its background

scattering length is smaller than add. This allows us to
enter the supersolid regime without the need of setting B
close to a FR, as is done for 166Er and 162Dy, which
typically causes severe atom losses due to increased three-
body-loss coefficients. In contrast, in the case of 164Dy, the
supersolid regime is reached by ramping B away from the
FR pole used to produce the stable BEC via evaporative
cooling, as the as range of Fig. 1(g) lies close to the
background as reported in Ref. [52]; see also Ref. [40]. At
the background level, three-body-loss coefficients below
1.3 × 10−41 m6 s−1 have been reported for 164Dy [25].

IV. DENSITY MODULATION AND
PHASE COHERENCE

The coexistence of density modulation and phase coher-
ence is the key feature that characterizes the supersolid
phase and allows us to discriminate it from the BEC and ID
cases. To experimentally probe this aspect in our dipolar
quantum gases, we record their density distribution after a
TOF expansion for various values of as across the phase
diagram. As for a BEC in a weak optical lattice [53] or for
an array of BECs [54–56], the appearance of interference
patterns in the TOF images is associated with a density
modulation of the in situ atomic distribution. Moreover, the
shot-to-shot reproducibility of the patterns (in amplitude
and position) and the persistence of fringes in averaged
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pictures, obtained from many repeated images taken under
the same experimental conditions, reveals the presence of
phase coherence across the sample [56].
Figure 2 exemplifies snapshots of the TOF distributions

for Er, measured at three different as values; see
Figs. 2(a)–2(c). Even if very close in scattering length,
the recorded nðkx; kyÞ shows a dramatic change in behavior.
For as ¼ 54.7ð2Þa0, we observe a nonmodulated distribu-
tion with a density profile characteristic of a dilute BEC.
When lowering as to 53.8ð2Þa0, we observe the appearance
of an interference pattern in the density distribution,
consisting of a high central peak and two almost symmetric
low-density side peaks [57]. Remarkably, the observed
pattern is very reproducible with a high shot-to-shot
stability, as shown in the repeated single snapshots and
in the average image [Figs. 2(b) and 2(e)]. This behavior
indicates a coexistence of density modulation and global
phase coherence in the in situ state, as expected in the
supersolid phase. This observation is consistent with
our previous quench experiments [18] and with the recent
162Dy experiments [35,36]. When further lowering as to
53.3ð2Þa0, complicated patterns develop with fringes
varying from shot to shot in number, position, and
amplitude, signaling the persistence of in situ density
modulation. However, the interference pattern is com-
pletely washed out in the averaged density profiles
[Fig. 2(f)], pointing to the absence of a global phase

coherence. We identify this behavior as the one of
ID states.
Toy model—To get an intuitive understanding of the

interplay between density modulation and phase coherence
and to estimate the role of the different sources of
fluctuations in our experiment, we here develop a simple
toy model, which is inspired by Ref. [56]; see also
Ref. [40]. In our model, the initial state is an array of
ND droplets containing in total N atoms. Each droplet is
described by a one-dimensional Gaussian wave function
ψ iðyÞ of amplitude αi, phase ϕi, width σi, and center yi. To
account for fluctuations in the experiments, we allow αi,
di ¼ yi − yi−1, and σi to vary by 10% around their expect-
ation values. The spread of the phases ϕi among the
droplets is treated specially as it controls the global phase
coherence of the array. By fixing ϕi ¼ 0 for each droplet or
by setting a random distribution of ϕi, we range from full
phase coherence to the incoherent cases. Therefore, the
degree of phase incoherence can be varied by changing the
standard deviation of the distribution of ϕi.
To mimic our experiment, we compute the free evolution

of each individual ψ i over 30 ms, and then compute the
axial distribution nðy; tÞ ¼ jPiψ iðy; tÞj2, from which we
extract the momentum distribution nðkyÞ, also accounting
for the finite imaging resolution [40]. For each computation
run, we randomly draw ND values for ϕi, as well as of σi,
di, and αi, and extract nðkyÞ. We then collect a set of nðkyÞ
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FIG. 2. Coherence in the interference patterns: measurement and toy model. (a)–(c) Examples of single TOF absorption images at
th ¼ 5 ms for 166Er at as ¼ f54.7ð2Þ; 53.8ð2Þ; 53.3ð2Þga0, respectively. Corresponding average pictures for 100 images obtained under
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by drawing these values multiple times using the same
statistical parameters and compute the expectation value,
hnðkyÞi; see Figs. 2(j)–2(l). The angled brackets denote the
ensemble average.
The results of our toy model show large similarity with

the observed behavior in the experiment. In particular,
while for each single realization one can clearly distinguish
multipeak structures regardless of the degree of phase
coherence between the droplets, the visibility of the
interference pattern in the averaged nðkyÞ survives only
if the standard deviation of the phase fluctuations between
droplets is small (roughly, below 0.3π). In the incoherent
case, we note that the shape of the patterns strongly varies
from shot to shot. Interestingly, the toy model also shows
that the visibility of the coherent peaks in the average
images is robust against the typical shot-to-shot fluctua-
tions in droplet size, amplitude, and distance that occur in
the experiments; see Figs. 2(j) and 2(k).
Probing density modulation and phase coherence.—To

separate and quantify the information on the in situ density
modulation and its phase coherence,we analyze themeasured
interference patterns in Fourier space [36,58–60]. Here, we
extract two distinct averaged density profiles, nM and nΦ.
Their structures at finite y spatial frequency (i.e., in Fourier
space) quantify the two abovementioned properties.
More precisely, we perform a Fourier transform (FT) of

the integrated momentum distributions nðkyÞ denoted
F ½n�ðyÞ. Generally speaking, modulations in nðkyÞ induce
peaks at finite spatial frequency, y ¼ y�, in the FT norm,
jF ½n�ðyÞj; see Figs. 2(g)–2(i) and 2(m)–2(o). Following the
above discussion (see also Refs. [56,61]), such peaks in an
individual realization hence reveal a density modulation of
the corresponding in situ state, with a wavelength roughly
equal to y�. Consequently, we consider the average of the
FT norm of the individual images, nMðyÞ ¼ hjF ½n�ðyÞji, as
the first profile of interest. The peaks of nM at finite y then
indicate the mere existence of an in situ density modulation
of roughly constant spacing within the different realiza-
tions. As the second profile of interest, we use the FT
norm of the average profile hnðkyÞi, nΦðyÞ ¼ jF ½hni�ðyÞj.
Connecting to our previous discussion, the peaks of nΦ at
finite y point to the persistence of a modulation in the
average hnðkyÞi, which we identified as a hallmark for a
global phase coherence within the density-modulated state.
In particular, we point out that a perfect phase coherence,
implying identical interference patterns in all the individual
realizations, yields nM ¼ nΦ and, thus, identical peaks
at finite y in both profiles. We note that, by linearity, nΦ
also matches the norm of the average of the full FT
of the individual images, i.e., nΦðyÞ ¼ jhF ½n�ðyÞij; see
also Ref. [40].
Figures 2(g)–2(i) and 2(m)–2(o) demonstrate the sig-

nificance of our FT analysis scheme by applying it
to the momentum distributions from the experiment
[Figs. 2(d)–2(f)] and the momentum distributions from

the toy model [Figs. 2(j)–2(l)], respectively. As expected,
for the BEC case, both nM and nΦ show a single peak at
zero spatial frequency, y ¼ 0, characterizing the absence of
density modulation, Fig. 2(g). In the case of phase-coherent
droplets, Fig. 2(e), we observe that nM and nΦ are
superimposed and both show two symmetric side peaks
at finite y, in addition to a dominant peak at y ¼ 0; see
Fig. 2(h). In the incoherent droplet case, we find that, while
nM still shows side peaks at finite y, the ones in nΦ wash
out from the averaging, Figs. 2(f), 2(i), 2(l), and 2(o). For
both coherent and incoherent droplet arrays, the toy-model
results show behaviors matching the above description,
providing a further justification of our FT analysis scheme;
see Figs. 2(j)–2(o). Our toy model additionally proves two
interesting features. First, it shows that the equality
nM ¼ nΦ, revealing the global phase coherence of a
density-modulated state, is remarkably robust to noise in
the structure of the droplet arrays; see Figs. 2(j) and 2(m).
Second, our toy model, however, shows that phase fluc-
tuations across the droplet array on the order of 0.2π
standard deviation are already sufficient to make nΦ and
nM deviate from each other; see Figs. 2(k) and 2(n). The
incoherent behavior is also associated with strong varia-
tions in the side peak amplitude of the individual realiza-
tions of jF ½n�j, connecting, e.g., to the observations
of Ref. [36].
Finally, to quantify the density modulation and the

phase coherence, we fit a three-Gaussian function to both
nMðyÞ and nΦðyÞ and extract the amplitudes of the
finite-spatial-frequency peaks, AM and AΦ, for both dis-
tributions, respectively. Note that for a BEC, which is a
phase-coherent state, AΦ will be zero since it probes
only finite-spatial-frequency peaks; see Figs. 2(g)–2(i)
and 2(m)–2(o).

V. CHARACTERIZATION OF THE
SUPERSOLID STATE

We are now in the position to study two key aspects,
namely, (i) the evolution of the density modulation and
phase coherence across the BEC-supersolid-ID phases and
(ii) the lifetime of the coherent density-modulated state in
the supersolid regime.
Evolution of the supersolid properties across the phase

diagram.—The first type of investigation is conducted with
166Er since, contrary to 164Dy, its scattering length and
dependence on the magnetic field has been precisely
characterized [18,22]. After preparing the sample, we ramp
as to the desired value and study the density patterns as well
as their phase coherence by probing the amplitudes AM
and AΦ as a function of as after th ¼ 5 ms. As shown in
Fig. 3(a), in the BEC region (i.e., for large as), we observe
that both AM and AΦ are almost zero, evidencing the
expected absence of a density modulation in the system. As
soon as as reaches a critical value a�s , the system’s behavior
dramatically changes with a sharp and simultaneous
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increase of both AM and AΦ. While the strength of AM
and AΦ varies with decreasing as—first increasing then
decreasing—we observe that their ratio AΦ=AM remains
constant and close to unity over a narrow as range below a�s
of ≳1a0 width; see the inset of Fig. 3(a). This behavior
pinpoints the coexistence in the system of phase coherence
and density modulation, as predicted to occur in the
supersolid regime. For ðas − a�sÞ < −1a0, we observe that
the two amplitudes depart from each other. Here, while the
density modulation still survives with AM saturating to a
lower finite value, the global phase coherence is lost with
AΦ=AM < 1, as expected in the insulating droplet phase.
Note that we also study the evolution of AΦ and AM in
164Dy, but as a function of B, and find a qualitatively similar
behavior.
To get a deeper insight on how our observations compare

to the phase-diagram predictions (see Fig. 1), we study the
link strength S as a function of as; see Fig. 3(b). Since S
quantifies the density overlap between neighboring drop-
lets and is related to the tunneling rate of atoms across the
droplet array, it thus provides information on the ability of

the system to establish or maintain a global phase coher-
ence. In this plot, we set S ¼ 0 in the case where no
modulation is found in the ground state. At the BEC-to-
supersolid transition, i.e., at as ¼ a�s , a density modulation
abruptly appears in the system’s ground state with S taking
a finite value. Here, S is maximal, corresponding to a
density modulation of minimal amplitude. Below the
transition, we observe a progressive decrease of S with
lowering as, pointing to the gradual reduction of the
tunneling rate in the droplet arrays. Close to the transition,
we estimate a large tunneling compared to all other relevant
timescales. However, we expect this rate to become vanish-
ingly small, on the sub-Hertz level [40], when decreasing
as 1–2a0 below a�s. Our observation also hints at the smooth
character of the transition from a supersolid to an ID phase.
The general trend of S, including the extension in as

where it takes nonvanishing values, is similar to the as
behavior of AM and AΦ observed in the experiments [62].
We observe in the experiments that the as dependence at
the BEC-to-supersolid transition appears sharper than at
the supersolid-to-ID interface, potentially suggesting a
different nature of the two transitions. However, more
investigations are needed since atom losses, finite temper-
ature, and finite-size effects can affect, and in particular
smoothen, the observed behavior [64–66]. Moreover,
dynamical effects, induced by, e.g., excitations created at
the crossing of the phase transitions or atom losses during
the time evolution, can also play a substantial role in the
experimental observations, complicating a direct compari-
son with the ground-state calculations. The time dynamics
as well as a different scheme to achieve a state with
supersolid properties is the focus of the remainder of
the paper.
Lifetime of the supersolid properties.—Having identified

the as range in which our dipolar quantum gas exhibits
supersolid properties, the next central question concerns the
stability and lifetime of such a fascinating state. Recent
experiments on 162Dy have shown the transient character of
the supersolid properties, whose lifetime is limited by
three-body losses [35,36]. In these experiments, the phase
coherence is found to survive up to 20 ms after the density
modulation has formed. This time corresponds to about half
of the weak-trap period. Stability is a key issue in the
supersolid regime, especially since the tuning of as, used to
enter this regime, has a twofold consequence on the
inelastic loss rate. First, it gives rise to an increase in
the peak density [see Figs. 1(b)–1(d)] and, second, it may
lead to an enhancement of the three-body-loss coefficient.
We address this question by conducting comparative

studies on 166Er and 164Dy gases. These two species allow
us to tackle two substantially different scattering scenarios.
Indeed, the background value of as for 166Er (as well as for
162Dy) is larger than add. Thus, reaching the supersolid
regime, which occurs at add=as ≈ 1.2–1.4 in our geometry,
requires us to tune B close to the pole of a FR. This tuning

S

-2 -1 0 1

0

0.2

0.4

0.6

0.8

0

1

A
A

M

a
s
 - a

s
 (a

0
)*

x103

0

2

4

-2 -1 0 1

A
 / A

M

a
s
 - a

s
 (a

0
)*

(a)

(b)
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function of as − a�s for 166Er. For nonmodulated states, we set
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scattering lengths are a�s ¼ 54.9ð2Þa0 and 51.15a0, respectively
[62]. The numerical results are obtained for the experimental trap
frequencies and for a constant N ¼ 5 × 104 [63].
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also causes an increase of the three-body-loss rate. In
contrast, 164Dy realizes the opposite case with the back-
ground scattering length smaller than add. This feature
brings the important advantage of requiring tuning B away
from the FR pole to reach the supersolid regime. As we
describe below, this important difference in scattering
properties leads to a strikingly longer lifetime of the
164Dy supersolid properties with respect to 166Er and to
the recently observed behavior in 162Dy [35,36].
The measurements proceed as follows. For both 166Er

and 164Dy, we first prepare the quantum gas in the stable
BEC regime and then ramp as to a fixed value in the
supersolid regime for which the system exhibits a state of
coherent droplets (i.e., AΦ=AM ≈ 1); see previous discus-
sion. Finally, we record the TOF images after a variable th
and we extract the time evolution of both AΦ and AM.
The study of these two amplitudes will allow us to answer
the question of whether the droplet structure—i.e., the
density modulation in space—persists in time whereas
the coherence among droplets is lost (AM > AΦ → 0) or
if the density structures themselves vanish in time
(AM ≈ AΦ → 0).
As shown in Fig. 4, for both species, we observe that AΦ

and AM decay almost synchronously with a remarkably
longer lifetime for 164Dy [Fig. 4(b)] than 166Er [Fig. 4(a)].

Interestingly, AΦ and AM remain approximately equal
during the whole time dynamics; see insets of Figs. 4(a)
and 4(b). This behavior indicates that it is the strength of the
density modulation itself and not the phase coherence
among droplets that decays over time. Similar results have
been found theoretically in Ref. [67]. We connect this
decay mainly to three-body losses, especially detrimental
for 166Er, and possible excitations created while crossing
the BEC-to-supersolid phase transition [40]. For compari-
son, the inset of Fig. 4(a) shows also the behavior in the ID
regime for 166Er, where AΦ=AM < 1 already at short th and
remains so during the time evolution [40].
To get a quantitative estimate of the survival time of

the phase-coherent and density-modulated state, we fit a
simple exponential function to AΦ and extract tΦ, defined
as the 1=10 lifetime; see Fig. 4. For 166Er, we extract
tΦ ¼ 38ð6Þ ms. For th > tΦ, the interference patterns
become undetectable in our experiment and we recover
a signal similar to the one of a nonmodulated BEC state [as
in Figs. 2(a) and 2(d)]. These results are consistent with
recent observations of transient supersolid properties in
162Dy [35]. For 164Dy, we observe that the coherent density-
modulated state is remarkably long-lived. Here, we find
tΦ ¼ 152ð13Þ ms.
The striking difference in the lifetime and robustness of

the supersolid properties between 166Er and 164Dy becomes
even more visible when studying tΦ as a function of as
(B for Dy). As shown in Fig. 5, tΦ for Er remains
comparatively low in the investigated supersolid regime
and slightly varies between 20 and 40 ms. Similarly to the
recent studies with 162Dy, this finding reveals the transient
character of the state and opens the question of whether a
stationary supersolid state can be reached with these
species. On the contrary, for 164Dy we observe that tΦ
first increases with B in the range from 1.8 G to about
1.98 G. Then, for B > 1.98 G, tΦ acquires a remarkably
large and almost constant value of about 150 ms over a
wide B range. This shows the long-lived character of the
supersolid properties in our 164Dy quantum gas. We note
that over the investigated range, as is expected to monoto-
nously increase with B [40]. Such a large value of tΦ
exceeds not only the estimated tunneling time across
neighboring droplets but also the weak-axis trap period,
which together set the typical timescale to achieve global
equilibrium and to study collective excitations.

VI. CREATION OF STATES WITH SUPERSOLID
PROPERTIES BY EVAPORATIVE COOLING

The long-lived supersolid properties in 164Dy motivate us
to explore an alternative route to cross the supersolid phase
transition, namely, by evaporative cooling instead of
interaction tuning. For this set of experiments, we have
modified the waists of our trapping beams in order to
achieve quantum degeneracy in tighter traps with respect to
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the one used for condensation in the previous set of
measurements. In this way, the interference peaks in the
supersolid region are already visible without the need to
apply a further compression of the trap since the side-
to-central-peak distance in the momentum distribution
scales roughly as 1=lz [18]. Forced evaporative cooling
is performed by reducing the power of the trapping beams
piecewise linearly in subsequent evaporation steps until a
final trap with frequencies 2π × ð225; 37; 134Þ Hz is
achieved. During the whole evaporation process, which
has an overall duration of about 3 s, the magnetic field is
kept either at B ¼ 2.43 G, where we observe long-lived
interference patterns, or at B ¼ 2.55 G, where we produce
a stable nonmodulated BEC. We note that these two B
values are very close without any FR lying in between [40].
Figure 6 shows the phase transition from a thermal cloud

to a final state with supersolid properties by evaporative
cooling. In particular, we study the phase transition by
varying the duration of the last evaporation ramp, while
maintaining the initial and final trap-beam power fixed.
This procedure effectively changes the atom number and
temperature in the final trap while keeping the trap
parameters unchanged, which is important to not alter
the final ground-state phase diagram of the system. At the
end of the evaporation, we let the system equilibrate and
thermalize for th ¼ 100 ms, after which we switch off the
trap, let the atoms expand for 26.5 ms, and finally perform
absorption imaging. We record the TOF images for differ-
ent ramp durations, i.e., for different thermalization times.
For a short ramp, too many atoms are lost such that the
critical atom number for condensation is not reached, and
the atomic distribution remains thermal; see Fig. 6(a).

By increasing the ramp time, the evaporative cooling
becomes more efficient and we observe the appearance of a
bimodal density profile with a narrow and dense peak at the
center, which we identify as a regular BEC; see Fig. 6(b).
By further cooling, the BEC fraction increases and the
characteristic pattern of the supersolid state emerges; see
Figs. 6(c) and 6(d). The observed evaporation process
shows a strikingly different behavior in comparison
with the corresponding situation at B ¼ 2.55 G, where
the usual thermal-to-BEC phase transition is observed; see
Figs. 6(i)–6(l).
We finally probe the lifetime of the supersolid properties

by extracting the time evolution of both the amplitudes AΦ
and AM, as previously discussed. We use the same
experimental sequence as the one in Fig. 6(d)—i.e., 300-
ms duration of the last evaporation ramp and 100 ms of
equilibration time—and subsequently hold the sample in
the trap for a variable th. As shown in Fig. 7(a), we observe
a very long lifetime with both amplitudes staying large and
almost constant over more than 200 ms. At longer holding
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The color map indicates the atomic density in momentum space.
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time, we observe a slow decay of AΦ and AM, following the
decay of the atom number. Moreover, during the dynamics,
the ratio AΦ=AM stays constant. The long lifetime of
the phase-coherent density modulation is also directly
visible in the persistence of the interference patterns in
the averaged momentum density profiles [similar to
Fig. 2(e)], both at intermediate and long times; see
Figs. 7(b) and 7(c), respectively. For even longer th, we
cannot resolve anymore interference patterns in the TOF
images. Here, we recover a signal consistent with a regular
BEC of low N.
Achieving the coherent droplet phase via evaporative

cooling is a very powerful alternative path to supersolidity.
We speculate that, for instance, excitations, which might be
important when crossing the phase transitions by inter-
action tuning, may be small or removed by evaporation
when reaching this state kinematically. Other interesting
questions, open to future investigations, are the nature of
the phase transition, the critical atom number, and the role
of noncondensed atoms.

VII. CONCLUSIONS

For both 166Er and 164Dy dipolar quantum gases, we have
identified and studied states showing hallmarks of super-
solidity, namely, global phase coherence and spontaneous
density modulations. These states exist in a narrow scatter-
ing-length region, lying between a regular BEC phase and a
phase of an insulating droplet array. While for 166Er,
similarly to the recently reported 162Dy case [35,36], the
observed supersolid properties fade out over a compara-
tively short time because of atom losses, we find that 164Dy
exhibits remarkably long-lived supersolid properties.
Moreover, we are able to directly create stationary states

with supersolid properties by evaporative cooling, demon-
strating a powerful alternative approach to interaction
tuning on a BEC. This novel technique provides prospects
of creating states with supersolid properties while avoiding
additional excitations and dynamics. The ability to produce
long-lived supersolid states paves the way for future
investigations on quantum fluctuations and many-body
correlations, as well as of collective excitations in such
an intriguing many-body quantum state. A central goal of
these future investigations lies in proving the superfluid
character of this phase, beyond its global phase coherence
[7,34,68–70].
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GROUND STATE CALCULATIONS

We perform numerical calculations of the ground state
following the procedure detailed in the supplementary
information of Ref. [1]. The calculations are based on
the conjugate-gradients technique to minimize the en-
ergy functional of an eGPE [2]. In particular, the eGPE
accounts for the effect of quantum fluctuations, by includ-
ing the LHY term ∆µ[n] = 32g(nas)

3/2(1+3ε2dd/2)/3
√
π

in the system’s Hamiltonian (here g = 4πh̄2as/m and
n = |ψ|2 is the spatial density of the macroscopic state
ψ). ∆µ[n] has been obtained under a local density
approximation in Refs. [3, 4]. The relevance of the
LHY correction has been demonstrated in various stud-
ies of dipolar Bose gases close to the mean-field instabil-
ity [1, 5–9] as it brings an additional repulsive potential,
stabilizing the gas against mean-field collapse at large
density. We note that the exact functional form of the
potential, originating from beyond mean-field effects, has
been questioned by several experimental results in finite-
size trapped systems [1, 9–11], calling for further theory
developments [12].

Our numerical calculations provide us with the three-
dimensional ground-state wavefunctions ψ(r). From this,
we compute the axial in-situ density profile along the
trap’s weak axis, n(y) =

∫
|ψ(r)|2dxdz and find den-

sity profiles, corresponding to the BEC, the supersolid
or the ID phase, that we plot in Fig. 1. From the
density profiles that exhibit a density modulation, we
evaluate S by performing Gaussian fits to each droplet,
i. e. to n(y) with y ranging between two neighboring lo-
cal density minima. From these Gaussian fits, we eval-

uate the sets of centers {y(0)
i }i and widths {σi}i cor-

responding to the macroscopic Gaussian wavefunctions
{ψi}i associated to the individual droplets in the ar-
ray. We then approximate the droplet wavefunction via

ψi(y) ≈
√
n(y ≈ y(0)

i ) = αi exp
(
−(y − y(0)

i )2/2σ2
i

)
with

αi a normalization coefficient such that
∫
|ψi(y)|2dy = 1.

We then evaluate the wavefunction overlap Si between

the neighboring droplets i− 1 and i via:

Si ≡
∫
ψ∗
i−1(y)ψi(y)dy (1)

=

√
2σiσi−1

σ2
i + σ2

i−1

exp

(
− (y

(0)
i − y

(0)
i−1)2

2(σ2
i + σ2

i−1)

)
. (2)

The latter equation is obtained via an analytical evalu-
ation of the Gaussian integral. The characteristic link
strength defined in the paper is then computed by aver-
aging Si over all droplet links in the array: S = 〈Si〉i. In
our calculation, we only consider as droplets all density
peaks of at least 5 % of the global density maximum.

LINK STRENGTH AND ESTIMATE OF
TUNNELING RATE

Generally speaking, the wavefunction overlap between
neighboring droplets relates to a tunneling term, which
sets a particle exchange term between two neighboring
droplets [13–16]. Following the work of Ref. [17], we per-
form a first estimate of the tunneling coefficient by sim-
ply considering the single-particle part of the Hamilto-
nian and evaluate it between two neighboring droplets.
We note that, in our particular setting where the density
modulation is not externally imposed but arises from the
mere interparticle interactions, the inter-droplet interac-
tion may also play a crucial role. To perform a more
precise estimation of the tunneling between droplets, one
would certainly need to properly account for this effect.
Here, we stress that our approach simply gives a rough
idea of the magnitude of tunneling while it does not aim
to be a quantitative description of it. This consideration
calls for further studies making a systematic analysis of
the full Hamiltonian and of the full phase diagram within
the Josephson junction formalism and beyond.

Generalizing the description of Ref. [17] to neighbor-
ing droplets of different sizes and amplitudes, which are
described by a three-dimensional wavefunction ψi(r) ap-
proximated to a three-dimensional Gaussian of widths
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2

(σi,x, σi,y, σi,z) with σi,y = σi, our estimate writes:

Ji =
h̄2Si
2m



∑

k=x,y,z

1 +
(
σi,kσi−1,k

`2k

)2

σ2
i,k + σ2

i−1,k

+
(y

(0)
i − y

(0)
i−1)2

2σiσi−1

(σiσi−1/`y)
4 − 1

σ2
i + σ2

i−1

]
, (3)

where `x,y,z =
√
h̄/mωx,y,z are the harmonic oscillator

lengths.
In general, the tunnelling coefficients set two typical

rates relevant for equilibration processes. The first one
is the bare single-particle tunneling rate, which is equal
to Ji/h, while the second accounts for the bosonic en-
hancement from the occupation of the droplet modes
and writes t̃i =

√
NiNi−1|Ji|/h where Ni is the num-

ber of atoms in droplet i. In our analysis, we then define
the average rates over the droplet arrays as characteristic
rates J/h = 〈Ji〉i/h, and t̃ = 〈t̃i〉i; see e.g. [18]. While
the ground state evolves from a BEC to a supersolid to
an ID, the relevant timescale for achieving (global) equi-
librium crosses from being set by the trap frequencies to
the above-mentioned tunneling rates.

Using our approximate model, we here give a first es-
timate of the rates J/h and t̃ as a function of as, for the
parameters of Fig. 1(b-d) of the main text (i.e. Er quan-
tum gas with N = 5 × 104 atoms). Here we find that,
for as = a∗s , J/h ∼ 400 Hz and t̃ ∼ 10 MHz while for
as = a∗s − 2.5 a0, J/h ∼ 10−7 Hz and t̃ ∼ 10−3 Hz.

TOY MODEL FOR THE INTERFERENCE
PATTERN

As described in the main text we use a simple toy
model, adapted from Ref. [18], to identify the main fea-
tures of the TOF interference patterns obtained from an
insitu density-modulated state. As a quick reminder, our
model considers a one-dimensional array of ND Gaus-
sian droplets, described by a single classical field, ψi,
thus neglecting quantum and thermal fluctuations. We
compute the TOF density distribution from the free-
expansion of the individual ψi during a time t via
n(y, t) = |∑i ψi(y, t)|2. In our calculations, we also ac-
count for the finite imaging resolution by convolving the
resulting n(y, t) with a gaussian function of width σim.
Here we allow the characteristics of the individual ψi to
fluctuate. In this aim, we introduce noise on the corre-
sponding parameter with a normal distribution around
its expectation value and with a variable standard devi-
ation (only φi can also have a uniform distribution). We
then perform a Monte-Carlo study and perform ensemble
averages, similar to our experimental analysis procedure.
We note that, in this simple implementation, the noise
on the different parameters – droplet amplitudes, widths
and distances – are uncorrelated.

In the main text, we present results for a single set of
parameters, namely ND = 4, d ≡ 〈di〉i = 2.8µm (mean
droplet distance), σy ≡ 〈σi〉i = 0.56µm (mean droplet
size), t = 30 ms, and σim = 3µm, typical for our exper-
imental Er setting and the corresponding theory expec-
tations in the supersolid regime. 〈·〉i denotes the average
over the droplets. In this section, we have a deeper look
at the impact of the different parameters on both the
TOF signal and our FT analysis. We study both the
fully phase coherent and fully incoherent case, and the
unchanged parameters are set as in Fig. 2(j,m) and (l,o).
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FIG. S1. Toy model realizations with varying number
of droplets ND. We use 100 independent draws, and expec-
tation values d = 2.85µm, σy = 0.56µm (with 10% noise) and
either φi = 0 (a,b,e,f,i,j), or φi uniformly distributed between
0 and 2π (c,d,g,h,k,l). (a–d) ND = 2, (e–h) ND = 3 and (i–l)
ND = 8. (a,c,e,g,i,k) TOF density profiles and (b,d,f,h,j,l)
corresponding FT analysis of the interference patterns, same
color code as Fig .2.

In Fig. S1, we first exemplify the TOF and FT pro-
files for a varying number of droplets, between 2 and 8,
which cover the range of relevant ND over the phase di-
agram of Fig. 1. The results remain remarkably similar
to the realization of Fig. 2 with only slight quantitative
changes. The main difference lies in the individual inter-
ference patterns obtained in the phase incoherent case.
With increasing ND, those profiles become more com-
plex and made of a larger number of peaks (see (c,g,k)).
Yet, in this incoherent case, a similar (non-modulated)
profile is recovered in the averaged n(ky) for all ND.
Additionally, we note that for the coherent case with
ND = 8, the side peaks in the FT analysis (see (j))
become less visible. By performing additional tests, we
attribute this behavior to the limited TOF duration, t,
used in our experiment yielding a typical length scale,√
h̄t/m (= 3.4µm), which becomes small compared to

the system size (≈ (ND − 1)d + σy) for large ND. This
intermediate regime in the TOF expansion leads to more
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complex features, including smaller-sized motifs, in the
interference patterns. Finally, when accounting for our
imaging resolution, it yields a broadening of the structure
observed in the TOF images and less visible peaks in the
FT (see (i)). We note that our experiments, because of
limited N and additional losses, should rather lie in the
regime 2 ≤ ND ≤ 5; see Fig. 1(b).
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FIG. S2. Toy model realizations with varying σy/d.
We use 100 independent draws, with ND = 4, d = 2.85µm
(with 10% noise) and either φi = 0 (a,b,e,f,i,j), or φi uni-
formly distributed between 0 and 2π (c,d,g,h,k,l). For each
realization we also compute the associated mean S. (a–d)
σy/d = 0.1, yielding S = 1.8×10−7 (e–h)σy/d = 0.15, match-
ing S = 1.7×10−4 and (i–l) σy/d = 0.25, matching S = 0.028.
(a,c,e,g,i,k) TOF density profiles and (b,d,f,h,j,l) Correspond-
ing FT analysis of the interference patterns, same color code
as Fig. 2.

We then investigate the evolution of the interference
patterns and their FT analysis for a varying mean droplet
size, σy, while keeping their mean distance, d, fixed. This
study is particularly relevant recalling that, within the
Josephson junction formalism (see main text and cor-
responding section of this Supplemental Material), the
key parameter controlling the tunneling rate between the
droplets is set by the ratio σy/d, and the link strength pa-
rameter that we use to characterize the supersolid regime
scales roughly as exp(−(d/2σy)2). Thus, in our experi-
ment, σy/d is intrinsically expected to decrease with the
scattering length (see Fig. 3). Performing a direct esti-
mate of the average droplet link from the initial state of
our toy model, we find S = 0.004 for the calculations
of Fig. 2(j-o), lying in an expected supersolid regime yet
rather close to the supersolid-to-ID transition. Figure
S2 investigates the effect of smaller and larger values of
σy/d (and consequently of S) on the TOF and FT profiles
while independently assuming phase coherence or inco-
herence. Qualitatively, the features remain similar as in
Fig. 2(j-o). In the coherent case, side peaks are visible in

the individual as well as in the mean n(ky) (see (a,e,i))
and yield side peaks in the FT profiles, with nM ≈ n (see
(b,f,j)). Increasing (decreasing) σ/d mainly results in a
stronger (weaker) signal both in the interference pattern
and their FT analysis. Within our toy model, we find
that, already for σ/d = 0.25, the signal nearly vanishes;
see (i,j). Even if, given the approximations used in our
toy model, this exact value may not fully hold for our
experimental conditions, we expect a similar trend. It is
interesting to keep in mind that this effect may limit our
capacity of detecting an underlying supersolid state via
matter-wave interference in experiments. In the incoher-
ent case, the effect of decreasing σy/d mainly results in
a broader shape of the mean density profile, while it re-
mains non-modulated; see (c,g,k). In the FT analysis nΦ

remains structure-less independently of σy/d while the
structures in nM becomes sharper with decreasing σy/d,
as in the coherent case; see (d,h,l).
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FIG. S3. Toy model realizations allowing noise in
the center position. We use 100 independent draws, with
ND = 4, d = 2.85µm (with 10% noise), σy/d = 0.15 (a–
d) or σy/d = 0.2 (e–h), and either φi = 0 (a,b,e,f,i,j), or φi

uniformly distributed between 0 and 2π (c,d,g,h,k,l). Cen-
ter fluctuation are introduced as normal noise around 0 with
standard deviation of 2µm−1 in situ (a,c,e,g,i,k) TOF den-
sity profiles and (b,d,f,h,j,l) corresponding FT analysis of the
interference patterns, same color code as Fig. 2.

Finally, we investigate how a possible shot-to-shot
noise on the position of the central interference peak
could affect our observables of the density modulation
and phase coherence. In the experiments, such fluctua-
tions may occur, for instance, because of beam-pointing
fluctuations or excitations of the gas. Although we com-
pensate for such effects by recentering the individual im-
ages (see Imaging Analysis section), residual effects may
remain, in particular due to center misestimation in the
mere presence of the interference patterns of interest. To
investigate this aspect, we repeat our toy model calcu-
lations now including noise in the global droplet array
position and using a standard deviation of 2µm for two
values of σy/d; see Fig.S3. Again, qualitatively the ob-
served features remains similar to our prediction in the
main text. The main effect lies in the appearance of a
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small discrepancy in the coherent case between nΦ and
nM , while the structure in the incoherent case remains
similar. As the center misestimation should be the most
severe in the latter case (due to the variability of the
interference patterns observed here), our test shows the
robustness of our analysis procedure against this issue.

IMAGING ANALYSIS: 164Dy AND 166Er

The density distributions in momentum space are ex-
tracted from the TOF images using the free-expansion
expectation. In the Dy case, the thermal component is
subtracted from the individual distribution by cutting
out the central region of the cloud and performing an
isotropic Gaussian fit on the outer region. This sub-
traction is beneficial because of the large thermal frac-
tion. In the 166Er case, such a subtraction is on the
contrary complicated because of the weak thermal com-
ponent and this pre-treatment may lead to improper es-
timation of AM and AΦ in the later analysis. The ob-
tained momentum density distributions are then recen-
tered and integrated numerically along kz(kx) between
[−2.0,+2.0]µm−1 ([−1.28,+1.28]µm−1) to obtain n(kY )
(n(ky)) for 164Dy (166Er). The recentering procedure
uses the result a single Gauss fit to the TOF images.
The fit is performed after convoluting each image with
a Gaussian function of width 0.5µm whose purpose is
to reduce the impact of the interference pattern on the
center estimation [19].

In order to characterise the system’s state, we use the
Fourier transform, F [n](y) of the single density profile,
n(ky). We then compute two average profiles, nM and
nΦ, relying on ensemble average over all measurements
under the same experimental conditions; see below for a
detailed discussion on nM and nΦ. In all the measure-
ments reported in this work we use averages over typically
15 to 100 realizations.

To quantify both the existence of a density modulation
and global phase coherence on top of this modulation, we
fit both nM (y) and nΦ(y) with a triple-Gaussian function,
where one Gaussian accounts for the central peak and the
other Gaussians are accounting for the symmetric side
peaks. The amplitudes of the latter give AM and AΦ,
respectively. The distance between the side peaks and
the central one is allowed to vary between [2.5, 2.7]µm
([2.3, 2.5]µm) in the case of 164Dy (166Er).

DETAILS ON THE FOURIER ANALYSIS

In our analysis we rely on two averaged profiles, named
nM or nΦ, to quantify both the density modulation and
its phase coherence. Here we detail the meaning of the
average performed.

The Fourier transform (FT) of the integrated mo-
mentum distributions, n(ky), which reads F [n](y) =
|F [n](y)| exp(i arg (F [n](y))) sets the ground for our
analysis. As stated in the main text, an in-situ density
modulation of wavelength y∗ yields patterns in n(ky) and
consequently induce peaks at y ≈ y∗, in the FT norm,
|F [n](y)|, see Fig. 2(g-i) and (m-o). Spatial variations of
the phase relation within the above-mentioned density
modulation translate into phase shifts of the interference
patterns, which are stored in the FT argument at y ≈ y∗,
arg (F [n](y∗)); see also Ref. [18, 20].

The first average that we use is nM (y) = 〈|F [n](y)|〉,
i. e. the average of the FT norm of the individual images.
As the phase information contained in arg (F [n](y)) is
discarded from nM when taking the norm, the peaks
in nM probe the mere existence of an insitu density
modulation of roughly constant spacing within the dif-
ferent realizations. The second average of interest is
nΦ(y) = |〈F [n](y)〉|, i. e. the average of the full FT of the
individual images. In contrast to nM , nΦ keeps the phase
information of the individual realizations contained in
arg (F [n](y∗)). Consequently, peaks in nΦ indicate that
the phase relation is maintained over the density modula-
tion, in a similar way for all realizations. Their presence
thus provides information on the global phase coherence
of a density-modulated state.

EXPERIMENTAL SEQUENCE: 164Dy AND 166Er

166Erbium - The BEC of 166Er is prepared similarly to
Refs. [1, 8, 21, 22]. We start from a magneto-optical trap
with 2.4 × 107 166Er atoms at a temperature of 10µK,
spin-polarized in the lowest Zeeman sub-level. In a next
step we load about 3 × 106 atoms into a crossed opti-
cal dipole trap (ODT) operated at 1064 nm. We evap-
oratively cool the atomic cloud by reducing the power
and then increasing the ellipticity of one of the ODT
beams. During the whole evaporation a constant mag-
netic field of B = 1.9 G (as = 80 a0) along z is applied.
We typically achieve BEC with 1.4 × 105 atoms and a
condensed fraction of 70%. In a next step the ODT
is reshaped in 300 ms into the final trapping frequencies
ωx,y,z = 2π×(227, 31.5, 151) Hz. Consecutively, we ramp
B linearly to 0.62 G (64.5 a0) in 50 ms and obtain a BEC
with 8.5× 104 atoms, which are surrounded by 3.5× 104

thermal atoms. This point marks the start of the ramp
to the final as.

164Dysprosium - For the production of a 164Dy BEC
we closely follow the scheme presented in [23]. Starting
from a 3 s loading phase of our 5-beam MOT in open-top
configuration [24], we overlap a 1064 nm single-beam
dipole trap with a 1/e2-waist of about 22µm, for 120 ms.
Eventually, we transfer typically 8×106 atoms utilizing a
time averaging potential technique to increase the spatial
overlap with the MOT. After an initial 1.1 s evaporative
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cooling phase by lowering the power of the beam, we
add a vertically propagating beam, derived from the
same laser, with a 1/e2-waist of about 130µm to form a
crossed optical dipole trap for additional confinement.
Subsequently, we proceed forced evaporative cooling
to reach quantum degeneracy by nearly exponentially
decreasing the laser powers in the two dipole-trap beams
over 3.6 s. We achieve BECs of 164Dy with typically 105

atoms and condensate fractions of about 40%. During
the entire evaporation sequence the magnetic field is
kept constant at 2.5 G pointing along the vertical (z-)
axis.

To be able to condense directly into the supersolid,
we modify the dipole trap to condense at a stronger
confinement of ωx,y,z = 2π × (225, 37, 134) Hz. After a
total evaporative cooling duration of 3.1 s, we achieve
Bose-Einstein condensation at 2.55 G and reach a state
with supersolid properties at 2.43 G, keeping the mag-
netic field constant throughout the entire evaporation
sequence for both cases.

Time of flight and imaging for 166Er and 164Dy - In
order to probe the momentum distribution of the Dy (Er)
gases, we switch off the confining laser beams and let the
atoms expand freely for 18 ms (15 ms), while keeping the
magnetic field constant. Consecutively the amplitude of
B is increased to a fixed amplitude of 5.4 G (0.6 G). In the
case of 164Dy, the magnetic field orientation is rotated
in order to point along the imaging axis. This ensures
constant imaging conditions for different as. After an
additional 9 ms (15 ms) we perform a standard absorption
imaging.

TUNING THE SCATTERING LENGTH IN 166Er
AND 164Dy

166Erbium - All measurements start with a BEC at
64.5 a0. In order to probe the BEC-supersolid-ID region,
we linearly ramp as to its target value in tr = 20 ms
by performing a corresponding ramp in B. Due to a
finite time delay of the magnetic field in our experimental
setup and the highly precise values of as needed for the
experiment, we let the magnetic field stabilize for another
15 ms before th = 0 starts. By this, we ensure that the
residual lowering of as during the entire hold time is <∼
0.3 a0. In the main text, we always give the as at th = 0 .
Furthermore, we estimate our magnetic field uncertainty
to be ±2.5 mG, leading to a ±0.2 a0 uncertainty of as in
our experiments.

To choose the best ramping scheme, we have performed
experiments varying tr from 0.5 ms to 60 ms, ramping to
a fixed as lying in the supersolid regime, and holding for
th = 5 ms after a fixed 15 ms waiting time. We record the
evolution of AΦ as a function of tr; see Fig. S4. When

increasing tr, we first observe that AΦ increases, up to
tr = 20 ms, and then AΦ gradually decreases. The initial
increase can be due to diabatic effects and larger exci-
tation when fast-crossing the phase transition. On the
other hand, the slow decrease at longer tr can be ex-
plained by larger atom loss during the ramp. We then
choose tr = 20 ms as an optimum value where a super-
solid behavior develops and maintains itself over a signif-
icant time while the losses are minimal.
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FIG. S4. Ramp time effect on the supersolid behavior
Measured AΦ for various durations of the scattering-length
ramp with 166Er and a final as = 54.1(2) a0. All measure-
ments include a 15 ms stabilization time after tr and are per-
formed with an additional hold of th = 5 ms.

164Dysprosium - As the value of the background scat-
tering, abg length for 164Dy is still under debate [9, 10,
25], we discuss the experimental settings in terms of mag-
netic field. Yet, to gain a better understanding of the
tunability of as in our experiment, we first perform a Fes-
hbach spectroscopy scan on a BEC at T = 60 nK. After
evaporative cooling at B = 2.5 G, we jump to B varying
from 1 G to 7.5 G and we hold the sample for 100 ms.
Finally, we switch off the trap, let the cloud expand for
26ms and record the total atom number as a function of
B. We then fit the observed loss features with a gaussian
fit to obtain the position B0,i and width ∆Bi of the FRs,
numbered i. We finally use the standard Feshbach res-
onance formula to estimate the as-to-B dependence via
as(B) = abg

∏
i (1−∆Bi/(B −B0,i)). Here we account

for 8 FRs located between 1.2 G and 7.2 G. Depending on
the background scattering length abg, the overall magni-
tude of as(B) changes. We can get an estimate of abg

from literature. In Fig. S5, we use the value of as from
Ref. [25] obtained at 1.58 G close to the B-region inves-
tigated in our experiment, as = 92(8) a0. By reverting

76 publication



6

the as(B) formula, we set abg = 87(8) a0. For the mea-
surements of Figs. 4-5, we ramp B linearly from 2.5 G in
20 ms to a final value ranging from 1.8 to 2.1 G, for which
we estimate as ranging from 97(9) a0 to 105(10) a0. We
calibrate our magnetic field using RF spectroscopy, with
a stability of about 2 mG. In the Dy case, we do not apply
an additional stabilization time. This is justified because
of the more mellow as-to-B dependence in the B-range
of interest as well as of the wider as-range of the super-
oslid regime (see Fig. 1) compared to the Er case. For the
measurements of Figs. 6–7, we use two B-values, namely
2.43 G and 2.55 G, at which we perform the evaporative
cooling scheme. Here we estimate as = 109(10) a0 and
as = 134(12) a0, respectively.
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FIG. S5. Estimated scattering length tuning in 164Dy
Estimated dependence of as on B for 164Dy. The FR po-
sitions and widths have been extracted from trap-loss spec-
troscopy measurements, the background scattering length is
estimated to abg = 87(8) a0, see text. The blue dashed line
gives an error-estimate considering only the errorbar on abg

from the mere as measurement of Ref. [25] and not account-
ing for uncertainty of the Feshhach scan. For Figs. 4-5, we
use B between 1.8 G and 2.1 G (red area); for Figs. 6–7, we
keep at two constant B-values, namely 2.43 G and 2.55 G (red
arrows).

ATOM LOSSES IN 166Er AND 164Dy

As pointed out in the main text, in the time evolu-
tion of the quantum gases in both the supersolid and the
ID regime, inelastic atom losses play a crucial role. The
atom losses are increased in the above mentioned regime
as (i) higher densities are required so that a stabiliza-
tion under quantum fluctuation effects becomes relevant
and (ii) the magnetic field may need to be tune close to
a FR pole to access the relevant regime of interaction
parameters. (i) is at play for all magnetic species but
more significant for 166Er due to the smaller value of add.
(ii) is relevant for both 166Er and 162Dy but conveniently
avoided for 164Dy thanks to the special short-range prop-

erties of this isotope.
To quantify the role of these losses, we report here

the evolution of the number of condensed atoms, N , as a
function of the hold time in parallel to the phase coherent
character of the density modulation observed. We count
N by fitting the thermal fraction of each individual image
with a two-dimensional Gaussian function. To ensure
that only the thermal atoms are fitted, we mask out the
central region of the cloud associated with the quantum
gas. Afterwards we subtract this fit from the image and
perform a numerical integration of the resulting image
(so called pixel count) to obtain N .
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FIG. S6. atom number and coherence decays in 166Er
Time evolution of N and AΦ for 166Er at different as, in-
cluding points before th = 0 ms in the experiment. The cor-
responding scattering lengths are 53.3(2) a0 (a,b), 54.0(2) a0

(c,d), 54.2(2) a0 (e,f).

166Erbium - In the Er case, a 15 ms stabilization time
is added to ensure that as is reached up to 0.3 a0. Dur-
ing this time, i. e. for th < 0, we suspect that the time-
evolution of the cloud properties is mainly dictated by
the mere evolution of the scattering length. Therefore,
in the main text, we report on the time evolution for
th ≥ 0. We note that because of the narrow as-range
for the supersolid regime, the long stabilization time for
as is crucial. However, because of the significant role of
the atom losses in our system, in particular for 166Er,
the early evolution of N and the cloud’s properties are
intimately connected. Therefore, the early time evolu-
tion at th < 0 is certainly of high importance for our
observations at th ≥ 0.

To fully report on this behavior, we show the evolution
of N and AΦ during both the stabilization and the hold-
ing time in Fig. S6 for three different as values – either in
the ID (a, b) or supersolid regime (c-f). The time evolu-
tion shows significant atom loss, prominent already dur-
ing the stabilization time, and levels off towards a remain-
ing atom number at longer holding times in which we re-
cover small BECs. Simultaneously, in each case reported
here, we observe that during the stabilization time AΦ

increases and a coherent density modulated state grows.
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TABLE I. Extracted 1/10-lifetime of 166Er atom number
decay for th ≥ 0 and remaining atom number at long holding
time for data in Fig. S6.

as(a0) tN (ms) Nr(104) tΦ (ms)

53.3(2) 32(5) 1.03(5) -

54.0(2) 51(9) 1.29(11) 25(6)

54.2(2) 46(12) 1.7(2) 32(9)

This density modulation starts to appear at a typical
atom number of N >∼ 6 × 104 and consecutively decays.
For the lower as = 53.3(2) a0 case, we observe that the
coherent state does not survive the as stabilization time,
and decays faster than the atoms loss; see Fig. S6 (a, b).
This behavior corresponds to the ID case discussed in
the main text. The central point of the present work is
to identify a parameter range where the coherence of the
density modulated state survives for th > 0 and its decay
time scale is similar to the one of the atom loss. In order
to quantify a timescale for the atom number decay, we
fit an exponential decay to th ≥ 0 ms. Here we allow an
offset Nr of the fit, accounting for the BEC recovered at
long holding times. In Table I, we report on the typical
1/10-decay times of the atom number, which are up to
50 ms. These values are of the order as the extracted tΦ,
see Table I and Fig. 5 of the main text. This reveals that
in 166Er the extracted lifetime of the coherent density
modulated states are mainly limited by atom loss.

Furthermore we note that the extracted Nr values for the
recovered BECs are smaller than 2 × 104, which is con-
sistent with the BEC region found in the phase diagram
of Fig. 1(f).

164Dysprosium - Differently from the 166Er case, for
164Dy, we operate in a magnetic-field range in which the
three-body collision coefficients are small and only mod-
erate atom losses occur. This enables the observation
of an unprecendented long-lived supersolid behavior. To
understand the effects limiting the supersolid lifetime, we
study the lifetime of the condensed-atom number for dif-
ferent B. We perform this detailed study for the data of
Fig. 5 of the main text, which are obtained after prepar-
ing a stable BEC and then ramping B to the target value.
Fig. S7 shows the parallel evolution of N and AΦ for three
different magnetic field values 1.8 G, 2.04 G and 2.1 G.
Here we observe that, for all B values, AΦ seems to de-
cay faster than the atom number. This suggests that the
lifetime of the density-modulated state in our 164Dy ex-
periment is not limited by atom losses. To confirm this
observation, we extract the 1/10 lifetimes of both N and
AΦ; see Table II. The values confirm our observation and
shows an atom number lifetime larger than tΦ at least by
a factor of ≈ 5. In addition, we find that the ratio tN/tΦ
varies, indicating that atom losses are not the only mech-

anism limiting the lifetime of the supersolid properties in
Dy.
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FIG. S7. atom number and coherence decays in 164Dy
Time evolution of N and AΦ for 164Dy at different B for the
data of Fig. 5. The corresponding magnetic fields are 1.8 G
(a,b), 2.04 G (c,d), 2.1 G (e,f).

TABLE II. Extracted 1/10-lifetime of 164Dy atom number
decay and AΦ decay for data in Fig. S7.

B (G) tN (ms) tΦ (ms)

1.8 300(12) 12(5)

2.04 728(34) 152(13)

2.1 926(36) 133(25)
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[24] P. Ilzhöfer, G. Durastante, A. Patscheider, A. Traut-
mann, M. J. Mark, and F. Ferlaino, “Two-species five-

beam magneto-optical trap for erbium and dysprosium,”
Phys. Rev. A 97, 023633 (2018).

[25] Y. Tang, A. Sykes, N. Q. Burdick, J. L. Bohn, and
B. L. Lev, “s-wave scattering lengths of the strongly dipo-
lar bosons 162Dy and 164Dy,” Phys. Rev. A 92, 022703
(2015).

publication 79





8B I RT H , L I F E , A N D D E AT H O F A D I P O L A R S U P E R S O L I D

The following manuscript has appeared in

Physical Review Letters, volume 126, issue 23 (2021),
– Editor’s Suggestion –
submitted 19 January 2021; published 7 June 2021.
DOI: 10.1103/PhysRevLett.126.233401

Maximilian Sohmen,1,2 Claudia Politi,1,2, Lauritz N. Klaus,1,2, Lauriane Chomaz,2 Man-
fred J. Mark,1,2 Matthew A. Norcia,1 and Francesca Ferlaino1,2

1 Institut für Experimentalphysik, Leopold-Franzens-Universität, 6020 Innsbruck, Austria
2 Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaf-
ten, 6020 Innsbruck, Austria

For this publication, I (M. S.) developped a high-resolution imaging system and experi-
mental procedures, performed the measurements together with C. P., L. K. and M. N., lead
the data analysis together with M. N., and wrote the manuscript with contributions from
all other authors.

81

https://doi.org/10.1103/PhysRevLett.126.233401


 

Birth, Life, and Death of a Dipolar Supersolid

Maximilian Sohmen ,1,2 Claudia Politi ,1,2 Lauritz Klaus ,1,2 Lauriane Chomaz ,2,† Manfred J. Mark ,1,2

Matthew A. Norcia ,1 and Francesca Ferlaino 1,2,*

1Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
2Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria

(Received 19 January 2021; accepted 19 April 2021; published 7 June 2021)

In the short time since the first observation of supersolid states of ultracold dipolar atoms, substantial
progress has been made in understanding the zero-temperature phase diagram and low-energy excitations
of these systems. Less is known, however, about their finite-temperature properties, particularly relevant for
supersolids formed by cooling through direct evaporation. Here, we explore this realm by characterizing
the evaporative formation and subsequent decay of a dipolar supersolid by combining high-resolution in-
trap imaging with time-of-flight observables. As our atomic system cools toward quantum degeneracy, it
first undergoes a transition from thermal gas to a crystalline state with the appearance of periodic density
modulation. This is followed by a transition to a supersolid state with the emergence of long-range phase
coherence. Further, we explore the role of temperature in the development of the modulated state.

DOI: 10.1103/PhysRevLett.126.233401

Supersolid states, which exhibit both global phase
coherence and periodic spatial modulation [1–7], have
recently been demonstrated and studied in ultracold gases
of dipolar atoms [8–10]. These states are typically accessed
by starting with an unmodulated Bose-Einstein condensate
(BEC) and then quenching the strength of interatomic
interactions to a value that favors a density-modulated state.
In this production scheme, the superfluidity (or global
phase coherence) of the supersolid is inherited from the
preexisting condensate. However, a dipolar supersolid state
can also be reached by direct evaporation from a thermal
gas with fixed interactions, as demonstrated in Ref. [10].
A thermal gas at temperatures well above condensation

has neither phase coherence nor modulation, so both must
emerge during the evaporative formation process. This
leads one to question whether these two features appear
simultaneously, or if not, which comes first. Further,
because this transition explicitly takes place at finite
temperature T, thermal excitations may play an important
role in the formation of the supersolid, presenting a
challenging situation for theory. Moreover, in the case of
a dipolar supersolid, the nonmonotonic dispersion relation
and the spontaneous formation of periodic density modu-
lation lead to important new length and energy scales not
present in contact-interacting systems, which dramatically
modify the evaporative formation process.
While the ground state and dynamics of a zero-temper-

ature dipolar quantum gas can be computed by solving an
extended Gross-Pitaevskii equation [8,11–17] [see also
Fig. 1(a)], similar treatments are currently lacking for finite
temperatures in the supersolid regime. In principle, effects
of finite temperature can be taken into account by pertur-
batively including the thermal population of excited modes.

This can be done either coherently, by adding them in a
single classical field that abides the Gross-Pitaevskii
equation, as in Refs. [18–20], or incoherently, by iteratively
computing mode populations via a set of coupled Hartree-
Fock-Bogoliubov equations [9,21,22]. In order to accu-
rately describe dynamical processes occurring at temper-
atures approaching the critical temperature, both coherent
excitations and incoherent interactions with the background
thermal gas must be accounted for, requiring either more
advanced c-field [18] or quantum Monte Carlo [23–27]
techniques. So far, theories with realistic experimental
parameters have not been developed to unveil the finite-
temperature dipolar phase diagram and to determine the
properties of the thermal-to-supersolid phase transition.
In this Letter, we experimentally study the evaporative

transition into and out of a supersolid state in a dilute gas of
dysprosium atoms. As the atoms cool down to quantum
degeneracy, the number of condensed atoms increases,
giving birth to the supersolid state. Continued evaporation
and collisional loss lead to a reduction of atom number and,
eventually, the death of the supersolid. Such an evaporation
trajectory, as illustrated in Fig. 1(a), passes through the
little-understood finite-temperature portion of the super-
solid phase diagram. During the evaporative birth of the
supersolid, we discover that the system first establishes
strong periodic density modulation of locally coherent
atoms and only later acquires long-range phase coherence.
When comparing the birth and death of the supersolid,
which occur at different temperatures, we observe higher
levels of modulation during the birth, suggesting that
thermal fluctuations may play an important role in the
formation of density modulation.

PHYSICAL REVIEW LETTERS 126, 233401 (2021)
Editors' Suggestion Featured in Physics

0031-9007=21=126(23)=233401(6) 233401-1 © 2021 American Physical Society

82 publication



For our experiments, we first prepare an optically
trapped gas of approximately 105 dysprosium atoms (iso-
tope 164Dy), precooled via forced evaporation to temper-
atures of several hundred nanokelvin, at which point the gas
remains thermal. From here, we can apply further evapo-
ration either by a nearly adiabatic ramp-down of the trap
depth (“slow ramp”) or by a rapid reduction of the trap
depth followed by a hold time at fixed depth (“fast ramp”)
to further lower the temperature and induce condensation
into the supersolid state. The slow ramp protocol yields a
higher number of condensed atoms (Nc ∼ 2 × 104; see next
paragraph for definition) and lower shot-to-shot atom
number fluctuations, whereas the fast ramp protocol
(Nc ∼ 104) allows to follow the evolution of the system
in a constant trap, disentangling the system dynamics from
varying trap parameters. In contrast to protocols based on
quenching the interactions in a BEC [8–10], we hold the
magnetic field (and hence the contact interaction strength)
fixed during the entire evaporation process at 17.92 G,
where the system ground state at our Nc is a supersolid
[scattering length ∼ 85ð5Þ a0].
For the present Letter, we have implemented in-situ

Faraday phase contrast imaging [28,29], which allows us to

probe the in-trap density of our quantum gas at micron-
scale resolution. During the formation of the density-
modulated state, the translation symmetry is broken along
the long (axial) direction of our cigar-shaped trap [30],
typically giving rise to a chain of 3–6 density peaks, which
we call droplets. These droplets have a spacing of roughly
3 μm, clearly visible in our in-situ images [Fig. 1(b)]. As in
our previous works [10,16], we also image the sample after
a time-of-flight (TOF) expansion using standard absorption
imaging. These TOF images include a spatially broad
contribution that we attribute to thermal atoms, whose
number Nth and temperature T we estimate by 2D fitting of
a Bose-enhanced Gaussian function [31], excluding the
cloud center. Surplus atoms at the cloud center (compared
to the broad Gaussian) are at least locally coherent, or
“(quasi-)condensed” in the sense of Refs. [32–34]. With the
total number of atoms N measured by pixel count, we
define Nc ¼ N − Nth to be the number of these (at least
locally) coherent atoms. During TOF, matter-wave inter-
ference between the expanding droplets gives rise to a
characteristic interference pattern [Fig. 1(c)]. The high
contrast of the interference pattern is visible in single
TOF images and indicates that each individual droplet is by
itself a phase-coherent many-body object. The stability of
the interference fringes within the envelope over multiple
experimental realizations encodes the degree of phase
coherence between droplets (cf. Refs. [10,16] and discus-
sion below). The combination of in situ and TOF diag-
nostics provides complementary information, allowing us
to measure both density modulation and its spatial extent
(number of droplets), as well as phase coherence.
Figure 2 shows the birth of the supersolid. Starting from

a thermal sample, we apply the fast ramp (225 ms)
evaporation protocol to the desired final trap depth, too
fast for the cloud to follow adiabatically and intermediately
resulting in a nonthermalized, noncondensed sample.
Simply holding the sample at constant trap depth for a
time th, collisions and plain evaporation lead to thermal-
ization and cooling. In Fig. 2(a), we plot the average axial
in-situ density profile [cf. Fig. 1(b)] versus th, for about 20
images per time step without any image recentering. At early
th the atoms are primarily thermal and show up as a broad,
low-density background in our images. For th ≲ 150 ms,
inspection of single-shot images reveals an increasing,
though substantially fluctuating, number of droplets appear-
ing out of the thermal cloud. After this time, the droplet
number stabilizes to its final value. We observe that the
droplet formation happens on the same timescale as the
equilibration of Nc and T (see Supplemental Material [35]).
This timescale is set by the rate of evaporation, which in turn
depends on the thermalization rate and hence on the elastic
collision rate 1=τel. For our experimental parameters, we
estimate for two thermal atoms τel ≈ 3 ms (τel ≈ 10 ms)
before (after) our last evaporation ramp. Once the droplets
have formed, other timescales might be relevant in

(a) (b)

(c)

( )

FIG. 1. Evaporation trajectory through the finite-temperature
phase diagram. (a) At T ¼ 0 (bottom plane), the phase diagram
for a gas of dipolar atoms is spanned by the s-wave scattering
length as and the condensate atom number Nc. In an elongated
trap, it features a BEC (white) and independent droplet (ID,
black) phases, separated in places by a supersolid state (SSS, gray
scale). The plotted lightness in the T ¼ 0 phase diagram
represents the droplet link strength across the system (cf.
Ref. [16]). Away from T ¼ 0, the phase diagram is not known.
We explore this region through evaporation into [red, near (i)] and
out of [blue, near (ii)] the SSS, along a trajectory represented
schematically by the colored arrow. (b) Single-shot image of the
optical density (OD) of the sample in trap. Here, a system of four
“droplets” within the SSS region is shown, together with its
projected density profile. (c) Single-shot matter-wave interfer-
ence pattern after 35 ms TOF expansion (OD) and the corre-
sponding projected profile. The color scale is truncated for visual
clarity. The background clouds of thermal atoms present are not
visible in the color scales of (b) or (c); for 35 ms TOF and around
50 nK [as in (c)], the thermal atoms show an approximately
isotropic 2D Gaussian distribution of mean width σ̄ ∼ 55 μm.
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determining the equilibration rate of their relative positions
and phases; the details of this possibility remain an open
question [16].
To better quantify the growth of the modulated state, we

consider the density-density correlator C0ðdÞ for the in-situ
density profiles over distances d [35]. We find that C0ðdÞ is
well described by a cosine-modulated Gaussian and define
the density correlation length L [Fig. 2(b)] as its fitted
width. This method provides a way to determine the extent
over which density modulation has formed. Figure 2(c)
shows L for the dataset of Fig. 2(a) versus the number of
coherent atoms Nc, which we extract from TOF absorption
images in separate experimental trials with identical
parameters. Interestingly, despite the strongly modulated

structure of the supersolid state, the density correlation
length L closely follows a scaling ∝ N1=5

c , just as the
Thomas-Fermi radius of a harmonically trapped BEC,
suggesting a dominant role of interactions over kinetic
energy.
While in-situ images provide information about density

modulation (diagonal long-range order), they do not carry
direct information about phase coherence (off-diagonal
long-range order), either within or between droplets. For
this, we use TOF imaging and address the question of
whether the formation of density modulation precedes
global (i.e., interdroplet) phase coherence during the
evaporative formation of the supersolid, or the other
way round.
For this study, we perform a slow (500 ms) final forced

evaporation ramp of constant slope that is nearly adiabatic
with respect to Nc and T (though not necessarily with
respect to excitations of droplet positions and phase) and
terminate the ramp at selected crop times tc [38]. After tc,
we immediately release the atoms and perform TOF
imaging. Figure 3(a) shows the observed evolution of
the total (N) and (quasi-)condensed (Nc) atom number,
as well as the sample temperature (T) versus tc. We expand
on the observed evolution by measuring coherence proper-
ties. Following Refs. [10,16], for each measurement i we
extract a rescaled complex phasor Pi ¼ ρi exp ð−iΦiÞ, i.e.,
the Fourier component corresponding to the modulation
wavelength in the TOF interference profile (see
Supplemental Material [35]). For systems with a small
number of droplets (but at least 2), the magnitude of the
phasor ρi encodes the modulation strength and also the
(local) degree of coherence within each of the individual
droplets. Meanwhile, the phase Φi depends primarily on
the relative phase between the droplets (cf. [39]).
We plot the phasors for different evaporation times on the

polar plane in Fig. 3(b), where two effects become
apparent. First, the modulus of the phasors grows during
the evaporation, indicating that the degree of modulation
increases. Second, the distribution of phases Φi is initially
uniform and then narrows down over tc. To determine the
time sequence of these two effects, we calculate the
incoherent and coherent amplitude means AM ¼ hjPijii,
encoding modulation strength and local phase coherence,
and AΦ ¼ jhPiiij, encoding the degree of global phase
coherence across the system [10,16]. Plotting AM and AΦ
against tc [Fig. 3(c)], we notice a time lag of around 40 ms
between the increase of AM and AΦ, indicating that during
evaporation into a supersolid the translational and the phase
symmetry are not broken simultaneously [40]. Rather,
density modulation and local phase coherence appear
before global phase coherence, consistent with predictions
from Monte Carlo simulations (cf., e.g., Ref. [27]).
A similar effect is observed in the fast ramp protocol [35].
This observation suggests the transient formation of a

quasicondensate crystal—a state with local but not

(a)

(b) (c)

FIG. 2. Growth and spread of density modulation during
evaporation. (a) Averaged in-situ density profiles (no recentering,
approximately 20 shots per time step) along the long trap axis as a
function of hold time th after the fast ramp reduction of trap depth
(see main text). (b) The density correlator C0ðdÞ (solid black line)
is fitted by a cosine-modulated Gaussian function (dashed red
line) to extract the correlation length L. Gray regions are strongly
influenced by imaging noise and excluded from fits. Correlators
are displayed for th ¼ 50 ms (upper) and th ¼ 300 ms (lower).
(c) Density-density correlation length L versus Nc, for the same
time steps shown in (a). Horizontal error bars are the standard
deviation over repetitive shots, vertical error bars reflect the
correlator fit uncertainty, red points correspond to the correlators
of (b). The dashed line indicates the simple atom number
scaling of the Thomas-Fermi radius of a harmonically trapped
BEC, ∝ N1=5

c .
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long-range coherence [32–34], whose increased compress-
ibility relative to a thermal gas allows for the formation of
density modulation [41]—prior to the formation of a
supersolid with phase coherence between droplets. The
lack of global phase coherence could be attributed to a
Kibble-Zurek-type mechanism [42], in which different
regions of the sample condense independently, to excitation
of modes involving the motion or phase of the droplets
during the evaporation process, or to the thermal population
of collective modes (which reduce long-range coherence) at
finite temperature. As the evaporation process does not
allow independent control of temperature and condensation
rate without also changing density or trap geometry, we
cannot reliably determine the relative importance of these
effects (or others) from the experiment. Dedicated theo-
retical studies at finite temperature will thus be needed to
elucidate the impact of these types of processes and to
understand the exact formation process.
After the birth of the supersolid state, both density

modulation and global phase coherence persist for remark-
ably long times, exceeding 1 s. Figure 4 shows the
evolution of the coherent atom number Nc and temperature

T at long hold times under conditions similar to Fig. 2—the
same fast ramp followed immediately by hold time th.
Evaporative cooling first increases the coherent atom
number until, at long th ≥ 1 s, atom losses become dom-
inant and lead to a continuous decrease of Nc, eventually
leading to the disappearance of the modulated state.
However, this death of the supersolid is not a mere time
reversal of the birth. Nc decreases, i.e., evolves in the
opposite direction, but more slowly and at lower temper-
ature than for the birth. Furthermore, phase coherence
appears to outlive modulation and to be maintained until
the very end [35]. Thus, a comparison between the birth
and death process provides us with important clues to the
impact of temperature on the supersolid.
We contrast the birth and death of the supersolid in Fig. 4

by also plotting the observed in-situ density modulationM,
which is calculated by Fourier transforming the in-situ
density profiles and normalizing the Fourier component
corresponding to the modulation wavelength to the zero-
frequency Fourier component. By comparing M between
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FIG. 3. Development of modulation and coherence while
evaporating into the supersolid state. (a) Sample temperature T
(left ordinate, bullets), total (N, right ordinate, dashed red line),
and coherent atom number (Nc, solid red line) as a function of the
ramp crop time tc. The shadings reflect the respective confidence
intervals. (b) The phasors Pi (black dots), representing the
magnitude and phase coherence of modulation for selected tc
(dotted lines; same radial scale for all polar plots). The red
shading reflects mean and variance of the distribution. (c) Evo-
lution of the Fourier amplitude means AM (filled markers) and AΦ
(open markers).
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Nc ∼ 1.1 × 104 (vertical dashed lines), but at which the atoms
have different temperatures, M differs substantially. The corre-
sponding averaged in-situ images below confirm a higher level of
modulation at earlier th. Inset: the observed modulationM plotted
versus Nc.
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times that have similar Nc during the birth and the death of
the supersolid, respectively, we find that the degree of
modulation is higher during the birth of the supersolid than
during the death. Because the sample is hotter at shorter
hold times, this suggests that the observed modulation is
increased at higher temperature, perhaps due to thermal
population of collective modes or due to finite-temperature
modifications to the dispersion relation [43], as predicted in
Ref. [22]. Again, further development of finite-temperature
theory will be needed to conclusively determine the
importance of such effects.
The role of finite temperature in the formation of

modulation, as well as the mechanism by which phase
variations across the modulated state arise and then
ultimately disappear, represent important future directions
for theoretical investigations of dipolar supersolids away
from the relatively well understood T ¼ 0 limit.
Experimentally, it would be of great interest to study the
evaporative formation process in a larger and more uniform
system, where distinct domains may be observed to form
and a broader separation of length scales may be explored
in correlation measurements. Such measurements, along
with improved finite-temperature theory, could enable more
precise statements as to the nature of the supersolid phase
transition away from zero temperature.
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CALCULATION OF DENSITY-DENSITY
CORRELATOR

We define our correlator as

C(d) = 〈∫ n(x)n(x+ d) dx〉 , (1)

where n(x) is the projected density at position x along
our cigar-shaped trap, and the expectation value 〈. . .〉 is
calculated over different runs of the experiment. In prac-
tice, we follow a standard procedure (e. g., Ref. [1]) and
calculate the correlator by computing the square of the
Fourier transform of each image to obtain its power spec-
tral density, then Fourier transform again to obtain its
autocorrelation function. The autocorrelation functions
for the different images in the sample are then averaged
to obtain C(d). Note that we do not normalize this as is
typical for a noise correlator, as we are interested in the
structure of the density profile and not specifically in its
fluctuations. To extract the correlation length, we first
subtract off a slowly varying background that represents
the envelope of our density profile from C(d) to obtain
C ′(d), shown in Fig. 2b of the main text. We then fit
the product of a Gaussian and a cosine with spatial fre-
quency km = 2π/xm corresponding to the in-trap modu-
lation wavelength xm, i. e. cos(kmx) exp(−x2/2L2), and
define the correlation length as L.

CALCULATION OF COHERENCE QUANTITIES

As described in the main text, we evaluate the coher-
ence of our droplet array by imaging the sample after
TOF expansion and Fourier transformation (F ) of the
projected density profile n(x′) (cf. Fig. 1c in main text),
where in-situ distances x and the corresponding trans-

forms are denoted as x
TOF−→ x′

F−→ x′′ [2]. For each
experimental repetition i this yields a phasor

P̃i(x
′′) = F {n(x′)}x′′ . (2)

We can calculate the incoherent and coherent means of
the Fourier amplitudes over the experimental repetitions
i, writing

ÃM (x′′) = 〈|P̃i(x
′′)|〉i and ÃΦ(x′′) = |〈P̃i(x

′′)〉i|, (3)

respectively.
The quantities AM and AΦ from the main text are

closely connected to ÃM (x′′) and ÃΦ(x′′). To disentangle
the spectral amplitude from the coherent atom number
(i. e., the area under the density profile), we calculate the
rescaled phasors

Pi(x
′′) =

P̃i(x
′′)∫

|P̃i(x′′)|dx′′
(4)

mentioned in the main text. The amplitude means cor-
responding to the in-trap modulation at wavelength xm
are then given by

AM = 〈|Pi(x
′′
m)|〉i and AΦ = |〈Pi(x

′′
m)〉i|. (5)

SUPPLEMENTARY DATA FOR FIG. 2

The data of Fig. 2 of the main text is obtained from
in-situ images of samples created via the ‘fast ramp’ evap-
oration procedure. From corresponding TOF images,
taken after the data of Fig. 2, we can study the time
evolution of ÃM (x′′) and ÃΦ(x′′) over the hold time th.
After about a hundred milliseconds a sidepeak has devel-
opped in ÃM (x′′), corresponding to the in-trap density
modulation at xm ∼ 3.5 µm wavelength. A correspond-
ing peak develops in ÃΦ(x′′), signalling growing coher-
ence between the droplets. In Fig. S1 we plot a direct
comparison of the rescaled Fourier amplitude means, AM

and AΦ, calculated at x′′m = 3.5 µm. We see that both
AM and AΦ increase with th and the increase of mod-
ulation strength starts before the development of phase
coherence.

For reference, we plot in Fig. S2 the evolution of the
total (N) and coherent (Nc) atom number for the data
set of Fig. 2 of the main text, obtained using the ‘fast
ramp’ evaporation protocol.

SUPPLEMENTARY DATA FOR FIG. 4

Fig. 4 of the main text shows the death of the super-
solid over long hold times th. Here we compare in Fig. S3
the evolution of AM and AΦ, calculated at the sidepeak
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FIG. S1. Development of coherence after the ‘fast
ramp’ evaporation. Evolution of the means AM and AΦ

from the TOF profiles during the hold time th. The gray
shading marks the region where due to low overall signal the
rescaling of the phasors (Eq. 4) is dominated by noise.
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FIG. S2. Atom number and temperature after the
‘fast ramp’ evaporation. a. Evolution of total (N , dashed)
and condensed atom number (Nc, solid line). b. Evolution of
the temperature, as extracted by a Bose-enhanced Gaussian
fit to the background cloud of thermal atoms [3].

in ÃM at x′′ = 3.5 µm, during the death of the super-
solid. We start our discussion looking at AM , the mea-
sure for in-trap modulation. AM stays roughly constant
for around 600 ms before it starts to decay. At above
∼ 1.1 s (gray shading in Fig. S3), the sidepeak in ÃM

around x′′ = 3.5 µm has vanished. However, AM does
not go straight to zero, since when the modulation dis-
appears, the fundamental peak (around x′′ = 0) broad-
ens to x′′ > 3.5 µm because the condensate size becomes
comparable to the (former) droplet spacing. From this
point onwards, AM cannot be used anymore as a mea-
sure for modulation. Recall that in the in-situ analysis
(Fig. 4 of the main text) a very similar behaviour was
observed, with maximal modulation until ∼ 600 ms and
modulation having disappeared by ∼ 1.1 s.

Now turning to AΦ, we note that over the full du-

ration of this process AM and AΦ (which is bounded by
AM ) evolve closely together, suggesting that coherence is
maintained in the sample throughout the life and death.
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FIG. S3. Coherence properties during the death of the
supersolid. Evolution of the means AM and AΦ from the
TOF profiles during th after a ‘slow ramp’ evaporation. The
gray shading marks the region from when on the sidepeaks
in ÃM corresponding to in-trap modulation have disappeared
and AM is not a good measure for modulation anymore.

EVAPORATION RAMPS

In the experiment, once the atoms are loaded into our
crossed optical dipole trap (ODT), we perform a near-
exponential evaporation ramp of trap power, approxi-
mated by piecewise linear ramp sections. The trap fre-
quencies after the penultimate ramp are around ω′x,y,z =
2π×(39, 178, 174) s−1, where we typically have around
N = 3×105 atoms at around 200 nK. From here, we ramp
the power of the ODT linearly down to the final value,
giving around ωx,y,z = 2π×(36, 88, 141) s−1. This pro-
cedure yields the atom numbers and temperatures pre-
sented in Figs. 3–4 of the main text and Fig. S2.

IMAGING SPECIFICATIONS

The images shown in this work have been recorded
using a new imaging system recently installed in our ex-
periment. The direction of view of the new system is
vertical (counter-directed to gravity).

Images from our imaging along the horizontal direc-
tion (as in our earlier works, see, e. g., Refs [4, 5]), in
contrast, suffer from the fact that the line of sight is
at 45° with respect to the axis connecting the droplets,
leading to a small apparent fringe spacing and to the in-
terference peaks partially hiding each other; additionally
the interference peaks do not lie in a single focus plane.
These drawbacks were eliminated with the vertical imag-
ing setup, which is why the images are much clearer to
interpret now.

The fundamental resolution of this imaging system,
applicable to in-trap images and characterised by the
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Rayleigh criterion, has been measured offline to be ap-
proximately 700 nm. We report micron-scale resolution
as a conservative claim that accounts for possible align-
ment imperfections in the finally installed condition, and
a reduction of the imaging aperture to increase depth
of field. The pixel size of our camera is smaller than
the imaging resolution, corresponding to approximately
400 nm at the location of the atoms. Additionally, the
images displayed have been supersampled to allow them
to be rotated while maintaining resolution.
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The notion of phase coherence lies at the foundation of quan-
tum physics. It is considered a key property in understanding 
many-body quantum phenomena, ranging from superfluidity 

and the Josephson effect to the more applied examples of matterwave 
interference, atom lasing processes and quantum transport in meso- 
and macroscopic systems1,2. Although phase-coherent states are 
well studied at equilibrium, understanding their out-of-equilibrium 
dynamics remains an open problem at the forefront of statistical and 
quantum physics, especially when interactions are present3.

Rephasing dynamics of an initially incoherent many-body quan-
tum system requires, first, the system to be conducting such that 
different parts can exchange energy and particles, and second, an 
efficient mechanism to dissipate the phase excitations. As for the 
first requirement, a famous example illustrating the inhibition of 
thermalization is many-body localization4. The second ingredient—
dissipation—is more subtle and multifaceted, relating, for instance, 
to the growth of thermal correlations in isolated systems5, com-
plex interaction-mediated dynamics6,7 or the exponential growth 
of unstable modes and topological defects in connection with the 
Kibble–Zurek mechanism8–10.

The interplay among coherence, self-localization and relaxation 
dynamics is an intriguing problem. In this respect, the recently dis-
covered11–13 supersolid states in dipolar quantum gases can poten-
tially provide a new twist in studying non-equilibrium quantum 
phenomena, about which very little is known so far. A supersolid 
combines phase coherence and periodic localization in space, prop-
erties corresponding to the spontaneous and simultaneous breaking 
of both gauge and translational symmetry. Intuitively, a supersolid 
can be viewed as a fully coherent state, which self-establishes com-
pressible density modulation. In this Article, we explore the evo-
lution of a supersolid of ultracold dysprosium (Dy) atoms when 
brought out of equilibrium after an interaction quench that destroys 
its global phase coherence. Due to the dynamic formation of the 
supersolid, an interesting question is whether its phase dynamics 
are similar to or different from comparable rigid structures, such as 

a Bose–Einstein condensate (BEC) spliced in an optical lattice14–16, 
or if new phenomena can manifest.

In a dipolar supersolid, the particle self-arrangement in space is 
largely dictated by the many-body interactions17–22 and can be mod-
ified by either tuning the interatomic potentials or changing the 
atom number (N) in the system. Figure 1a shows the phase diagram 
of a cigar-shaped quantum gas of bosonic Dy atoms with trans-
verse dipole orientation. It is constructed from the ground-state 
wavefunctions obtained by numerically solving the extended 
Gross–Pitaevskii equation (eGPE)11,13,21 (Methods). Three distinct 
quantum phases can be accessed by changing N or the s-wave scat-
tering length as, which parametrizes the contact interaction. For a 
given N and large enough as, the ground state of the system is a 
non-modulated dipolar BEC (grey region). By lowering as, the influ-
ence of the dipolar interaction increases. When reaching a critical 
value of as, the system undergoes a phase transition to a supersolid 
phase (SSP). Here density modulation at a wavelength close to the 
roton excitation23,24 appears in the ground-state density profile (red 
region). By further lowering as, the system evolves into an array of 
insulating droplets (IDs) with an exponentially vanishing density 
link between them (blue region).

Our eGPE calculations, following a standard non-stochastic 
approach, are inherently phase coherent and thus cannot capture 
uncorrelated local phases. However, recent experiments have shown 
a connection between the strength of the density modulation and 
the coherence properties of the system, revealing a clear difference 
between the SSP and ID phase11–13,25. In the SSP, the whole system 
shares a global phase. In contrast, in the ID case, any fluctuation or 
excitation can lead to a locally different evolution of the phase. The 
absence of particle tunnelling between the droplets leads to dephas-
ing of the system.

By performing interaction quenches and moving across the 
phase diagram, one can create random phase excitations (‘phase 
scrambling’) and thus distinguish between the different coherence 
characters of the ID and SSP, as shown in Fig. 1b. Our experimental 

Phase coherence in out-of-equilibrium supersolid 
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A supersolid is a counterintuitive phase of matter that combines the global phase coherence of a superfluid with a crystal-like 
self-modulation in space. Recently, such states have been experimentally realized using dipolar quantum gases. Here we inves-
tigate the response of a dipolar supersolid to an interaction quench that shatters the global phase coherence. We identify a 
parameter regime in which this out-of-equilibrium state rephases, indicating superfluid flow across the sample as well as an 
efficient dissipation mechanism. We find a crossover to a regime where the tendency to rephase gradually decreases until the 
system relaxes into an incoherent droplet array. Although a dipolar supersolid is, by its nature, ‘soft’, we capture the essential 
behaviour of the de- and rephasing process within a rigid Josephson junction array model. Yet, both experiment and simulation 
indicate that the interaction quench causes substantial collective mode excitations that connect to phonons in solids and affect 
the phase dynamics.
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protocol starts by preparing a supersolid state by evaporative cooling 
from a thermal sample (Fig. 1b, left) (ref. 13). We then decrease as to 
enter into the ID regime (Fig. 1b, middle). Here the system ground 
state is an array of IDs, each with a phase that is expected to evolve 
independently in time. After these phases have become fully uncor-
related, we jump as back to its initial value (Fig. 1b, right). We then 
study the time evolution of the out-of-equilibrium system. We mea-
sure phase coherence and density modulation, whose coexistence is a 
hallmark of supersolidity, using a matterwave interference technique 
(Methods and refs. 11,13,26–29). In brief, for each experimental real-
ization i, we take an absorption image after a time-of-flight (TOF) 
expansion. The recorded image exhibits an interference pattern if 
in-trap density modulation is present. Via Fourier transform, we 
extract the phasor Pi ¼ ρi e

�iΦi

I
 with amplitude ρi and phase Φi at 

the spatial frequency of the interference pattern (cf. Extended Data  
Fig. 1a). Averaging over an ensemble of q realizations, the mean of 
the phasor amplitudes, AM = 〈∣Pi∣〉, characterizes the degree of density 
modulation, whereas the amplitude of the complex mean, AΦ = ∣〈Pi〉∣, 
contains information about the global phase coherence. As an addi-
tional measure of coherence, we calculate the circular variance of the 

phase ΔΦ = 1� 1
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq
i¼1 cos Φið Þ

� 2 þ Pq
i¼1 sin Φið Þ

� 2q

I

 (ref. 30). 

For a perfect supersolid (resp. ID) state and in the limit q → ∞, 
one expects AΦ = AM > 0 (respectively AΦ = 0, AM > 0) and ΔΦ = 0 
(respectively ΔΦ = 1). In the following, we describe and character-
ize each step of our phase-scramble-and-rephase protocol (Fig. 1b).

We initially prepare the supersolid state (Fig. 1b, left) of 164Dy 
atoms13 (N = 1.4 × 104) in an axially elongated optical dipole trap 
(ODT) with the final harmonic frequencies ωx,y,z = 2π × (225, 37, 
165) s−1. From our interferometric analysis, we see that this ini-
tial state is long lived and has a high degree of phase coherence  

(Fig. 1c–f). The characteristic quantities of AΦ and AM (Fig. 1c) and 
ΔΦ (Fig. 1d) are constant over hold times th up to 100 ms. The small 
mean value 〈ΔΦ〉 = 0.142(8) (the value in parentheses gives the 
standard error of the last digit) over the entire range of th reveals 
a constantly narrow spread in the phase distribution, as shown for 
th = 100 ms in the polar plot (Fig. 1e) of the phasors Pi and the cor-
responding histogram (Fig. 1f) for Φi.

In the next step of our protocol (Fig. 1b, middle), namely, the 
phase-scrambling excitation, we tune as via magnetic Feshbach 
resonances by varying the external magnetic field B (Methods and 
Extended Data Fig. 2). From the initial supersolid state (~87.9a0, 
where a0 denotes the Bohr radius), we transfer the system into the 
ID regime (~76.9a0) using a 20 ms linear B-field ramp. Here the 
atoms are expected to spatially arrange in an array of almost isolated 
droplets with exponentially small particle tunnelling between them. 
We then let the system evolve for a variable scrambling time tS.

Figure 2 shows the evolution of ΔΦ, AΦ and AM with tS. After 
completion of the B-field ramp, ΔΦ initially keeps rapidly increas-
ing for 20 ms and then slowly saturates to a large ΔΦ value. Here 
the droplets develop uncorrelated phases, as illustrated by the polar 
plot of Pi at tS = 100 ms (Fig. 2a, inset). We extract a saturation value 
of 〈ΔΦ〉sat = 0.92(1) (simple mean for tS > 50 ms). We highlight that 
ΔΦ is not expected to reach unity because of the finite sample 
size in the experiment (q ∈ [90, 100] repetitions; slight variations 
are due to a post-selection by atom number). It is evident that the 
measured 〈ΔΦ〉sat agrees with the expectation for a sample with 
the same q and uniformly random phases (grey shading in Fig. 2a, 
Extended Data Fig. 1b and Methods). As ΔΦ increases and the 
global phase coherence is lost, AΦ decreases quickly towards zero 
(Fig. 2b), whereas the density modulation persists as evidenced by 
AM remaining large.
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The interaction quench into the ID phase is a robust method to 
create phase-scrambling excitations. It is natural to ask how the rela-
tive phases between the individual droplets evolve once the density 
links between them are restored and whether the system relaxes into 
an equilibrium supersolid state. To address this question, we per-
form the last stage of our protocol (Fig. 1b, right). After a scrambling 
time of tS = 20 ms, we couple the droplets back together by jumping 
the B field and thus quenching as to 87.9a0, where the system ground 
state is a supersolid. However, after the quench, our state is out of 
equilibrium in terms of both phase and density distribution: since 
the density-modulated states in dipolar gases are self-assembled, 
they can deform after a sudden change in the many-body interac-
tions31–33. As shown in Fig. 3a, we first observe a rapid reduction 
in ΔΦ and then slower dynamics towards an equilibrium value 
with ΔΦ reaching 〈ΔΦ〉sat = 0.13(2) (simple mean for th > 50 ms). 
Simultaneously, AΦ approaches AM on the same timescale, whereas 
AM remains nearly constant. These observations show that the sys-
tem efficiently rephases by dissipating the phase excitation.

Our system of multiple superfluid droplets with individual 
phases, interconnected via weak links, is reminiscent of a Josephson 
junction array (JJA)34. Motivated by this analogy, we investigate 
whether a simple JJA model can adequately describe the observed 
phase dynamics. This is a non-trivial question, since in contrast to 
a rigid JJA, our droplet array is ‘soft’ in the sense that the droplet 
shapes and their distances change with as. We construct our model 
from a one-dimensional (1D) array of four coupled grains. For each 
grain, the number of particles is Nj and phase is θj. The Hamiltonian 
of this system is

H ¼
X4

j¼1

Nj � Nj

� 2

2Cj
�
X3

j¼1
Jj cos θjþ1 � θj

� 
; ð1Þ

where the overline denotes an ensemble average. The first term is the 
‘charging’ energy of the droplet (corresponding to its mean inter-
action energy) with the capacitance Cj. The second term describes 
the tunnelling of particles between the droplets with the Josephson 
amplitude Jj. The JJA model is appropriate if the droplets are reason-
ably well separated in space. For simplicity, we assume that Cj and 
Jj are identical for all the droplets and later denote them as C and J. 
Note that this Hamiltonian describes a quantum evolution since Nj 
and θj are connected via canonical commutation relations.

We describe the time evolution of the system via a Langevin for-
malism35,36. The phase of the droplet j follows

η
dθj
dt

¼ J½sinðθjþ1 � θjÞ � sinðθj � θj�1Þ þ ξjðT; η; tÞ; ð2Þ

where the friction parameter η is a phenomenological way to account 
for dissipative mechanisms. The temperature T is introduced via the 
thermal noise ξj(t), which shows Gaussian uncorrelated fluctuations 
at times t and t' given by ξjðtÞξiðt0Þ ¼ 2ηkBTδij δðt � t0Þ

I
, where δij 

is the Kronecker delta and δ(.) denotes the Dirac distribution. The 
thermal energy scale kBT (for T = 150 nK in the experiment and the 
Boltzmann constant kB) is much higher than the estimated capaci-
tance effect, allowing to neglect the second-order time derivative 
term related to C in the evolution of equation (2) (Methods).

This JJA model provides an intuitive understanding of the 
dephasing and rephasing dynamics shown in Figs. 2 and 3, respec-
tively. It encapsulates the essential physics of a rigid droplet situa-
tion at a finite temperature T in terms of the two phenomenological 
parameters J and η. The timescale of de- and rephasing is dictated by 
the dissipation η. The dissipation mechanisms include atom losses 
(cf. Extended Data Fig. 3), energy and particle exchange with the 
thermal component of the gas or with some internal degrees of free-
dom of the droplets, as discussed later. In contrast, the phase fluctu-
ations in the equilibrium state, namely, the stationary value of ΔΦ, 
are set by the competition between J and T and are independent of η.

We develop a parameter-free theory–experiment comparison 
for the rephasing dynamics by first fixing the value of J and η from 
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independent measurements. Taking advantage of the fact that η and 
J play different roles at different stages of the protocol, we fix J by 
reproducing the ΔΦ measured at the end of evaporation (Fig. 1d). 
The parameter η is instead extracted from the dephasing dynamics 
of ΔΦ during tS (Fig. 2 and Methods). We find that J = 6,000 Hz and 
η = 60 ± 10.

With all the values of the parameters fixed, we now compare the 
rephasing dynamics from the JJA theory and the experiment. As 
shown in Fig. 3, we observe that despite its simplicity, the model 
qualitatively predicts the rephasing curve well. In particular, the pla-
teau value at large th as well as the time to reach the plateau are con-
sistent with the experiment. In addition, we note that in the early 
time evolution (th < 30 ms), the experimental data is systematically 
slightly above the JJA curve, namely, the system seems to rephase 
slower than predicted by the model. This indicates that other phe-
nomena beyond our rigid JJA model are important to fully capture 
the out-of-equilibrium physics.

To elucidate why the observed experimental rephasing is 
slower than expected from the JJA model, we simulate the system’s 
real-time evolution (RTE)24 in the simplified zero-temperature and 
zero-atom-loss case, with a quench sequence mimicking the experi-
ment. Different from the phenomenological JJA model, the ab initio 
RTE approach can additionally account for the ‘soft’ nature of the 
supersolid, namely, the crystal and phase phonons31–33. As shown in 
Fig. 4a, the RTE simulation shows that the collective modes are ini-
tially excited by the interaction quench. The positions and heights 
of the high-density peaks evolve in time, especially during the initial 
tens of milliseconds, resulting in time-dependent density links. At 
longer times, we observe a damping of the collective motion, which 
can be attributed to an initial redistribution of the population from 
a few modes to many higher-lying modes over time. This suggests 
a possible dissipation mechanism of the phase excitations for our 
experiment. Even though the finite temperature, atom loss and pres-
ence of a normal component affect the precise dynamics and damp-
ing in the experiment, the RTE calculation strongly indicates that 
the droplet dynamics play an important role at early times. This is 
compatible with the observed deviations from the rigid JJA model.

In the experiments, we do not have direct access to the in-trap 
density evolution. However, by repeating our experiment in a tighter 
trap, which gives more distinct side peaks in the TOF interference 
patterns, we observe the indications of collective mode excitations. 
In Fig. 4b, we plot the time evolution of ΔΦ following the rephasing 
protocol. Here, on top of a global decrease in ΔΦ, a low-amplitude 
oscillating behaviour is evident, as highlighted by plotting the resid-
uals of an exponential fit to the data. We extract an oscillation fre-
quency of 50(5) Hz (cf. Extended Data Fig. 4 and Methods).

By comparing the predictions of the JJA and RTE approach to our 
experimental data, we conclude that the phase dynamics is largely 
described by a dissipative and ‘rigid’ JJA picture. We speculate that 
the phase excitations primarily dissipate via coupling to excited 
modes37. Moreover, the droplet dynamics seems to play an impor-
tant role, affecting the rephasing efficiency. Note that one could 
modify the JJA model to take the droplet dynamics into account, at 
least to a certain degree (Methods). Such coupling between the two 
types of degree of freedom usually leads to additional dissipation 
channels38. Besides being of intrinsic theoretical interest, this could, 
for example, open the perspective to using supersolids to study 
similar dynamics in regular solids between electronic and phononic 
degrees of freedom. This, however, goes beyond the scope of the 
present work and will be addressed in future studies.

In a final set of experiments, we investigate the role of the 
density-link strength between the droplets, namely, the Josephson 
coupling, in the rephasing dynamics. After phase scrambling  
(Fig. 1b, middle), we quench as to different values and record ΔΦ 
as a function of the hold time th (Extended Data Fig. 5a). For each 
as, we quantify the strength of the density link via L

I
, which was 

determined from a ground-state calculation (Fig. 1a). We study 
the short- and long-time evolution of ΔΦ by the determination 
of the initial rephasing rate ∣R∣ (the slope of a linear fit to ΔΦ for 
th ≤ 20 ms) and the saturation value 〈ΔΦ〉sat (simple mean of ΔΦ for 
th > 50 ms), respectively, as shown in Fig. 5a,b (for AM and AΦ see 
Extended Data Fig. 5b).

We observe different rephasing dynamics depending on L
I

. For 
extremely weak density links (L

I
 < 10–3), which we associate with 

the ID regime, the system is unable to rephase and it remains inco-
herent over the whole time evolution as indicated by a low ∣R∣ and 
large 〈ΔΦ〉sat ≈ 0.9. As L

I
 slightly increases, the system shows a 

partial rephasing with 〈ΔΦ〉sat decreasing to about 0.5. By further 
increasing the density-link strength, there exists a critical value of 
L
I

 above which the system recovers its full phase coherence after 
a long time (〈ΔΦ〉sat = 0.15). In this regime, ∣R∣ ≈ 30 s−1 is large and 
seems relatively independent of L

I
.

To compare the JJA predictions with our experimental obser-
vations, we first extract J for each as. For this purpose, we look at 
the long-time behaviour after scrambling and rephasing when the 
system has equilibrated, matching the theoretical and experimen-
tal 〈ΔΦ〉sat values. This is justified by the long-time agreement 
observed in Fig. 3. As expected from the increasing density-link 
strength L

I
 between the droplets, J globally grows with as (Fig. 5a, 

inset). Using these J values and the single calibrated value of η = 60 
(Fig. 2), we extract the rephasing rate ∣R∣JJA from the short-time 
evolution of ΔΦ within our JJA framework (Fig. 5b, inset). Despite 
the simplicity of the JJA approach, the ∣R∣JJA values are of the same 
order of magnitude as our experimental data and show the same 
qualitative behaviour with respect to as. As observed in Fig. 3, ∣R∣JJA 
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generally predicts rephasing faster than that measured in the experi-
ment, suggesting the presence of non-negligible processes beyond 
the rigid JJA model.

It is interesting that despite the JJA being able to consistently 
model the phase dynamics in the experiment, the extracted depen-
dence of J on as is mild in comparison to the expected ground-state 
density link L

I
 (Fig. 5a). For instance, J changes only by a factor of 

two whereas L
I

 changes by two orders of magnitude. Further, J seems 
to effectively saturate for increasing strength of the ground-state 
density link L

I
, which is in agreement with the observed plateaus 

of both 〈ΔΦ〉sat and ∣R∣ for large as. Possible explanations include 
the breakdown of the JJA model for a low-contrast supersolid, the 
impact of finite temperature on both the equilibrium supersolid 
state itself and the experimental measurement, or the role of col-
lective dynamics.

In conclusion, we have performed a study of the out-of-equilibrium 
dynamics of a dipolar supersolid after an interaction-driven phase 
excitation that fully destroys its phase coherence. We have dem-
onstrated that if the inter-droplet density links are sufficient, this 
phase-scrambled system relaxes into an equilibrium phase-coherent 
state. With decreasing link strength, the rephasing substantially 
slows down and eventually ceases in the ID regime. We find an over-
all consistency between the phase dynamics observed in the experi-
ment and an intuitive, theoretically easily tractable rigid JJA model. 
However, both ab initio simulations and experimental observations 
indicate post-quench collective excitations of the droplet array, 
which can affect the phase dynamics. Our study shows the evidence 
of particle flow across a dipolar supersolid, connecting to its super-
fluidity. It also suggests the efficient dissipation of phase excitations, 

whose microscopic mechanism is still under question. Future exper-
imental works, combined with advanced out-of-equilibrium theo-
retical models, will be crucial to understand the relaxation dynamics 
at play in isolated and open supersolid states of quantum matter.
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Part III

A D I P O L A R Q U A N T U M G A S M I C R O S C O P E





For any man with half an eye,
What stands before him may espy;

But optics sharp it needs I ween,
To see what is not to be seen.

– John Trumbull, “McFingal”, Canto 1 (1775–1782)

10M O T I V E S F O R M I C R O S C O P Y

Interference between intersecting laser beams can produce standing waves of light, and
hence, via the optical dipole force, a periodic trapping potential for atoms [118], mole-
cules [39] or even macroscopic composite particles [10, 11, 78]. Optical lattices serve as
an important tool in quantum optics, either for studying many-body physics in periodic
potentials and potential applications as quantum simulators [34, 35], or simply as a means
of keeping particles in large ensembles separate from each other, which is important, e. g.,
to reduce interaction effects in optical clocks [186].

For a long time, to access the physics of atoms in optical lattices, experimentalists had
to rely on time-of-flight methods, where the particle correlations and lattice periodicity
are only mirrored in momentum space [101, 114]. This changed with technological ad-
vancement and the experimental realisation of quantum gas microscopes, which allow to
image single atoms on individual sites of a single 2D lattice plane. Working quantum gas
microscopes have been first demonstrated in 2009/10 in two poineering experiments at
Harvard and Munich, both using the bosonic 87Rb isotope [18, 267].

With this new technology, it has become possible to study many-body physics on the
single-particle level, including quantum phase transitions [18, 267], correlations [58], par-
ticle dynamics [105, 238] and other, similarly fundamental effects (see, e. g., Refs [121, 160]
and references therein). About five years later, two Japanese groups demonstrated single-
site resolution with the bosonic lanthanoid species 174Yb [197, 297], whose complex level
structure held promise for the realisation of new quantum information protocols.

In 2015, microscope experiments for fermionic atoms of five different research groups
went into operation, using either 6Li [211, 214] or 40K [60, 84, 129]. Their development had
been more demanding than for the alkali bosons because of greater difficulties in optical
cooling due to the small hyperfine splitting and the low atomic mass [121, 211]. Since
then, as expected, also the fermion microscopes have produced results of great impact,
such as the direct observation of band [211] and (fermionic) Mott insulators [60, 113],
antiferromagnetic ordering [40, 215], and many more (see, e. g., the recent review of Gross
& Bakr [122]).

All quantum gas microscopes realised so far use atomic species with a negligible mag-
netic dipole moment. The atoms therefore interact only via the short-range contact interac-
tion, such that they do not feel a direct energy shift depending on whether a neighbouring
site is occupied or not. Interaction effects then only manifest in an occupancy-dependent
modification of tunneling rates.
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104 motives for microscopy

Direct long-range interactions between particles on neighbouring sites would present an
enriching addition to this setting. This has been the motivation for several groups tryingMolecules on

lattices to produce ground-state hetero-atomic molecules in an optical lattice, which would posses
a large electric dipole moment and therefore feature strong, long-range dipole-dipole in-
teractions. However, technical difficulties related to the cooling, association, and reactive
losses of the molecules have made the realisation much more difficult than initially ex-
pected [39]. Despite very recent important improvements [274, 286], this still presents a
severe limitation and the molecule experiments are still far below the level of control
achieved in experiments with singular atoms.

A promising experimental approach therefore consists in the use of strongly magneticMagnetic atoms
on lattices atoms such as erbium and/or dysprosium, which combine the simpler cooling techniques

and low losses of atomic systems with long-range dipolar interactions. Some effects of
long-range dipolar interactions on lattice physics have, for example, already been studied
in our group using fermionic 167Er and well-established TOF techniques [14, 216]. Ultima-
tively, it would be very desirable to perform experiments with dipolar atoms on a lattice
in a quantum gas microscope, where many phenomena are much more directly accessible.

There exists a wealth of promising research proposals that could be approached usingPossible research
directions such a system. Interesting examples include, first, the possibility to observe lattice neigh-

bour interactions via the long-range DDI deep in the Mott insulator regime, where particle
tunneling (and hence contact interaction) is completely suppressed. A second possible di-
rection is to study the formation of magnetic domains when dipolar atoms on a lattice
are cooled down in absence of an external magnetic field. A third proposed experiment is
more specific to the Innsbruck erbium-dysprosium mixture apparatus. In such a doubly-
dipolar mixture one could employ a lattice that is at magic wavelength for the first species,
such that the lattice potential will only be seen by the second species. The atoms of the sec-
ond species can then be pinned in the optical lattice sites and interact with the first species
via DDI. The first species therefore sees an effective periodic potential that is created by the
pinned, second species. Since the pinned atoms can vibrate, DDI-mediated periodic poten-
tial itself supports phononic excitations, in contrast to a conventional optical lattice, which
is infinitely stiff. Therefore, such a DDI-mediated lattice would presents a novel and much
more realistic quantum simulator for, e. g., electrons in a metal.

Evidently, these are only three obvious, promising research directions. Many more al-
ready exist or might become apparent once a dipolar quantum gas microscope is in oper-
ation.

In the following chapters, I will describe the design of a new type of quantum gas
microscope that I have designed and engineered as an addition to our group’s erbium-
dysprosium experiment. It is housed in a new section of the vacuum apparatus that will
be attached to the existing machine (cf. § 5.1) via a mechanical UHV gate valve.



11M I C R O S C O P E O P T I C S

In this chapter, some important requirements and constraints that were decisive in the
design process of the Er–Dy quantum gas microscope are sketched.

11.1 requirements and options

Quantum gas microscopes are highly advanced and complex machines, often operating at
the edge of what is technologically possible. Therefore, the optical design typically needs
to be carefully tailored to the experimental needs.

In the case of the Innsbruck erbium-dysprosium experiment, we identified the following Key requirements

key requirements for the imaging system:

1. A high numerical aperture (NA) > 0.8 to resolve lattices of small spacing (≤ 532 nm);

2. a large working distance on the order of millimetres to allow optical access, to grant
full freedom of lattice wavelengths, and to avoid possible effects of close surface on
the atoms;

3. use of exclusively non-magnetic and non-conducting materials to avoid magnetisa-
tion and eddy currents;

4. achromaticity at 401 and 421 nm (at least).

Let us take a brief look at what design options were initially considered for the Er–Dy
microscope.

When a sample in a UHV environment is imaged, the vacuum window necessarily be- Imaging concepts
for UHVcomes part of the light path and needs to be considered in the optical layout. The aberra-

tions introduced by a plane-parallel glass plate are mainly spherical and chromatic, scaling
with the thickness of the plate [193, 269]. Different quantum gas experiments have found
different solutions for dealing with these aberrations, which can be grouped in four cate-
gories as sketched in Fig. 14a–d and summarised in Table 2 on page 107.

The most straight-forward option is design (a), where the objective is simply mounted
outside the vacuum chamber, as for our main-chamber imaging (§ 5.2). Such a design in
general features a long working distance on the order of some to tens of millimetres which,
typically, also limits the attainable NA to below ∼ 0.7. For a sufficiently thin glass plate
(≤ 1 mm), the aberrations introduced by the glass window can be still low enough to use
a commercial objective, as in the Toronto microscope [84]. However, the bending of a thin
plate under the pressure difference between in- and outside limits this approach to very
small window diameters. Hence, the more frequent approach is to use a custom objective
carefully corrected for the window, such as in the microscopes in Munich [211, 267] or
Kyoto [297].

A second design option (Fig. 14b) uses lenses in shape of a truncated sphere in very
close distance to the sample. Such a lens leads to an enhancement of the NA by a factor
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106 microscope optics

Figure 14: Types of microscope objectives applied in quantum gas experiments. (a) Objective outside vacuum chamber,
(b) solid-immersion lens (SIL) close to sample, (c) part of objective optics in vacuum, (d) entire objective in
vacuum. Cf. Ref. [193].

that depends on the truncation; this is called the solid-immersion effect [190].1 Hemispher-
ical solid-immersion lenses (SILs), for which the enhancement factor is equal to its index of
refraction, nr, have been used in configurations with an in-vacuum lens mount [18] or with
the lens optically contacted to the glass window [60, 197, 214]. The latter design bears the
advantage that the window becomes part of the SIL and as such does not produce aberra-
tions anymore. Another type of SIL, demonstrated in Bonn [247], uses a Weierstraß sphere
and offers an even higher NA enhancement factor of n2

r . A modified version of such a mi-
croscope is currently under construction in Innsbruck.2 The drawback of solid-immersion
lenses is their small working distance, requiring a very close placement of the sample
(typically micrometres) in front of the lens surface. This necessitates complex transport
strategies to bring the atom close to the focus plane, and usually requires that both, hor-
izontal and vertical lattice beams are reflected off the front surface, with corresponding
high requirements for the optical coating.

A third design option (Fig. 14c) uses a first optical element inside the vacuum chamber
which accepts the light at high NA, reducing the angles of incidence on the vacuum win-
dow and hence the aberrations caused. Outside the vacuum chamber, the light cone can
then be collected by an objective with lower NA. Imaging systems of this type have been
demonstrated in Palaiseau [275] and Innsbruck [193], with moderate NAs around 0.5. The
disadvantage of this design is that it depends crucially on the relative alignment of the
in- and ex-vacuum components. This poses a great challenge to alignment strategies in
general, as well as for the mounting concept to exclude any relative drifts or vibrations.

A fourth design option (Fig. 14d) that does not suffer from this problem is an objective
entirely in vacuum. While being conceptually simple, it allows for both a millimetre-level
working distance and high NA. If the objective is at infinite conjugation, i. e. the rays exit
in parallel, the glass window does not add any aberrations. Despite these advantages,
this design is less frequently encountered in cold-atoms experiments due to the technical
difficulties of (i) vacuum compatibility of the objective itself and (ii) the requirement of
a large-volume vacuum chamber to contain it. Nevertheless, successful objectives of this
type have been realised in Orsay [257] and recently in Munich [183].

1 Irrespective of the enhancement factor, the NA is of course still bounded to below unity. This can only be exceeded
using so-called 4Pi microscopes [131], which are applied in the cold-atom context, for example, in Hamburg [140,
304].

2 ‘NewLanD’ dysprosium experiment by Emil Kirilov & Rudolf Grimm.
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Table 2: Design types of quantum gas microscopes.

type advantage(s) disadvantage(s)

(a) easy alignment
long WD

limited NA

(b) high NA
mechanically rigid

short WD
lattice wavelength fixed by coating

(c) intermediate NA
intermediate WD

difficult alignment
possible relative vibrations

(d)
high NA
easy alignment
long WD

vacuum considerations

Objectives completely outside vacuum (Fig. 14a) can hardly deliver the NA and resolu- Choice of strategy

tion aimed for. It has further been a determining requirement that our objective has to
work with both species, erbium and dysprosium. This poses strict demands for the layout
of the imaging optics themselves, but also, in particular, on optical coatings of other ele-
ments involved. For example, we will need various lattice beams (including standard and
magic-wavelength lattices, possibly optical superlattices), other beams for lattice loading
and a specific shaping of the optical potential (possibly including DMDs), probably cooling
beams and beams for spin manipulation. All these laser beams need to be directed onto
the sample. This requirement seemed incompatible with a SIL design (Fig. 14b), since a
coating that is highly antireflective for the imaging wavelengths over a large angle range
and at the same time highly reflective for many others, such as the lattice beams, is hardly
feasible, especially since we wanted to keep the possibility to switch to even smaller (UV)
lattice constants later; what will be the most promising UV wavelength is still a point un-
der discussion. Such great flexibility concerning wavelengths is only possible if the lattice
beams can be sent in from the side and do not have to be reflected off the lens surface,
i. e. with a sufficient working distance (WD). The lens-in-vacuum design (Fig. 14c) seemed
risky since, at the level of optical resolution aimed for, tolerances on alignment imperfec-
tions are minimal, and drifts in relative alignment or relative mechanical vibrations can
be fatal for the performance.

For these reasons, despite the vacuum challenges and the technology developments it
required, we opted for the objective-in-vacuum design (Fig. 14d).

11.2 design of the er–dy microscope objective

Together with a company3 specialised in manufacture of custom optics we have devel-
opped a high-NA objective for the imaging of erbium and dysprosium atoms (Fig. 15 on
the following page). It is designed for achromatic performance on the broad, blue imaging
transitions at 401 and 421 nm wavelength, as well as for 633 nm, which is the alignment
wavelength of the manufacturing company and, by coincidence, close to the red dyspro-
sium transition at 626 nm. The optical design has been carried out by ray-tracing and field

3 Special Optics, Inc., NJ/USA.
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propagation (cf. § B) techniques using the commercial software Zemax®. The objective de-
sign contains five singlet lenses and no cemented elements, to avoid vacuum problems
caused by outgassing. The five lenses are custom-manufactured from different glasses
that have a sufficient transmission for our blue wavelengths. A mechanical drawing is pre-
sented in Fig. 15.

 66.750 

37

SCALE 4 : 1

15

2.411

Figure 15: Cross-sectional drawing of the in-vacuum objective for the Er–Dy experiment. Dimensions are in millimetres.
Figure data by courtesy of Special Optics, Inc.

The predicted values of the optical characteristics from our simulations are summarised
in Table 3; moreover, some important simulated quantities are plotted in Figs 16–17.

Table 3: Important characteristics from the simulation of the imaging objective.

characteristic unit predicted value

effective focal length mm 20.0

total length mm 70.0

chromatic focal shift µm 0.39

working f-numbera
0.56

object-space NA 0.89

401 nm 421 nm

object-space Airy disc radius µm 0.274 0.288

wavefront errora peak to valley λ 0.098 0.107

wavefront errora root mean square λ 0.0321 0.021

Strehl ratiob 0.96 0.98

Ø diffraction-limited FOV µm 160 180
a Evaluated over full pupil.
b On axis (zero field).

The objective features a miniature mirror4 of 1.5 mm diameter, glued to the front lens us-Miniature mirror

ing a high-performance UHV-compatible adhesive5, see Fig. 18a on page 111. The miniature

4 Manufactured by Optics Technology, Inc., NY/USA.
5 Optocast 3415 from Electronic Materials, Inc., CO/USA.
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Figure 16: Calculated characteristics of the imaging objective for the erbium and dysprosium imaging wavelengths. Dashed
lines represent the diffraction limit according to the Maréchal criterion [191].

mirror reduces the maximum NA of 0.89 by only ∼ 3 %, so hardly affects the resolution
limit, and will serve to reflect off the vertical lattice beams such that the lattice position rel-
ative to the objective is fixed. This is important to avoid relative drifts between the lattice
plane position and the focal plane, which could lead to severe defocus effects with regard
to the small depth of focus ∆z. The depth of focus can be defined as the on-axis distance
that introduces a λ/4 wavefront error [180] and accounts to

∆z = ±λ

2

(
1

NA

)2
≈ ±0.25 µm (97)

given our imaging wavelengths and maximum NA.

The objective lens tube and all lens retaining mechanics are fully fabricated from machin- Objective housing

able ceramics (Macor®), see Fig. 18a on page 111. The objective is therefore non-magnetic
and non-conducting by design, and we avoid magnetisation effects and eddy currents,
which could deteriorate the magnetic environment close to our magnetic atoms as well as
limit the field-switching times.

All volumes inside the housing and in between lenses have to be vented through borings
to avoid virtual leaks under UHV.

The objective tube will be mounted in a home-built Macor mount, shown in Fig. 18b on Objective mount

page 111. It comprises three titanium flat springs around its perimeter and sits on three
ruby balls to define the objective position within the glass cell (cf. § 12.2).

Around the top rim of the mount, in the future lattice plane, an arrangement of solid
quartz UV-enhanced aluminium mirrors has been engineered in custom geometry.6 We
colloquially refer to them as the ‘crown mirrors’. Eight crown mirrors (round in Fig. 18b)

6 Manufactured by Optico AG, Switzerland.
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Figure 17: Optical path difference (OPD) and modulus of the optical transfer function (OTF) for the microscope objective
at 401 and 421nm.

are in staggered alignment with the side windows of the glass cell. They will serve to
reflect laser light onto the atoms, entering and exiting through the large top window. One
crown mirror (rectangular in Fig. 18b) will protect the objective itself from being hit by the
divergent transport beam when the focus is at the main-chamber centre. This is important
to avoid dumping optical power on the objective housing, which could lead to drifts in
temperature and optical performance.

The individual pieces of the mount are assembled using vented titanium screws and
beryllium-copper disc springs which can take up mechanical stress upon temperature
changes, such as during bake-out.
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(a) The microscope objective with the
small lattice mirror (inset).

(b) The assembled objective mount
with the crown mirrors.

Figure 18: In-vacuum optics for the quantum gas microscope.

11.3 microscope performance tests

The optical performance of the microscope objective was tested by imaging the tip of a Resolution limit

SNOM fibre, as described in § 5.2.5 and Refs [155, 247], using a stock 1000-mm achromat7 as
imaging lens at infinite conjugation. The images close to focus, the azimuthally averaged
spot profiles and fitted Gaussian functions are shown in Fig. 19. These measnurements
yielded a resolution limit d0 according to the Rayleigh criterion (Airy disc radius) of

d0 =





0.29(1) µm for λ = 401 nm,

0.30(1) µm for λ = 421 nm,

close to the values predicted from our simulation (Table 3 on page 108).
To find the focus position, it is often convenient to consider power-normalised images. Power-normalised

imagesFrom the point of energy conservation, aberrations do not change the amount of total
power that arrives at the image plane, but manifest in a departure from the Airy pattern
of a diffraction-limited system through a redistribution of power from the central peak
to regions further out. Hence, as long the magnification of an imaging system does not
change, its Strehl ratio is proportional to the intensity maximum of the power-normalised
image [36]. The peak value in power-normalised images can therefore be used as a figure
of merit during the alignment of an optical system, which has been used extensively in
the course of this thesis.

Figure 20b shows images from a focus scan, where the SNOM fibre tip has been moved Chromatic focal
shiftalong the optical axis using a piezo actuator8. In the corresponding normalised intensity

(Fig. 20a), we observe maxima corresponding to the focus positions for 401 and 421 nm
wavelength. The distance between these maxima, the chromatic focal shift, is ∼ 2.4 µm. Chromatic focal

shift
7 ACT508-1000-A, Thorlabs, Inc., NJ/USA
8 PiezoMike N-472 from Physik Instrumente (PI) GmbH, Germany
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Figure 19: Resolution test of the microscope objective. Images of a SNOM fibre tip (respective left) for distances (x, y)
w. r. t. the object plane. The corresponding azimuthally averaged intensity profile (respective right) is plotted vs
the radial coordinate (ρ). The red lines are Gaussian fits.

The objective is therefore close to, but not fully achromatic, as initially demanded. Accord-
ing to the manufacturer, this is most probably due to insufficient accuracy of their prior
knowledge of refractive indices of the lens glasses, which had to be extrapolated down to
401 nm wavelength, where the dispersion is very steep. For imaging of only one species
per time, this does not pose a problem, since the shift can be corrected by re-adjusting the
camera position. For a simultaneous double-species imaging, the chromatic shift needs
to be circumvented. Possible experimental solutions include (i) to use two separate beam
paths and cameras for the two species after the objective, using a beam splitter, or to im-
age both species shortly after each other in combination with either (ii) an adaptive optical
element, such as a focus-tunable lens, (iii) an imaging lens on a fast translation stage to
dynamically adjust the focus position, or by (iv) dynamically shifting the vertical lattice
position with the atoms between the respective focal planes.
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The light from the atoms is collected by the microscope objective and passes the vac- A Kepler telefocus
systemuum window as a collimated beam. To form an image, this beam must be re-focussed on

the camera chip. For the image sampling to accord with the Nyquist-Shannon criterion
(Eq. 95), a sufficient image magnification M is needed, resulting in a minimum effective
focal length f ′ for the focussing system. For example, if we want to achieve a sampling
of five pixels per lattice site with a sensor pixel size of dpx = 16.5 µm, a lattice constant
of 0.266 µm and using our objective focal length of f = 20 mm, it follows M ≥ 310 and
f ′ ≥ 6.2 m. For larger lattice spacings or smaller pixel size the numbers are smaller, but
still likely on the level of several metres. Such long light paths would naturally suffer from
stability problems caused by mechanical vibrations or air currents.

For this purpose, a compact telefocus system in Kepler configuration has been devel-
opped which offers a large effective focal length at a small physical size. Our imaging
simulations show that with an arrangement consisting solely of stock lenses9 an effective
focal length of 6.2 m can be achieved in a system that itself has only a length of around
1.1 m while being fully achromatic at 401 and 421 nm wavelength.

9 One long-focal-length achromatic doublet (many available from Thorlabs, Inc., to match the required magnifica-
tion) and one short-focal-length Hastings achromatic triplet.
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As already touched upon in § 5.1, experiments with ultracold atoms have to be conducted
under ultra-high vacuum (UHV) on the order of 10−11 millibar to isolate the samples from
the environment and permit sufficiently long lifetimes. Such low pressures can only be
attained and maintained using specially suited materials, techniques, and instrumenta-
tion [144].

12.1 general vacuum considerations

Vacuum Materials

The demand for UHV puts strict requirements for the building materials.1 They must pos-
sess a low permeability for atmospheric gases, a low vapour pressure and outgassing of
contaminants (such as H2, CO and CO2), and a high-quality, low-roughness surface fin-
ish. This restricts the choice of materials to certain metals, ceramics, glasses, and some
high-performance organic polymers such as Kapton [154], which is sometimes used for
electrical insulation inside UHV.

Since in our experiment the magnetic behaviour is of high importance, the main build- Stainless steel

ing material for the vacuum apparatus are the stainless steels 316LN and 316L.2 They
offer (i) a low relative magnetic permeability, hence do not easily get magnetised when
magnetic fields are applied to the atomic sample, and additionally (ii) a high electric re-
sistance, which reduces eddy currents upon changes of the magnetic through-flux and
enables faster field switching times. For a reduction of surface area and the concurrent
outgassing rates, it is advantageous to apply mechanical or electropolishing to the vac-
uum faces of metallic parts, and to glow them at over 1000 °C under vacuum for some
hours to reduce the content of H2 [119, 144].

Where optical transmission is required, most glasses are good vacuum materials [71]. Glass

When high powers or short wavelengths are needed, the preferred material is fused silica,
a synthetic quartz glass. It features low light absorption down to below 400 nm, and little
thermal lensing effects even at high light intensity.

Machined parts that have to be non-metallic, e. g. for electrical insulation, lower thermal Ceramics

expansion, or complete suppression of eddy currents and magnetisation, are preferen-
tially manufactured from Macor, a glass-ceramic that can be machined using standard
metalworking tools [71]. Using special techniques and tools, normally only available in
specialised companies and workshops, also quartz can be machined directly. In the mi-
croscope setup, Macor is used for the microscope housing and mount, whereas machined
and polished quartz is used for the crown mirrors and the octagon corpus of the glass cell.

Before the final implementation, all machined components have to undergo a thorough
cleaning procedure [144]. After the initial removal of dust and watery contaminants, de-

1 A useful and extensive list of materials suitable for use in UHV environments has been published by the LIGO
collaboration [71].

2 American Iron and Steel Institute (AISI) classification.

115



116 nuts , bolts , and vacuum

greasing steps using detergents and organic solvents such as acetone, ideally in an ultra-
sonic bath for several minutes, are of vital importance to eliminate oils and other pollu-
tants from the manufacturing process.

Vacuum seals

Forming a UHV seal between two components requires appropriate techniques. For joiningMetal-to-metal
seals steelparts, the laboratory standard is to use all-metal seals, formed by knife-edge flanges

which cut into a soft gasket manufactured from oxygen-free copper. Where UHV connenc-
tions need to be opened and closed repeatedly, also reusable all-metal valves relying on a
tight, mechanical metal-to-metal contact are commercially available.3

Glass-to-metal seals, for example for vacuum windows, are nowadays mostly formedGlass-to-metal
seals by specialised companies. They typically use a braze alloy which, in molten form, wets

the prepared viewport glass and forms a tight seal when cooled down and solid. A crucial
point is that the thermal expansion coefficients of metal fitting and viewport glass may not
differ too strongly, otherwise temperature changes (which are not completeley avoidable,
e. g. in the production process or during vacuum bake-out) could lead to stress and – in
the worst case – cracking of the glass. Commercial standard fittings therefore often employ
a flexible-lip design and soft braze materials that can take up part of the stress. Still, not
all metal-glass combinations are feasible. For example, stainless steel and quartz glass
are largely incompatible, unless gradient-index transitions are formed, where by use of
different glasses the coefficients of expansion are gradually matched between the two end
materials. However, such gradient-index transitions are typically long (around 10 to 20 cm)
and mechanical weak points, so their application is not permissible without restrictions.

A quartz-to-steel seal that can be formed in the lab without special equipment is based
on indium metal as a sealant [120, 146, 291]. Indium is a soft metal with a low melting
point, low permeability, and low outgassing rates [71]. Exposed to air, it is covered by
a thin, passivating oxide layer. When it is mechanically deformed, however, like when
pressed onto a glass surface, this oxide layer breaks and fresh, reactive metal is exposed.
This activated indium wets the glass and and reacts with it, forming a tight seal.

For permanent glass-to-glass seals, as have to be formed when assembling a multi-pieceGlass-to-glass
seals scientific glass cell, techniques that do not require adhesive glues are preferential for their

better vacuum quality. Established techniques include heat-diffusion bonding, glass-frit
bonding, optical contacting by pure polishing, and direct melting. Where it is necessary
to form the seal at room temperature and/or reversibly, also an indium seal between two
glass pieces can be formed, as will be necessary for closing our glass cell once the objective
is inserted.

Vacuum pumping and quantification

As touched upon in § 5.1 and laid out in detail in Ref. [141], in the Er–Dy experiment
we use several complimentary techniques to create and maintain UHV. Usually, the ini-
tial evacuation step from ambient pressure to low vacuum is achieved using mechanical
pumps. In the experiment, this is accomplished using detachable, external roughing and

3 E. g., from VAT Vakuumventile AG, Switzerland; Pfeiffer Vacuum GmbH; Just Vacuum GmbH, Germany; Vacom
GmbH, Germany; Kurt J. Lesker Company, PA/USA.
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turbomolecular pumps. All later steps to higher vacuum rely on some sort of gettering
process, where gas particles get caught by chemi- or physisorption. This category involves
evaporable getters as in a titanium sublimation pump, non-evaporable getter (NEG) ma-
terials, and ion pumps. An ion pump is essentially a Penning trap containing moving
electrons which can hit and ionise entering gas particles, which are in turn accelerated
in the electric field and finally strike an electrode surface where they either get buried,
chemically adsorbed, or sputter electrode material on the walls around, which then itself
acts as a getter material [262].

Finally, to quantify the vacuum in an experiment, one typically relies on ionisation
gauges such as the hot-cathode Bayard–Alpert gauge, which measure an ion current that
depends on the gas pressure [144]. A related, indirect indication of the pressure in the
apparatus is given by the current drawn by the ion pumps.

12.2 the microscope vacuum section design

The basic geometry of the microscope vacuum setup is given by a stainless steel cross and
a scientific glass cell (see Fig. 21).

Figure 21: Vacuum connection from main chamber to microscope cell. The optical transport axis for the atoms is
indicated in green.

The horizontal arms of the custom steel cross connect the glass cell to the experimental Steel cross

main chamber over a gate valve and form part of the future transport distance for the
atomic samples. The lower vertical arm connects to a NEG element4, whereas the upper
arm connects to (i) a combined NEG/ion pump module5, (ii) an ionisation gauge6, and (iii)

4 Model Capacitorr Z200, SAES Getters S.p.A., Italy
5 Model Nextorr D200, Mu-metal-shielded, SAES Getters S.p.A., Italy
6 Model UHV-24P, tungsten-filament Bayard-Alpert ionisation gauge, Agilent Technologies, Inc., CA/USA
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an all-metal angle valve7 for attachment of external mechanical pumps (see Fig. 23). All
metal vacuum pieces have been electropolished and vacuum-glowed8 for reduction of H2
outgassing as well as for reduction of magnetic permeability.

The glass cell9 consists of an octagonal quartz corpus with large borings (Ø ∼ 70 mm)Glass cell

at top and bottom and eight small borings (Ø ∼ 22 mm) through the side facets. Attached
to the bottom boring and one of the side borings are a small- and a large-diameter quartz
tube with polished flat lips on their ends, see Fig. 22. Via glass-frit bonding, one 3” and
seven 1” fused-silica windows are attached to the top and the remaining side borings, re-
spectively. For maximum flexibility concerning the wavelengths to pass through, the win-
dows are coated on the inside with a gradient-index antireflexion nanostructure coating10,
and uncoated on the outside, where cleaning from dust, etc., might become necessary at
some point.

Figure 22: The glass cell to house the mi-
croscope. Custom-manufactured from quartz
(body) and fused silica (windows). Polished
faces on left and bottom tube are for in-
dium sealing. The viewports feature a broad-
band, broad-angle gradient-index nanostruc-
ture coating on the inside. For scale, the hole
distance in the breadboard below is 25 mm.

The small-diameter quartz tube supports the glass cell and connects it to the steel cross
via a glass-to-steel indium seal. For this, a novel type of disc-spring-loaded clamping
mechanism and a flat-to-knive-edge adapter has been engineered. It allows to separate the
critical step, the formation of the indium seal, from the following attachment of combined
adapter and cell to the steel cross through a simple CF flange.11

The large-diameter quartz tube is used to insert the microscope objective and its mount
(Fig. 24) into the glass cell. The horizontal position of the mount in the centre of the quartz
tube is defined by three titanium flat springs (Fig. 24b). The tube is then closed by a fused-
silica window, on which the mount rests via three ruby ball lenses12. An indium glass-to-
glass seal between tube and window is formed and supported using another pair of disc-
spring-loaded clamps.

In the course of this thesis, considerable time and efforts have been afforded for the engi-Indium sealing

neering of parts connected via indium seals, as well as the development and improvement
of cleaning and handling procedures for the formation of the seals. Points that turned out
to be very critical for indium UHV seals include:

7 Model 57.1, VAT Vakuumventile AG, Switzerland
8 Carried out by Reuter Technologie GmbH, Germany.
9 Manufactured by Precision Glassblowing of Colorado, Inc., CO/USA.

10 RAR.L2 from Tel Aztec LLC, MA/USA
11 Concerning these developments I am particularly indebted to Emil Kirilov, Innsbruck, for valuable discussions.
12 Edmund Optics, Inc., NJ/USA



12.2 the microscope vacuum section design 119

Figure 23: A vertical cut through the mi-
croscope vacuum assembly.

• Use of round indium wire13, activated in hydrochloric acid (37 %) for around 1 min
straight before use, and connection of the freshly cut, angled ends to an O-ring.

• Surface finish: metal contact surfaces should be lathed (not milled) with the stroke
direction aligned with the indium wire; glass surfaces must not be matt, but have to
be polished till optically clear and should remain uncoated.

• Cleaning: metal contact surfaces should undergo usual vacuum cleaning (water and
detergent, then organic solvants); glass surfaces should be (i) cleaned in water and
detergent, (ii) blow dryed, (iii) rinsed with acetone, (iv) rinsed with methanol, and
(v) air-dryed.

• Seal formation: gently and evenly squeeze the indium O-ring between the two sur-
faces, ideally using a feeler gauge. If content, perform a helium leak test; small leaks
may be closed by stronger squeezing, warming up of the seal region, or simply leav-
ing the indium flowing for some hours [161].

If an indium seal needs to be re-opened, for example because it contains a large leak,
this is best done by heating the whole seal region to above the indium melting point at
157 °C. Glass parts can be cleaned from molten indium by wiping with a tissue, and from
residuals by soaking in hydrochloric acid.

Once the indium seals are formed and steel cross, cell, and all other parts of the mi- Vacuum assembly

croscope vacuum section are assembled, the assembly can undergo a gentle pre-bake-out
outside our laboratory to reduce down-time for the Er–Dy experiment. This pre-bake-out

13 Ø 0.05” ≈ 1.3 mm, In 99.995 %, Indium Corporation of America Co., MD/USA
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while pulling vacuum serves primarily to remove water vapour and other volatile con-
taminants from the inner volume. The maximum temperature is limited to around 90 °C
due to the in-vacuum objective, wherefore the pre-bake has to last for several weeks. For
the glass cell and its interior parts, this process can be assisted by prior or accompany-
ing UV/ozone cleaning [55, 130]. After the pre-bake-out, the whole section can be flooded
with noble gas, moved to the experimental table, attached to the main experiment, and
evacuated. Depending on whether the attainable vacuum level is already sufficient or not,
another short, low-temperature bake-out on-site may be needed.

(a) A horizontal cut of the in-vacuum objective within cell,
coils and shielding.

(b) Outline of important optical paths for the
microscope.

Figure 24: Overview of the microscope objective and its surrounding.

Figure 24a shows a horizontal cut through the glass cell with mounted objective and the
connection to the steel cross, the external magnetic field coils, and a passive multilayer
magnetic shielding. Components for controlling the magnetic fields will be discussed
in the next section (§ 13). Figure 24b sketches some of the important future light paths
through the glass cell. They includeOptical paths

• the transport beam of 532 nm, operated by translating a lens on an air-bearing me-
chanical stage14 and optically relaying the corresponding focus shift on the atom
position;

• a large-spacing vertical optical lattice formed by two crossed beams entering from
the side, likely in accordion configuration, to pre-compress the sample in the vertical
direction and facilitate loading into the tight vertical lattice;

• the tight vertical lattice formed by retroreflexion of a 1550 nm beam off the miniature
mirror;

• the horizontal lattice, formed by two 532-nm beams in bow-tie arrangement with
multiple possible polarisation configurations, running along the cell diagonals and
crossing at right angle;

14 Model ABL 1500, Aerotech, Inc., PA/USA
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• one or multiple horizontal absorption imaging paths through the side windows em-
ploying the broad, blue transitions; these paths might also be used for exciting the
sample for fluorescence imaging with the microscope objective below;

• the fluorescence path through the objective and the bottom window;

• possible additional beams reflected in and out using the crown mirrors, e. g., for spin
manipulation.
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In all ultracold-atom experiments the ability to set the magnetic field in a precise man-
ner is absolutely essential, to define quantisation axes, to control level splittings, or to
tune s-wave interactions at Feshbach resonances. For magnetic atoms such as erbium and
dysprosium, where magnitude as well as direction of the magnetic field are of decisive
importance for the stability and behaviour of a sample, this is even more the case.

In the following, the coils for shaping magnetic fields in the glass cell will be described
(§ 13.1), as well as an enclosure to shield the atoms from external, magnetic fields (§ 13.2).

13.1 microscope cell coils

The trade-off in the design process of the microscope cell coils was between achieving a
maximum flexibility in the shaping and switching of magnetic fields, blocking a minimum
of opticall access, as well as constraints given by the magnetic shielding, spatially and in
terms of material magnetisation.

The final design consists of a skeleton CNC-milled from a high-performance polymer1,
whose pieces can be assembled around the glass cell. The coil skeleton itself is mounted
on the clamp of the steel cross, to not put additional load on the glass cell. The design
consists of two pairs of coils along the vertical/gravity direction (z), close to Helmholtz
configuration, and two orthogonal pairs of coils in the horizontal plane, further from
Helmholtz cofiguration due to contraints of space and optical access; see Figs 24a, 25. The
slow pair of vertical coils has a larger number of windings and is intended for standard
use, whereas the fast pair of vertical coils has only a few windings and is inteded for fast
jumps in magnetic fields and for generation of RF radiation. The two identical horizontal
coil pairs are arranged around the horizontal lattice beams (cf. Figs 23, 25). All coils except
the two bottom vertical coils can be wound prior to assembly.

Even though FEM simulations (§ 13.2) indicate that the magnetisation threshold of the in-
nermost shielding layer is not reached up to fields corresponding to more than a hundred
Gauss in the cell centre, in order to avoid magnetisation effects it is certainly advisable to
restrict the fields used in the cell to the few- or low tens-of-Gauss level.

Table 4 on the next page summarises the characteristics of the coils, Fig. 25 on page 125

shows the parts of the coils design and the corresponding calculated fields, field gradients
and curvatures.

1 PAS-PEEK GF30, glass-fibre reinforced polyether ether ketone, Faigle GmbH, Austria
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Table 4: Coil specifications for the microscope chamber.

vert. slow vert. fast horz .

r0 (mm) 59 64 22.5

coil separation (mm) 54 78 98

windings 56 4 16

centre field (G/A) 8.0 0.5 0.6

inductancea (F) 3×10−5 2×10−6 3×10−6

resistanceb (mΩ) 700 55 80

a Approximation for an ideal Helmholtz pair.
b For 1-mm2 wire.
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Figure 25: Magnetic field coil system for the microscope chamber. The fields are calculated by directly integrating the
Biot–Savart law for 1 A of current, respectively. The respective local coil symmetry axis is labelled z. Slow vertical
bias coils (left column), fast vertical bias or RF coils (middle column) and horizontal coils (right column). First row:
Coil geometry. Second row: Field on axis. Third row: Field gradient on axis. Fourth row: Field curvature on axis.
The coil characteristics are summarised in Table 4 on the facing page.
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13.2 magnetic shielding

For very field-sensitive measurements it becomes necessary to protect the atomic sample
from magnetic stray fields of the environment, such as the earth magnetic field or fields
created by electric instrumentation. The choice of protection strategy and technique mainly
depends on the modulation frequency of the external field.

In laboratory practice, low-frequency noise is usually the more critical one. Its impactLow-frequency
noise can be reduced either by active compensation using magnetic coils to counter the exter-

nal fields,2 or by enclosing the experimental chamber in a passive magnetic shielding. In
principle, there are two types of passive magnetic shieldings, (i) superconducting shields
at cryogenic temperature3, from which weak external fields are expelled via the Meissner–
Ochsenfeldt effect (Fig. 26a), or (ii) soft-ferromagnetic shields, which rely on ‘flux shunt-
ing’. Flux shunting means that the shield material has a high relative permeability and
thus ‘guides’ the field lines around the protected volume (Fig. 26b, c). Among the most
commonly used soft ferromagnetic materials for such shieldings are Mu-metal, with a rel-
ative permeability µr ∼ 4.7×105 and saturation flux density ∼ 0.75×104G, and Supra-50,
with a lower permeability µr ∼ 2×105 but a higher saturation field ∼ 1.5×104G [90].

Figure 26: Field line distribution in the
vicinity of a cylindrical magnetic shield.
Transverse field for (a) a conductive
and (b) a ferromagnetic shield. (c)
Competing effects of an axial field
within a cylinder. Images modified
from Refs [56] (a, b) and [213] (c).

For fast oscillating fields (on the order of tens of Hz and higher), eddy current cancella-High-frequency
noise tion (‘skin effect’) becomes the dominant shielding process. This effect is the strongest for

good conductors such as copper, but in practice, also ferromagnetic DC shields typically
provide a sufficient AC shielding [299]. The more crucial step is therefore to find a good
shielding for slowly-varying fields.

2 Since no probe for feedback can be put locally into the vacuum chamber, often feed-forward is applied, for
example in the groups of Jean Dalibard at Collège de France, Paris.

3 This strategy is followed, e. g., in the group of Gerhard Kirchmair in Innsbruck for protection of superconducting
quantum bits.
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Since they can operate at room temperature, ferromagnetic shields are far more often
encountered in quantum gas experiments than superconducting shields (see, e. g., Refs [89,
90, 159]). Also for the Er–Dy experiment, we opted for this strategy, with the possibility to
combine it with an additional, active field stabilisation.

The performance of a magnetic shield is characterised by the shielding factor Shielding factor

S = B′/B, (98)

where B′ (B) is the field at the centre point in presence (absence) of the shield. From our
estimates of requirements for future microscope experiments, a shielding factor of ∼ 103

was desirable and set as a target.

Analytical estimates for ferromagnetic shields

In general, the shielding efficiency (98) of a ferromagnetic shield depends on (i) the relative
permeability µr of the shield material, (ii) the geometry of the shield, and (iii) the effect of
possible holes.

Concerning the geometry, the best shielding performance would be obtained for a spher-
ical shell, whereas for production reasons the majority of magnetic shields has a cylinder
(intermediate) or box form (inferior) [299].

Concerning the effect of holes, the field entering into a tube of radius R along x de-
creases exponentially ∝ e−βx/2R, with β ≈ 7 for transverse and ≈ 4.5 for axial field,
whereas for a flat surface perpendicular to x, the field entering through an opening drops
∝ x−3 [299].

In regard to the shield for the Er–Dy experiment, we consider a cylinder of radius R, Cylindrical
shieldsshell thickness d ≪ R, length L and a material with µr ≫ 1 The flux entering through the

ends is exponentially suppressed and negligible for L > 2R. In this case, the residual field
is completely given by the field spilling through the walls (cf. Fig. 26c).

We first consider a homogeneous, transverse field. Since flux entering through the ends
is negligible, the shielding is the same as for an infinite cylinder, with the analytic solu-
tion [188]

St =
µrd
2R

. (99)

For axial fields, except for pathologic cases [213], the performance is improved when
end caps are added to the cylinder. If they are taken into account, the axial shielding
efficiency for a cylinder of radius R, length L and ratio α = L/2R > 1 reads

Sa =
4ηSt + 1
1 + 1/2α

with η =
1

α2 − 1

(
α√

α2 − 1
ln (α +

√
α2 − 1) − 1

)
, (100)

a geometry-dependent demagnetisation factor [187, 188]. The axial shielding is therefore
always smaller than the transverse shielding. For short cylinders, α ≳ 1, the axial and
transverse shielding efficiency are similar in magnitude, St ≳ Sa, whereas for long cylin-
ders, the axial shielding quickly vanishes, Sa α→∞−→ 1, due to field spilling through the walls
(Fig. 26c).
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The effect of a shield can be enhanced by enclosing it wholly in a bigger shield. Follow-Multilayer shields

ing a magnetic circuit approach [278, 299], the efficiency of such a nesting of N individual
shields can be worked out analytically, with the dominant term

Sx ≈ Sx
N

N−1

∏
i=1

Sx
i

(
1 −

(
Xi

Xi+1

)k
)

. (101)

Here, X ∈ {R, L} is the characteristic length scale of layer i, and Sx
i ∈ {St, Sa} is the

shielding factor in the corresponding direction. For cylindric shape, these are given by
Eqs 99–100. The scaling exponent k is geometry-dependent; in good approximation k = 3
for a spherical shield, and k = 2 and k = 1 for a cylindrical shield in transverse and axial
direction, respectively [299].

From the above reasoning and analytical estimates, we can distill some simple rules ofGeneral guidelines

thumb to keep in mind for the design of the shielding:

• The optimal shape is a sphere (or an approximation thereof), which provides good
shielding in all directions and with the fastest scaling in size (Eq. 101).

• For a cylinder, a length-to-diameter ratio ∼ 1 yields the best performance.

• Since the shielding efficiency scales inversely with size (X) at fixed wall thickness
(d), smaller shields are preferential (Eq. 99).

• Thin shield of multiple layers are superior to a single, thick shield – ‘it helps to shield
the shielding’.

• Avoid discontinuities (e. g., cuts, improper welds, etc.) in the material to ensure un-
hindered guiding of magnetic flux.

• If discontinuities are unavoidable, e. g., for an assembly of multiple parts, the parts
should have sufficiently overlap.

• Avoid openings, since they lead to flux leakage.

• If an opening is unavoidable, it can help to add a collar since the flux entering
through a tube (hole) falls off exponentially (cubically).

Shielding design and finite-element analysis

The fundamental design decision for the microscope shielding in the Er–Dy experimentLarge vs small

was between the following options:

• A large, box-type shield which fits the cell and surrounding close breadboards, op-
tics, and other instrumentation within it, or

• a small, cylindrical shield which fits only the cell such that all surrounding optics
and instrumentation have to be placed outside.
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Large box-type shieldings are, e. g., used in the Blatt ion laboratories in Innsbruck. Con-
sidering the points from the previous chapter, and for the greater flexibility offered by not
having to put optics and instrumentation inside the shielding, the compact cylinder type
was chosen.

Under the spatial constraints imposed by the geometry of vacuum apparatus and the
microscope coils, a preliminary design for a four-layer magnetic shield was drafted.4

To obtain a prediction of the shielding performance beyond the general guidelines from
the previous section, numerical simulations are needed. Unfortunately, applying the an-
alytic formulae to a complex geometry to elucidate, e. g., the expected shielding perfor-
mance away from the exact centre of symmetry, or the effect of openings for laser beams
and cables, is a nontrivial task. A possible approach to such intricate problems is given by
the finite-element method (FEM).

The idea behind a FEM simulation is to divide a system with complex geometry into Finite-element
methoda finite number of discrete, small subsystems. These small systems span a representative

mesh of the whole system. The problem is then first handled locally on the level of the
subsystems and their respective boundaries, which can be solved more easily, and later
assembled into an approximation of the solution for the system as a whole, using tech-
niques from the calculus of variations [243, 244].

For our study of the shielding efficiency, the Comsol® Multiphysics environment was
employed, since it allows to directly import the computer-aided design (CAD) drawing
and offers an automated meshing routine. Then the FEM analysis is used to simulate the
magnetic field inside the shield in presence of external fields. This allowed us to verify the
general expectations and to identify weaknesses of the prototype design.

In a first step, a static, homogeneous magnetic field along the different spatial direc- Identified design
weaknessestions was applied outside the shielding. It became apparent (i) that edges and corners can

lead to flux focussing and localised high-field regions in the shield material, which may
exceed the saturation threshold. Therefore, where possible, edges and corners should be
rounded. By the same effect, (ii) while small circular holes in the shielding prevent fields
from entering more efficiently, the hole radius has to be large enough not to lead to flux
focussing. Furthermore, it turned out that (iii) the overall shielding performance along the
atom transport direction was limited by the large opening for the vacuum connection.

In a second step, individual simulations were performed including the fields of the
individual pairs of microscope cell coils inside the shielding. These simulations showed
that (iv) for high coil currents in the microscope coils, the saturation threshold for Mu-
metal can be exceeded in nearby regions of the innermost shield.

A revised design improved on the identified weaknesses by (i–ii) adjusting roundings Revised design

and diameters, (iii) reducing the opening for the vacuum connection and adding a collar
to it, and (iv) changing the material of the innermost shield from Mu-metal to Supra-50,
which has a sufficiently higher saturation threshold.

Subsequent simulations of the revised design, some of which are shown in Fig. 27 on
the next page, have been performed to verify the improvements.

4 We gratefully acknowledge Dimitrios Trypogeorgos, INO-CNR and Università di Trento, for helpful discussions
during the design process. Cf. also Refs [89, 90].
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Figure 27: FEM simulation results of the final shielding design. (Left column) Vector fields for an applied homoge-
neous external magnetic field pointing in the three spatial directions (a–c): x is along the transport axis, y is
perpendicular to transport direction and cylinder axis, z is along the cylinder axis. The strength of the magnetic
flux inside the metal is colour-coded, increasing from blue to red. (Right column) Calculated magnetic flux den-
sity along the three spatial directions plotted for the same external fields.
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(a) B on the innermost shield layer for the coil pair along
the vertical axis (⃗ez). Small magenta arrows indicate flux
direction.

(b) B along the three spatial axes (⃗ex,y,z); note that
axes pass through shield openings.

(c) B on the innermost shield layer for the coil pair along
the horizontal diagonal (⃗e+). Small magenta arrows indi-
cate flux direction.

(d) B along the coil symmetry axis (⃗e+), perpendic-
ular to it (⃗e−), and vertically (⃗ez); note that axes pass
through shield openings.

Figure 28: Magnetic flux density in the innermost shielding layer for active microscope cell coils. (Top row) Flux for 10 A
of current in the slow vertical coil pair. (Bottom row) Flux for 10 A of current one of the horizontal coil pairs along
one of the diagonals, e⃗± = (⃗ex + e⃗y)/

√
2.
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The finalised shield

The revised shield design was then commissioned for manufacture by Magnetic Shields
Ltd, UK. It consists of three outer shells made from Mu-metal, and the innermost made
from Supra-50, all separated through milled nylon spacers. The shield features apertures
for optical access both axially and radially, as well as openings for routing of cables and
screw holes for attachment to the experiment. After fabrication, the shield underwent a
heat treatment (4 hours at 1150 °C) for magnetic annealing. The final measured shielding
factors are > 103 both in axial and transverse direction, meeting our initial demands. The
slightly better performance of the simulated shield (∼ 104) is most probably due to the
assembled, nested pieces being perfectly flush with each other in the CAD drawing, allow-
ing an unhindered magnetic flux from one to another, and a correspondingly lower flux
spilling to the inside. For a more conservative simulation, it could be helpful to artificially
add space between the pieces to emulate this effect.

A mechanical drawing of the shield is shown in Fig. 29; a photograph of the shield ready
for implementation is shown in Fig. 30.
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Figure 29: Drawing of an axial cut through the design (vacuum flange entry on the left). Numbers (1)–(2) Supra-50

shells, (3)–(8) Mu-metal shells, (9)–(14) Nylon spacers. All dimensions are in millimetres.
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(a) Bottom (left) and top half (right, flipped upside-
down) of the magnetic shielding.

(b) The full assembled shiel-
ding.

Figure 30: The Er–Dy four-shell soft magnetic shielding. The collar increases the shielding efficiency over the opening
for the vacuum connection along the transport direction.
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C O N C L U S I O N

My work in the Ferlaino group in Innsbruck can be broadly grouped into two categories,
experimental research on dipolar quantum gases, and technology development for present
and future experiments.

Chronologically, technology development has first concentrated on a 1-µm level reso-
lution imaging system for our experimental main chamber, aimed at the ability to image
bulk dipolar quantum gases and mixtures directly in trap. This imaging system has been
designed and engineered from scratch, tested for performance, and implemented into the
apparatus. It has since become an indispensable experimental standard tool for us, both in
in-situ (phase-contrast) and time-of-flight (absorption) imaging mode. In phase-contrast
operation, this imaging system has for the first time allowed us to directly probe the
in-situ density distribution of dipolar quantum gases in an optical trap and enabled ad-
vanced studies of dipolar supersolid states.

The second big project in technology development was an extension to the existing
apparatus which will allow to perform quantum gas microscopy with single-atom reso-
lution. To this aim, a full microscope design that accommodates the needs for quantum
gases of both, erbium and dysprosium, has been drafted and engineered from scratch.
This includes the design of the microscope optics and associated mechanical parts, of the
surrounding glass cell and other vacuum components, of the microscope magnetic coils
and a multilayer passive magnetic shielding, as well as performance tests of the designed
components and the developments of non-standard experimental techniques and strate-
gies.

Scientifically, at the start of my time Innsbruck we have worked on the realisation of
a two-species five-beam magneto-optical trap for erbium and dysprosium [142], which
has allowed the production of the world’s first dipolar quantum mixtures of erbium and
dysprosium shortly after [283]. We have further investigated these quantum mixtures by
means of Feshbach spectroscopy [82] and using a novel technique which directly probes
the inter-species repulsion between quantum gases of erbium and dysprosium in trap.1

Besides these experiments on quantum mixtures, we have studied the physics of single-
species dipolar quantum gases, with a particular focus on the parameter regime where,
through an attractive influence of the magnetic dipole-dipole interaction, the standard
mean-field description predicts a collapse. As reported in 2016 by the dysprosium ex-
periment in Stuttgart, under certain conditions, stable quantum matter can be observed
despite the instability predicted by mean-field theoy [145]. As has become clear, the re-
sponsible stabilisation mechanism is driven by quantum fluctuations, which can be incor-
porated into an extended form of the Gross-Pitaevskii equation through a beyond-mean-
field correction [28, 178, 179, 225, 288, 289]. This stabilisation mechanism extends the phase
diagram for dipolar quantum gases beyond the mean-field stability region and allows to
enter novel phases of quantum matter, such as macrodroplets, incoherent droplet cystals,
and supersolids. The study of the supersolid phase of dipolar quantum gases, a phase

1 Claudia Politi et al., manuscript in preparation.
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where global phase coherence and spatial periodicity coexist, now forms the core of this
thesis.

In a first series of experiments, in a joint effort with our group’s Erbium Laboratory, we
have studied supersolid behaviour of quantum gases of 166Er and 164Dy, both theoretically
and experimentally [67]. By analysis of the interference patterns after a free TOF expansion,
we were able to quantify both the density modulation and the global phase coherence of
our samples. We have compared our measurements to ground-state calculations based on
the extended GPE, which have also allowed to construct the respective zero-temperature
phase diagrams. For 164Dy we have observed an experimental lifetime more than an order
of magnitude longer than similar experiments performed in Pisa [279] and Stuttgart [44] at
around the same time, and demonstrated for the first time the preparation of a supersolid
state without a modification of scattering length, but through direct evaporation.

In a second series of experiments, we have studied this evaporative formation of the
supersolid from a thermal gas of 164Dy atoms in depth [272]. Theoretically, the regime
at T > 0 is much more elusive and less understood than the T = 0 limit, since ap-
propriate computational tools are lacking. Taking advantage of our newly implemented
high-resolution main-chamber imaging system, and by combination of in-trap and time-
of-flight imaging techniques, we have explore the formation and subsequent decay of a
dipolar supersolid. We have observed that the two symmetries distinguishing the super-
solid from the thermal gas are not broken simultaneously, but that the thermal gas first
undergoes a transition to a state with periodic density modulation without long-range
phase coherence, which is followed by a transition to a supersolid state with global phase
coherence.

In a third series of experiments, we have investigated the response of a dipolar super-
solid to an interaction quench that brings it strongly out of equilibrium [143]. In such out-
of-equilibrium density-modulated states global phase coherence is quickly lost, however,
experiments have shown that by gently bringing the system to a regime where calcula-
tions predict a non-vanishing density overlap between the out-of-phase system fragments,
global phase coherence can be restored. This possibility to repair the shattered supersolid
indicates superfluid flow across the sample as well as an efficient dissipation mechanism
for excitations. We have investigated the underlying mechanism in collaboration with the-
orists from Geneva, and were able to show that despite the dipolar supersolid being not
stiff but rather soft, the essential behaviour of the de- and rephasing process is captured
by a rigid Josephson junction array model. However, both experiment and simulation indi-
cate that collective-mode excitations caused by the interaction quench significantly affect
the phase dynamics, drawing a strong parallel to the effects of phonons in classical solids.

After these three projects, presented in the main body of this thesis, we have ventured
to explore supersolidity in dipolar quantum gases beyond density-modulation along a sin-
gle direction and were able to experimentally realise systems featuring two-dimensional
supersolidity [207]. In a subsequent project, we have studied the excitation spectrum of
such a 2D supersolid, with particular emphasis of the scissor mode, which has in the past
often been employed as a probe relating to the superfluid fraction.2

2 Manuscript in preparation. For background on the scissor mode in the context of dipolar quantum gases see,
e. g., Refs [92, 249, 280], and references therein.



Looking back, my work in the Ferlaino group has been a challenge as well as a privilege.
I have perceived it as a great opportunity to experience both, applied and fundamental
research – to delve into the diverse technical aspects of developping and building new
parts of a scientific apparatus, while still being able to conduct experiments at the fore-
front of science. Many of the achievements recounted here are unthinkable without the
help and input of others I was lucky to enjoy. Some of our scientific projects have profited
enormously from research collaborations; this can be seen as an attestation that much sci-
entific advancement today is a product of both personal initiative as well as efficient team
work. This is particularly true for the topic of supersolidity, which in the past has been
called one of the “holy grails of condensed-matter physics” [254]. To be part of one of the
teams that finally succeeded in its experimental realisation and study has been a great for-
tune and honour for me. This achievement would not have been possible without theory
counsel from Russell Bisset, Misha Baranov and Rick van Bijnen (all Innsbruck), Thierry
Giamarchi and Giacomo Morpurgo (both Geneva), Santo-Maria Roccuzzo, Alessio Recati,
Giacomo Lamporesi (all Trento), Luis Santos (Hannover), Blair Blakie (Dunedin), Massimo
Boninsegni (Edmonton), Philippe Chomaz (Versailles), Thomas Pohl (Aarhus), Boris Svis-
tunov and Nikolay Prokof’ev (both Amherst), and has been stimulated enormously by
the friendly competition with the experimental groups of Tilman Pfau (Stuttgart) and Gio-
vanni Modugno (Pisa).

O U T L O O K

The Er–Dy experiment and the team around it have been lucky to see a period of great
productivity over the last years. It is my hope and my conviction that this will continue in
the future.

Supersolidity has been a fascinating topic ever since it was born from pure plays of
thought in the 1950s and 60s, and now, since it has finally been realised in experiment, it
will certainly entertain many experimentalists and theorists for years to come. In particular,
the realisation of two-dimensional supersolidity has now opened avenues very promising
for complex phenomena such as quantised vortices inside a supersolid – the ultimate
proof of superfluidity. Also, with a mixture apparatus as the Er–Dy machine, the entry
into regimes where droplet or supersolid states are absent in single-species gases, but
induced by interspecies interactions in a mixture, seem in realistic range (cf. Refs [31, 169,
268]).

An upgrade to the Er–Dy experiment that will hopefully go into operation within
the next months is an additional MOT cooling step on the 841- and 741-nm transitions
for erbium and dysprosium, respectively, which is currently set up by our master stu-
dent Nefeli Sonnberger. These transitions have widths of Γ841/2π ≈ 8 kHz [231] and
Γ741/2π ≈ 1.8 kHz [185], more than an order of magnitude more narrow than our stan-
dard MOT transitions (§ 5.1), offering a significantly lower Doppler temperature limit. Us-
ing this additional cooling step can enable extremely fast production of BECs in under a
second as demonstrated recently at Harvard [230, 231]. Such a decrease in cycle time will
enhance our experimental possibilities both in terms of higher data statistics, as well as
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data stability, since for significantly shorter measurement duration, the impact of long-
term drifts in the experiment will be less severe.

Most significant will certainly be the integration of the quantum gas microscope into
the Er–Dy apparatus, which has finally commenced (see Fig. 31) and should, according
to the current time planning, hopefully be concluded during the forthcoming months. As
detailed in § 10, this setup holds great promise for novel experiments with dipolar atoms
on optical lattices. Combining the microscope setup with a DMD setup developed by our
former master student Sandra Brandstetter [50] could further allow to project arbitrary
potentials on our atomic samples. In lattice experiments, such potentials can be used for
quantum state engineering (cf. Ref. [62]), whereas without the horizontal lattices, it might
enable studies of homogeneous, bulk 2D quantum gases (cf. Refs [127, 305]) and theoret-
ically predicted effects unique to dipole-dipole-interacting systems, such as the modifica-
tion of vortex properties [194, 203].

(a) Front view. (b) Top view.

Figure 31: Assembly of the microscope vacuum section. These photographs show the microscope objective inside the
glass cell after indium sealing, initial pump-down, helium leak testing, and prior to baking.
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‘What’re quantum mechanics?’
– ‘I don’t know. People who repair quantums, I suppose.’

– Sir Terry Pratchett, Faust Eric (1990)1

AS O M E F I E L D T H E O RY O F Q U A N T U M G A S E S

To describe quantum many-body systems in which the particle number can vary, simple quantum
mechanics is insufficient and a more advanced theory is needed. In quantum field theory (QFT),
particles are interpreted as the excitations of the underlying (particle) field, and as such, they can be
created from the vacuum or annihilated.

There exists a plethora of recommendable literature for QFT, including especially the book of
Peskin & Schröder [222] and the lecture notes of Timo Weigand [292]. For a focus on applications
to quantum gases, I can particularly recommend the lecture notes by Jook Walraven [290]. The
following recapitulation of basic concepts is to large extents based on these notes, and I largely
adapt their notation because I have found it the most consistent and complete.

a.1 from one . . .

In quantum mechanics, a particle is described by a state vector, which in Dirac notation can be Bras and Kets
written down in representation-free form as |χ⟩. Such a vector is normalised by the inner product
⟨χ|χ⟩ = 1, where the bra ⟨χ| = |χ⟩† is the Hermite conjugate of the ket.

Any measurement of the physical properties of state |χ⟩ is connected to a hermitian operator Observables
Ô. The observable Ô defines a complete set of eigenstates {|oi⟩} which span the Hilbert space H of
the system and fulfil the conditions of orthonormality (⟨oi|oj⟩ = δij) and completeness (i. e., any state
|χ⟩ ∈ H can be written as |χ⟩ = ∑i |oi⟩ ⟨oi|χ⟩). Possible outcomes of measurements are represented
by the spectrum of the observable, i. e. its real eigenvalues Ô |oi⟩ = oi |oi⟩.

The projection of |χ⟩ onto the eigenstate |oi⟩ gives the probablity amplitude of measuring the Wavefunctions
outcome oi for the observable Ô and is termed the wavefunction, χ(oi) = ⟨oi|χ⟩, in the representation
defined through the basis {|oi⟩}. An example is the continuum of eigenstates |⃗r⟩ of the position
operator r̂, for which χ(⃗r) = ⟨⃗r|χ⟩ is called the wavefunction in position space.

Reversely, from a wavefunction χ(oi) in a certain representation the representation-free state can
be obtained by the sum |χ⟩ = ∑i χ(oi) |oi⟩ or, for a continuous basis such as |⃗r⟩, the integral |χ⟩ =∫

χ(⃗r)ddr |⃗r⟩ . The probability density of measuring the outcome oi for an arbitrary state |χ⟩ is given
by the modulus-squared of the wavefunction, Pi = |χ(oi)|2 = | ⟨oi|χ⟩ |2. By the motivation that the
sum of the probabilities of all possible measurement outcomes should equal unity, we obtain by
Parseval’s identity1 State

normalisation

1 !
= ∑

i
Pi = ⟨χ|χ⟩ , (102)

the common normalisation of quantum mechanical state vectors.
The expectation value of the observable Ô with respect to the state |χ⟩ is ⟨Ô⟩ = ⟨χ|Ô|χ⟩.

1 I owe credits for this quotation to Sandra Brandstetter, the biggest Pratchett fan the Ferlaino group has seen
to-date.

1 This identity asserts that in any Hilbert space H with an inner product ⟨·|·⟩ and an orthonormal basis {|oi⟩} for
every |χ⟩ ∈ H holds ∑i | ⟨χ|oi⟩ |2 = ⟨χ|χ⟩. It is the formal argument for the physical intuition that the energy of
a signal in momentum space and in position space should be identical.
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a.2 . . . to many

An N-body state

|XN⟩ = |χ1, . . . , χN⟩ ≡ |χ1⟩ ⊗ |χ1⟩ ⊗ · · · ⊗ |χN⟩ (103)

is an element of the direct product of the N single-particle Hilbert spaces Hi, the N-body Hilbert
space HN =

⊗N
i=1 Hi. In Fock representation, where only the occupation numbers of the single-Fock

representation particle states are noted, the N-body state |XN⟩ simply reads

|n1, n2, . . . , nℓ⟩ = |s1, s1, . . .︸ ︷︷ ︸
n1

, s2, s2, . . .︸ ︷︷ ︸
n2

, . . . , . . . , sℓ︸ ︷︷ ︸
nℓ

⟩ with N = ∑
i

ni, (104)

where usually only the occupied states are noted. For bosons the states |si⟩ can be multiply occupied
and the order of writing down the states does not matter, for fermions all states can be occupied
by one particle at maximum and, as the state has to be antisymmetrised, the order is subject to
convention (e. g., ordering by energy).

Particle symmetry

Two N-body states must be called equivalent if the measurement of any physical observable Ô gives
the same result for both of them. The exchange operator K̂ij swaps the particles i and j when it acts
on a ket,

K̂ij |XN⟩ = K̂ij |. . . , χi, . . . , χj, . . .⟩ = |. . . , χj, . . . , χi, . . .⟩ = |X′
N⟩ . (105)

If the particles i and j are indistinguishable, the new and old ket must be equivalent, so for the
expectation value ⟨Ô⟩ must hold ⟨XN |Ô|XN⟩ = ⟨X′

N |Ô|X′
N⟩. This is only possible for arbitrary

Ô if the exchange operator is unitary and states of indistinguishable particles are eigenkets of it,
|X′

N⟩ = eπis |XN⟩, with initially s ∈ R.
Of course, swapping the same particles twice must return the original state:

K̂ijK̂ij |XN⟩ = |XN⟩ ⇐⇒ e2πis = 1, (106)

so K̂ij must be hermitean and

s =





n ⇐⇒ |X′
N⟩ = + |XN⟩ (symmetric)

1
2 (2n + 1) ⇐⇒ |X′

N⟩ = − |XN⟩ (antisymmetric)
(107)

for n ∈ N0. Since the energy of a state is, as any observable, by definition invariant under exchange
of indistinguishable particles, the Hamilton operator commutes with K̂ij. This makes the eigenvalue
±1 of K̂ij a constant of motion, wherefore the exchange symmetry of a state is conserved in time.

By the spin–statistics theorem [218, 263] we can identify s with the spin of the particles. Fermions,
antisymmetric upon exchange, have half-integer, whereas bosons, symmetric upon exchange, have
integer spin. Assuming two fermions in the same single-particle state immediately leads to thePauli principle
contradiction

− |XN⟩ = K̂ij |XN⟩ (χi=χj)
= |XN⟩ ⇐⇒ |XN⟩ = |0⟩ . (108)

It follows that single-particle states can be occupied by not more than one fermion, the Pauli exclu-
sion principle [217].
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Identical bosons, in contrast, are allowed to occupy the same state, and since the counting of states
has to be modified compared to classical states, the probability for multi-occupancy is enhanced (cf.
Fig. 1 on page 5).

Construction operators

In many realistic quantum many-body scenarios, energy as well as particles can be exchanged with
the environment. The suitable setting for such scenarios is the Grand Hilbert (or Fock) space. It
is constructed by direct summation of all correctly symmetrised N-body Hilbert spaces, HG =⊕∞

N=0 HN .
When a particle is added to or removed from an N-body system, one switches within HG from

HN to HN±1, typically without mentioning it explicitly. This is achieved by application of the
Hermite-conjugate construction (or ladder) operators Construction

operators
â†

s |. . . , ns, . . .⟩ =
√

ns + 1 |. . . , ns + 1, . . .⟩ , (109)

âs |. . . , ns, . . .⟩ =
√

ns |. . . , ns − 1, . . .⟩ , (110)

which abide by the commutation (anticommutation) relations for bosons (fermions), marked below
with a ‘−’ (‘+’) index:

[âs, â†
ℓ ](±) = δsℓ and (111)

[â†
s , â†

s ](±) = 0 = [âs, âs](±). (112)

From the construction operators one can define the number operator Number operator

n̂s = â†
s âs (113)

which counts the occupation of the respective single-particle state,

n̂s |. . . , ns, . . .⟩ = ns |. . . , ns, . . .⟩ . (114)

The total-number operator, which counts all particles in the system, is the sum of all number opera-
tors

N̂ = ∑
s

n̂s. (115)

In position representation, by inserting the closure relation 1 =
∫

ddr |⃗r⟩ ⟨⃗r| the above (115) can be
written as

N̂ =
∫

ddr ∑
s,s′

â†
s′ ⟨s′ |⃗r⟩ ⟨⃗r|s⟩ âs =

∫
ddr ψ̂(⃗r)†ψ̂(⃗r) =

∫
ddr n̂(⃗r), (116)

where, writing the wavefunctions originally in an arbitrary, discrete single-particle basis {|s⟩} in
terms of the continuous position variable, φs (⃗r) ≡ ⟨⃗r|s⟩, we have introduced the field operators Field operators

ψ̂(⃗r)† = ∑
s

φ∗
s (⃗r)â†

s and ψ̂(⃗r) = ∑
s

φs (⃗r)âs. (117)

The field operators create and annihilate particles at position r⃗, i. e. in the one-particle case simply
ψ̂(⃗r)† |0⟩ = |⃗r⟩ and ψ̂(⃗r) |⃗r⟩ = |0⟩. The field operators ψ̂(⃗r)† and ψ̂(⃗r) obey the same (anti-)commu-
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tation relations as the construction operators and reflect the (anti-)symmetry of the particles they
describe:

[ψ̂(⃗r), ψ̂(⃗r′)†](±) = δ(⃗r − r⃗′) and (118)

[ψ̂(⃗r)†, ψ̂(⃗r′)†](±) = 0 = [ψ̂(⃗r), ψ̂(⃗r′)](±). (119)

Finally, it is worth to remember that in general a many-body system is rarely in a pure number
state, but rather a linear combination of many number states.

a.3 particle correlations

The field operators allow to define different orders of correlation operators, depending on the num-
ber of particles involved [290]:

n̂(1) (⃗r, r⃗′) = ψ̂(⃗r)†ψ̂(⃗r′), (120)

n̂(2) (⃗r, r⃗′) = ψ̂(⃗r)†ψ̂† (⃗r′)ψ̂(⃗r)ψ̂(⃗r′), (121)

n̂(3) (⃗r, r⃗′, r⃗′′) = ψ̂(⃗r)†ψ̂† (⃗r′)ψ̂† (⃗r′′)ψ̂(⃗r)ψ̂(⃗r′)ψ̂(⃗r′′), (122)

and so forth. The correlation functions for an arbitrary many-body state |XN⟩ are given by the
corresponding expectation values [32, 128, 290]

G(i) (⃗r, . . .) = ⟨XN |n̂(i) (⃗r, . . .)|XN⟩ . (123)

The correlation functions characterise a quantum system and are well-defined irrespective of the
particle interactions; however, their calculation is particularly easy for an ideal gas where the single
particle states (cf. Eq. 117) are uncoupled.

Inserting the bosonic commutation relation and taking care of the proper normalisation of theOne-body density
for the ideal Bose

gas
many-body state using the grand-canonical partition sum (cf. § A.4 below), one can separate the
parts of the density matrix corresponding to ground and excited states:

G(1) (⃗r, r⃗′) = G(1)
0 (⃗r, r⃗′) + G(1)

T (⃗r, r⃗′)

= N0 φ∗
0 (⃗r)φ0 (⃗r′) + ∑

s ̸=0
φ∗

s (⃗r)φs (⃗r′) ⟨n̂s⟩ , (124)

where N0 ≡ ⟨XN |n̂0|XN⟩ is the number of ground-state particles and ⟨n̂s⟩ ≡ ⟨XN |n̂s|XN⟩ is the
expectation value of the occupation number operator for state s. For N0 ≫ 0, the system is called
condensed (see § A.4.3).

Considering the one-body density of a three-dimensional homogeneous system of volume V, the
relevant coordinate is R ≡ |⃗r − r⃗′| and the system eigenstates are given by plane waves, φ⃗k (⃗r) =

exp(i⃗k · r⃗)/
√

V. In this case, there is an analytic expression for the one-body density matrix [290]:

G(1)(R) =
N0
V
︸︷︷︸
G(1)

0

+
1

Λ3

∞

∑
ℓ=1

zℓ

ℓ3/2 exp
(
−πR2

ℓΛ2

)

︸ ︷︷ ︸
G(1)

T

R≫Λ−→ G(1)
0 , (125)

where Λ is the de Broglie wavelength (1) and z = eµ/kBT is the fugacity. What is important to note

about Eq. 125 is that whereas G(1)
T decays exponentially with R, the term G(1)

0 takes a constant value
even in the thermodynamic limit (N, V → ∞, N/V = const.) and does not decrease with distance.
This directly impacts the correlation length of the system, which can be defined straight from theCorrelation length
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one-body correlation function:

L(1) =
∫ ∞

0

G(1)(R)

G(1)(0)
dR. (126)

For a thermal ideal gas it has the analytic form

L(1)
T ≡

∫ ∞

0

G(1)
T (R)

G(1)
T (0)

dR =
1
2

Λ
Li1(z)

Li3/2(z)
. (127)

where the polylogarithm function is defined as

Liα(z) =
∞

∑
ℓ=1

zℓ

ℓα
with α, z ∈ C and |z| < 1. (128)

Away from µ → 0 − 0, the ratio Li1(z)/Li3/2(z) ≈ 1, so the correlation length in the thermal part
is of order Λ. In the condensate, in contrast, L(1) is infinite. Such a behaviour is called off-diagonal
long-range order (ODLRO).

More rigour is needed for the case of interacting bosons where the stationary free-particle states Density matrix
for interacting
systems

couple and lose their meaning. However, even though free-particle states can no longer be used to
compute the density matrices, we shall see that off-diagonal long-range order can still be present
and indicate superfluid behaviour [41, 220, 234]. The definition of the correlation functions (123) stays
valid also in presence of interactions because the correlation operators (120–122) contain the full
Hamiltonian [290]. For a uniform system, we conveniently consider the field operator in momentum
representation

ψ̂(⃗k) =
1√
V

∫
ei⃗k·⃗rddr (129)

and the corresponding momentum density n̂(⃗k) = ψ̂(⃗k)†ψ̂(⃗k) with the expectation value n(⃗k) =
⟨XN |n̂(⃗k)|XN⟩. The (spatially averaged) one-body correlation function in this case reads

G(1) (⃗r) ≡ 1
V

∫
n(⃗r′, r⃗′ + r⃗)ddr′. (130)

From here, a straight-forward calculation reveals

n(⃗k) =
∫

G(1) (⃗r)ei⃗k·⃗rddr = F{G(1) (⃗r)}⃗k. (131)

This Fourier relation immediately implies that if there is a component in G(1) (⃗r) that does not
decrease to zero for |⃗r| → ∞, there has to be a δ-like peak in n(⃗k) and vice versa. Physically,
this means that ODLRO is connected to the macroscopic occupation of a state, viz., a phenomenon
like Bose–Einstein condensation, irrespective of the particle interaction. This is the fundamental
connection between the superfluidity of helium-II, a strongly interacting system, and the BEC of a
non-interacting ideal gas.

a.4 connections to thermodynamics

In the following, let us take a brief look at the implications which quantum statistics have on the
thermodynamic properties of a system of particles.
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a.4.1 The partition function for the grand canonical ensemble

In a grand-canonical ensemble, the system (S) under study is in contact with a large reservoir (B,
‘bath’) of temperature T and chemical potential µ. S and B can exchange heat as well as particles,
which for now are assumed non-interacting. The system S therefore has neither a fixed energy
nor a fixed particle number, but we can ask for the probability P(E, N) of S having an energy E
and containing N particles. This can be formalised by defining ΩS, ΩB, and Ω as the numbers of
possible particle configurations within S, B, and the (closed) combined system S ∪ B, respectively.
If we denote the combined system’s total energy by EΩ, the total particle number by NΩ and the
inverse thermal energy by β = 1/kBT, we can write

P(E, N) =
ΩS(E, N)

Ω(EΩ, NΩ)
=

ΩB(EΩ − E, NΩ − N)

Ω(EΩ, NΩ)
(132)

≈ ΩB(EΩ, NΩ)

Ω(EΩ, NΩ)
e−β(E−µN) ≡ Z−1

g e−β(E−µN) (133)

where from the first to the second line, exploiting EΩ ≫ E, NΩ ≫ N we have Taylor-expanded
ln ΩB up to first order in E and N, inserted the thermodynamic derivatives ∂E ln ΩB = β and
∂N ln ΩB = −βµ, and taken the exponential.2 In the last step we have defined the grand partition
function3

Zg =
Ω(EΩ, NΩ)

ΩB(EΩ, NΩ)
, (134)

which is fixed by the normalisation

1 = ∑
i

P(Ei, Ni) = Z−1
g ∑

i
e−β(Ei−µNi) ⇐⇒ Zg = ∑

i
e−β(Ei−µNi) (135)

where the summation index i runs over all possible energies and particle numbers.
For a quantum gas, the partition function has to include all properly (anti-)symmetrised states. If

the gas is ideal, the result factorises and we can write in Fock (number-state) representation

Zg = ∑
n1

∑
n2

· · · ⟨n1, n2, . . . |e−β(Ĥ−µN̂)|n1, n2, . . .⟩ (136)

= ∑
n1

∑
n2

· · · e−β
(

n1(ε1−µ)+n2(ε1−µ)+···
)

= ∏
s

∑
ns

e−βns(εs−µ). (137)

For bosons, the number of particles per state is unrestricted, so we have to sum from ns = 0 to ∞
and recognise the geometrical series. For fermions, each state can be occupied by one particle at
maximum, hence the sum runs from ns = 0 to 1. We obtain

Zg =





∏s
1

1−e−β(εs−µ) (bosons),

∏s 1 + e−β(εs−µ) (fermions),
(138)

which can be written compactly as

lnZg = ±∑
s

ln(1 ± e−β(εs−µ)), (139)

where Bose–Einstein (−) and Fermi–Dirac (+) statistics are distinguished by the ± sign.

2 See, e. g., Ref. [100, § 22], or the reader’s favourite statistical physics textbook.
3 or zustandssumme (German, ‘sum over states’)
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The thermodynamics of the grand-canonical ensemble is governed by the grand potential4

Φg = E − TS − µN (140)

where E is the internal energy of the system, S is the entropy and N is the particle number. By calcu-
lating the total differential of lnZg and comparison to Eq. 140 one finds the important identity [100]

Φg = −kBT lnZg, (141)

by which all thermodynamic quantities depending on the grand potential can be related to the par-
tition function. This is a profound result. We have started by calculating Zg from the microstate
energies εs (which depend, e. g., on the particle mass), and by the derivatives of the partition func-
tions via Eq. 141 we can now relate these microscopic details to macroscopic thermodynamic quantities.
In particular, the total number of bosons (−) or fermions (+) in the system is

N = − ∂Φg

∂µ
= kBT

∂

∂µ
lnZg = ∑

s

1
eβ(εs−µ) ± 1

. (142)

We can thus write for the average occupation number of state |s⟩

n̄s =
1

eβ(εs−µ) ± 1
. (143)

For fermions (+), this expression is valid without restrictions and n̄s < 1 for any finite temperature.
For bosons (−), in contrast, there is an important caveat. Even for a finite particle number N, the
sum on the r. h. s. of Eq. 142 would diverge at µ → εs for any εs. Therefore, µ has to be smaller than
the lowest energy, mins(εs) = ε0. Choosing the zero of the energy such that ε0 = 0, it follows that
for ideal bosons µ ≤ 0.

a.4.2 The continuum approximation

For µ < 0 and an average energy large compared to the level spacing, kBT ≫ ε1, we can approxi-
mate the discrete energy spectrum of the ideal gas as continuous.5 In this continuum approximation,
the sum (142) can be evaluated as an integral,

∑
s

→ 1
(2πh̄)d

∫
dd p ddr and εs → E(⃗r, p⃗) =

p2

2m
+ U(⃗r), (144)

which depends on the dimensionality d of the system and the shape of the trapping potential U(⃗r).
For 0 < z ≤ 1 we can rewrite and expand the integrand in terms of the fugacity,6

1
z−1eβE(⃗r,⃗p) ± 1

=
z e−βE(⃗r,⃗p)

1 ± z e−βE(⃗r,⃗p)
=

∞

∑
ℓ=1

(∓1)ℓ+1zℓe−ℓβE(⃗r,⃗p). (145)

Note that for kBT ≫ |µ| the fugacity z is a small number and the first term in the sum dominates.
In this case, we recover the classical Maxwell-Boltzmann distribution, ∝ exp(−E/kBT), irrespective
of the particle symmetry.

4 We omit the explicit notation of the averages, E ≡ ⟨E⟩ and N ≡ ⟨N⟩, which reflect that heat and particles can be
exchanged with the reservoir.

5 This is also called the Thomas–Fermi approximation.
6 The case z > 1 is only relevant for strongly degenerate Fermi gases, which need a different treatment; see, e. g.,

Ref. [290, § 10].
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In the following, we will restrict our analysis to the bosonic case (‘−’ on the l. h. s. of Eq. 145);
treatments of Fermi systems can be found elsewhere [108, 150, 290]. As motivated in § 1.2, we have
to keep in mind that for bosons the ground-state occupation can diverge for µ → 0 and it is safer
to treat it separately from the thermal states, N = N0 + NT . The continuum approximation directly
gives the number of available thermal states,

NT =
1

(2πh̄)d

∞

∑
ℓ=1

zℓ
∫

e−ℓβE(⃗r,⃗p)dd p ddr. (146)

Let us recall the density of states in the system,

g(ε) ≡ 1
(2πh̄)d

∫
δ
(
ε − E(⃗r, p⃗)

)
dd p ddr, (147)

which depends on the trapping potential U(⃗r). For the most relevant experimental applications,
U(⃗r) has a power-law dependence on distance. For a spherical trap,7 this can be written as

U(⃗r) = U0

( r
L

)d/γ
, (148)

with a trap strength U0, a characteristic trap size L and a trap parameter γ. For example, a harmonic
trap of frequency 2πω has γ = d/2 and U0L−d/γ = 1

2 mω2 for particles of mass m, whereas a box
trap of length L and depth U0 has γ → 0. In power-law traps, the density of states can be written as

g(ε) = Cαεα−1 with α =
d
2

+ γ (149)

and a constant Cα (see Table 5 and Refs [223, 290]). With this, we can bring Eq. 146 into the form

NT(µ, T) =
∞

∑
ℓ=1

zℓ
∫

e−ℓβεg(ε)dε. (150)

Table 5: Parameters of the density of state g(ε) = Cαεα−1 for a system of d dimensions and a power-law trap of
characteristic size L and trap parameter γ.

trap γ α Cα

square well 0 d
2

(
L

2πh̄

)d Sd
2 (2m)d/2 a

harmonic d
2 d

(
(d − 1)! ∏d

i=1(h̄ωi)
)−1

b

a Sd is the surface of the d-dimensional unit sphere: Sd = 1, 2π, 4π for d = 1, 2, 3.
b Cα is given in the approximation for kBT ≫ h̄ω, i. e., treating h̄ωini as continuous and neglecting zero-point

motion [223].

With help of the polylogarithm function (128), the following relation (151) and the definition of
the Euler Gamma function (152),

∫ ∞

0
e−ℓx

n
xmdx = ℓ−(m+1)/n

∫ ∞

0
e−xn

xmdx, (151)

Γ(s) =
∫ ∞

0
e−xxs−1dx, s ∈ C, (152)

7 The case can easily be generalised to non-isotropic orthogonal power-law traps [12].
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we can evaluate the integral (150) to

NT(µ, T) = (kBT)α CαΓ(α)Liα(z). (153)

Let us now imagine a thermal system with N particles in a volume V at a finite temperature T (where
kBT ≫ |µ|). If we keep T constant and keep adding particles to V, we have to distribute them into
thermal states and thus also NT should increase. The polylogarithm Liα(z) grows monotonously
with the fugacity z = eµ/kBT . This means when we add particles, the chemical potential has to
increase (but cannot exceed zero).

The implications now differ greatly for the cases α > 1 and α ≤ 1.

a.4.3 Bose–Einstein condensation of the ideal gas

For α > 1, there is a convergence limit

lim
z→1−0

Liα(z) = finite = ζ(α) (154)

which can be written in terms of the Riemann zeta function, ζ(s) = ∑∞
ℓ=1 ℓ

−s with s ∈ C. This means
that there is only a finite number NT of thermal states even for µ → 0. Since no thermal states are
available, additional particles have to go into the ground state, and the value of µ is fixed by the
requirement that N = N0 + NT , i. e.

N0 =
z

1 − z
⇐⇒ µ = −kBT ln

(
1 +

1
N − NT

)
≈ − kBT

N − NT
. (155)

Furthermore, we can define a critical temperature Tc from the convergence limit of Eq. 153 for a total Critical
Temperatureparticle number N = NT ,

kBTc =

(
N

CαΓ(α)ζ(α)

)1/α

. (156)

For the case of a 3D harmonically trapped gas of 106 particles this approximates to kBTc ≈ N1/3h̄ω,
so the critical temperature corresponds to about hundred times the harmonic oscillator spacing.
This shows that for temperatures not too much below Tc the requirement for the continuity approx-
imation (144) is still fulfilled, |µ| ≪ ε1 ≪ kBT; the condensation happens at finite temperature. In
Maxwell–Boltzmann statistics, in contrast, macroscopic occupation of the ground state can only oc-
cur at kBT ≪ ε1.

Rearranging Eq. 156 and inserting back into Eq. 153 directly yields the dependence of condensate
fraction on temperature for T ≤ Tc:

N0
N

= 1 −
(

T
Tc

)α

−→





1 for T → 0

0 for T → Tc

(157)

a.4.4 Degenerate Bose gases in lower dimensions

For α ≤ 1, in contrast, the polylogarithm diverges for z → 1 − 0 (i. e. µ → 0 − 0), so also N′ diverges
and we can accommodate arbitrarily many particles in thermal states. Hence, for α ≤ 1 a Bose
gas can be come degenerate (nΛd > 1) without particles being forced to occupy the single-particle
ground state.

Consequently, if one assumes condensation in a system with α ≤ 1, it was first shown using Mermin–Wagner–
Hohenberg
theorem
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equivalent spin models8 that the energy of the Nambu–Goldstone modes associated to this sym-
metry breaking tends to zero for large enough systems [69, 137, 195, 232]. It is therefore inevitable
that large-wavelength fluctuations are thermally excited for T ̸= 0 and destroy true long-range or-
der (LRO).

The 2D case marks an important limit for bosonic systems. As argued above, for perfect homo-
geneity (γ = 0), no macroscopic ground-state occupation can be obtained at T > 0.

On the one hand, however, even though the Mermin–Wagner–Hohenberg theorem prevents aBKT phase
transition spontaneous symmetry breaking and the establishment of a spatially uniform order parameter (i. e.,

LRO), in uniform 2D (but not 1D) systems there can be a topological phase transition of Berezinskii–
Kosterlitz–Thouless-type. Here, above a critical temperature, the correlation function G(1)(R) be-
tween two points in the system at distance R decays exponentially as for a usual thermal gas
(cf. Eq. 125), whereas below the transition temperature G(1)(R) decays only algebraically with R [24,
25, 29, 128, 158]. The microscopic origin of this so-called quasi-long-range order is the binding of
free vortices and antivortices into tight vortex-antivortex pairs.

On the other hand, if a 2D system departs from perfect uniformity by even the slightest power-Non-uniform
BECs in 2D and

1D
law potential (γ > 0), the limit (154) exists and a BEC can be observed at finite temperature [99].
Similarly, for 1D systems, Bose–Einstein condensation can occur for γ > 3

2 (cf. Ref. [224]).

8 For many types of quantum gases there is a corresponding spin model of the same universality class, such as the
spin XY model for the 2D Bose gas. If two different systems belong to the same universality class, their behaviour
in the vicinity of a phase transition is, in many ways, similar [29, 30].
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In this chapter, some fundamental theory of the propagation is recapitulated with regard to its
application for imaging in general, and imaging of quantum gases in particular. In the course of
this thesis, this has been important for the development of both the high-resolution vertical imaging
objective presented in § 5.2, as well as the quantum gas microscope presented in § 10. The following
review is to large extents based on Refs. [42, 112, 193, 253, 269, 277].

b.1 the scalar field approximation

Most generally, light propagation is described by Maxwell’s equations [112, 117]. From those, one
can for the case of a linear, isotropic, homogeneous, nondispersive medium derive identical vector
wave equations for the electric and magnetic field E⃗(⃗r, t), B⃗(⃗r, t), respectively. Since, under these con-
ditions, all of their vector components evolve identically, a single, scalar wave equation is sufficient
to describe the complete system: Wave equation

∇2u(⃗r, t) −
(nr

c

)2 ∂2

∂t2 u(⃗r, t) = 0 (158)

Each of the vectorial components of E⃗ and B⃗ must abide by the scalar equation, and can hence be
written in the form

u(⃗r, t) = ℜ{U(⃗r)}eiωt, (159)

with the position-dependent part U(⃗r) ∝ eiφ(⃗r) in complex-field notation and a position-dependent
phase φ(⃗r). Inserting the ansatz (159) into the scalar equation (158), it follows that the space-
dependent part obeys the Helmholtz equation Helmholtz

equation
(∇2 + k2)U(⃗r) = 0 (160)

with the wave number k = 2π/λ and wavelength λ. In a medium with the real part of the refractive
index nr, the wavelength fulfils c/nr = λν, where c is the vacuum speed of light and ν = ω/2π is
the frequency.

Diffraction phenomena are all deviations of light rays from straight paths that cannot be attributed Diffraction
to refraction or reflexion [273]. The scalar field approximation remains applicable for diffraction
phenomena if two conditions are fulfilled [112]:

1. The diffracting aperture is much larger than the wavelength.

2. The diffracted field must be observed at a distance sufficiently far from the aperture.

For the majority of applications of optical imaging, these two criteria are met. One has to be
aware, however, that for systems using very high numerical apertures (NA), vector field properties
can become important and the scalar equation (158) is not necessarily sufficient anymore [9, 247].

b.2 light field propagation

In the following, let us recapitulate how light fields can be propagated between different observation
planes.

XIII
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b.2.1 Propagation in free space

A priori, it may not be completely intuitive how a given, complicated (monochromatic) field distri-
bution U(x, y, 0) will propagate in space, say, along z. This problem becomes tractable if we interpret
the complicated field U(x, y, 0) as a sum of plane waves, which we know how to propagate:

U(x, y, 0; t) = ∑
i

Aiwi(x, y, 0; t) (161)

with complex amplitudes Ai and plane waves wi. Plane waves are solutions of the Helmholtz equa-
tions. In free space, they propagate as

wi(x, y, z; t) = ei(⃗ki ·⃗r−ωit) = ei(kix x+kiyy)e−iωiteikizz = wi(x, y, 0; t)eikizz, (162)

with the angular frequency ωi = 2πc/λi, wavelength λi, and the wavenumber ki = |⃗ki| = 2π/λi.
By k2

i = k2
ix + k2

iy + k2
iz, the three wave vector components are interrelated and we can write

kiz = ±
√

k2
i − k2

ix − k2
iy = ±2π

√
λ−2

i − u2
i − v2

i , (163)

introducing the spatial frequencies ui = kix/2π, vi = kiy/2π.
We see that there are two solutions for kiz, one positive, one negative, corresponding to propaga-

tion in forward and backward direction, respectively. We will restrict the following discussion to the
forward propagating waves (+), but keep in mind that, since plane waves are eigenfunctions of ho-
mogeneous media, inhomogeneities in the medium can scatter waves between different plane-wave
states, thus leading, e. g., to light reflexion [277].

Furthermore, we consider only ui, vi fulfilling u2
i + v2

i ≤ λ−2
i , which ensure that the solutions for

kiz are real-valued. Otherwise, imaginary solutions lead to an exponential damping of the wave over
distance z, according to Eq. 162. Such a damped wave does not carry energy and is called evanescent.
It is also worthwhile to note that this presents a fundamental diffraction limit for imaging: all details
in the z = 0 plane with a length scale smaller than λ are completely damped out during propagation
along z.

From the forward-propagating plane waves wi one can, in analogy to Eq. 161, write the propa-
gated field distribution as

U(x, y, z; t) = ∑
i

Aiwi(x, y, z; t) = ∑
i

Aiwi(x, y, 0; t)e2πiz
√

λ−2
i −u2

i −v2
i . (164)

In the general case, of course, the number of contributing plane waves is not restricted and we
can make λ (and hence k, u, v) a continuous variable, label the plane waves by u, v instead of the
index i, and replace the sum by an integral. Dropping the explicit time dependence, Eq. 164 then
takes the form

U(x, y, z) =
∫∫ +∞

−∞
A(u, v, 0)e2πi(ux+vy)e2πiz

√
λ−2−u2−v2

dudv. (165)

The complex amplitudes A(u, v) are called the angular spectrum and can be derived from U(x, y, 0)Angular spectrum
via Fourier transformation:

A(u, v, 0) = F{U(x, y, 0)}u,v =
∫∫ +∞

−∞
U(x, y, 0)e−2πi(ux+vy)dxdy (166)
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By recognising that Eq. 165 in turn corresponds to an inverse Fourier transform and defining the
free-space transfer function

H(u, v; z) ≡ exp
(

2πiz
√

λ−2 − u2 − v2
)

, (167)

we can write the propagated field very compactly as Frequency-domain
picture

U(x, y, z) =
∫∫ +∞

−∞
U(x, y, 0)e2πi(ux+vy)H(u, v, z)dudv (168)

= F−1{F{U(x, y, 0)}u,v H(u, v; z)}x,y. (169)

So, by construction, in this frequency-domain picture the image-plane field is the sum of the propa-
gated plane-wave components of the object-plane field.

There is an alternative form of Eq. 168 which can be obtained by application of the convolution Space-domain
picturetheorem1 to the right-hand side:

U(x, y, z) = U(x, y, 0) ∗ h(x, y, z) (170)

=
∫∫ +∞

−∞
U(x′, y′, 0) h(x − x′, y − y′; z)dx′dy′ (171)

The convolution kernel

h(x, y, z) = F−1{H(u, v, z)}x,y, (172)

acts as a Green’s function for the diffraction problem and is called the impulse response of the imag-
ing system [112]. Intuitively, the impulse response is the image produced for a delta function input,
δ(x′, y′, 0). Therefore, the total object field U(x′, y′, 0) can be interpreted as a sum of (delta) points,
each creating an impulse response. The sum of all impulse responses then forms the image. This
space-domain interpretation of image formation is complementary to the frequency-domain inter-
pretation presented above.
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Figure 32: Angular spectrum propagation. A random field E(x, 0) (left panel) is propagated in the positive z-
direction (right panel). Note that the propagated intensity profile is constant over z since all plane waves are
infinitely extended.

1 For ∗ denoting the convolution operation, { f ∗ g}(x) =
∫

f (x′)g(x′ − x)dx′, and the Fourier transforms F =

F{ f (x)}ν and G = F{g(x)}ν it holds { f ∗ g}(x) = F−1{F(ν)G(ν)}x .
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b.2.2 Propagation through pupils

In the above treatment, fields U(x, y, z) have been infinitely extended in the lateral xy-direction.
However, in practice one is typically not concerned with infinitely extended plane waves, but light
coming from a localised area Σ, say, the entrance or exit pupil of an optical system (cf. Fig. 33). This
makes a big difference, since in this case not all propagated plane waves will contribute everywhere
in the image plane.

Figure 33: Rays, exit pupil and aperture stop of a simple imaging system with magnification ×2. The element which
limits the size of the light cone converging onto the image is called the aperture stop. Solid lines depict the chief
rays (pass through centre of aperture stop) and marginal rays (pass by edges of aperture stop). The exit pupil is
the geometric image of the aperture stop as it would be seen from the final image plane. The marginal ray angle
α (α′) sets the object (image) space numerical aperture NA = nr sin α (NA′ = nr sin α′) of the system, where nr is
the refractive index of the medium around the lenses. Cf. Refs [193, 269].

Historically, this problem was solved using the Huygens–Fresnel principle, where, somewhat
similar to the space-domain approach (171) every point inside the aperture is interpreted as the
source of a elementary, spherical wavelet. All spherical wavelets emanating from the aperture then
superpose and form the total light field:

U(x, y, z) = A
∫∫

Σ
U(x′, y′, 0)

1
r2 eikrdx′dy′ (173)

with radii given by r =
√

z2 + (x − x′)2 + (y − y′)2. However, the historic approach needs an em-
pirically introduced prefactor A to match experimental observations [112]. We choose to start from
our frequency-domain approach (165) in the previous section, and by doing so, the prefactor will
naturally arise.

The light field transmitted through the aperture Σ is obtained by multiplication of a pupil function
P,

UΣ(x, y) = P(x, y)U(x, y, 0) with (174)

P(x, y) =





1, if (x, y) lies within Σ

0, otherwise.
(175)

We use Eq. 168 to propagate UΣ(x, y) to a plane at distance z,

U(x, y, z) = F−1 {F{UΣ(x, y)}u,v H(u, v; z)} . (176)

We will now subject H(u, v; z) = exp(ikzz) to the paraxial approximation. To this aim, denotingParaxial
approximation
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κx = kx/k = λu and κy = ky/k = λv, we expand the forward-propagating solution (163) up to first
order,

kz = k
√

1 − κ2
x − κ2

y ≈ k

(
1 − κ2

x
2

−
κ2

y

2

)
= k − πλ(u2 + v2), (177)

effectively approximating spherical wavelets by parabolic surfaces. This approximation is justified
when the distance z between aperture and observation screen is larger than the characteristic size of
the aperture, ∅.
We can now define the paraxial transfer function as

G(u, v; z) ≡ exp
(

ikz − iπλz(u2 + v2)
)

. (178)

With this, Eq. 176 becomes the Fresnel integral Fresnel integral

U(x, y, z) = F−1 {F{UΣ(x, y)}u,v G(u, v; z)}x,y . (179)

In analogy to Eq. 170, we can write the Fresnel integral as a convolution,

U(x, y, z) = UΣ(x, y) ∗ g(x, y; z) (180)

=
∫∫ +∞

−∞
UΣ(x′, y′)g(x − x′, y − y′; z)dx′dy′, (181)

where the explicit form of the paraxial impulse response

g(x, y; z) = F−1{G(u, v; z)}x,y =
1

iλz
eikze

ik
2z (x2+y2) (182)

can be found using the identity2

F−1
{

e−iπzλ(u2+v2)
}

x,y
=

1
iλz

e
ik
2z (x2+y2), (183)

which yields the coefficient A = 1/iλz mentioned in the beginning.

In the so-called far-field, where z ≫ ∅2/λ, the field propagation can be simplified even further. Fraunhofer
integralStarting from the paraxial impulse response in the convolution integral (181),

g(x − x′, y − y′) =
1

iλz
eikze

ik
2z ((x−x′)2+(y−y′)2) (184)

≈ 1
iλz

eikze
ik
2z (x2+y2)e−

ik
z (xx′+yy′), (185)

where terms quadratic in the pupil coordinates (x′, y′) have be neglected compared to screen coordi-
nates (x, y) since the diffraction pattern in the far field is much larger than the pupil. The diffraction
integral (181) then becomes

U(x, y, z) =
eikz

iλz
e

ik
2z (x2+y2)

∫∫ +∞

−∞
UΣ(x′, y′)e−

ik
z (xx′+yy′)dx′dy′ (186)

=
eikz

iλz
e

ik
2z (x2+y2)F

{
UΣ(x′, y′)

}
x

λz , y
λz

, (187)

2 This identity can be derived via the Fourier transform formula of a Gaussian, using the substitution z → z − iβ
with β > 0 such that the integral converges, and letting β → 0 afterwards [277].
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Figure 34: Diffraction of a monochromatic wave. A wave of wavelength λ travelling in the positive z-direction is
diffracted by a pupil of size ∅ = λ. Insets: intensity cuts at the indicated distances (linear scale). Calculations
using angular spectrum propagation and Fresnel diffraction are visually indistinguishable on this scale. In the
far-field (right), the Fraunhofer pattern is visible.

which is known as the Fraunhofer integral. We see that propagating the field of an aperture to a far
distant screen corresponds to performing an optical Fourier transform, where angular frequencies
are mapped to position and vice versa.

b.3 generalised image formation

Now we can try to build a general model of how the (real) image formation procedes. In the Huygens
picture, an imaging system converts a spherical wavelet emanating from a point in the object plane
into a spherical wavelet converging towards a point on the image plane. Ideally, there is a purely
linear relation between the distance of two points (P, Q) in the object plane and the respective points
(P′, Q′) in the image plane, P′Q′ = |M|PQ, where M is called the magnification of the system and
for M < 0 the image appears inverted.

The simplest device that achieves such a mapping is a spherical lens. Its action is to imprint a
space-dependent phase delay onto an incoming wave front: where the lens has a thickness D, the
optical path length d appears prolonged, d = nrD, by the index of refraction nr. In the paraxial
approximation, i. e. where it is valid to approximate the spherical surfaces of radii R1, R2 lens by
parabolic surfaces, the phase imparted on a wavefront becomes [112, § 5.1]Lensmaker

formula

tℓ(x, y) = e−
ik
2 f (x2+y2), where

1
f

= (nr − 1)

(
1

R1
− 1

R2

)
(188)

is the focal length. By this, and using again the pupil function (175), the field U(x, y) immediately
in front of the lens gets transformed into a field

UΣ(x, y) = tℓ(x, y)P(x, y)U(x, y) (189)
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immediately behind the lens. If we use the Fresnel integral (Eq. 179) to propagate this field to the
back focal plane (z = f ), we obtain

U(x, y, f ) =
1

iλ f
e

ik
2 f (x2+y2)

∫∫ +∞

−∞
UΣ(x′, y′)e−

ik
f (xx′+yy′)dx′dy′ (190)

=
eikz

iλz
e

ik
2z (x2+y2)F

{
UΣ(x′, y′)

}
x

λ f , y
λ f

(191)

which is exactly the Fraunhofer diffraction (Eq. 186). This means that the field in the focus plane of
a lens is the same as the (scaled) field without lens at large distance.

Figure 35: Irradiance profile through the
focus of a lens. Fresnel-integrated field
of a homogeneous light field of wave-
length λ, for a lens with diameter Ø =
2.5 × 103λ and focal length f = 5 ×
104λ.
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Every sort of imaging system must have a phase-retarding property similar to Eq. 188, which Convolution
property of
imaging systems

turns diverging into converging light cones. In the framework of linear-system theory, similar to the
space-domain field-propagation picture (Eq. 171), one can make the general ansatz that the image
amplitude is represented by a superposition integral [112, 193]

Ui(x, y) =
∫∫ +∞

−∞
h(x, y; x′, y′)Uo(x′, y′)dx′dy′ (192)

where the impulse response is for now an arbitrary function of coordinates in the object (x′, y′)
and the image plane (x, y). We know that corresponding distances in object and image plane are
connected via the magnification M, hence it is useful to introduce reduced coordinates (ξ, η) in the
object plane [112]. With these, the scaled image Ug predicted by geometrical (ray) optics3 reads

ξ = Mx′, η = My′ =⇒ Ug(ξ, η) =
1

|M|Uo(ξ/M, η/M). (193)

A rigorous treatment [112] shows that in planes connected via the lens law of geometrical optics4

and using approximations that are usually well justified for realistic imaging settings, the impulse
response takes the form

h(x, y; x′, y′) −→ h(x − ξ, y − η) (194)

3 I. e., disregarding diffraction.
4

1
z1

+ 1
z2

− 1
f = 0 for planes at z1, z2 and focal length f .
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making the superposition integral (192) look like a convolution:

Ui(x, y) =
∫∫ +∞

−∞
h(x − ξ, y − η)Uo(ξ, η)dξdη (195)

= Ug(x, y) ∗ h(x, y) (196)

This form has an important intuitive interpretation: The image produced by an (aberration-free)
imaging system is inverted and scaled by the magnification; the effects of diffraction are included
by convolving the ray-optics image with the impulse response of the imaging system.

b.3.1 Coherent and incoherent imaging

If we want to record an image, we need an image detector. The exposure time to accumulate suf-
ficient signal is typically many orders of magnitude larger than the inverse bandwidth5, which
characterises how fast two different frequency components present ‘run out of phase’. This means,
the recorded intensity is the time-averaged instantaneous intensity,

Ii(x, y) = ⟨|Ug(x, y; t)⟩t. (197)

How this time average needs to be calculated, depends on the illumination. When illumination is
coherent, the superposing wavelets oscillate in unison, and therefore must be added on a complex-
amplitude level [112]. A coherent imaging system is therefore linear in complex amplitude:

Ii(x, y) =
∣∣Ug(x, y) ∗ h(x, y)

∣∣2 (198)

If illumination is incoherent, on the other hand, the individual wavelets oscillate in an uncorre-
lated manner, and must be added on an intensity level. Therefore, an incoherent imaging system
is linear in intensity, and the intensity impulse response is the modulus-squared of the complex-
amplitude impulse response:

Ii(x, y) =
∣∣Ug(x, y)

∣∣2 ∗ |h(x, y)|2 = Ig(x, y) ∗ |h(x, y)|2 (199)

The intensity impulse response is in applied optics termed the point spread function (PSF) of the
imaging system due to its intuitive interpretation. The PSF can be measured in the laboratory to
determine the quality of an imaging system (see §§ 5.2.5, 11.3)

b.3.2 Resolution limit of an ideal system

An important consequence in the context of imaging is that the width of any structure in the image
is limited by the number of Fourier component contributing to it. For example, applying the Fraun-
hofer integral6 for a circular aperture of radius R, illuminated homogeneously from the back, yields
for the field and intensity on a screen in distance z

U(ρ) =
πR2

iλz
eikzeikρ2/2z 2J1(kρR/z)

kρR/z
and (200)

I(ρ) =

(
πR2

λz

)2 (2J1(kρR/z)

kρR/z)

)2
, (201)

5 For single-mode lasers, this corresponds to the line width.
6 In this case of cylindrical symmetry, the Fourier transform is conveniently replaced by a Fourier–Bessel trans-

form [112], which for a circular disc directly gives the solution (200).
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where J1 is the first-order Bessel function of the first kind and ρ is the radial coordinate in the image
plane. This intensity distribution (see Fig. 36) is called an Airy pattern.
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Figure 36: Airy pattern. Relative intensity plot of the innermost Airy rings in (a) linear and (b) logarithmic scale.
A cut through the maximum is shown in (c), where the intensity is plotted against the dimensionless coordinate
x ≡ kρR/z and R/z corresponds to an NA of 0.5. The zeros are located where x is a multiple of ≈ 3.8317.

As we have seen in § B.3, the image-plane field is given by the magnified object-plane field con-
volved with the impulse response. For a diffraction-limited system, where aberrations are negligible,
the intensity impulse response (or PSF) is directly given through the Airy pattern. The best achiev-
able resolution depends on the size of the Airy pattern, i. e., the size of the exit pupil determined by
the numerical aperture (NA).

An indication when two point sources can be resolved by an imaging system of circular aperture is
given by the Rayleigh criterion. The Rayleigh criterion presumes that the smallest distance between
two Airy patterns that still allows to distinguished them is reached when the maximum of the one
Airy pattern falls on the first minimum of the other [269]. In the general, non-paraxial case, this
distance, also know as the Rayleigh radius, accounts to

d0 = 0.61
λ

NA
, (202)

where NA is the limiting numerical aperture of the imaging system [112].

b.3.3 Effect of aberrations

As seen in § B.3, the ideal (aberration-free) image is obtained by propagating the field of the exit
pupil into the image plane using the Fraunhofer formula (186). It turns out that even if some aber-
rations are present somewhere in the imaging path, it is sufficient to treat the exit pupil as if it were
illuminated by a perfect spherical and imagining a phase-shifting plate at the pupil position which
imprints all the aberrations onto the through-passing field. This phase-shifted field can then be
propagated to the image plane using the standard Fraunhofer integral [112, 193]. The correspond-
ing generalised pupil function for such a case reads

P(x, y) = P(x, y)eikW(x,y), (203)

with the aberration function W. W can be understood as the phase difference of the aberrated field
at a point (x, y) in the pupil compared to the ideal field without aberration, the so-called Gaussian
reference sphere [112].
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For cylindrically symmetric systems, it is convenient to express W in normalised polar coordinates
(0 ≤ ρ ≤ 1 and 0 ≤ φ < 2π). An example for a popular basis is given by the Zernike circle
polynomials Zi [42, 193, 302],

W(ρ, φ) =
∞

∑
i=1

ciZi(ρ, φ), (204)

here noted using Noll’s sequential indexing [206]. The Zernike polynomials form an orthonormal
basis on the unit disc,

1
π

∫ 2π

0

∫ 1

0
Zi(ρ, φ)Zk(ρ, φ)dρdφ = δij, (205)

which makes it straight forward to decompose a measured aberration function W into its Zernike
components,

ci =
1
π

∫ 2π

0

∫ 1

0
W(ρ, φ)Zi(ρ, φ)dρdφ. (206)

This is useful for quantification of the aberrations present in an optical system as, e. g., carried out
in Refs [193, 247].

Figure 37: The first 10 Zernike polyno-
mials. Top-down: Increasing radial de-
gree. Left-right: Increasing azimuthal
degree. Colour scale varying from −1
(blue) to +1 (red).

Z0  

Z1  tilt Z2  tilt

Z3  astigmatism Z4  defocus Z5  astigmatism

Z6  trefoil Z7  coma Z8  coma Z9  trefoil

b.4 imaging system implementation

The alignment procedure for the vertical main-chamber imaging system (§ 5.2.5) is given below.
Here, z is understood as the respective local beam propagation direction.

1. Use a tight probe beam,7 align it onto the crossed ODT by minimising the time needed to blow
the atoms away with resonant light.

2. Walk the probe beam to till normal incidence on vacuum window by looking at back-reflexions;
iterate with step 1 until content.

3. Insert objective, bring close to nominal z-position and zero tilt by hand.

7 We are currently using a TC06APC-405 triplet fibre-optic collimator from Thorlabs, Inc., with 1.1 mm waist
diameter (1/e2).
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4. Adjust objective xy-position by bringing probe beam transmission on optical axis (‘centre of
tube’).

5. Look at back-reflexions of all lens surfaces from within objective and try to collapse them onto
each other by adjusting tilt axes; iterate with step 4 until content.

6. Insert imaging lens, iteratively align xy-direction by looking at transmission, tilt by looking at
back-reflexion.

7. Position camera as well as possible at focal distance from imaging lens, steer beam onto sensor
using mirrors.

8. Fine-adjust z-position of objective using stepper motor until sharp in-situ image of trapped
atoms is attained.
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We report on the first realization of heteronuclear dipolar quantum mixtures of highly magnetic erbium
and dysprosium atoms. With a versatile experimental setup, we demonstrate binary Bose-Einstein
condensation in five different Er-Dy isotope combinations, as well as one Er-Dy Bose-Fermi mixture.
Finally, we present first studies of the interspecies interaction between the two species for one mixture.

DOI: 10.1103/PhysRevLett.121.213601

In recent years, the field of atomic dipolar quantum gases
has witnessed an impressive expansion as researchers have
made substantial headway in using and controlling a novel
class of atoms, the highly magnetic rare-earth species.
Since the first experimental successes in creating Bose and
Fermi quantum gases of Dy [1,2] or Er [3,4], fascinating
many-body phenomena based on the dipole-dipole inter-
action (DDI) have been observed, including Fermi surface
deformation [5], quantum-stabilized droplet states [6–8],
and roton quasiparticles [9]. Remarkably, for Dy and Er, the
intriguing physics within reach comes with comparatively
simple experimental approaches to achieve quantum degen-
eracy. Several research groups have either recently reported
on new experimental realizations of quantum gases with Dy
[10,11] or Er [12] or are actively pursuing it [13,14].
An alternative route to access dipolar quantum physics is

provided by polar molecules, possessing an electric dipole
moment. Up to now, ultracold gases of polar molecules
have been created from nondipolar binary quantum mix-
tures of alkali atoms [15–18] and dipolar spin-exchange
interactions have been recently observed with lattice-
confined molecules [19]. Besides molecule creation, het-
eronuclear quantum mixtures have been used as powerful
resources to realize a broad class of many-body quantum
states (e.g., [20–27]), in which intra- and interspecies short-
range contact interactions are at play.
In the experiment described in this Letter, we merge for

the first time the physics of heteronuclear mixtures with
the one of magnetic dipolar quantum gases. Our motiva-
tions to create quantum mixtures by combining two differ-
ent dipolar species, Er and Dy, are numerous. First, the
coupling between the two components acquires an aniso-
tropic and long-range character due to the strong inter-
species DDI, in contrast to purely contact-interacting
mixtures. The emergent physical richness of the system
has only begun to be uncovered by theory. Recent studies
include the prediction of anisotropic boundaries in the
dipolar immiscibility-miscibility phase diagram [28,29],

roton immiscibility [30], vortex lattice formation [31], and
impurity physics both in dipolar quantum droplets [32] and
dipolar Binary Bose-Einstein condensates (BECs) [33,34].
Moreover, the magnetic moments are large, yet different
(7 bohr magneton for Er and 10 for Dy), leading to a DDI
twice as strong in Dy as in Er. Such a difference is on one
hand advantageous to deeper elucidate the complex scat-
tering and many-body physics by performing comparative
single-species studies with Er and Dy in the same exper-
imental environment. On the other hand, we also anticipate

(a) (b) (c) (d)

(e)

FIG. 1. Binary Bose-Einstein condensation in a 166Er-164Dy
mixture. (a)–(c) Pairs of TOF absorption images at different
evaporation stages, showing (a) a thermal mixture at about
180 nK, (b) an Er cloud at the onset of condensation coexisting
with a thermal Dy gas at about 80 nK, and (c) the binary dipolar
BEC with total atom numbers N ¼ 3.4 × 104ð2.6 × 104Þ for
Er(Dy) with condensate fractions of about 45%. x̃ denotes the
horizontal axis perpendicular to the imaging axis. (d),(e) Density
profiles integrated along z, extracted from (c). Solid lines
depict the 1D bimodal fit, the dotted lines show Gaussian fits
to the thermal components. (f)–(h) BECs with a controlled
number imbalance giving about NEr ¼ ð3.2; 6.4; 9.2Þ × 104 with
(35, 70, 85)% condensate fraction and NDy ¼ ð3.1; 2.9; 0.9Þ ×
104 with (30, 55, 30)% condensate fraction for (f)–(h), respec-
tively. The deformations and the relative displacement of the
clouds are caused by interspecies interaction (see main text). The
color bar indicates the optical density.
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that, in mixture experiments, the imbalance in dipolar
strength, combined with the interspecies interactions,
promises fascinating prospects for creating long-lived
quantum-droplet states and for accessing exotic fermionic
superfluidity, for which the degree of deformation of the
Fermi surface is species-dependent [5].
Second, the rich, but different atomic spectra of Er and

Dy open promising prospects for implementing species-
dependent optical manipulations schemes, including spe-
cies-selective optical potentials at magic wavelengths and
checkerboard-pattern-like lattice structures. Third, Er and
Dy feature many stable bosonic and fermionic isotopes
(both elements have four isotopes with natural abundances
above 15%). Such an isotope variety allows us to create
dipolar Bose-Bose, Bose-Fermi, and Fermi-Fermi hetero-
nuclear mixtures. Last, mixtures composed of two different
magnetic species serve as an ideal platform to produce
ground-state polar molecules with both an electric and
magnetic dipole moment, offering novel degrees of control
and competing long-range interactions [35–37].
We here report on the first experimental realization of

quantum-degenerate dipolar mixtures of Er and Dy atoms,
using an all-optical approach for trapping and cooling.
Taking advantage of the isotope richness in Er and Dy, we
produce dipolar Bose-Bose mixtures with five different
isotope combinations, as well as one Bose-Fermi mixture.
We note that, prior to this work, the production of a Dy
isotope mixture of a degenerate Fermi gas and a Bose gas
near condensation has been reported [2] and, more recently,
a doubly degenerate Fermi-Fermi mixture has been created
from two Er spin states [39]. Experimental efforts are also
devoted to creating Dy-K mixtures [40].
In the following, we detail the production of a double

dipolar Bose-Einstein condensate (ddBEC) of 166Er and
164Dy. The same procedure is used for the other isotope
mixtures. Our experiment starts with a double magneto-
optical trap (MOT) of Er and Dy, as reported in our recent
work [41]. For both species, the MOT operates on narrow
intercombination lines and yields cold and spin-polarized
samples in the absolute lowest Zeeman sublevels
[10,13,41,42]. After loading the double MOT, we optically
compress the mixture in 400 ms (cMOT phase) by reducing
the detuning and power of the MOT beams as well as the
magnetic-field gradient.
We then transfer the mixture into an optical dipole trap

(ODT) by superposing it with the cMOT for 100 ms.
Initially, the ODT consists of a single laser beam at
1064 nm, propagating along the horizontal (y) axis. The
beam has a fixed vertical (z) focus of about 22 μm, whereas
the horizontal waist can be controlled via a time-averaging-
potential technique (see, e.g., [43]). This leads to an elliptic
beamwith variable aspect ratio (AR). Best transfer efficiency
is observed for a beam power of 32Wand an AR of 4, which
provides good spatial overlap between the cMOT and the
ODT.We then switch off theMOT beams andmagnetic-field

gradient, and start a 5-sec evaporation sequence, during
which we apply a bias magnetic field Bevap along the
gravity (z) axis to preserve spin polarization.
Our strategy for evaporative cooling can be divided into

three main stages. (i) During the initial 600 ms, we reduce
the AR to unity while lowering the power of the single-
beam ODT. This increases the density of the mixture at a
roughly constant trap depth. (ii) We start forced evaporation
in the horizontal ODT and add a vertically propagating
dipole trap beam. The vertical beam is derived from the
same laser source as the horizontal one and has a power of
15 W and a waist of 130 μm. (iii) We proceed with forced
evaporation in the crossed ODT by reducing the powers of
both beams nearly exponentially until the mixture is close
to quantum degeneracy. In the final stage of the evapora-
tion, we increase the AR to 5 to create a pancakelike
trapping geometry and further decrease the trap depth until
we reach double quantum degeneracy. To probe the atomic
mixture, we switch off the ODT and, after a time-of-flight
(TOF) expansion of 25 ms, we perform sequential absorp-
tion imaging with a resonant light pulse at 401 nm for Er
and 500 μs later at 421 nm for Dy [3,44]; both pulses have a
duration of 50 μs. The imaging light propagates horizon-
tally with an angle of 45° with respect to the y axis.
Unlike many alkali mixtures [45–48], Er and Dy exhibit

very comparable atomic polarizabilities α because of their
similar atomic spectra. From single-species experiments
[14,49], a ratio αDy=αEr ¼ 1.06 at 1064 nm is expected. For
our initial ODT parameters, we calculate trap frequencies
of about νEr ¼ ð490; 5; 1980Þ Hz and νDy ¼ ð505; 5;
2050Þ Hz [50], corresponding to trap depths of 380 and
410 μK for Er and Dy, respectively. Although small, the
difference in trap depths has an important effect on the
evaporation trajectory of the mixture. We observe that
the more weakly trapped Er atoms act as a coolant for Dy
and are preferentially evaporated from the trap (“sympa-
thetic losses” [47,51]). To sustain Er atom numbers high
enough to achieve double quantum degeneracy, we imbal-
ance the initial atom number in the MOT with Er as the
majority component. The atom number imbalance can be
easily controlled by individually changing the MOT load-
ing time and beam power. This strategy is often employed
in multispecies experiments, e.g., [52,53].
Figures 1(a)–1(c) show the phase transition from a

thermal Er-Dy mixture (a) to a ddBEC (c). The TOF
absorption images reveal the textbooklike fingerprint of
condensation, the emergence of a bimodal density distri-
bution, as plotted in Fig. 1(d). The condensation series
[Figs. 1(a)–1(c)] is taken for an Er(Dy) MOT loading time
of 3 s (1 s), for which we transfer 8 × 106 (7 × 105) Er(Dy)
atoms into our ODT and measure a temperature of about
35 μK; this parameter set allows us to create number-
balanced ddBECs. In agreement with the expected polar-
izabilities, we measure ODT trap frequencies of νEr¼
(48.6ð3Þ;29.7ð9Þ;144ð1Þ)Hz and νDy ¼ (50.6ð3Þ; 30.2ð9Þ;
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160ð1Þ) Hz [54]. The resultant gravitational sag between
the two species is 2.1ð2Þ μm.By varying the imbalance of the
MOT loading, we can produce degenerate mixtures with
different atom number ratios and condensate fractions, which
is exemplified in Figs. 1(f)–1(h). For large condensates, one
directly observes a deformation of the density profiles due to
interspecies interaction, as we discuss later in more detail.
To quantify the cooling efficiency, we plot the normal-

ized phase-space density (PSD=PSD0) as a function of
normalized atom numbers (N=N0) during the evaporation
stages ii and iii [see Fig. 2(a)]. PSD0 and N0 are the
respective initial values at stage ii. From this plot, we
extract γ ¼ −d lnðPSD=PSD0Þ=d lnðN=N0Þ [55], which
captures the evaporation efficiency, via a linear fit to the
data. In the single-beam ODT (stage ii), we see similar
efficiencies both in mixture and single-species operations,
with γ ≈ 1.2. In the crossed ODT (stage iii), we find γEr ¼
2.4ð9Þ for Er in the mixture operation. This value is
comparable to state-of-the-art single-species Er experi-
ments [56] and, as expected, little affected by a small
admixture of Dy atoms. Contrarily, the cooling efficiency
of Dy in stage (iii) strongly benefits from the sympathetic
cooling by Er: We observe a steep increase of the Dy PSD
in the mixture and extract γDysym ¼ 7ð2Þ, whereas for the

same NDy
0 but in single-species operation, the evaporation

efficiency is considerably lower and would not suffice for
condensation. However, with higher NDy

0 we can still
produce large Dy BECs in single-species operation.
The proper choice of Bevap plays an important role for

cooling magnetic rare-earth atoms and becomes even more
critical in mixture operation. It has indeed been observed in
single-species experiments [57–59] that both Er and Dy
exhibit extremely dense and temperature-dependent spectra
of homonuclear Feshbach resonances. Figure 2(b) shows
the atom numbers of the 166Er-164Dy mixture at the onset of
condensation as a function of Bevap in a small magnetic-
field range from 0.5 to 5 G. As expected, we find a number
of broad and narrow loss features. Some of them are
connected to known homonuclear Feshbach resonances
[57–59], others we attribute to unknown high-temperature
resonances or detrimental interspecies scattering condi-
tions. In a few narrow magnetic-field windows, we observe
atom numbers large enough for both components to
condense. Our magnetic-field stability of about 2 mG is
sufficient to reliably operate in most of these small
windows. The optimal value of Bevap, listed in Table I,
depends on the isotope combination.
Combining Er and Dy offers an unprecedented variety of

heteronuclear mixtures with 16 possible isotope configu-
rations, including Bose-Bose, Bose-Fermi, and Fermi-
Fermi quantum gases (see Table I). Using the cooling
and trapping procedure optimized for 166Er-164Dy, we are
able to produce five ddBECs and one Bose-Fermi mixture.
Concerning the remaining combinations, we know from
previous experiments that both 167Er and 163Dy need a
different experimental approach since 167Er undergoes
light-induced losses in a 1064-nm ODT [4], whereas
163Dy, never brought to quantum degeneracy so far, has
an inverted hyperfine structure, requiring most probably
additional optical pumping stages. Both isotopes will be
investigated for future studies of Fermi-Fermi mixtures.
Figures 3(a)–3(d) show absorption pictures of our

doubly degenerate isotope mixtures. We are able to

(a)

(b)

FIG. 2. (a) Evaporation trajectories: PSD=PSD0 as a function of
N=N0. Filled squares (circles) indicate the Er(Dy) trajectory in
mixture operation. The lines are linear fits to the data for
evaporation in the single-beam (ii) and crossed-beam (iii) ODT
(see main text). Open symbols show the single-species operation
for Er (squares) and for Dy with small (circles) and large
(diamonds) initial atom numbers. In the latter case, Dy condenses
alone. (b) Atom numbers in the mixture of Er (red) and Dy (blue)
at the onset of condensation as a function of the magnetic-field
value during evaporation. Condensation is reached for atom
numbers above about 3.5 × 104 (gray region). We record the best
performance for a ddBEC around 2.075 G. Arrows indicate the
position of known single-species Feshbach resonances [57–59].

TABLE I. (Left) List of optimal Bevap and γ
Dy
sym for the quantum-

degenerate Er-Dy mixtures. (Right) Chart of the available isotope
mixtures: ð✓Þ realized double-degenerate mixtures, ð⨯Þ thermal
mixtures, where degeneracy is not yet reached. (…) Mixtures
with 167Er and 163Dy are not investigated here.
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condense all Bose-Bose isotope mixtures with the excep-
tion of 166Er-162Dy, for which we record severe losses
during the evaporation, potentially due to a very large
interspecies scattering length. For all degenerate mixtures,
we observe sympathetic cooling of Dy by Er. The atom
numbers in the ddBECs differ significantly for the different
mixtures, while the initial atom numbers in the MOT are
very similar. This points to different intra- and interspecies
scattering properties during evaporation. The optimal Bevap

and the extracted γDysym are listed in Table I.
We also prepare one Bose-Fermi mixture [see Fig. 3(e)],

in which a 168Er BEC coexists with a degenerate Fermi gas
of 161Dy. Although the cooling process of spin-polarized
fermions can differ substantially from bosons, we are able
to reach Bose-Fermi degeneracy with a similar evaporation
scheme [60]. We measure a temperature of the Fermi gas of
T=TF ≈ 0.5, with the Fermi temperature TF ¼ 140 nK. We
expect that deeper degeneracy might be reached by using
smaller ODT beam waists [4].
Remarkably, in the TOF images in Figs. 1 and 3 hints of

interspecies interactions can be spotted: in mixture oper-
ation, the center-of-mass (c.m.) position of each BEC is
vertically displaced with respect to its thermal-cloud center
[see also Fig. 4(a)]. The two BECs are displaced in opposite
directions, with the heavier (lighter) Er(Dy) always shifted
down (up). Contrarily, in single-species operation the
condensates and their thermal clouds are centered [see
Figs. 4(b) and 4(c)].
To confirm that the displacement after TOF originates

from in-trap interspecies interaction, we prepare a ddBEC,
let it equilibrate for 50 ms, and then selectively remove
either of the two species from the ODT using a resonant
light pulse [61]. After a variable hold time in the ODT, we
release the remaining cloud and record its c.m. position
after TOF. As shown in Figs. 4(d) and 4(e), we observe a

very pronounced c.m. oscillation of the remaining BEC
component with a frequency close to its bare trap frequency.
The oscillations of Er [removing Dy, Fig. 4(d)] and of Dy
[removing Er, Fig. 4(e)] proceed in counterphase, as
expected from their initial separation in trap. Repeating
the same measurement with a thermal-thermal mixture,
or a mixture with just one condensed component (not
shown), yields negligible or significantly weaker oscilla-
tions, respectively.
The spatial separation between the two condensed

components and their oscillating behavior after removal
indicate that, for our trap geometry, the overall interspecies
interaction—contact plus dipolar—has a repulsive charac-
ter. We note that the interspecies scattering length, gov-
erning the contact interaction, and its Feshbach tuning are
presently unknown and beyond reach of state-of-the-art
scattering models [57,62]. To isolate the different sources
of interaction and determine their signs, future dedicated
experiments studying the interplay between trap geometry,
dipole orientation, and interspecies scattering length, com-
bined with simulations based on generalized coupled
Gross-Pitaeskvii equations are necessary. Indeed, the
DDI breaks the angular symmetry of the mean-field
interspecies potentials and is expected to render the
strength and the sign of the overall interspecies interaction
anisotropic and trap dependent.
In conclusion, we have produced heteronuclear dipolar

quantum mixtures by combining two strongly magnetic
atomic species, Er and Dy. Their isotope variety, the
richness of their interactions, the imbalance in the dipolar
strength, and simple laser-cooling schemes make Er-Dy
mixtures a powerful experimental platform to access many-
body quantum phenomena, in which contact and dipolar
intra- and interspecies interactions are at play.
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(RARE, No. 681432) and a NFRI Grant (MIRARE,

(a)

(d)

(e)

(b)

(c)

FIG. 4. Evidence of interspecies interactions in the 166Er-164Dy
mixture: absorption pictures of Er and Dy in mixture (a) and
single-species (b),(c) operation. (d),(e) Filled symbols show the
c.m. position along z of the Dy BEC (d) and the Er BEC (e) after
removal of the other species with resonant light. The gray region
indicates the transient time until full removal. The solid lines are
damped sine fits to the oscillations. For comparison, open
symbols show the c.m. position in a thermal mixture.

(a) (b) (c) (d) (e)

FIG. 3. Absorption pictures of the double-degenerate Bose-
Bose mixtures (a)–(d) and the Bose-Fermi mixture (e). The
pictures are averaged over 5–10 single shots. For all combi-
nations, degeneracy is reached with the evaporation ramp
optimized for the 166Er-164Dy mixture (cf. Fig. 1). Bevap is
listed in Table I. Typical condensate fractions are around 30%,
total atom numbers range between 1 × 104 and 3.5 × 104 atoms.
For the imbalanced case, higher condensate fractions can be
achieved (see Fig. 1). For the 161Dy Fermi gas, N ¼ 8 × 103,
T=TF ≈ 0.5, and TOF ¼ 15 ms.
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We report on the observation of heteronuclear magnetic Feshbach resonances in several isotope mixtures of
the highly magnetic elements erbium and dysprosium. Among many narrow features, we identify two resonances
with a width greater than one Gauss. We characterize one of these resonances, in a mixture of 168Er and 164Dy, in
terms of loss rates and elastic cross section, and observe a temperature dependence of the on-resonance loss rate
suggestive of a universal scaling associated with broad resonances. Our observations hold promise for the use of
such a resonance for tuning the interspecies scattering properties in a dipolar mixture. We further compare the
prevalence of narrow resonances in an 166Er - 164Dy mixture to the single-species case, and observe an increased
density of resonances in the mixture.
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I. INTRODUCTION

Ultracold quantum gases are a highly successful platform
for physics research largely because it is possible to create
simplified and controllable versions of condensed matter sys-
tems [1]. As the field has advanced, great progress has been
made by reintroducing complexity in a carefully controlled
manner. This complexity can manifest in the form of inter-
particle interactions [2–4], the species and statistics of the
particle under study [5–7], or in the form of the potential
landscape, control protocols, and imaging techniques applied
to the system [8,9]. In this work, we explore interspecies Fesh-
bach resonances as a means of generating tunable interactions
between two different species of complex dipolar atoms.

Atoms with large magnetic dipole moments, such as the
lanthanide series elements erbium and dysprosium, interact
in a manner that is both long-range and anisotropic. This
is in contrast to more commonly used atomic species, such
as alkali and alkaline earth metals, which primarily interact
in a short-range and isotropic way. The recent creation of
degenerate Bose and Fermi gases of such atoms [10–13] has
enabled the observation of a wealth of phenomena including
quantum-stabilized droplet states [14–16], roton quasiparti-
cles [17], supersolid states [18–20], and a nonisotropic Fermi
surface [21].

In a separate direction, degenerate mixtures of multiple
atomic species have also provided diverse opportunities for
the study of physical phenomena. Examples include studies
of polarons that arise when an impurity species interacts with
a background gas [22–27], and the formation of heteronuclear
molecules with large electric dipole moments [28–31].

We expect that combining dipolar interactions with het-
eronuclear mixtures will lead to a rich set of physical

*Corresponding author: Francesca.Ferlaino@uibk.ac.at

phenomena, the exploration of which has only recently be-
gun. In particular, dipolar interactions are expected to have
dramatic consequences for the miscibility of binary conden-
sates [32–34], and in turn on vortex lattices that arise in
such systems [35]. Further, certain properties of polarons are
predicted to emerge when either the background [36] or both
background and impurity [37] particles experience dipolar
interactions [38].

Dipolar heteronuclear mixtures have recently been demon-
strated [39], but so far the interspecies scattering properties
have not been explored, either experimentally or theoreti-
cally. In these complex dipolar species, scattering properties
are dictated by both anisotropic long-range dipolar interac-
tions, which can be tuned through a combination of system
geometry and magnetic field angle, and by contact interac-
tions, which can be tuned through the use of interspecies
Feshbach resonances. While scattering models and exper-
imental demonstrations exist for mixtures of single- and
two-valence electron atoms (which lack strong dipolar inter-
actions) [40,41], the scenario of two multivalence electron
atoms has yet to be considered, and represents a frontier for
our understanding of ultracold scattering. In many commonly
used atomic systems, the strength, character, and location of
magnetic Feshbach resonances can be predicted with high
precision through coupled-channel calculations [3]. However,
the complexity of the internal level structure and coupling
mechanisms present in lanthanide atoms lead to significant
challenges for the development of a microscopic theory with
predictive power, and so necessitate an experimental survey to
find resonances with favorable properties [42–46].

To this end, we searched for heteronuclear Feshbach reso-
nances broad enough to provide a practical means for tuning
the interspecies interaction in Bose-Bose and Bose-Fermi
dipolar quantum mixtures. Using atomic-loss spectroscopy to
identify resonances, we perform surveys of fermionic 161Dy
and bosonic 164Dy together with 166Er, 168Er, and 170Er over
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TABLE I. Comparatively broad resonances found in specific iso-
tope mixtures together with estimated center positions and widths
(FWHM) from Gaussian fits to atom loss spectra. Each value is an
average between the fit values of Er and Dy.

Combination Resonance magnetic field (G) Width (G)

168Er - 164Dy 13.32(4) 1.7(1)
166Er - 164Dy 34.09(3) 1.5(1)
166Er - 161Dy 161.31(3) 0.84(9)
168Er - 161Dy 161.30(2) 0.93(5)
170Er - 161Dy 161.26(3) 0.91(8)

a magnetic-field range from zero to several hundred gauss
(the exact range varies by isotope combination due to avail-
ability of favorable evaporation conditions). We also explored
a Fermi-Fermi mixture of 167Er and 161Dy, but observed no
broad resonances there. In Table I we summarize positions
and widths of these features observed in our surveys. As an
exemplary case, we present a more detailed characterization
of the resonance near 13.5 G in the 168Er - 164Dy Bose-Bose
mixture, through measurements of interspecies thermalization
and the dependence of atomic loss on temperature.

In addition, our dipolar mixtures host a large number of
narrow interspecies resonances. In previous experiments with
single species, the density and spacing of these narrow reso-
nances has been studied to reveal a pseudorandom distribution
that can be modeled well using random matrices [43,45,46].
By performing high resolution scans over specific magnetic-
field ranges, we find that the average density of interspecies
resonances exceeds the combined density of intraspecies res-
onances, perhaps indicating the contribution of odd partial
waves or molecular states with antisymmetric electron con-
figurations for the interspecies case, which are not present in
the scattering of identical bosons.

Finally, in each Fermi-Bose mixture involving 161Dy we
observe a correlated loss feature between fermionic Dy and
bosonic Er atoms. Strangely, the loss feature is present at
the same magnetic-field value for all three bosonic erbium
isotopes studied. Such behavior is inconsistent with a typical
interspecies Feshbach resonance, where the magnetic field
at which the resonance occurs is strongly dependent on the
reduced mass of the atoms involved [47]. The mechanism
behind this unusual feature is as of yet unknown and calls for
further experimental and theoretical investigations.

II. OBSERVATION OF INTERSPECIES RESONANCES

Our experimental sequence is similar to the one intro-
duced in our previous works [39,48]. After cooling the desired
isotope combination of erbium and dysprosium atoms in a
dual-species magneto-optical trap (MOT), we load the atoms
into a crossed optical dipole trap (ODT) created by 1064-nm
laser light. Here we perform evaporative cooling down to the
desired sample temperature. During the whole evaporation se-
quence, we apply a constant and homogeneous magnetic field
(Bev), pointing along the z direction opposite to gravity. Bev

preserves the spin polarization in the lowest Zeeman sublevel

of both species. We use different values of Bev to optimize
the evaporation efficiency depending on the isotope combi-
nation and on the range of the target magnetic field (BFB) to
be investigated. The final ODT has trap frequencies ωx,y,z =
2π × (222, 24, 194)s−1. We typically obtain mixtures with
atom numbers ranging from 3 × 104 to 1 × 105 atoms for each
species. The sample is in thermal equilibrium at about 500 nK,
which corresponds to about twice the critical temperature for
condensation. Typical densities are up to a few ×1012 cm−3

for each species. After preparing the mixture, we linearly
ramp the magnetic field from Bev to BFB in 5 ms, either in
an increasing or decreasing manner. The current flowing in
the coils that generate the magnetic fields can be changed on
the millisecond time scale, and the field at the position of the
atoms settles to the part-per-thousand level in approximately
10 ms. We hold the mixture for a time ranging between 5 ms
and 400 ms depending on the experiment. At the end of the
hold time, we release the atoms from the ODT in a 15 ms time-
of-flight (TOF) expansion after which we record an image of
the atoms using a standard low-field absorption imaging tech-
nique [12]. Note that we adjust the relative amount of erbium
and dysprosium in the final thermal mixture for the specific
experiments by independently tuning the MOT loading time
for each species between 0.5 and 5 s.

In the isotope combinations and range of magnetic fields
that we explore here, we observe two interspecies resonances
with widths greater than 1 G (see Table I). We now turn to
a more detailed characterization of a feature present in the
168Er - 164Dy combination, for which atom loss is shown in
Fig. 1(a). We chose to focus on this feature because it is
relatively isolated from the many narrow homonuclear and
heteronuclear resonances typical of lanthanides. In this ex-
periment, the starting mixture contains 6.2 × 104 erbium and
9.1 × 104 dysprosium atoms and it is prepared by evapora-
tion at Bev = 10.9 G. In order to compensate for loss during
magnetic-field ramps and slow drifts of the atom number, we
normalize measurements performed with 200-ms hold times
at BFB to interleaved measurements at 10-ms hold time at
the same field. We further performed independent trap-loss
spectra in single-species operation to confirm the interspecies
nature of the resonance. Moreover, such scans allow us to
identify intraspecies resonances and exclude them from the
fit [see empty symbols in Fig. 1(a)]. As shown in the inset for
erbium, a high-resolution scan reveals a narrow region with
less loss near the center of our broad loss feature, probably due
to the influence of a second interspecies resonance—because a
resonance contributes a scattering length with a different sign
on either side of its pole, the contributions from two nearby
resonances may counteract in between them, leading to a re-
duction in loss. This structure is also visible on the dysprosium
loss feature but it is not shown in the inset for ease of reading.

A Gaussian fit to the loss profiles, with known narrow
single-species resonance excluded, returns a center value of
13.31(2) and 13.33(4) G and a full width at half maximum
(FWHM) value of 1.95(5) and 1.3(1) G for erbium and dys-
prosium, respectively. The observed difference in the fitted
width of the two species can be explained by the imbalance
in atom number: because this measurement was performed
with fewer erbium atoms than dysprosium, the fractional loss
of erbium is higher than that of dysprosium, leading to a
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FIG. 1. (a) Trap loss from the 13.5 G resonance in the Bose-
Bose mixture 168Er - 164Dy (red circles and blue squares points,
respectively). Empty symbols correspond to narrow single-species
resonances, which we exclude from fits. Each point is an average
over four experimental repetitions. For each magnetic field, the atom
number recorded after 200 ms of hold time is normalized to that at a
short hold time of 10 ms. The lines are the Gaussian fits to the data.
The inset shows erbium loss measured in a different dataset with
5-mG resolution, and highlights the structure present on the center
of the feature. The same structure is visible also for the dysprosium
atoms in the mixture. (b) Interspecies elastic cross section σErDy

measured across the Feshbach resonance using cross-species ther-
malization. Each value of σErDy is extracted from thermalization data
using a numerical model for thermalization that includes temporal
variation in atom number and temperature; see main text and the
Appendix.

greater saturation of loss and broadening of the erbium loss
feature.

III. INTERSPECIES THERMALIZATION

To get insights on its effective strength and width, we per-
form cross-species thermalization measurements across the
resonance [see Fig. 1(b)]. Interspecies thermalization exper-
iments are well established techniques to extract effective
thermalization cross sections, which in turn depend on the
scattering length [49–51]. While inferring a precise value
of the scattering length would require the development of
a detailed and rigorous model that accurately captures the
temperature dependence of the interspecies and anisotropic
dipolar scattering [52], and would go beyond the scope of this
work, we are able to determine a thermally averaged scattering
cross-section from which we can estimate the width of the
resonance.

In this cross-thermalization experiment, we selectively heat
dysprosium by means of a near-resonant 421-nm light pulse

along the vertical direction. We confirmed that the light pulse
has no direct measurable effect on erbium. The magnetic field
is then jumped to the desired value BFB and held for a variable
amount of time, during which the temperature of erbium rises
to equilibrate with dysprosium due to elastic collisions. We
record the temperature of the two species along a direction
orthogonal to the heating pulse, as the effects of center of mass
motion are less prevalent here [53], and use a numerical model
to extract a cross section from the rate of thermalization. This
simple model assumes an energy independent cross section,
an assumption which may break down near resonance where
unitarity limits on scattering may become significant.

From these thermalization measurements, we can see a dra-
matic increase in the scattering cross section near resonance,
as one would expect for an interspecies Feshbach resonance.
Further, we observe a significant modification of the cross sec-
tion associated with the resonance over a Gauss-scale range
of magnetic fields, similar to the width we observe in loss
measurements. For comparison, the expected contribution to
the scattering cross section due to dipolar interactions is 2.4 ×
10−16 m2, over an order of magnitude below what we infer
near resonance. While the exact relationship between the mea-
sured cross section and scattering length is complicated by
the finite temperature of our atoms and anisotropic nature of
the interactions, an approximate value can be attained through
the simple expression for s-wave scattering σ = 4πa2

s , where
as is the s-wave scattering length [3]. Our largest measured
cross sections, near resonance at 13.5 G, imply a scattering
length of roughly 400 a0, substantially greater than the dipolar
length aD = mμ0μErμDy/4π h̄2 � 139 a0 associated with in-
terspecies collisions (a0 is the Bohr radius). In this expression,
m = mErmDy/(mEr + mDy) is the reduced mass, and μEr, μDy

are the ground-state magnetic dipole moments for erbium and
dysprosium, respectively.

For an isolated resonance and pure contact interactions, a
common way to characterize the resonance width is the pa-
rameter �, given by the difference in magnetic field between
the pole of the resonance, at which the thermalization rate is
maximal, and the nearest zero crossing in the thermalization
rate, which would correspond to a lack of scattering [3]. In
lanthanides, the presence of anisotropic dipolar interactions
leads to a scattering cross section that does not completely
vanish. In addition, multiple narrow and overlapping reso-
nances may be present, which may influence the interpretation
of such a width measurement. However, to get a rough es-
timate of the width of the resonance, we can consider the
distance between the resonance pole and the apparent mini-
mum in the thermalization rate at 17 G. This suggests a width
of � � 3.5 G.

IV. DEPENDENCE OF LOSS ON TEMPERATURE

The dependence of the loss feature on the cloud temper-
ature can provide additional information on the nature of
the resonance. For broad resonances, a universal regime is
expected to emerge near resonance where the scattering cross
section and loss are dictated primarily by the atomic momen-
tum, rather than the scattering length [54]. In this regime, the
three-body loss parameter L3 follows a nearly universal form
scaling as 1/T 2, where T is the temperature. Such scaling has
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FIG. 2. Three-body loss coefficient L3 extracted from on-
resonance loss measurements at the resonance position for different
temperatures (black circles), along with a fit to a 1/T 2 scaling (black
line), as expected for universal three-body loss. The inset shows
the resonance width extracted as FWHM from Gaussian fits to the
trap-loss spectra versus cloud temperature for a different dataset. Red
circles and blue squares refer to erbium and dysprosium, respectively.
The reported temperature comes from a TOF estimation.

been observed in broad resonances of several atomic species
[54–56].

We observe a temperature dependence of the loss rate near
resonance that is suggestive of such universal behavior. By
varying the final depth of the ODT reached during evapora-
tion, we tune the temperature of the atomic mixture. For each
temperature, we measure atom loss on resonance at 13.4 G as
a function of the hold time. We then use a numerical model to
extract the rate of interspecies three-body loss, and L3.

These loss coefficients are plotted as a function of temper-
ature in Fig. 2, along with a fit to a 1/T 2 dependence, which
provides a reasonable description of our data. The universal
temperature dependence arises from a maximum value of L3

possible at a given temperature, given by

L3,max = λ3,max

T 2
� h̄5

m3

36
√

3π2

(kBT )2
. (1)

Factors associated with Efimov physics can lead to a lower
value for L3, but not higher [54,57,58]. From our fit to a
1/T 2 dependence for our data, we extract a value of λ3 =
1.0(2) × 10−24μK2cm6 s−1, which is compatible with the pre-
dicted bound of λ3,max = 2.4 × 10−24 μK2cm6s−1.

A reduction in the peak loss rate with increasing tempera-
ture can also result from thermal broadening of the resonance,
especially for very narrow resonances [45]. This is unlikely
to be the dominant effect here, as for typical differential
magnetic moments between entrance and closed channels in
our lanthanide system [59], we would expect broadening on
the scale of a few times 10 mG for temperatures near 1 μK,
much narrower than the Gauss-scale width of our feature.
Further, suppression of peak loss is typically accompanied by
a commensurate broadening and shift of the loss feature on the
scale of its width, which we do not observe (inset in Fig. 2).

V. SURVEY OF NARROW RESONANCES

In addition to the few relatively broad resonances, the
lanthanides exhibit many narrow resonances, whose statisti-
cal properties have been investigated for single-species gases
[43,45,46]. In this section we compare the abundance of
interspecies resonances to single-species resonances by per-
forming high-resolution trap-loss spectroscopy on the isotope
combination 166Er - 164Dy (see Fig. 3). Here, we investi-
gate four different magnetic-field ranges, each 10 G wide,

FIG. 3. High-resolution trap-loss spectroscopy for a balanced mixture of 166Er and 164Dy (red and blue curves respectively), with initial
atom numbers of roughly 105 per species at a temperature of 500 nK after 400 ms of interaction time. The magenta ticks indicate the
heteronuclear resonance positions as extracted by our analysis (see main text). The measurement is composed of four datasets [0, 10] G,
[22, 32] G, [50, 60] G, and [60, 70] G with a stepsize of 5 mG. Each point is an average over four experimental repetitions. Atom numbers are
normalized to the maximum of each dataset for ease of reading. The broad loss feature in Dy near 68.8 G was not observed in previous work
[45], and may result from a technical source of loss in our experiment.
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FIG. 4. (a)–(d) Staircase function describing the number of Fesh-
bach resonances as a function of the four investigated magnetic-field
ranges: [0, 10] G, [22, 32] G, [50, 60] G, and [60, 70] G respectively.
The black line shows the number of heteronuclear resonances. The
red and blue lines show the number of homonuclear resonances
for 166Er and 164Dy, respectively. The shaded areas represent our
confidence intervals (see main text).

with a resolution 40 times higher than the one used for the
exploratory surveys. To enable direct comparison with the
previous works performed on single species [43,45], we use
similar experimental conditions (isotope, atom number, tem-
perature, and hold time).

As expected, we observe many narrow homonuclear res-
onances [43,45]. In addition, we also identify many narrow
heteronuclear resonances. To distinguish these two types of
resonance, we first label features with a fractional loss above
30% as resonances. We then categorize these resonances as
interspecies if erbium and dysprosium loss features occur
simultaneously within a range of ±10 mG and with a loss
amplitude ratio in the range 0.5–2. Features that do not meet
both of these criteria, are labeled either as homonuclear or am-
biguous, based on comparison with separate scans performed
with single species, either within this work or from previously
published data [43,45]. The numbers of ambiguous features
define our confidence intervals.

In order to visualize the number of resonances, we
construct the staircase function N (B), which describes
the cumulative number of resonances from the start of
a scan range up to a given magnetic field BFB. Fig-
ures 4(a)–4(d) shows N (B) for the four investigated
magnetic-field ranges. The black lines represent heteronu-
clear Feshbach resonances, while the red and the blue lines
represent the homonuclear 166Er and 164Dy resonances, re-
spectively. The shaded regions represent our confidence

interval defined by the total number of ambiguous Feshbach
resonances.

Our analysis results in a total number of heteronuclear
resonances of NErDy(tot) = 339(16), counting all magnetic-
field ranges, and a number of homonuclear resonances of
NEr(tot) = 116(16) and NDy(tot) = 144(16). Within our con-
fidence intervals, we detect a total number of homonuclear
resonances comparable with those of previous works [43,45].
The corresponding total density of resonances ρ̄, given by
the total number of resonances divided by the total range
of magnetic fields scanned are ρ̄ErDy = 8.5(4) G−1, ρ̄Er =
2.9(4) G−1, and ρ̄Dy = 3.6(4) G−1.

For our combined dataset, we find that the total number
of heteronuclear resonances exceeds the combined number of
homonuclear resonances for the two species: ρ̄ErDy = α(ρ̄Er +
ρ̄Dy), with α = 1.3(2). We would expect that the average
density of heteronuclear resonances should be greater than
the sum of the two homonuclear resonance densities. This
is because each species contributes a set of internal states
that can be coupled to, and the heteronuclear resonances are
not subject to the same symmetrization requirements as the
homonuclear resonances. In resonances involving distinguish-
able particles, both gerade and ungerade Born-Oppenheimer
molecular potentials contribute, as well as both even and odd
partial waves for the entrance channel. Our data is consistent
with this expectation (α > 1). Note that we do observe a lower
number of interspecies resonances in the range 50–60 G, per-
haps as a result of the nonrandom distribution of resonances as
observed in the single-species case [43,45], or to the presence
of broad homonuclear erbium resonances that could obscure
the observation of interspecies resonances.

VI. COINCIDENT LOSS FEATURE
IN DIFFERENT ISOTOPES

Finally, we have also searched for broad (Gauss-range)
resonances in Bose-Fermi mixtures consisting of fermionic
161Dy combined with different bosonic isotopes of erbium–
166Er, 168Er, and 170Er, as well as Fermi-Fermi mixtures of
161Dy and 167Er. For these combinations, we perform only
coarse scans and thus only resolve broad features. In mixtures
involving the bosonic isotopes of erbium we observe a corre-
lated loss feature between erbium and dysprosium near 161
G (see Fig. 5). This loss feature is not present at our level
of measurement sensitivity with either species alone, or in
the mixture with the fermionic 167Er. Surprisingly, the loss
feature is centered at the same magnetic field (to within our
resolution of 0.1 G) for all bosonic isotopes of erbium. This is
quite unexpected as the magnetic-field value of the resonance
position is typically highly sensitive to the reduced mass of
the atoms involved [47].

To shed more light on this puzzling feature, we conducted
further investigations on the exemplary case of 168Er - 161Dy.
For such a mixture, we performed loss measurements with
erbium numbers ranging from 1.3 × 104 to 3 × 104 (with the
number of dysprosium fixed at 2.5 × 104). We found in each
case that the number of erbium lost was roughly equal to
the number of dysprosium lost, and that the number of total
atoms lost was roughly proportional to the number of erbium
present. We further varied the temperature of the mixture from
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FIG. 5. Trap loss spectra for fermionic 161Dy in combination
with bosonic 166Er, 168Er, and 170Er, and fermionic 167Er (a)–(d),
respectively. Red circles represent erbium, blues squares represent
dysprosium, and lines are Gaussian fits to the losses. The solid verti-
cal gray lines highlight the peak centers from the fit over dysprosium
losses. For the plots with bosonic erbium, the atom number after
100 ms of interaction time is normalized to a short hold time of 5
ms. In the plot with 167Er, the normalization is performed using the
maximum value in the dataset. For all panels, each point is an average
over four experimental repetitions.

600 to 2000 nK, and did not find a dramatic dependence of the
loss coefficient on temperature (modeling loss as either two-
body Er-Dy loss or three-body loss with equal coefficients for
Er-Er-Dy and Er-Dy-Dy).

Several physical mechanisms could be consistent with such
a feature. One possibility is that the resonance we observe is
associated with a bound state of a shallow molecular potential
[60]. Mechanisms to create such potentials have been pro-
posed for species with dipolar interactions [61,62]. However,
none are obviously applicable to magnetic atoms in the lowest
energy entrance channel. Further, given the level of insensitiv-
ity to the mass of erbium, we would expect to see additional
resonances of a shallow potential in the magnetic-field range
over which we survey, which we do not. A second possibility
is that the feature we observe is not a true interspecies res-
onance, but rather an intraspecies resonance in dysprosium
whose loss rate is enhanced by the presence of bosonic er-
bium atoms. A similar effect was reported in a mixture of
fermionic lithium and bosonic rubidium atoms [63]. Finally,
it is possible that this feature is not a Feshbach resonance at
all, but rather the result of spin-changing processes resulting
from unintentional radio-frequency tones in the laboratory, or
of an interspecies photoassociation resonance. We have ruled
out the most likely culprits for the last effect by varying the
relative detuning between our horizontal and vertical dipole
traps and observing no change in the resonance position. We
hope that our presentation of this mysterious feature may spur
theoretical exploration of possible physical mechanisms.

VII. CONCLUSIONS

In conclusion, we have reported experimental observation
of heteronuclear magnetic Feshbach resonances in several
isotope mixtures of erbium and dysprosium. Among the
Gauss-broad features identified in our surveys, we have char-
acterized one in the combination 168Er - 164Dy by means of
cross-species thermalization measurement and temperature
dependence analysis. We performed high-resolution trap-loss
spectroscopy in the combination 166Er - 164Dy to compare the
average resonance density of the mixture with respect to
the single-species case. In mixtures of fermionic 161Dy and
bosonic erbium atoms, we observed a correlated loss feature
which appears to be insensitive on the erbium isotope used
but absent in dysprosium alone. Our observations pave the
way to realize tunable interactions in quantum degenerate
mixtures of dipolar atoms. Knowledge of the range of tun-
ability of these interspecies interactions is a key ingredient
for varied opportunities including studies of the miscibility of
binary condensates, of vortex lattices, and of dipolar polarons
[32–37].
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APPENDIX: MEASUREMENT AND ANALYSIS DETAILS

1. Cross-species thermalization

As an exemplary case, we study in more detail the reso-
nance found in the 168Er - 164Dy Bose-Bose mixture near 13.5
G. To reliably quantify the value of the interspecies cross
section, we developed the following scheme for cross-species
thermalization measurements [49–51]. To avoid heating of the
sample by crossing Feshbach resonances, we evaporate the
mixture at Bev close to resonance. Specifically, when measur-
ing on the low(high)-field side of the feature we evaporate
at Bevap = 10.8 G(16.4 G). Once the sample is prepared as
previously described (here we use an unbalanced mixture with
twice as much Dy as Er), we compress the trap by linearly
increasing the horizontal ODT power by a factor of 5 and the
vertical ODT power by two in 500 ms to prevent any plain
evaporation. The final trap frequencies in the compressed trap
are ωx,y,z = 2π × (409, 26, 391)s−1. Subsequently, we ramp
the magnetic field in 5 ms to either 10 or 16 G. Here, a pulse
of near-resonant 421-nm light propagating along the magnetic
field direction (z) is used to selectively heat dysprosium. We
fix the duration of the pulse at 5.5 ms to roughly match the trap
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FIG. 6. Sample temperature traces for erbium (filled circles) and
dysprosium (hollow squares) after dysprosium is heated. Purple,
green, and orange correspond to magnetic fields of 12, 13.5, and
17 G, respectively. Fit lines represent the results of the numerical
integration of Eq. (A2), which fits the temperature profile of erbium
based on its initial value and the dysprosium temperatures. Different
evaporation conditions cause the curves to have slightly different
initial and final conditions (see main text).

oscillation period along this direction and set the pulse inten-
sity to give the desired temperature increase of the dysprosium
cloud (up to 4 μK). We confirmed that the light pulse has no
direct measurable effect on erbium. Finally, with a quench
fast compared to the shortest thermalization rate, the magnetic
field is set to the desired value BFB and held for a variable
amount of time, during which the temperature of erbium rises
to equilibrate with dysprosium due to thermalizing collisions
(Fig. 6). We note that in the temperature evolution of the
clouds, the initial temperatures are slightly different. This
behavior is mainly due to different evaporation conditions
on the two sides of the resonance, the different strength in
the quench to the final BFB, and the heating caused by the
resonance itself. By comparing the two species’ temperature,
we ensure that these different conditions are consistent with
general offsets on the single measurement thus not affecting
the final estimation of the cross-section.

To extract a scattering cross section from our cross-species
thermalization data, we use a fit to a numerical model for
the thermalization of two species. In principle, a simple ex-
ponential fit to the temperature difference between the two
species could also be used, but does not account for changes
in the atom number or average temperature of the sample that
may arise from residual evaporation during the thermalization
time. Our numerical model follows that of Ref. [49]. We treat
the scattering cross section as independent of the energy of the
colliding particles, an assumption that greatly simplifies the
analysis, but inevitably breaks down near enough to resonance
where unitarity considerations bound the scattering cross sec-
tion. This assumption leads to a collision rate for each atom

of species 1 with atoms of species 2 given by

γ12 = N2m3/2
1 ω̄3

1

π2kB(T1 + β−2T2)3/2

√
T1

m1
+ T2

m2
σ12, (A1)

where m1, m2, T1, and T2 are the masses and temperatures
of species 1 and 2, ω̄ = (ωxωyωz )1/3 characterizes the fre-
quency of the trap, β2 = m2ω̄

2
2/m1ω̄

2
1, and σ12 is the effective

interspecies cross section. We assume that the energy ex-
changed per collision is given by �E = ξkB(T2 − T1) where
ξ = 4m1m2/(m1 + m2)2, and that the heat capacity of each
atom is 3kB. This leads to a differential equation for the
temperature of erbium:

dTEr

dt
= ξkB(TDy − TEr )NDym3/2

Er ω̄3
Er

3π2kB(TEr + β−2TDy)3/2

×
√

TEr

mEr
+ TDy

mDy
σErDy, (A2)

which we can numerically integrate using the instantaneous
values for TDy and NDy, and from this extract the scattering
cross section σErDy that yields a thermalization profile that
best matches our data, as determined through a least-squares
difference. Examples of three such fits, for 12, 13.5, and 17 G
are shown in Fig. 6, and generally describe our thermalization
data well.

2. Temperature dependence of loss

We quantify the temperature dependence of three-body
loss in terms of the interspecies three-body loss coefficient.
For a single species, the three-body loss coefficient L3 can
be defined by Ṅ/N = −L3〈n2〉, where N is the total number
of atoms, and 〈n2〉 = ∫

d3r n3(r)/N represents the average
squared density of scattering partners for an atom in the gas.
n(r) is the local density of the gas.

We define analogous quantities for our two-species mix-
ture, containing particles denoted i and j. In this case,

Ṅi

Ni
= −1

3Ni

∫
d3r (2Li,i, j

3 n2
i (r)n j (r) + L j, j,i

3 ni(r)n2
j (r)).

(A3)

Here, Li,i, j
3 represents the loss rate due to collisions involving

two atoms of species i and one of j.
To arrive at simple expressions, we make several as-

sumptions and approximations. First, we treat the mass,
temperature, and polarizability of the two atomic species as
equal, which is a reasonable approximation for erbium and
dysprosium isotopes in our 1064-nm wavelength ODT [39].
This assumption implies equivalent spatial distributions for
the two species, which we assume to be thermal in our three-
dimensional harmonic trap. We next set Li,i, j

3 = L j, j,i
3 ≡ Li

3
near resonance, essentially assuming that the loss process is
primarily determined by the two pairwise interactions be-
tween the minority participant and the two majority atoms.
We find this assumption leads to a model consistent with
our observed relative loss between the two species. With
these simplifications in place, we define Li

3 using Ṅi/Ni =
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−Li
3〈n2〉i

eff , where

〈n2〉i
eff = (2NiNj + N2

j )m3ω̄6

3
5
2 8π3(kBT )3

(A4)

and ω̄ = (ωxωyωz )1/3 is the geometric mean of the trap oscil-
lation frequencies.

We extract the resonant value of L3 by measuring remain-
ing atom number versus hold time in mixtures prepared at
different temperatures, with the magnetic field set near reso-
nance at 13.4 G. We then fit the resulting data by numerically
integrating Eq. (A3). Because we observe significant single-
species loss of erbium (the majority species), we treat the
erbium atom number measured at each time step as inputs
to our fit, and extract the value of L3 that best predicts the
loss of dysprosium. Here, we assume that Li,i, j

3 = L j, j,i
3 ≡ L3.

We bound the effects of single-species loss in dysprosium by
repeating the same measurement and analysis protocol off
resonance at 11.5 G and 16.5 G. The error bars in Fig. 2
of the main text include a contribution corresponding to the
extracted L3 in the off-resonant condition, which contain
both the effects of single-species loss and the small effect

of off-resonant interspecies loss. Also included are errors as-
sociated with the observed change in temperature during the
loss measurement, and relating to the approximations made in
estimating the density.

In a regime where the scattering length a exceeds the
thermal wavelength λth = h/

√
2πmkBT , and thermal broad-

ening is small compared to the width of the loss feature, we
expect roughly L3 ∝ 1/T 2, as has been observed in several
experiments involving single atomic species [54–56]. This
picture becomes complicated somewhat in the case of a bi-
nary mixture due to stronger Efimov effects, which lead to
a temperature-dependent modulation of loss relative to the
simple 1/T 2 prediction. In particular, the parameter s0, which
characterizes the strength of the three-body Efimov poten-
tial, is equal to approximately 1.006 for identical bosons,
but approximately 0.41 for our binary mixture [57,58]. The
fractional importance of these temperature-dependent modifi-
cations scale as e−πs0 [54], making them a minor correction
for identical bosons, but a potentially important effect in mix-
tures. It is possible that such effects contribute to deviations
of our data from a 1/T 2 form, but a true calculation would
require knowledge of short-range inelastic processes in our
system.
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Supersolidity — a quantum-mechanical phenomenon characterized by the presence of both su-

perfluidity and crystalline order — was initially envisioned in the context of bulk solid helium, as

a possible answer to the question of whether a solid could have superfluid properties [1–5]. While

supersolidity has not been observed in solid helium (despite much effort)[6], ultracold atomic gases

have provided a fundamentally new approach, recently enabling the observation and study of super-

solids with dipolar atoms [7–16]. However, unlike the proposed phenomena in helium, these gaseous

systems have so far only shown supersolidity along a single direction. By crossing a structural phase

transition similar to those occurring in ionic chains [17–20], quantum wires [21, 22], and theoreti-

cally in chains of individual dipolar particles [23, 24], we demonstrate the extension of supersolid

properties into two dimensions, providing an important step closer to the bulk situation envisioned

in helium. This opens the possibility of studying rich excitation properties [25–28], including vortex

formation [29–31], as well as ground-state phases with varied geometrical structure [7, 32] in a highly

flexible and controllable system.

Ultracold atoms have recently offered a fundamentally
new direction for the creation of supersolids — rather
than looking for superfluid properties in a solid system
like 4He, ultracold atoms allow one to induce a crys-
talline structure in a gaseous superfluid, a system which
provides far greater opportunity for control and obser-
vation. This new perspective has enabled supersolid
properties to be observed in systems with spin-orbit cou-
pling [33] or long-range cavity-mediated interactions [34],
though in these cases the crystalline structure is exter-
nally imposed, yielding an incompressible state. In con-
trast, dipolar quantum gases of highly magnetic atoms
can spontaneously form crystalline structure due to in-
trinsic interactions [11–13], allowing for a supersolid with
both crystalline and superfluid excitations [14–16]. In
these demonstrations, supersolid properties have only
been observed along a single dimension, as a linear chain
of phase-coherent “droplets”, i.e. regions of high density
connected by low-density bridges of condensed atoms,
confined within an elongated optical trap.

The extension of supersolidity into two dimensions is a
key step towards creating an ultracold gas supersolid that
is closer to the states envisioned in solid helium. Com-
pared to previous studies of incoherent two-dimensional
dipolar droplet crystals [8, 35], we work with both a sub-

stantially higher atom numberN and relatively strong re-
pulsive contact interactions between atoms. This leads to
the formation of large numbers of loosely bound droplets,
enabling us to establish phase coherence in two dimen-
sions. In our system, the repulsive dipolar interactions
between droplets facilitate a structural transition from
a linear to a two-dimensional array, analogous to the
Coulomb-interaction-mediated structural phase transi-
tions observed with ions [17–20]. Unlike ions however,
our droplets are compressible and result from the spon-
taneous formation of a density wave, allowing for dynam-
ical variation in both droplet number and size. Further,
the exchange of particles between droplets enables the
spontaneous synchronization of the internal phase of each
droplet across the system, and the associated superfluid
excitations [14–16].

Dipolar quantum gases exhibit a rich set of ground-
and excited-state phenomena due to the competition
between many energetic contributions. These include
mean-field interactions of both contact and dipolar na-
ture, quantum fluctuations, and external confinement,
parameterized by potentially anisotropic trapping fre-
quencies fx,y,z. Such systems can be described with
great accuracy by using an extended Gross–Pitaevskii
equation (eGPE) [36–39]. Even a fine variation of the

ar
X

iv
:2

10
2.

05
55

5v
1 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 1

0 
Fe

b 
20

21
C.3 additional publications XLIII



2

2D9
2D8

2D7

2D6

2D5

1D6

1D5

1D4 1D3

a.

b.

0.34 0.36 0.38 0.4
Trap aspect ratio t

3

4

5

6

7

At
om

 n
um

be
r N

104

0

10

-10
-5 0 5

y (µm)
-5 0 5

y (µm)
-5 0 5

y (µm)

x 
(µ

m
)

FIG. 1. Calculated phases of dipolar droplet array. a.

In-trap ground-state density profiles calculated using eGPE

for atom numbers N ∈ [3.3, 4.4, 5.8] × 104 in the droplets

and trap aspect ratios αt = fx/fy ∈ [0.33, 0.35, 0.39] (left

to right). The scattering length a = 88 a0, where a0 is the

Bohr radius. Green dots depict the droplet positions obtained

from the variational model, assuming the same N and droplet

number ND as the eGPE. Stars connect to experimentally

observed density profiles in Fig. 2b. b. Phase diagram, ob-

tained from our variational model, as a function of N and αt

for fx = 33 Hz, fz = 167 Hz. Linear (two-dimensional) phases

with ND droplets are labelled as 1DND (2DND ).

strength of these energetic contributions can lead to dra-
matic qualitative changes in the state of the system, for
example enabling a transition from a uniform conden-
sate to a supersolid, or in our present case, from a linear
supersolid to a two-dimensional one.

Fig. 1a shows ground-state density profiles calculated
across this transition using the eGPE at zero temper-
ature. These profiles feature arrays of high-density

droplets, immersed in a low-density coherent “halo” that
establishes phase-coherence across the system. As the
trap becomes more round, the initially linear chain of
droplets acquires greater transverse structure, eventually
forming a zig-zag state consisting of two offset linear ar-
rays.

Although the eGPE has remarkable predictive power,
full simulations in three dimensions are numerically
intensive, making a global survey of the array properties
as a function of our experimental parameters difficult.
To overcome this limitation, we employ a variational
ansatz that captures the key behavior of the system, and
allows us to disentangle the competing energetic contri-
butions. In this approach, we describe an array of ND
droplets by the wavefunction ψ(r) =

∑ND
j=1 ψj(r), where

the j–th droplet is assumed to be of the form: ψj(r) ∝
√
Nj exp

(
− 1

2

(
|ρ−ρj |
σρ,j

)rρ,j)
exp

(
− 1

2

(
|z−zj |
σz,j

)rz,j)
, in-

terpolating between a Gaussian and a flat-top profile
characteristic of quantum droplets [40]. For a given total
number of atoms N and droplet number ND, energy
minimization provides the atom number Nj in each
droplet, as well as their widths σρ(z),j , exponents rρ(z),j ,
and positions ρj = (xj , yj). Repeating this energy
minimization as a function of ND gives the optimal
number of droplets. This model provides a good quali-
tative description of the overall phase diagram (Fig. 1b),
revealing that the interplay between intra-droplet
physics and inter-droplet interaction results in a rich
landscape of structural transitions as a function of the
atom number and the trap aspect ratio αt = fx/fy.

Several trends are immediately visible from the phase
diagram. Larger N and higher αt generally produce
states with larger numbers of droplets. Further, as with
ions, a large number of droplets favors a 2D configuration,
while tighter transverse confinement (small αt) favors 1D
[17–20]. A transition from 1D to 2D is thus expected
when moving towards larger N or to higher αt. In stark
contrast to the case of ions, the number of droplets typi-
cally increases across the 1D to 2D transition, implying a
first-order nature, while only narrow regions in the phase
diagram may allow for a 1D-to-2D transition at constant
droplet number.

The variational results are in excellent agreement with
our eGPE numerics, in terms of predicting the qualitative
structure of droplet array patterns, as shown in Fig. 1a.
Slight discrepancies exist between the two theories re-
garding the predicted droplet positions and the location
of the 1D-to-2D transition. This is likely because of the
presence of the halo in the eGPE simulation (and pre-
sumably in the experiment), visible in Fig. 1a, which is
not accounted for in the variational model. This halo ap-
pears to accumulate at the ends of the trap, pushing the
droplets toward the trap center and likely increasing the
effective trap aspect ratio experienced by the droplets.

To explore the 1D to 2D transition experimentally, we
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FIG. 2. Linear to zig-zag transition in an anisotropic trap. a. We confine and condense dipolar 164Dy atoms within

an anisotropic optical dipole trap (ODT) formed by the intersection of two laser beams. By tuning the aspect ratio of the

trap in the x-y plane (αt), perpendicular to an applied magnetic field B, we induce a transition between linear and zig-zag

configurations of droplets. b. Single-trial images of the in-trap density profile of atoms at different αt, showing structural

transition from linear to zig-zag states, as well as an increase in droplet number for higher αt. Stars indicate values αt and N

corresponding to the eGPE calculations of Fig. 1a. c. Atomic aspect ratio αa versus trap aspect ratio αt. αa is the ratio of

minor to major axes of a two-dimensional Gaussian fit to the imaged in-trap density profile (inset). For the supersolid droplet

array (black markers) we see an abrupt change in αa at the critical trap aspect ratio α∗t , extracted from the fit (gray line, see

methods). The shape of the transition agrees well with eGPE prediction (green diamonds, see methods). For an unmodulated

condensate (white markers), no abrupt change is evident. d. Distribution of droplet number versus αt, showing a distinct

increase in droplet number at the transition of linear to zig-zag configurations.

use a condensate of highly magnetic 164Dy atoms con-
fined within an anisotropic optical dipole trap with in-
dependently tunable trap frequencies fx,y,z. The trap,
shown in Fig. 2a, is shaped like a surf-board with the
tight axis along gravity and along a uniform magnetic
field that orients the atomic dipoles and allows tuning
of the contact interaction strength. Typically, we per-
form evaporation directly into our state of interest at
our desired final interaction strength, as demonstrated
in Refs. [13, 41]. A combination of in-trap and time-of-
flight (TOF) imaging provides us with complementary
probes of the density profile of our atomic states, and
the phase coherence across the system.

We begin by studying the transition from one to two
dimensions by changing the strength of transverse con-
finement provided by the trap. Our optical setup allows
us to tune fy from roughly 75 to 120 Hz, while leaving
fx, fz nearly constant at 33(2), 167(1) Hz, and thus to
vary the trap aspect ratio αt in the plane perpendicu-
lar to the applied magnetic field and our imaging axis.

For small αt, the atoms are tightly squeezed transversely,
and form a linear-chain supersolid (as seen in in-trap im-
ages of Fig. 2b). As we increase αt above a critical value
α∗t = 0.34(2), we observe a structural phase transition
to a two-dimensional (2D) state with two side-by-side
droplets in the center of the chain. By further increasing
αt, the 2D structure extends to two offset lines of droplets
in a zig-zag configuration. The observed patterns match
well with the ground-state predictions from the eGPE
calculations when we globally fix the scattering length to
88a0.

We obtain higher atom numbers in the more oblate
traps (higher αt), giving N = 6.5(5) × 104 at αt = 0.44
and N = 2.5(4) × 104 at αt = 0.28. This further facil-
itates the crossing of the 1D to 2D transition, by favor-
ing states with larger numbers of droplets in the broader
traps. In the zig-zag regime, two-dimensional modula-
tion is clearly visible for durations beyond one second.
Further, the droplet configuration patterns are fairly re-
peatable, with clear structure visible in averaged images
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FIG. 3. Coherence in linear and zig-zag states. Upper panels show averaged images of experimental TOF interference

patterns, along with projections along horizontal and vertical directions of average (solid black lines) and individual images

(gray lines). The vertical projection is calculated between the dashed lines. Lower panels show interference patterns calculated

for the pictured in-trap droplet configurations (green outlines). a. Linear chain of phase-coherent droplets, showing uniaxial

modulation persisting in averaged image (26 trials). b. Zig-zag configuration of phase-coherent droplets, showing modulation

along two directions that persists in averaged image (51 trials), and hexagonal structure. The spacing of rows in the simulation

was adjusted to approximate the observed aspect ratio of TOF image. The image outlined in blue shows the average momentum

distribution calculated from a series of 20 variational calculations converging to slightly different droplet configurations, showing

the tendency of such fluctuations to broaden features in the interference pattern while maintaining the underlying structure.

c. Zig-zag configuration of phase-incoherent droplets. Modulation remains in single images, as evidenced by the spread of gray

traces in projection, but washes out in average (43 trials).

as shown in the inset of Fig. 2c, which is an average of 23
trials taken over roughly two hours.

The transition from 1D to 2D is immediately visible
when plotting the atomic aspect ratio αa versus αt, as
shown in Fig. 2c. We find that αa undergoes a rapid
change at α∗t , as the single linear chain develops two-
dimensional structure. For comparison, we plot αa mea-
sured for an unmodulated BEC, formed at a different
magnetic field, which does not feature the sharp kink
present for the supersolid state.

In Fig. 2d, we show the number of droplets present for
different αt. In the 1D regime, we typically see between
five and six droplets. This number abruptly jumps up by
approximately one droplet for 2D states near the tran-
sition point, and then increases up to an average value
of eight droplets as αt is further increased. The change
in droplet number indicates that the transition that we
observe is not of simple structural nature, but is also

accompanied by a reconfiguration of atoms within the
droplets, as expected from theory (see Fig. 1).

The measurements of in-trap density presented above
inform us about the structural nature of the transition,
but not about phase coherence, which is the key distin-
guishing feature between an incoherent droplet crystal
and a supersolid. Previous observations of 2D droplet
arrays [35] were performed in traps where the ground
state is a single droplet [8], and the observed droplet
crystal was likely a metastable state lacking inter-droplet
phase coherence. In contrast, we expect from our theo-
retical calculations that the 2D array is the ground state
of our surfboard-shaped trap (for αt > α∗t ), facilitating
the formation of a phase-coherent, and therefore super-
solid state for our experimental parameters.

We experimentally demonstrate the supersolid nature
of our 2D modulated state using a matter-wave interfer-
ence measurement, as previously used in linear supersolid
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chains [11–13], (Fig. 3a). In this measurement, an array
of uniformly spaced droplets creates an interference pat-
tern with spatial period proportional to the inverse of the
in-trap droplet spacing. The relative internal phase of the
droplets determines both the contrast and spatial phase
of the interference pattern [42]. When averaging over
many interference patterns, obtained on separate runs
of the experiment, clear periodic modulation persists for
phase-coherent droplets, but averages out if the relative
droplet phases vary between experimental trials. Thus,
the presence of periodic modulation in an average TOF
image provides a clear signature of supersolidity in our
system, as it indicates both periodic density modulation
and phase coherence.

Figure 3a shows an example of such an averaged inter-
ference pattern for a linear chain. Uniaxial modulation
is clearly present along the direction of the chain, indi-
cating a high degree of phase coherence. For comparison,
we also show the expected interference pattern calculated
for a linear array of four droplets from free-expansion cal-
culations, showing similar structure.

For conditions where in-trap imaging shows a 2D zig-
zag structure, the averaged interference pattern exhibits
clear hexagonal symmetry (Fig. 3b). This is consistent
with our expectation, and is indicative of the triangular
structure of the underlying state. To confirm that the
observed modulation is not present without phase coher-
ence, we repeat the measurement of Fig. 3b at a mag-
netic field corresponding to independent droplets, and
also compute averaged interference pattern for a zig-zag
state with the phases of the individual droplets random-
ized between simulated trials (Fig. 3c). In both cases, the
averaged image does not show clear periodic modulation.

By exploiting the transition between linear and zig-
zag states, we have accessed a regime where the super-
solid properties of periodic density modulation and phase
coherence exist along two separate dimensions. Future
work will focus on further understanding the spectrum
of collective excitations in the full two-dimensional sys-
tem [26–28, 43], where both the crystalline structure and
the exchange of particles between droplets will play an
important role. Further investigations may elucidate in
more detail the nature of the phase transitions and ex-
pected configurations in a wider range of trap aspect ra-
tios, as well as the role that defects play in the 2D system,
either as phase-slips in the zig-zag patterns [44, 45], or as
vortices trapped between droplets of the array [29–31].
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[38] F. Wächtler and L. Santos, Quantum filaments in dipo-

lar bose-einstein condensates, Phys. Rev. A 93, 061603

(2016).

[39] R. N. Bisset, R. M. Wilson, D. Baillie, and P. B. Blakie,

Ground-state phase diagram of a dipolar condensate with

quantum fluctuations, Phys. Rev. A 94, 033619 (2016).

[40] L. Lavoine and T. Bourdel, 1d to 3d beyond-mean-

field dimensional crossover in mixture quantum droplets

(2020), arXiv:2011.12394 [cond-mat.quant-gas].

[41] M. Sohmen, C. Politi, L. Klaus, L. Chomaz, M. J. Mark,

M. A. Norcia, and F. Ferlaino, Birth, life, and death

of a dipolar supersolid, arXiv preprint arXiv:2101.06975

(2021).

[42] Z. Hadzibabic, S. Stock, B. Battelier, V. Bretin, and

J. Dalibard, Interference of an array of independent

Bose–Einstein condensates, Phys. Rev. Lett. 93, 180403

(2004).

[43] J.-N. Schmidt, J. Hertkorn, M. Guo, F. Böttcher,
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Methods

Experimental apparatus and protocols: Our ex-
perimental apparatus has been described in detail in
Ref. [46]. Here, we evaporatively prepare up to N =
6.5(5) × 104 condensed 164Dy atoms in a crossed opti-
cal dipole trap formed at the intersection of two beams
derived from the same 1064 nm laser, although detuned
in frequency to avoid interference. One beam (the static
ODT) has an approximately 60 µm waist. The second
(the scanning ODT) has an 18 µm waist, whose position
can be rapidly scanned horizontally at 250 kHz to cre-
ate a variably anisotropic time-averaged potential. By
tuning the power in each beam, and the scanning range
of the scanning ODT, we gain independent control of the
trap frequencies in all three directions. The two trapping
beams propagate in a plane perpendicular to gravity, and
cross at a 45° angle, which leads to the rotation of the
zig-zag state at high αt visible in Fig. 2b.

We apply a uniform magnetic field oriented along grav-
ity and perpendicular to the intersecting dipole traps,
with which we can tune the strength of contact interac-
tions between atoms. This allows us to create unmod-
ulated Bose-Einstein condensates, supersolid states, or
states consisting of independent droplets at fields of B =
23.2 G, 17.92 G, and 17.78 G, respectively.

Details of our imaging setup are provided in Ref. [41].
In-trap and TOF images are performed along the vertical
direction (along B and gravity), using standard phase-
contrast and absorption techniques, respectively. The
resolution of our in-trap images is approximately one mi-
cron. We use a 36 ms TOF duration for imaging interfer-
ence patterns.
Atom number: We extract the condensed atom number
N from absorption imaging performed along a horizontal
direction in a separate set of experimental trials under
otherwise identical experimental conditions. This allows
for a larger field of view, and better fitting of thermal
atoms. N is determined by subtracting the fitted thermal
component from the total absorption signal.

For comparison between experiment and theory, and
between the variational and eGPE theory methods, we
associate N with the number of atoms in the droplets,
and not in the diffuse halo that surrounds the droplets.
From simulation of TOF expansion, we find that the halo

is repelled at early expansion times, and is likely indis-
tinguishable from the thermal cloud in our TOF mea-
surements. While it is possible that some of the halo is
counted in N , we neglect this possibility and assume that
N includes only atoms within droplets.

Scattering length: The positions of phase boundaries
between different droplet configurations are quite sensi-
tive to the scattering length a, which is not known with
high precision in our range of magnetic fields. For all
theory, we use a value of a = 88 a0, where a0 is the Bohr
radius, as this value provides good agreement between
experiment and theory for the 1D-to-2D transition point.

Extracting critical aspect ratio: The critical aspect
ratio α∗t is extracted from fit to the function αa = α0 for
αt < α∗t , αa =

√
α2
0 + b(αt − α∗t )2 for αt > α∗t , where

α∗t , α0, and b are fit parameters. The error bars reported
in Fig. 2c represent the standard error on the mean, and
are smaller than the markers on most points.

Interference patterns: The predicted interference pat-
terns of Fig. 3 are calculated by assuming free expansion
of Gaussian droplets. In reality, the droplets are prob-
ably not Gaussian, and interactions during TOF expan-
sion may modify the interference pattern. However, the
droplet shape primarily effects the envelope of the inter-
ference pattern, which is not our primary interest here,
and from eGPE simulations, we expect the effects of in-
teractions to be minor, provided that the droplets be-
come unbound in a time short compared to the TOF,
which we verify by both looking at shorter TOFs and
comparing the fringe spacing observed in TOF with that
expected from the in-trap droplet spacing. The positions
and size of the droplets are tuned to provide illustrative
interference patterns.

Droplet number: We extract the droplet number from
our in-trap images using a peak-finding algorithm ap-
plied to smoothed images. The algorithm finds the local
maxima above a threshold, which is chosen to be 40%
of the overall peak value. Each in-trap density distribu-
tion is classified as linear array or 2D zig-zag based on
the atomic aspect ratio. Finally, the counts with a given
droplet number are normalized by the total number of
trials to get the probability shown in Fig. 2d. Fluctua-
tions in the number of atoms in a given trial can push
droplets above or below the threshold value, contributing
to the spread in extracted droplet number for a given αt.
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