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Abstract

This thesis studies optical setups to shape laser light in order to optically trap ultra-
cold atoms. In particular, we will report on two different techniques. The first one is
based on the periodic displacement of a laser beam in order to create a time-averaged
potentials, whereas the second focuses on the spatial modulation of the polarization
of the light.
For the time-averaged potential, we develop a new scanning optical dipole trap to
replace the old one which has been implemented in the early stages of the ERBIUM
experiment [Bai12]. The scanning optical dipole trap realizes a tunable aspect ratio
which improves the loading efficiency from the magneto-optical trap and allows to
control the trap geometry, which is crucial for observing many-body effects such as
supersolidity in a dipolar quantum gas. The tunable aspect ratio is achieved by peri-
odically displacing the 1st diffraction order of an acousto-optical modulator. Because
the scanning of the beam happens at a frequency much faster than the frequency of the
harmonic trap, the atoms experience a time-averaged potential shaped by the elliptical
beam profile. The optical setup is first tested offline, where we find that the waist in
the scanning direction can be tuned from 22.38(2)µm to 169.3(2)µm. The setup was
then implemented into the experiment. Relying on the excitation of the dipole mode,
we measure a trap frequency of 2π × 203.3(6)Hz without scanning and 2π × 64(3)Hz
at the maximum scanning amplitude.
The second part of this thesis investigates the possibility of using q-plates to generate
optical trapping potentials for ultracold erbium. Q-plates are optical elements that
contain a liquid crystal layer where a specific pattern is imprinted to generate a helical
phase front as light passes through. This creates an optical vortex, meaning that the
intensity is zero in the beam’s center. In addition, the polarization profile of the beam
varies around the radial direction. The idea is now to use such a spatially non-uniform
polarization for erbium, which has a polarization-dependent atom-light interaction. As
a lanthiande atom, it features both a strong vectorial and tensorial part of the polar-
izability in addition to the isotropic scalar part. To enter regimes where the vectorial
and tensorial parts become comparable the isotropic part, we aim to use light which is
detuned by a few GHz from the narrow 841 nm transition. Indeed, we calculate that
q-plate beams can generate a ring lattice potential for erbium atoms. We identify and
discuss several challenges for the experimental implementation, for example regarding
the heating due to photon scattering or aberrations and imperfections in the optical
system that could introduce unwanted effects on the trapping potential.
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1
Introduction

After James Clerk Maxwell combined electric and magnetic fields in his equations in
1865 [Max65], it seemed that the basic laws of nature were fully understood through
the classical theories of mechanics, electromagnetism and thermodynamics. In the late
19th century, the photo-electric effect and the Rayleigh-Jeans ultraviolet catastrophe
challenged this view on physics, and eventually lead to the revolutionary theory of
quantum mechanics [Zub16]. The concept of quantization was first introduced by
Max Planck in 1900 to resolve the UV catastrophe for black-body radiation [Pla01].
Satyendra Nath Bose later applied this idea to derive the Bose-Einstein statistics for
photons [Bos24] and Albert Einstein extended Bose’s theory to matter, predicting the
Bose-Einstein condensate in 1925 [Ein05].

A Bose-Einstein condensate (BEC) is a quantum state of matter that can not be
understood in terms of classical physics. According to the particle-wave duality that
Louis de Broglie formulated in 1924, atoms start to reveal their wave-like nature at
ultralow temperatures [DB24]. When Bose-Einstein condensation occurs, identical
bosons collectively occupy the ground state and behave as a macroscopic quantum
object that can be described by a single wave function. It took decades of develop-
ment in laser technology and optical trapping and cooling techniques to reach sufficient
phase-space densities required for the realization of the first Bose-Einstein condensates
in 1995 [Dav95, And95] and the first degenerate Fermi gas in 1999 [DeM99]. In the
case of fermions, the particles can not condense into the ground state because of the
Pauli exclusion principle. Instead, they fill up the lowest energy levels up to the Fermi
energy with at most one particle per quantum state.

Since the first degenerate Bose and Fermi gases were realized experimentally, the
field of ultracold atoms has evolved rapidly. To date, there are 14 atomic species that
have been Bose-Einstein condensed. The initial experiments focused on alkali metals,
chosen for their relatively simple electronic structure with a single valence electron.
Lanthanide atoms, in contrast, possess a more complex submerged-shell structure, re-
sulting in a rich energy spectrum, large spin manifolds and permanent magnetic dipole
moment in the ground state [Nor21]. The first lanthanide Bose-Einstein condensate
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2 1. Introduction

was achieved with dysprosium in 2011 at Stanford [Lu11]. Soon after, in 2012, bosonic
erbium was brought to quantum degeneracy in our group [Aik12] and fermionic erbium
followed in 2014 [Aik14].

In addition to the short-range, isotropic contact interaction that is also present in
alkali atoms, ultracold dipolar atoms interact via the long-range, anisotopic magnetic
dipole-dipole interaction. Feshbach resonances allow to tune the relative strength of
the two types of interactions which enables the exploration of many-body physics such
as the roton instability, the supersolid phase, and the self-bound quantum macro-
droplet [Cho22]. Additionally, dipolar condensates can be prepared in different spin
states or mixtures of spin states which gives rise to spin-dependent interaction dy-
namics [Bur16, Cla24]. Because they are well-isolated systems and offer a wide range
of tunable parameters, experiments with ultracold dipolar atoms have emerged as
promising platforms for quantum simulation, a concept that was first introduced by
Richard Feynman in 1982 [Fey82]. He proposed to engineer well-controlled quantum
systems for studying complex quantum phenomena that can not be simulated with
classical computers. Many different platforms are being developed for this purpose:
trapped ions, quantum dots, superconducting circuits, photons in nanostuctures and
Rydberg atom arrays, just to name a few [Alt21]. Possible applications range from en-
hancing high-temperature superconductivity, investigating light-harvesting molecules
in quantum chemistry to gaining insights into quantum gravity. Peter Zoller and others
proposed to use ultracold atoms confined in optical lattices to realize Hubbard Hamil-
tonians from condensed-matter physics [Jak98, Jak05]. Experimentally, the quantum
phase transition from superfluid to Mott insulator has been observed for the 3D Bose-
Hubbard model [Gre02] and its extended version that includes dipolar interactions
[Bai16]. Furthermore, the phase transition from superfluid to dipolar quantum solid
has been demonstrated for the 2D Bose-Hubbard model [Su23]. Pushing the limits of
quantum simulation further will require reducing calibration errors, decoherence and
noise as well as cross-platform verification of results that can not be confirmed with
classical computers [Dal22].

Optical trapping, cooling, and manipulation of particles for quantum simulation and
other purposes requires precise control over light fields. For instance, the creation
of the first optical tweezer by Arthur Ashkin and co-workers in 1986 relied on tight
focusing of light with a lens that has a high numerical aperture (NA) [Ash86]. More
recently, in 2023, a high-NA objective was crucial in achieving single-site resolution
in a quantum gas microscope for erbium developed by the Greiner group [Su23]. In
addition to high-NA optics, various devices have been designed to shape the intensity
profile of light and therefore the trapping potential for the atoms. Acousto-optical
modulators (AOMs) and acousto-optical deflectors (AODs) allow for precise displace-
ment of laser beams, for example to create optical tweezer arrays [Coo18, Nor18].
Digital micromirror devices (DMDs) [Gau16] and liquid crystal spatial light modula-
tors (LC SLMs) [Bar16] provide even greater flexibility in manipulate light, but they
are more complex to implement. Another significant development in this field is the
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invention of q-plates in 2006 by Lorenzo Marrucci’s group in Naples, which enables
the generation of spatially-dependent polarization profiles in light [Rub19].

The first part of my master thesis focuses on shaping the intensity profile of light;
specifically, the implementation of an optical dipole trap with tunable aspect ratio
in the ERBIUM experiment. The tunability is achieved by periodically displacing
the dipole trap beam with an AOM. This scanning technique creates a flexible time-
averaged potential for the atoms, similar to the first scanning optical dipole trap
installed in the early stages of the experiment [Bai12]. The second part of my thesis
explores the idea to generate light with a spatially-dependent polarization profile us-
ing q-plates. Given that erbium atoms interact with light in a polarization-dependent
manner, this method offers a novel approach to engineering the potential landscape
for the atoms.

The thesis is structured in the following way:

Chapter 2 reviews the properties of erbium and the main parts of the ERBIUM
experiment.

Chapter 3 presents the relevant theory for atom-light interaction. First, we discuss
the regime where the light is far-detuned from atomic transitions. This is typically
the case for optical dipole traps to ensure essentially isotropic atom-light interaction
and to minimize losses due to photon scattering. Secondly, we discuss the regime
close to atomic resonances where the anisotropic polarizability of lanthanides leads to
polarization- and state-dependent atom-light interaction.

Chapter 4 motivates the implementation of a new scanning optical dipole trap into
the ERBIUM experiment and explains the basic idea of creating time-averaged optical
potentials for the atoms by periodically displacing a beam with an AOM. The next
section describes the electronics that create the radio-frequency signal to control the
AOM. After presenting the optical setup and the offline testing results, the scanning
ODT is implemented into the experiment and characterized by performing trap fre-
quency measurements.

Chapter 5 introduces q-plates by reviewing the basics of representing polarization
states of light, explaining the composition and working principle of q-plates and demon-
strating how the polarization profile of a q-plate beam can be measured with projec-
tions onto the polarization basis states. From the intensity and polarization profile of
a q-plate beam, we calculate the optical potential it creates for erbium atoms. Last,
we discuss possible challenges for the implementation of q-plates.
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2
Overview on the properties
of erbium and the
ERBIUM experiment

Erbium is a rare-earth metal and part of the lanthanide (Ln) series, a family of 15
atoms with atomic numbers 51-71. Except for ytterbium, which possesses only filled
electronic shells, all Ln elements exhibit an electron vacancy in a highly anisotropic
shell (4f for all Ln excluding lanthanum and lutetium) that is surrounded by a fully
occupied isotropic s-shell. This special electronic configuration, often referred to as
a submerged-shell structure, gives rise to a series of unusual properties that make
lanthanides especially interesting for ultracold experiments. In this chapter, which is
mainly based on reference [Fri14], I will summarize the basic properties of erbium,
describe how its electronic configuration leads to a rich energy spectrum and high
magnetic moment compared to most other atomic species, and give a brief overview
of the ERBIUM experiment.

2.1. Basic properties

Erbium (Er) is a silvery, soft metal in its solid form and has an atomic number of
Z = 68. The rare-earth element can be separated from minerals that are contained in
the earth’s crust. Table 2.1 lists the relative natural abundance of the one fermionic
and five bosonic isotopes. The relative atomic mass of erbium which is calculated by
taking into account the natural abundance of each isotope is 167.26 u, where u is the
atomic mass unit. The bosonic isotopes of erbium have a nucleus comprised of an even
number of protons and neutrons. As a consequence, these isotopes possess a nuclear
spin of zero (I = 0). Conversely, the fermionic isotope has an even number of protons
but an odd number of neutrons which results in a nuclear spin of I = 7/2.
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6 2. Overview on the properties of erbium and the ERBIUM experiment

Table 2.1.: The six stable isotopes of Erbium with their natural abundances and quantum
statistics.

Isotope 162Er 164Er 166Er 167Er 168Er 170Er
Natural abundance 0.14% 1.61% 33.6% 23.0% 26.8% 15.0%

Statistics Boson Boson Boson Fermion Boson Boson

2.2. Electronic configuration

As for all lanthanides in the ground state, 54 electrons compose the Xenon-like core
of the electronic structure of erbium and the remaining ones distribute among the
valence shells according to the Madelung rule. Of the 14 valence electrons in erbium,
12 electrons occupy the 4f shell that is surrounded by two electrons in the 6s shell:

(1s22s22p63s23p63d104s24p64d105s25p6)4f 126s2 = [Xe]4f 126s2.

Figure 2.1 illustrates this electronic configuration and highlights the submerged-shell
structure in the inset. While the surrounding 6s shell is completely filled, the 4f shell
hosts two unpaired electrons in the mL = 2 and mL = 3 states. These electrons can
be excited to other shells which gives rise to the rich energy spectrum of erbium. The
anisotropy of the electronic wavefunctions of these states leads to the large angular
momentum of erbium in its ground state.
For the ground state of erbium, the LS-coupling scheme, also known as Russel-Saunders
coupling, applies. In this scheme, the electronic spin with associated quantum number
S couples to the orbital angular momentum with quantum number L to result in the
total angular momentum described by the quantum number J = L+S. The electronic
state can be expressed in the usual spectroscopic notation 2S+1LJ , where L is labeled
with s = 0, p = 1, d = 2, f = 3, .... For erbium, the ground state is

g.s. : 3H6 where S = 1, L = 5, J = 6.

For the excited states, the jj-coupling scheme has to be applied since the strength
of the spin-orbit interaction becomes comparable to the Coulomb interaction [Fri14].
In this scheme, the inner electrons in the [Xe]-like core and 4f -shell couple with LS-
coupling. The resulting total angular momentum J1 then couples to the angular
momentum J2 of the outer electrons: J = J1+J2 which is denoted as (J1, J2)J . Taking
the 841 nm-transition as an example, one electron in the 4f shell can be excited to the
5d shell which results in a total angular momentum of J = 7:

841 nm ex.s. : [Xe]4f 11(4I15/2)5d5/26s
2(15/2, 5/2)7
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Figure 2.1.: Electronic configuration of erbium in the ground state. The inner 54 electrons
can be summarized as a Xenon-like core. The 6s (L = 0) valence shell is fully occupied
with two electrons. The 4f (L = 3) valence shell has an electron vacancy in each of the
mL = 2 and mL = 3 states. The anisotropy of the electronic wavefunction corresponding
to these states is shown in the figure inset (red plots). The surrounding symmetric 6s shell
(blue plots) illustrates the submerged shell structure of erbium. The shape of the electronic
wavefunctions is indicated by plotting the corresponding probability distribution, obtained
from the absolute square of the spherical harmonics with indices L,mL.

2.3. Energy spectrum

Lanthanides with a submerged-shell structure such as erbium feature a rich energy
level spectrum compared to alkali and alkali-earth elements. The unpaired electrons
can be easily excited, leading to more than 670 transitions observed so far [Kra23].
There are five laser-cooling transitions that have been identified for erbium. Table 2.2
lists their wavelengths, decay rates and natural linewidths. Figure 2.2 shows the full
energy level scheme for erbium for wavenumbers below 26 000 cm−1 together with the
wavelengths relevant to our experiment. For the scope of this thesis, two wavelengths
in the near-infrared regime are important: The far-detuned 1064 nm light is relevant
for the new scanning optical dipole trap and the 841 nm transition is used for the
simulations with q-plates.

Table 2.2.: The five optical transitions in erbium suitable for laser cooling [Ban05].

Wavelength λ Decay rate Γ Natural linewidth ∆ν
400.91 nm 1.7× 108 s−1 29.7MHz
582.84 nm 1.0× 106 s−1 186 kHz
631.04 nm 1.8× 105 s−1 28 kHz
841.22 nm 5.0× 104 s−1 8.0 kHz
1299.21 nm 13 s−1 2.1Hz
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Figure 2.2.: Energy spectrum of erbium. Red and blue lines indicate states with even and
odd parity. The arrows show wavelengths relevant to our experiment: The broad 401 nm line
is suitable for an efficient operation of the Zeeman slower and transversal cooling. The 583 nm
line is narrower, which means that a lower temperature can be reached in the magneto-
optical trap. The narrow 1299 nm transition with a linewidth of 1.8Hz makes coherent spin
manipulation possible. The 1064 nm and 532 nm light is suitable for far-detuned optical
dipole traps.

2.4. Magnetic moment

Another important property of erbium is its large magnetic moment µ in the ground
state. It arises due to the large angular momentum of J = 6 from spin-orbit coupling
in the submerged-shell structure. For bosonic erbium, the projection of the magnetic
moment on the quantization axis set by an external magnetic field is

µ = mJ gJ µB 2.1

where µB = eℏ/(2me) is the Bohr magneton and mJ = −J, ..., J is the projection of
the total angular momentum on the quantization axis. The Landé g-factor gJ for the
total electronic angular momentum in the good approximation of LS-coupling is

gJ = 1 + (gS − 1)
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
2.2
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where g2 ≈ 2.002 is the Landé g-factor for the electron. In the ground state, J = 6
and mJ = −6, which results in a Landé g-factor of gJ = 1.16 and consequently the
magnetic moment of erbium is

µ = −6.98µB.

Comparing to other atomic species, a magnetic moment of µ ≳ 5µB is generally
considered as “large”. In fact, laser cooling of atomic species with a larger magnetic
moment than erbium has only been achieved for holmium and dysprosium.

2.5. Creating a Bose-Einstein condensate in the
ERBIUM experiment

This section gives a short overview of the steps to create a Bose-Einstein condensate
in the ERBIUM experiment. Figure 2.3 shows the vacuum section which constitutes
the main part of the experiment. Erbium granules are heated in an oven to 1100 °C
and the atomic vapour passes through a set of apertures, called the hot lip, that is
heated to 1200 °C. The atoms leave the oven section with an average velocity of about
430m/s and enter the transversal cooling stage. Here, a 2D-optical molasses operating
at the broad 401 nm line cools in the radial direction and collimates the atomic beam.
Next, the Zeeman slower that also operates on the 401 nm transition, slows the atoms
to a mean velocity of 5-10m/s. Now, the atoms can be captured in the experimental
chamber by the magneto-optical trap (MOT) that works on the more narrow 583 nm
transition. In the MOT, about 2 × 107 atoms are cooled to a temperature of around
10µK after 3 s. In the last step to reach quantum degeneracy, the atoms are loaded
into a crossed optical dipole trap and are cooled evaporatively. With an optimized
loading and cooling sequence that takes 12 s, we produce a BEC with typical atom
numbers of 104 - 105 and condensate fractions of 60 - 70%.

Figure 2.3.: Vacuum section of the ERBIUM experiment. Taken from [Fri14].
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3
Atom-Light interaction
theory

Understanding the interaction of an atomic medium with light is the foundation to
optical trapping of ultracold atoms. When atoms interacts with light, they experience
an optical dipole potential which can be used for trapping. However, the scattering
of photons leads to heating of the atoms. Both mechanisms go hand-in-hand, but
their relative strength can be tuned by changing the frequency of the light. For light
with a frequency sufficiently far away from atomic resonances (far-detuned regime),
the scattering rate is negligible and the potential for the atoms, governed by the
intensity profile of the light, becomes essentially conservative. The atoms are attracted
to intensity maxima for red-detuned light, and repelled from them for blue-detuned
light. For light close to resonance, the atom-light interaction becomes more intricate.
Specifically for lanthanides, one has to take into account the anisotropic character
of their electronic configuration. This leads to a dependence of the potential and
the photon scattering on the angular momentum quantum numbers J and mJ , the
direction of the magnetic field, the propagation direction of the light and the light’s
polarization vector.
In this chapter, the optical dipole potential and scattering rate will be introduced based
on reference [Gri00] and we discuss the trapping of atoms in the far-detuned regime
by relying on the intensity profile of a Gaussian beam. Furthermore, we consider the
anisotropic atom-light interaction for lanthanides which plays an important role close
to an atomic resonance.

3.1. Optical dipole potential and scattering rate

When an external electric field E is applied to matter, it induces a dipole moment
P in the medium. The strength and direction of this induced dipole moment depend
on the properties of the particles present in the material. These characteristics are

11



12 3. Atom-Light interaction theory

described by a single parameter, the polarizability α:

P = αE. 3.1

In the framework of atom-light interaction, the electric field of the light

E = uE eiωt + c.c., 3.2

with complex amplitude E, complex (normalized) polarization vector u and the fre-
quency ω, causes the induced dipole moment in the atomic medium to oscillate at the
same frequency ω as the driving field:

P = pP eiωt + c.c., 3.3

where P is the complex amplitude and p the direction of the dipole.
The induced dipoles interact with the external electromagnetic field through an inter-
action potential Udip and the scattering of photons at a rate Γscat [Gri00]:

Udip(r, ω) = −1

2
⟨P · E⟩ = − 1

2ϵ0c
Re [α(ω)] I(r), 3.4

Γscat(r, ω) =
⟨Ṗ · E⟩
ℏω

=
1

ℏϵ0c
Im [α(ω)] I(r). 3.5

Here, I(r) = 2ϵ0c|E(r)|2 is the intensity of the light, ϵ0 is the dielectric constant, c
is the speed of light and the ⟨.⟩ denotes the time-average over fast-oscillating terms
The interaction potential causes the atoms to experience a dipole force if there is a
gradient of intensity:

Fdip(r, ω) = −∇Udip(r, ω) =
1

2ϵ0c
Re [α(ω)]∇I(r). 3.6

Consequently, the atoms are attracted to high intensity regions for Re [α(ω)] > 0, and
pushed away from those regions for Re [α(ω)] < 0 (blue-detuned light).
While the real part of the polarizability is connected to the interaction potential and
the in-phase oscillation of the induced dipole moment with the light, the imaginary
part corresponds to the out-of-phase oscillation. This results in the absorption of light
with power Pabs = ⟨Ṗ · E⟩ that is re-emitted by spontaneous emission of photons with
energy ℏω. Due to the recoil from each photon, the atoms experience a scattering
force

Fscat(r, ω) = ℏkΓscat(r, ω). 3.7

that can lead to heating and atom loss.
To trap atoms, one needs to maximize the trapping potential while minimizing heat-
ing caused by photon scattering. From equations 3.4 and 3.5, it is clear that the
strength of the two processes is determined by the atomic polarizability. From the
simple Lorenz model of the atom as a driven oscillator, one obtains an expression of
the polarizability from which it follows that the dipole potential scales as 1/δ while
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the scattering rate scales as 1/δ2, where δ = ω − ω0 is the detuning from an atomics
resonance at ω0 [Gri00]. Therefore, atoms in optical dipole traps are illuminated with
far-detuned light, meaning that the detuning δ from other transitions has to be much
larger than their respective linewidths ∆ν. Furthermore, the Lorentz model tells us
that Re [α(ω)] > 0 for red-detuned light (δ < 0) and Re [α(ω)] < 0 for blue-detuned
light (δ > 0). Therefore, atoms are trapped in the high-intensity regions of optical
dipole traps if one uses red-detuned light.
However, while the Lorenz model provides an intuitive picture for isotropic atom-light
interaction, it is not sufficient for describing the polarizability of erbium. For this, a
fundamental difference between lanthanides and other atomic species such as alkalis
comes into play: Due to the anisotropy of the electronic wavefunction of lanthanides
in the ground state, the atom-light interaction is anisotropic, i.e. depends on the di-
rection and polarization of the incoming light with respect to the quantization axis.
This is in stark contrast to e.g. alkali atoms where the polarizability in the ground
state is isotropic and depends only on the wavelength of the light. Mathematically,
this means that α in equation 3.14 is a scalar for isotropic polarizability and a tensor
for anisotropic polarizability. This tensor can be split up into its diagonal, symmetric
off-diagonal and antisymmetric off-diagonal elements that correspond to the so-called
scalar, vectorial and tensorial part of the polarizability [Lep14].
Figure 3.1 shows the behavior of the real and imaginary parts of these three compo-
nents as a function of the illumination wavelength on the atoms. In the far-detuned
regime, we can see in figure 3.1(a) that the vectorial and tensorial parts become negli-
gible compared to the scalar part, which means that the dipole potential for the atoms
can be treated as isotropic. Specifically for 1064 nm light, we are in the red-detuned
regime and for θp = θk = 90◦ the scalar polarizability of αs = 173 a.u. makes up more
than 98% of the total polarizability (αtot = 176 a.u.) [Bec18]. From Figure 3.1(b), we
can infer that the photon scattering can still be anisotropic, however the scattering
rate is very low because of the large detuning from any resonance. In contrast, close
to an atomic resonance, e.g. the 841 nm line, we can see in Figure 3.1(a) that the
vectorial and tensorial parts become comparable to the scalar part which means that
the dipole potential for the atoms is anisotropic.
From this section, we can conclude that

• In the far-detuned regime, the polarizability can be treated as isotropic and
losses are negligible. The trapping potential is determined by the intensity of
the light. In section 3.2, we discuss optical dipole traps created by a Gaussian
intensity profile.

• Close to an atomic resonance, the anisotropic polarizabilty of erbium has to be
taken into account in addition to the intensity profile. We discuss the potential
for the atoms in this case in section 3.3.
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841nm 1064nm

841nm 1064nm

Figure 3.1.: Dynamical polarizability α of erbium in the ground state with the real part
Re[α] relevant for trapping in (a) and the imaginary part Im[α] that determines the scattering
rate in (b). A divergence in the polarizability is due to an atomic resonance, the finite peak
height of narrow transitions comes from the finite number of calculated data points. For
wavelengths far-detuned from atomic resonances, e.g. 1064 nm light, the scalar part of Re[α]
dominates, making the atom-light interaction isotropic. In contrast, for wavelengths close
to a resonance such as 841 nm light, the anisotopic nature of atom-light interaction plays
an important role because of the non-vanishing vectorial and tensorial part of Re[α]. Data
taken from [Lep14].

3.2. Far-detuned optical dipole traps with Gaussian
beams

In the previous section, we have seen that the atom-light interaction is almost isotropic
and losses can be neglected in the far-detuned regime. Furthermore, we discussed that
the optical dipole force arises to due to a spatial gradient of the light’s intensity and
that atoms are trapped in high-intensity regions for red-detuned light. Therefore,
the easiest way to trap atoms is to shine a red-detuned focused Gaussian beam on
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them. The intensity distribution I(x, y, z) of a Gaussian beam propagating along the
z-direction is determined by its total power P and its beam waists w{x,y} [Sal91]:

I(x, y, z) =
2P

πwx(z)wy(z)
exp

(
− 2x2

w2
x(z)

− 2y2

w2
y(z)

)
. 3.8

The beam waists w{x,y}(z) denote the half beam diameter where the intensity drops
to 1/e2 of its maximum value at the plane z. The waists evolve according to

w{x,y}(z) = w0,{x,y}

√
1 +

(
z

zR,{x,y}

)2

, where zR,{x,y} =
πw2

0,{x,y}

λ
. 3.9

Here w0,{x,y} is the waist at the focus (z = 0) and zR,{x,y} is the Rayleigh length. Figure
3.2(a) illustrates the intensity profile of a Gaussian beam.
Now, we can insert the intensity of a Gaussian beam, see equation 3.8, into the formula
for the dipole potential, equation 3.4. The potential minimum for the atoms is at the
focus, where the intensity takes on its maximum value I0 = I(0, 0, 0). Consequently,
the atoms are be located close to this point and we can derive the trapping potential
here by performing a Taylor expansion of the intensity profile in equation 3.8. This
results in a harmonic approximation of the energy landscape felt by the atoms around
the focus point:

U(x, y, z) ≈ U0

(
1− 2x2

w2
0,x

+
2y2

w2
0,y

− z2

2

(
1

zR,x

+
1

zR,y

)2
)
, 3.10

where the trap depth U0 is defined by:

U0 = Re [α(ω)] I0 = Re [α(ω)]
2P

πw0,xw0,y

. 3.11

Therefore, both in the plane and in the direction of propagation, the laser beam acts
like a harmonic trap on the atoms. Comparing each term in equation 3.10 with a
harmonic oscillator potential Uharm = 1

2
mωrr

2, we determine the trap frequencies

ω{x,y} =

√
4U0

mw2
0,{x,y}

and ωz =

√
2U0

mz̃2R
with

(
1

z̃R

)2

=

(
1

zR,x

+
1

zR,y

)2

. 3.12

Here, we have defined the average Rayleigh length z̃R. Figure 3.2(b) shows an intensity
profile in the x-y plane together with the trapping potential defined by the trap depth
U0 and trap frequencies ω{x,y}.

One can easily calculate the ratio of the trap frequencies ωz/ωr = λ/(
√
2πw0,r) if

we assume a symmetric trap in the radial direction (w0,{x,y} = w0,r) for simplicity.
Therefore, in the typical case of λ ≪ w0,r, the confinement in z-direction is much
smaller than in the radial direction. If ωz in an optical dipole trap is not sufficient,
another focused beam has to be added at an angle with respect to the first one, creating
a crossed optical dipole trap. For a maximum confinement in all directions, the beams
have to be crossed at an angle of 90◦.
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ωy

U0

U0

x

y

I(x, z)

I(x, y, z) I(x, y)

(a) (b)

ωx

Figure 3.2.: Figure (a) shows the intensity profile I(x, y, z) of a Gaussian beam for a fixed
radius r =

√
x2 + y2, the intensity profile I(x, z) for y = 0 as well as the intensity profile

I(x, y) for for z = 0. Figure (b) depicts again I(x, y) which is directly proportional to the
optical dipole trap potential Udip(x, y). The red curves show the Gaussian shape of the
potential along x with y = 0 and vice-versa. The red dotted curves indicate the harmonic
approximation close to the trap center. The two trap parameters that define the harmonic
trap are the trap depth U0 and the trap frequency ω{x,y} in each direction.

3.3. Atom-light interaction close to resonance:
Anisotropic polarizability

When the frequency of the light is close to an atomic resonance, the internal structure
of the atom starts to play a crucial role, making the atom-light interaction more
complicated than in the far-detuned case. Specifically in erbium, the highly anisotropic
wave functions of the unpaired electrons in the 4f shell give rise to an anisotropic
polarizability. Useful references regarding this topic are [Bel09, Kie12, Lep14, Li17].
With the 3 × 3 atomic polarizability tensor split into scalar, vectorial and tensorial
contributions of the interaction, the potential for the atoms is [Lep14]

U(ω) = Uscal + Uvect + Utens

= − 1

2ϵ0c
I(r)

[
Re [αscal(ω)] +A cos(θk)

mJ

2J
Re [αvect(ω)]

+
3m2

J − J(J + 1)

J(2J − 1)
× 3 cos2(θp)− 1

2
Re [αtens(ω)]

]
3.13

Here, A = i(u∗ × u) · k is the degree of ellipticity of the polarization with u the
normalized (complex) polarization vector and k the propagation direction of the light.
Hence, A = 0 for linearly polarized light, A = ±1 for left/right circularly polarization
and 0 < |A| < 1 for elliptical polarization. Furthermore, ϵ0 is the vacuum permittivity,
c is the speed of light and λ is the wavelength of the light. The atomic state is char-
acterized by the angular-momentum quantum number J and its projection onto the
quantization axis mJ . The quantization axis is typically set by an external magnetic
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field B that defines the angle θk with the propagation direction of the light and the
angle θp with the polarization vector, as illustrated in figure 3.3. The individual parts

Figure 3.3.: Schematic illustration of the angles and vectors in equation 3.13. The angle θk
is determined by the propagation direction of light k and the magnetic field B. The angle
θp is defined by the orientation of the light’s polarization u and the magnetic field.

of the polarizability are given by [Li17]

αscal(ω) = −

√
1

3(2J + 1)
α
(0)
J (ω)

αvect(ω) =

√
2J

(J + 1)(2J + 1)
α
(1)
J (ω)

αtens(ω) =

√
2J(2J − 1)

3(J + 1)(2J + 1)(2J + 3)
α
(2)
J (ω), 3.14

where the coupled polarizability α
(K)
J (ω) with K = 0, 1, 2 is given by a sum over all

transitions J → J ′ that are dipole-allowed (J ′ − J = 0,±1)

α
(K)
J (ω) =

√
2K + 1

∑
J ′

(−1)J+J ′

×
{
1 1 K
J J J ′

}
| ⟨J ||d||J ′⟩ |2

× 1

ℏ

(
1

ωJJ ′ + iγJ ′/2 + ω
+

(−1)K

ωJJ ′ + iγJ ′/2− ω

)
. 3.15

Here, ωJJ ′ is the transition frequency and γJ ′ is the natural linewidth of the excited
state. The curly brackets indicate the Wigner-6j symbol and the squared reduced
dipole moment | ⟨J ||d||J ′⟩ |2 is given by [Li17]

| ⟨J ||d||J ′⟩ |2 = πϵ0ℏc3
(2J ′ + 1)γJ ′

ω3
JJ ′

3.16

According to equation 3.5, the scattering rate can found replacing the real parts Re[αi]
with the imaginary parts of the polarizability Im[αi] in equation 3.13. The real and
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imaginary part of the scalar, vectorial and tensorial parts of the polarizability for the
841 nm transition are shown in figure 3.4. The data is calculated with equations 3.14
and 3.15 where the values for ωJJ ′ and γJ ′ are determined via a semi-empirical model
described in [Lep14].

Figure 3.4.: Real and imaginary parts of the polarizability close to the 841 nm transition,
calculated as described in [Lep14]. The linewidth of the transition is Γ841 = 2π × 8 kHz.
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4
A new scanning ODT for
the ERBIUM experiment

Optical dipole traps are an essential ingredient for ultracold experiments, allowing
for cooling and manipulation of neutral atoms. This requires active control of the
trap parameters: Specifically, tuning the geometry of the trap has proven to be an
important tool. Just to give one example, the implementation of an optical dipole
trap with a tunable geometry in the early stages of the ERBIUM experiment tripled
the number of atoms in the BEC [Bai12].
This chapter will first explain why an ODT with a tunable geometry is advantageous
when creating a BEC and motivate why the old ODT in the ERBIUM experiment
had to be replaced. Furthermore, we discuss how a tunable geometry is realized by
creating a time-average potential for the atoms with a scanning ODT beam. The next
sections go into the technical details of the optical setup and electronics as well as the
offline testing. Last, we describe the implementation of the setup into the experiment
and perform trap frequency measurements with the atoms.

4.1. Why a (new) scanning ODT?

A scanning optical dipole trap provides the flexibility to change the trap geometry by
controlling the ellipticity of the Gaussian beam that creates the trap. This tool can
improve the efficiency of loading atoms from the MOT to the ODT and enhance evap-
orative cooling, as well as giving the possibility to tune trap geometry and therefore
the mean-field contribution of the dipole-dipole interaction. While these aspects also
apply for the previously installed scanning ODT, we discuss the technical reasons why
a new one was needed.

19
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Improving the efficiency of ODT loading and evaporative cooling

To reach quantum degeneracy in the ERBIUM experiment, the atoms are loaded from
the MOT into a crossed ODT and cooled evaporatively. The crossed ODT consists of
two crossed and tightly focused Gaussian beams - but how tightly do they have to be
focused exactly? To explore this question, one has to consider two issues, as illustrated
in figure 4.1:

(a) When transferring the atoms into the ODT, a larger spatial overlap with the
MOT beam will lead to a higher loading rate.

(b) On the other hand, a tighter trap ensures a larger atomic density and therefore
faster thermalization during the evaporative cooling sequence.

MOT

ODT

(a) (b)

Figure 4.1.: Illustration of two steps in the experimental sequence where the size of the ODT
beam is relevant: (a) For loading from the MOT into the ODT, a larger waist corresponds to
a higher loading rate. (b) For evaporative cooling, a smaller waist means a higher collision
rate and therefore faster thermalization of the atoms that remain in the trap.

In principle, it is possible to reach quantum degeneracy with evaporative cooling if
one fixes the beam waist and sequentially lowers the trap depth U0 by reducing the
light power P (since U0 ∝ P according to equation 3.11). During each evaporation
step, the temperature decreases because the hottest atoms are lost from the trap which
cuts off the high-energy tail of the Maxwell-Boltzmann distribution [Ols13]. Then, the
atoms rethermalize via elastic collisions and the high-energy tail can be cut again in
the next evaporation step. However, reducing the power also causes the trap frequency
to increase (since ω ∝

√
P , see equation 3.12). This leads to a lower atomic density

and therefore a lower thermalization rate.
Therefore, it is advantageous to control the trap depth and trap frequency more in-
dependently by having the possibility to dynamically tune the size of the beam waist.
To achieve this, the idea is to change the beam waist in one direction for one of the
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beams of the crossed ODT, going from a larger beam during ODT loading to a smaller
beam during evaporative cooling.

Tuning the dipole-dipole interaction

Due to the large permanent magnetic moment in the ground state (see section 2.4),
erbium atoms interact via the magnetic dipole-dipole interaction (DDI). When an
external magnetic field is applied to the dipoles, they align along the magnetic field
and the interaction potential between two atoms becomes [Fri14]

UDDI(θ, r) =
µ2µ0

4π

1− 3 cos2 θ

r3
. 4.1

Here, θ is the angle between the magnetic field B and the position vector r con-
necting the two atoms and r = |r| is the distance between the atoms, as illustrated
in figure 4.2. Since the DDI decays with 1/r3 and depends on the orientation of the

θ

Figure 4.2.: Illustration of the parameters relevant for the magnetic dipole-dipole inter-
action in erbium. The interaction strength depends on the distance r = |r| between the
atoms and the angle θ which is spanned by the magnetic field B and the position vector r
connecting the two atoms.

dipoles θ, the interaction is long-range and anisotropic. This is in stark contrast to the
isotropic, short-range contact interaction that is present in ultracold quantum gases
of any atomic species.
Notably, the relative strength of the dipole-dipole and contact interaction can be var-
ied. The contact interaction at ultralow temperatures can be fully characterized by the
s-wave scattering length as that can be tuned by making use of Feshbach resonances
[Chi10]. This phenomenon occurs when scattering states couple to molecular states of
two bound atoms. Since the molecular states posses a different magnetic moment, the
relative energy of the collision channels can be tuned due to the Zeeman effect. The
scattering length around the resonance depends on the applied magnetic field strength
B with

as = abg
∆

B −B0

, 4.2

where abg is the background scattering length, ∆ is the width of the resonance and B0

its position. With Feshbach resonances, the relative strength of as and the so-called
dipolar length add = µ0µ

2m/12πℏ2 that characterize the dipole-dipole interaction can
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be controlled.
Extending the dipole-dipole interaction potential for two magnetic atoms in equation
4.1 to the many-body case is not trivial. However, if the condensate is dilute enough
so that correlations between the atoms can be neglected (mean-field regime), one
can take the average over the magnetic fields produced by the atoms and describe the
dipole-dipole interaction potential as a “mean field” with equation 4.1 [Cho22]. In this
simple picture, one can understand that the interaction properties of a Bose-Einstein
condensate of erbium can be tuned by changing the trap geometry and orientation of
the magnetic field. Let’s consider a trap that is elongated in one direction (“cigar-
shaped trap”): If the magnetic field is oriented along this direction, the dipoles are in a
head-to-tail configuration and the DDI is attractive. In contrast, if the magnetic field
is oriented orthogonally to this direction, the dipoles in a side-by-side configuration
and the DDI is repulsive.
By tuning the dipolarity of the atomic sample, exotic phases of matter were observed
in our group with 166Er. When the s-wave scattering length is tuned sufficiently below
the dipolar length in a cigar-shaped trap with attractive DDI, the atoms concentrate
in a high-density, self-bound state, called a macrodroplet shown in figure 4.3 [Cho16].
The shape of the droplet is preserved by the balance between the attractive dipolar
forces and effective repulsive forces that result from quantum fluctuations, an effect
which can not be described within mean-field theory.
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Figure 4.3.: Observation of the transition from BEC to macrodroplet with 166Er (add =
65.6 a0). Figures (a)-(d) show the atomic density distribution obtained from time-of-flight
absorption images for three different scattering lengths. In figure (d), the dashed lines
corresponds to a mean-field Thomas-Fermi (MF-TF) model on top of a Gaussian profile
that accounts for the thermal part, and the solid lines correspond to a two-Gaussian fit.
For as = 93 a0 > add, the density profile is well described by the TF-MF model. For
as = 57 a0 < add , the system is in the macrodroplet phase and deviates from the TF-MF
model. This is also the case for as = 50 a0, but in addition, the droplet core looses atoms
due to three-body losses that increase with the atom density. Figure taken from [Cho16].

For a cigar-shaped trap with the magnetic field perpendicular to the long axis, the
dipole-dipole interaction is repulsive. When the s-wave scattering length is reduced
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below a critical value that depends on the exact trap geometry, a phase transition
from the BEC to a supersolid phase takes place [Nat19]. In the supersolid, a density
modulation coexists with global phase coherence. However, this phase only appears
within a small region of the scattering length. For even lower values of as, the global
phase coherence disappears and the system enters a phase of insulating droplets.
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Figure 4.4.: Observation of the transition from BEC to the supersolid phase to the insulat-
ing droplet regime with 166Er (add = 65.6 a0). Figures (a)-(c) show examples of time-of-flight
absorption images taken in the experiment, figures (d)-(f) show the average over 100 images.
The first row with as = 54.7(2) a0 corresponds to a dilute BEC without density modulations.
In the second row with as = 53.8(2) a0, the consistent interference pattern indicates the su-
persolid phase for the in situ state. In the third row with as = 53.3(2) a0, more complicated
patters appear that vary from shot to shot. This points to the loss of phase coherence in the
insulating droplet regime. Figure taken from [Nat19].

Rebuilding the crossed ODT in the ERBIUM experiment

In the original setup of 2012, the old scanning ODT formed a crossed ODT together
with a second 1064 nm beam [Bai12]. When I joined the team for my master project,
the crossed ODT consisted of the old scanning ODT and a green 532 nm beam, as
shown in figure 4.5(a). The 532 nm beam path had been implemented as part of a 3D
optical lattice [Bai16]. The configuration of the red and green ODT beams is not ideal,
since the two beams are not crossing at an angle of 90 degrees. Therefore, the trap
frequencies in the two horizontal directions are coupled, so whenever one changes the
power in one beam it affects both frequencies. Furthermore, the green path is needed
to reinstall the lattice for the next projects. Therefore, it became clear that a new
setup, as shown in Figure 4.5(b), has to be realized. Here, the new scanning ODT is
built on the breadboard on the lower right and creates a crossed ODT together with
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(b) New Setup(a) Old Setup

Figure 4.5.: Setup on the experimental table. The atomic beam arrives from the right
and is captured in the experimental chamber in the center by the MOT (yellow light). In
the old setup (a), the scanning ODT does not cross the green ODT beam at 90 degrees.
This problem is resolved in the new setup (b), where the scanning ODT comes from the
breadboard on the lower right and crosses the second red ODT perpendicularly. The optical
path for the green light can be used to reinstall the green lattice.

a second 1064 nm beam at 90 degrees. After the new crossed ODT is installed, the
green lattice can be reimplemented.

4.2. Principle of a scanning ODT

The idea of a scanning ODT is to periodically “scan” the position of a Gaussian
beam fast enough along one direction so that the atoms effectively experience a time-
averaged potential. The exact shape of this potential is determined by the choice of
the modulation function and the scanning is fast enough if the atomic cloud cannot
follow the motion of the beam. Since the timescale of the collective movement of the
atoms is given by the trap frequency ωtrap, the periodic modulation has to happen
much faster:

ωscan ≫ ωtrap. 4.3

A suitable device to implement a scanning ODT is an acousto-optical modulator
(AOM). The main parts of an AOM are a piezo-electric transducer attached to a
crystal, typically made of tellurium dioxide (TeO2), crystalline quartz or fused silica.
When a radio-frequency (RF) signal is sent to the transducer, it creates an acoustic
wave in the crystal that acts as a diffraction grating for light. Consequently, an inci-
dent beam gets diffracted into different orders if it enters a certain angle θB given by
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the Bragg condition [AAo13]:

θB =
λ

2λs
=
λνAOM

2cs
. 4.4

Here, λs is the wavelength of the acoustic wave which can be expressed in terms of
the RF-frequency νAOM and the speed of sound in the crystal cs. Usually, AOMs are
manufactured so that up to 85% of the light can be diffracted into the ±1st diffraction
order. This is possible only if one sends in the optimal RF power on the order of a
few Watts and chooses the specified center frequency of the RF-signal νAOM which
is typically around 80-110MHz. For most applications of AOMs, such as frequency-
shifting or controlling the amount of light going into an optical path, the RF-signal is
set to the center frequency. The bandwidth BW of an AOM indicates the deviation
from the center frequency at which the diffraction efficiency into the 1st order decreases
by 3 dB.
For the scanning ODT, the idea is to send an RF-signal to the AOM that varies
periodically around the center frequency. Therefore, the beam in the ±1st order is
diffracted into slightly different angles within the bandwidth BW of the AOM. A lens
positioned at a distance of its focal length after the AOM translates the deflection
into a horizontal displacement of the beam. Figure 4.6 illustrates how this technique
can transform a Gaussian beam with a symmetric intensity profile into a beam that
is elliptical in the time-average.

Figure 4.6.: Principle of a scanning optical dipole trap: The symmetric Gaussian intensity
profile is transformed into a elliptical shape in the time-average. This is achieved by slightly
varying the angle of the first diffraction order of the AOM at the scanning frequency ωscan

and making the diffracted beams parallel with a lens.

The aspect ratio AR of the ellipse is given by the effective waist along the scanning
direction (y-direction) with respect to the waist in the direction without scanning (x-
direction), which corresponds to the inverse of ratio of the trap frequencies according
to equation 3.12:

AR =
wy

wx

=
ωx

ωy

. 4.5

By changing the width of the RF-signal in frequency space, the aspect ratio can be
tuned from AR = 1 to its maximum value ARmax. The next paragraph will focus on
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the calculation of ARmax, following reference [Koh07]. The maximum aspect ratio is
given by ∆D1st, the distance by which the 1st order beam can be deflected within the
bandwidth of the AOM, and w1, the waist at the focus of the lens (see figure 4.6):

ARmax =
∆D1st

2w1

. 4.6

To evaluate this expression, we first note that the ratio of bandwidth and center
frequency of an AOM can be expressed as

BW

νAOM

=
∆D1st

D1st−0th

, with θ ≈ tan θ =
D1st−0th

f
. 4.7

Here, D1st−0th is the separation of the 0th and 1st order at the lens, which can be
calculated from the angle θ between the 0th and 1st order and the focal length f of
the lens. Furthermore, we can express w1 with the formula of focusing a Gaussian
beam with initial waist w0:

w1 =
fλ

πw0

. 4.8

Combining equations 4.6 - 4.8, the maximum aspect ratio is

ARmax =
∆D1st

2w1

=
πw0 θ BW

2λ νAOM

. 4.9

In the last step, we use that the angle between the 0th and 1st order is twice the Bragg
angle: θ = 2θB and θB is given by equation 4.4. We arrive at the final result for the
maximum aspect ratio:

ARmax =
π

2

BW

cs
w0. 4.10

Note that the maximum aspect ratio depends only on two AOM properties and the
initial waist of the beam. In our scanning ODT setup, we use the AOM 3080-197
by Gooch&Housego, see table 4.1 for an overview of its technical specifications. The
aperture of the AOM limits the initial waist to w0 = 0.8mm, so we expect a maximum
aspect ratio of

ARmax ≈ 9.

To estimate the trap parameters we can achieve in this case, we choose a typical value
of 20µm for the waist at the position of the atoms. The values of the trap depth
and trap frequency are given by equations 3.11 and 3.12 while the polarizability of
1064 nm light is Re[αtot] = 176 a u according to reference [Bec18]. Figure 4.7 shows
the calculated trap depth and frequency of the scanning ODT in a range from AR = 1
to ARmax = 9 for typical values of the power in the ODT beam.

4.3. Electronics for the RF-signal driving the AOM

The electronic components in this setup play a key role in creating time-averaged
potentials for the atoms, since they produce the radio-frequency signal controlling the
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Table 4.1.: Technical specifications of the AOM given by the manufacturer. We observed
that the beam was cut for a waist above 0.8mm.

Model G&H 3080-197
AOM crystal TO2

acoustic velocity cs 4.2× 103m/s
Center frequency νAOM 80MHz

Bandwidth BW ±15MHz
RF power 1.5W

Max. Coupling efficiency
at 1mm beam waist 85%

Figure 4.7.: Trap depth U0 and trap frequency ωy of the scanning optical dipole trap as
a function of the beam waist wy for a different laser powers P . Here, the waist in the x-
direction is constant at wx = 20µm and the waist in the y-direction changes for different
scanning amplitudes, ranging from wy = 20µm (AR = 1) to wy = 180µm (ARmax = 9).

AOM. Within the work for my master thesis, I was able to simplify the electronics
compared to the scanning ODT installed previously in the experiment [Bai12], making
the implementation, control and troubleshooting easier.
The idea of a scanning ODT requires the generation of a frequency-modulated RF-
signal (“scanning signal”) that is sent to the AOM. The modulation signal is of the
form

Usignal(t) = A · f(ωscant) + y0. 4.11

Here, the offset y0 determines the center frequency of the scanning signal and the
scanning amplitude A sets the bandwidth of the scanning signal in frequency space.
The periodic function f(t) with the modulation (“scanning”) frequency ωscan gives the
shape of the scanning signal. The electronics that create the scanning signal have to
fulfil the following requirements:

• The offset y0 has to be tunable to set the center frequency of the scanning signal
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at the center frequency of the AOM.

• The scanning amplitude A has to be controllable to adjust the bandwidth of the
scanning signal, ranging from a single-frequency peak (no scanning) to using the
full bandwidth of the AOM (maximum scanning).

• There has to be the possibility to arbitrarily choose the function f(t) to find
the right one that maintains a Gaussian beam shape of the ODT beam for all
scanning amplitudes. To ensure a symmetric beam profile, the scanning signal
has to be symmetric around the center frequency for all scanning amplitudes.

• According to equation 4.3, the scanning frequency ωscan has to be much larger
than the trap frequency.

• The power of the scanning signal has to be tunable by multiplying it with some
gain factor Ugain. This changes the diffraction efficiency into the first order of
the AOM which allows for adjusting the power in the ODT beam.

In principle, it would be possible to fulfill all those requirements by creating a frequency-
modulated (FM) signal with an arbitrary function generator. However, the parameters
A, y0 and G have to be accessible by the control software of the experiment. This re-
quires some additional electronics that make it more convenient to build an electronic
circuit where the modulation signal is created with an arbitrary function generator, but
the frequency-modulated signal is created with a voltage-controlled oscillator (VCO).
We will now have a look at the electronic circuit for offline testing of the scanning
ODT. The final electronics box designed for the implementation into the experiment
is presented in the appendix A.1.
In the electronic circuit for offline testing shown in figure 4.8, an arbitrary function
generator1 controls the VCO2 that is powered with a supply voltage of 24V and can
produce output RF-signals with a bandwidth of 50-110MHz. The VCO output is sent
to two RF-amplifiers that are connected in series before the RF-signal reaches the
AOM.
To produce the right scanning signal, careful tuning of the VCO control parameters is
required. For our VCO, these parameters are:

• Usignal(t) (at “Freq in” input to the VCO, voltage range 0 -10V) is sent into the
VCO from Channel 1 of the arbitrary function generator and controls the shape
of the RF-signal at the VCO output. From the previous scanning ODTs built
in our group [Bai12, Pol17], we know that an arc-cosine signal works best to
maintain the Gaussian beam shape when the scanning is turned on:

Usignal(t) = A · arccos(ωscant) + y0. 4.12

1 Function generator RSDG 2122X by RS Pro
2 VCO DRFA10Y-B-0-50.110 by AA Opto-Electronic
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Figure 4.8.: Illustration of the electronic circuit producing the RF-signal for offline testing
of the scanning ODT. The arbitrary function generator provides the input signals for the
voltage-controlled oscillator (VCO) that allows us to create RF-signals with a tunable band-
width. After passing two RF-amplifiers the signal is sent to the AOM.

With the knobs of the function generator, the offset y0 is set to 10V/2 = 5V
and the the scanning amplitude A can be tuned from 2mV (no scanning) to 10V
(maximum scanning). Regarding the scanning frequency ωscan, we observed with
a spectrum analyzer that the VCO cannot follow frequencies above 200 kHz. So,
we set ωscan to this value which is much larger than the maximum expected trap
frequency on the order of a few hundred Hertz.

• Umod (at “Mod in”, voltage range 0 -5V) changes the power of the VCO output
signal. We send in a 5V DC signal with Channel 2 of the function generator to
maximize the power.

• Three knobs to adjust power, gain and offset of the VCO output signal. The
power screw is set to the maximum. The gain changes the width of the RF-signal
and the offset its position in frequency space. We optimize these two parameters
by observing the VCO output signal with a spectrum analyzer. During this,
we noticed that turning the gain screw multiplies the full signal from equation
4.12 with a gain factor: G′ · Usignal(t). Clearly, this changes the offset, so one
has optimize the gain before the offset knob. We find the right gain by setting
the amplitude A to maximum scanning and adjusting the gain knob so that the
width of the signal is equal to the maximum bandwidth of the AOM (30MHz).
Now, we turn the offset knob at no scanning to reach the AOM center frequency
of 80MHz.

Last, we optimize the power of the RF-signal by changing the gain at the amplifiers.
For this we make sure that the output power of the first amplifier is just below the
maximum input power of the second amplifier. Then, we connect the second amplifier
in series and send the RF-signal into the AOM. After optimizing the optical coupling
into the first diffraction order by aligning the laser beam as close as possible to the
Bragg angle, we can optimize the gain screw of the second amplifier by observing that
power in the first order decreases for too low of to high RF powers.
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Figure 4.9 shows the RF-signal at the VCO output after the optimization for three
different modulation amplitudes A = 0.002V, 5V and 10V. We noticed that it is
possible to increase the scanning amplitude to A = 10V even though this together
with the offset y0 = 5V makes us go out of the voltage bounds 0 -10V at VCO’s Freq
in channel. The scanning amplitude can not be increased even further because the
maximum output voltage of the arbitrary function generator is reached. Going out of
the voltage bounds at the VCO’s Freq in channel causes higher frequencies to appear
in the frequency spectrum in Figure 4.9(c). However, this is not a problem because
the beam shape at large scanning amplitudes still looks symmetric in the scanning
direction. The reason is probably that frequencies outside the bandwidth of the AOM
don’t have an effect on the beam shape.
Having accomplished the right RF-signal at the AOM input, we can continue looking
at the optical setup and offline alignment of the scanning ODT.

(a) A = 0.002V (b) A = 5V (c) A = 10V

Figure 4.9.: Frequency spectrum of the VCO output for different amplitudes A = 0.002V,
5V and 10V of the modulation signal. The offset of the modulation signal is set to 5V
to be at the center frequency of the AOM. Note that the RF-signal is attenuated for this
measurement.

4.4. Optical Setup

The optical setup for the scanning ODT is shown schematically in Figure 4.10. All
optical elements except for the last lens are placed on a 20× 60 cm breadboard which
can be directly inserted into the experiment after offline testing. The lenses are made
of fused silica to avoid optical aberrations due to thermal lensing. The 1064 nm light
leaves the optical fiber3 with a waist of 1.1mm. It passes a first telescope to adjust
the beam size to 0.73mm for coupling into the AOM. After the AOM, the 0th order
is dumped while the 1st order passes a telescope with f1 = 100mm and f2 = 300mm
lenses to expand the beam diameter to 2.2mm. The next telescope with f3 = −50mm
and f4 = 200mm lenses increases the beam size further to 8.8mm. Then, the beam

3 LMA-PM-15 by NKT photonics, polarization maintaining, MFD= 12.6µm at 1064 nm
with collimating lens C060TMD-C by Thorlabs, f = 9.6mm
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leaves the breadboard at an angle of about 60 deg due to restrictions of the positioning
of the breadboard with respect to the experimental chamber in the tight space on the
experimental table (see figure 4.5). The last lens with f5 = 300mm focuses the beam
onto the atoms, where we expect to reach a diameter of 36µm (without scanning).

Figure 4.10.: Optical setup of the scanning optical dipole trap. All optical elements except
for the last lens are placed on a breadboard (black rectangle) that can be placed directly into
the experiment. Two translation stages (grey rectangles) can be used for the final alignment
of the focus of the last lens onto the atoms. Where the beam is collimated as well as at the
position of the atoms the beam diameter � is indicated in blue.

For a correct setup of the optical system, it is crucial to obey the right distances
between the lenses. The distance between the lenses of a telescopes has to be the sum
of their focal lengths:

da,b = fa + fb = 250mm

d1,2 = f1 + f2 = 400mm

d3,4 = f3 + f4 = 150mm.

Furthermore, the atoms should be in the Fourier plane of the AOM which fixes the
distance of the AOM to the next lens and the distances between the telescopes:

dAOM,1 = f1 = 100mm

d2,3 = f2 + f3 = 250mm

d4,5 = f4 + f5 = 500mm.

The small translation stage was installed to change the position of the focus of the last
lens without significantly changing the beam size for final fine-tuning of the alignment
onto the atoms. However, we found that the alignment of the setup is too sensitive
to move this translation stage, so it was not used in the end. The large translation
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stage serves to recover the right distance d4,5 of the last lens to the rest of the optical
system if the last lens is moved to align its focus onto the atoms.

4.5. Offline alignment and measurements

The alignment procedure poses several challenges, making the alignment of the scan-
ning ODT setup one of the main challenges of the work for my master thesis. First
of all, it is important to note that the 1064 nm light has a shorter Rayleigh length
compared to light in the visible range, making the beam expand after a relatively
short propagation distance even if it is collimated. For example, a beam with a waist
of w0 = 1mm expands by 20% after travelling for a distance 2m. Therefore, one
should always calculate the expected beam waist along the optical path and check by
measuring it with a beam profiler.
Let me also point out that the optical setup is very compact since most of the optical
components are mounted on the limited space of the 20 × 60 cm breadboard. This is
absolutely necessary because the breadboard fits exactly into the space in the exper-
iment dedicated to the new scanning ODT. However, this adds some difficulties, for
example, the optical path length for beam-walking with the last two mirrors before
the AOM to couple into the AOM is very short.
Now, we come to the main steps of the alignment procedure which consist of preparing
the beam path, coupling into the AOM and placing the lenses:

1. Preparing the beam path: We collimate the beam to a diameter of 1.1mm with
the aspherical fiber outcoupling lens and place all the mirrors as well as the first
telescope. The optical path is made straight with respect to the breadboard
lines so that the beam is not displaced horizontally if the translation stages are
moved. Furthermore, irises are aligned along the beam path as a reference.

2. Coupling into the AOM: The AOM has then to be positioned so that the first
diffraction order follows the correct beam path, i.e. is aligned with the irises.
After optimizing the AOM position, we obtain a coupling efficiency of about 75%
into the +1st diffraction order.

3. Placing the lenses: All lenses have to be perfectly centered on the laser beam,
so that it is not deflected. Each lens is aligned with one iris at short distance,
one in far distance and the camera at the final position of the atoms. With
this, we can find the right height of the lens and the right horizontal position in
the direction perpendicular to the optical path. The tilt of the lens around the
vertical axis is eliminated by overlapping the backreflection with the incoming
beam. We find the right position of the lens in the direction along the optical
path by checking the beam size after the lens. In principle, the lenses should be
placed in ascending order, f1 to f5, but after the second telescope, the beam size
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is too large to check it with a beam profiler. Therefore, the lenses are placed
in the following order: f1, f2, f5, f4, f3. Note that the final beam shape at the
focus is very sensitive to correct alignment of the optical setup, especially on the
tilt of the last lens.

Figure 4.11.: The left plot shows the beam waist at the focus of the scanning ODT setup in
the y-direction (red data points) and x-direction (blue data points) for different modulation
amplitudes. The error bars obtained from a Gaussian fit to the beam profile are smaller than
the data points. In the scanning direction, the waist can be tuned from wy = 22.38(2)µm
to wy = 169.3(2)µm while the waist in the other direction stays approximately the same
with wx = 25.5(2)µm. The figures on the right show the intensity profile of the beam at
no scanning (0.002V modulation amplitude) and at maximum scanning (10V modulation
amplitude).

After aligning the full setup, we use a CMOS camera4 to measure the beam size at the
focus for different modulation amplitudes A. Figure 4.11 shows the results of the waist
measurement as well as the intensity profile for no scanning and maximum scanning.
The waist without scanning is about 25(2)µm, so it was not possible to reach the
calculated waist of 18µm. However, this was expected with such a tight setup and
difficult alignment and nonetheless, the waist is still small enough for successful evap-
orative cooling to the BEC as we will see in the next section. With higher modulation
amplitudes, the waist in the scanning direction increases up to wy = 169.3(2)µm while
the waist wx in the perpendicular direction stays constant. At the maximum modula-
tion amplitude, we achieve an aspect ratio of about 6.8, which is below the calculated
ARmax of 9. Possible reasons for this are imperfections in the alignment of the setup,
a smaller waist w0 at the AOM input and the limited bandwidth of the VCO and the
AOM.

4 Blackfly-S by FLIR, pixel size 3.45µm
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4.6. Measurements with atoms

In this section, we describe the implementation of the scanning ODT into the exper-
iment, go into the details of aligning the beam onto the atoms and characterize the
scanning ODT by performing trap frequency measurements with the atomic cloud.

Implementation of the scanning ODT into the experiment

After the breadboard of the scanning ODT was placed at its intended position on
the experimental table, we noticed that the beam was misaligned. The reason was
that the end tip of the optical fiber is angled, so the angle of the beam leaving the
fiber depends on the rotation of the fiber. Due to the delicate alignment of the setup,
it was not possible to find the right rotation angle of the fiber again. Facing the fact
that we had to realign the fiber outcoupling mount anyway, we used the opportunity to
slightly modify the setup: We installed the fiber outcoupling mount on a breadboard
below and guided the beam to the scanning ODT breadboard with a periscope. This
modification has the advantages that the fiber does not have to bend so much anymore
to reach the outcoupling mount and there is space in the optical path which gives the
possibility to add polarization optics if needed.
To align the beam onto the atoms, we can adjust the tilt of the last three mirrors, the
position of the last translation stage on the scanning ODT breadboard and the posi-
tion and tilt of the last lens that is placed on a translation stage as well. Throughout
the alignment procedure, we make sure that we maintain the correct beam size and
shape at the position of the atoms for different scanning amplitudes. Since we cannot
place a camera inside the experimental chamber, we place a flip mirror in front of the
viewport, which allows us to check beam shape at the focus of the last lens with a
beam profiler.
Because the one of the MOT beams and a green 532 nm beam pass through the same
viewports, the scanning ODT beam has to enter at the edge of the viewport and the
space before is very tight. Therefore, it is already quite challenging to let the beam
pass through the experimental chamber and we have to carefully check at the viewport
on the other side that the beam is not cut or deformed from reflections.
After this is achieved, we align the ODT beam onto the atoms. For this, we use stan-
dard absorption imaging at the strong blue 401 nm transition with our camera placed
in the horizontal plane. The usual strategy to align an optical beam onto the atoms
is to adjust the beam path until trapped atoms can be seen in the absorption image
and then optimizing further to increase the atom number. If it is not possible to get
any signal of the atoms to begin with, one can use a beam of resonant light as a “blow
beam” by overlapping it with the actual beam and aligning to blow away atoms as
efficiently as possible. We use some of the 401 nm light as a blow beam for rough
alignment. Then, we optimize the atom number aligning the focus of the second ODT
beam with the focus of the scanning ODT. For the second (static) ODT, we installed
a new 1064 nm beam path that crosses the scanning ODT perpendicularly in the hor-
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izontal plane, see figure 4.5.

Optimizing the atom number in the BEC

To increase the number of atoms in the BEC, we adjust the evaporation parame-
ters, i.e. the power in both ODT beams and the modulation amplitude A of the
scanning ODT, in each step of the evaporation sequence. To control the power, we
use the leakage of one of the mirrors in each path and focus this light into a photo
diode which creates the feedback signal for a PID controller. To change the modu-
lation amplitude and therefore the aspect ratio of the scanning ODT, we adjust the
amplitude of the RF-signal for the AOM. Section A.1 in the appendix explains how
the electronics from the offline testing are modified to interface them with the control
software of the experiment. After the optimization, we arrive at the sequence shown
in figure 4.12. With 1.3 × 107 atoms in the MOT, we load 1.3 × 106 atoms into the
crossed ODT and achieve 3.7× 104 atoms in the BEC with a BEC fracion of 70%.

Figure 4.12.: ODT parameters during the evaporation sequence of the experiment: power
Pscanning and modulation amplitude A of the scanning ODT beam as well as power Pstatic

of the static ODT beam. The evaporation sequence lasts about 6.7 s during which the
modulation amplitude and the power in the ODT beams are reduced to evaporatively cool
to the BEC.

Trap frequency measurements: Discussion of methods

After the scanning ODT is implemented, we want to characterize the trap by mea-
suring the trap frequency in the direction of the scanning for different modulation
amplitudes. The most common techniques to measure the trap frequencies along the
different directions of the trap are parametric heating and excitation of collective os-
cillations of the BEC od thermal cloud.
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Parametric heating technique: For this method, the trap is driven in a way to transfer
kinetic energy to the atoms, typically by periodically modulating the power of the
confining laser beam. For example, when the modulation frequency is twice the trap
frequency, atoms are excited to higher vibrational states which causes heating and a
subsequent loss of atoms [Wei98]. From the position of the loss feature in frequency
space one can infer the trap frequency. In general, the parametric heating technique is
typically used in situations where the trap frequencies are in the kHz regime and the
limited resolution of the imaging system prevents direct observations, like in tweezers
or optical lattices (in this context, the technique is rather called modulation spec-
troscopy).
Excitation of collective modes: Different collective modes can be excited in the atomic
cloud by a sudden change of the trap parameters, such as position, width or depth of
the confining potential. The change of trap parameters has to be fast enough so that
the atoms can not follow adiabatically, a typical time would be one forth of the trap
frequency. One can then deduce the trap frequencies by measuring the frequencies of
the collective oscillation. The collective modes for a non-dipolar BEC in a spherically
symmetric trap with trap frequency ωtrap are shown in figure 4.13(a). If the trap is
suddenly displaced along one direction the dipole mode is excited, meaning that the
position of the atomic cloud oscillates at the trap frequency. By temporarily changing
the trap frequency along one or more directions, one can excite the so-called breath-
ing modes where the width of the cloud oscillates. The monopole mode corresponds
cycles of a ballistic expansion of the cloud due to the release from the trap, followed
by a reduction in size because the atoms gain potential energy in the trap. For the
quadrupole modes, the oscillation in one direction is shifted in phase by half an os-
cillation period. The breathing modes can be observed by switching off the trap for
a short time; however, one has to consider that this can also excite the dipole mode
since the cloud falls down due to gravity while the trap is off. In an anisotropic trap,
an additional mode called the scissors modeshown in figure 4.13(b) can be excited by
sudden rotation of the trap. Moreover, the monopole and quadrupole modes couple,
see reference [Pit16] for details. It is also worth to note that sufficiently strong contact

Figure 4.13.: Schematic illustration of collective modes of a non-dipolar BEC (a) in a
spherically symmetric trap. (b) In an anisotropic trap, there are additional scissors modes
and the other collective modes couple.
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interactions as well as dipole-dipole interactions modify the oscillation frequencies of
collective modes [Alt07, vB10]. However, in our measurements we only excite the
dipole mode that always oscillates with the trap frequency independent of other pa-
rameters like temperature, density and interaction strength even for a dipolar BEC.
Thermal cloud vs. BEC: In principle, trap frequency measurements can be performed
with the thermal cloud or with the BEC. The advantage of measuring with the thermal
cloud is that the atomic density distribution follows a Gaussian profile that is more
robust to fit than the BEC’s density distribution which is described by a bimodal
model (the sum of a Gaussian and a Thomas-Fermi profile). However, we want to
characterize the final trap, so we decided to measure with the BEC. By exciting the
dipole mode, a Gaussian fit is sufficient since we only need to know the position and
not the width of the cloud to find the oscillation frequency.

Trap frequency measurements: Results

To excite the dipole mode, we add another step after the evaporation sequence where
we displace the trap by shifting the center frequency of the RF-signal sent to the
AOM5. After a hold time of 100ms, the trap is displaced back to its original position
and the oscillation can be observed. For this, the cloud is released from the trap and
expands during 3ms of time of flight before an absorption image is taken. We repeat
this measurement for six different modulation amplitudes A. In order to keep enough
atoms in the trap, we try to maintain a roughly constant trap depth by increasing the
power in the scanning ODT beam for each measurement. According to equation 3.11,
the trap depth is proportional to the peak intensity, U0 ∝ I0 ∝ P/(w0,xw0,y). We set
for Pscanning the value of the modulation amplitudes in Watts. Note that the value
set in the control software can differ from the actual value since we can’t measure the
power at the position of the atoms. Figure 4.14 shows the images of the atomic cloud
for A = 1.2V and A = 10V at selected times during the oscillation. The cloud is
always slightly elongated vertically because of gravity. This deformation increases for
higher aspect ratios because the trap gets wider in the horizontal direction. Conse-
quently, the atoms expand more in the direction of tighter confinement during time of
flight.
From the Gaussian fit, we obtain the position of the cloud. Figure 4.15 shows the po-
sitions in the horizontal (colored dots) and vertical direction (grey dots) as a function
of time for the different modulation amplitudes A. From a sine fit to the position in
the horizontal direction, we obtain the trap frequencies and summarize the results in
table 4.2.

Table 4.2.: Measured trap frequencies ωy for different modulation amplitudes of the scan-
ning ODT beam.

A in V 1.2 2.4 4.8 6.0 8.0 10.0
ωy/2π in Hz 207.8(6) 203.3(6) 105(1) 84(1) 68(2) 64(3)

5 We change Uoffset in equation A.1 from the initial 5V to 4.7V for 0.01ms
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V V

Figure 4.14.: The atomic cloud during dipole oscillation for modulation amplitudes of
A = 1.2V and A = 10V. The absorption images are shown for the time interval of 0 to 5ms
with a time step of 0.5ms.

From the trap frequency measurement, we can conclude that that the trap frequency
in the scanning direction can be tuned from ωy = 2π × 203.3(6)Hz (A = 1.2V,
Pscanning = 1.2W) to ωy = 2π × 64(3)Hz (A = 10V, Pscanning = 10W). However, we
think that the power can actually not be increased sufficiently to the set values in order
to keep a constant trap depth, which affects the trap frequencies in both directions
according to equation 3.12. Therefore, further measurements are needed to character-
ize the trap, specifically, determining the trap frequencies in both the scanning and
non-scanning direction to measure the aspect ratio.



Figure 4.15.: Center position of the atomic cloud in the horizontal direction (colored data
points) and in the vertical direction (grey data points) for different modulation amplitudes
A as a function of time after a displacement of the scanning ODT beam in the horizontal
direction. The position of the cloud is determined with a Gaussian fit to the absorption
images that were taken after time of flight. The error bars denote the standard deviation
obtained from the average over three measurements. The solid lines show a fit with a sine
model y = B sin(ω · (t− t0)) + y0.
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5
Optical potentials for
ultracold erbium atoms
using q-plates

In this chapter, we review the basics of representing polarization states of light, explain
the composition and working principle of q-plates and demonstrate how the polariza-
tion profile of a q-plate beam can be measured with projections onto the polarization
basis states. From the intensity and polarization profile of a q-plate beam, we calculate
the optical dipole potential it creates for erbium atoms. Last, we discuss possible chal-
lenges for the implementation of q-plates alternative methods to create vector beams
with spatial light modulators.

5.1. Q-plate basics

To understand the working principle of q-plates, we first need to describe the frame-
work that we use to represent vector beams, i.e. light fields with non-uniform polar-
ization. For this, we mainly rely on reference [Car15]. We begin by introducing the
Jones formalism to describe the light’s polarization. Next, we find the Jones matrix
for a general waveplate and use this result to study the creation and propagation of
vector beams: In the far-field, q-plate beams can be described with Laguerre-Gaussian
modes, but to predict the propagation through optical systems more accurately, the
circular beam model is needed. Next, we look at more technical aspects about the
composition and manufacturing of q-plates. We also discuss the Stokes parameters
and polarization ellipse as tools for measuring and visualizing polarization patterns of
vector beams.

41
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5.1.1. Jones formalism and polarization basis

Within the paraxial approximation that requires small angles between the light rays
and the optical axis, the electric field E⃗ of a plane wave traveling in the z-direction
only oscillates in the transverse x-y-plane:

E⃗(z, t) =
(
Exe

iϕx

Eye
iϕy

)
ei(ωt−kz). 5.1

Here, ω is the circular frequency and k is the wavenumber. The electric field strengths
Ex, Ey and phases ϕx, ϕy in the x- and y-direction define the polarization of the light.
We can write the polarization vector, which is also called the Jones vector, in terms
of the complex-valued components cx = Exe

iϕx and cy = Eye
iϕy :

E⃗ =

(
cx
cy

)
. 5.2

The intensity of the light is given by |E⃗|2 = |cx|2 + |cy|2 and is typically normalized to
1. As for any vector, the Jones vector has to be given with respect to a certain basis.
Let’s choose the basis of horizontal and vertical linear polarization (labeled as |H⟩ and
|V ⟩ in the bra-ket notation) to be along the basis vectors of our coordinate system:

|H⟩ = êx, |V ⟩ = êy. 5.3

Therefore, ch(v) = cx(y) and the polarization vector |E(h,v)⟩ in the |H⟩ , |V ⟩ basis reads

|E(h,v)⟩ = ch |H⟩+ cv |V ⟩ . 5.4

Apart from horizontal and vertical polarization, other examples for a choice of basis
are diagonal and anti-diagonal polarization (|D⟩, |A⟩) as well as left- and right handed
circular polarization (|L⟩, |R⟩). The diagonal and anti-diagonal states arise when
the |H⟩ , |V ⟩ basis is rotated by π/4; the left (right) circular states are given by the
addition of the |H⟩ , |V ⟩ states with a π/2 (−π/2) phase difference (see first column
in table 5.1).
While the |H⟩ , |V ⟩ basis is typically used for expressing Jones vectors, the action of
a q-plate is described in the |L⟩, |R⟩ basis. Therefore, it will be necessary the switch
between the two bases by multiplying with the unitary matrix Û

E⃗(l,r) = Û · E⃗(h,v), Û =
1√
2

(
1 −i
1 i

)
. 5.5

Note that the subscripts (h, v) and (l, r) refer to a representation in the corresponding
|H⟩ , |V ⟩ and |L⟩, |R⟩ basis. The Jones representation of all important polarization
states in both the |H⟩, |V ⟩ basis and the |L⟩, |R⟩ basis is shown in Table 5.1.
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Table 5.1.: Jones vectors of the horizontal, vertical, left circular, right circular, diagonal
and anti-diagonal polarization states, expressed both in the horizontal/vertical and left/right
circular basis.

Polarization State Vector in |H⟩, |V ⟩ basis Vector in |L⟩, |R⟩ basis

|H⟩
(
1
0

)
1√
2

(
1
1

)
|V ⟩

(
0
1

)
1√
2

(
−i
i

)
|L⟩ = 1√

2
(|H⟩+ i |V ⟩) 1√

2

(
1
i

) (
1
0

)
|R⟩ = 1√

2
(|H⟩ − i |V ⟩) 1√

2

(
1
−i

) (
0
1

)
|D⟩ = 1√

2
(|H⟩+ |V ⟩) 1√

2

(
1
1

)
1
2

(
1− i
1 + i

)
|A⟩ = 1√

2
(|H⟩ − |V ⟩) 1√

2

(
1
−1

)
1
2

(
1 + i
1− 1

)

5.1.2. Optical elements and Jones matrices

In the Jones formalism, the action of optical elements on the polarization state is
described by the multiplication with a 2×2 Jones matrix M̂ . For example, in the |H⟩,
|V ⟩ basis

E⃗out,(h,v) = M̂(h,v) · E⃗in,(h,v) 5.6

and the Jones matrix transforms into the |L⟩, |R⟩ basis as

M̂(l,r) = Û · M̂(h,v) · Û † 5.7

with the unitary matrix defined in equation 5.5.
A common way to alter the polarization of light are waveplates, optical elements
that consist of a birefringent medium. Birefringent media are characterized by two
directions: A “slow” axis with index of refraction ns and a “fast” axis with index
of refraction nf . The light polarized parallel to the slow axis experiences a higher
refractive index ns > nf and travels slower than the light polarized parallel to the fast
axis. Consequently, a waveplate with thickness d introduces a phase delay δ between
the light components traveling along the two axes:

δ = 2π
d(ns − nf )

λ
5.8

Note that for the well-known examples of half-waveplates (HWP) and quarter-waveplates
(QWP), the material and thickness of the plates are chosen so that the phase shifts
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are δ = π and δ = π/2.
The Jones matrix for the action of a waveplate with arbitrary δ in the basis of the fast
and slow axes {êf , ês} is

ŴP (f,s) =

(
e−iδ/2 0
0 eiδ/2

)
. 5.9

The |H⟩ = êx, |V ⟩ = êy basis can be rotated with respect to to the êf , ês basis by an

angle θ. For this, we need to define the rotation matrix R̂(θ):

R̂(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. 5.10

To describe the action of the waveplate in the |H⟩, |V ⟩ basis, we first have to rotate
by −θ, then we can apply the Jones matrix of the waveplate in the {êf , ês} basis and
rotate back by θ:

ŴP (h,v) = R̂(θ) · ŴP (f,s) · R̂(−θ) 5.11

Finally, we transform the Jones matrix of a general waveplate into the |L⟩, |R⟩ basis
with equation 5.7:

ŴP (l,r) = Û · ŴP (h,v) · Û † =

(
cos(δ/2) i sin(δ/2)e−2iθ

i sin(δ/2)e2iθ cos(δ/2)

)
5.12

Considering again the examples of a half-waveplate and a quarter-waveplate, the cor-
responding Jones matrices according to equations 5.11 and 5.12 are shown in Table
5.2. For incoming linear polarization, a half-waveplate only rotates the polarization
vector while a quarter-waveplate converts it into elliptical polarization.

Table 5.2.: Jones matrices of a half-waveplate and a quarter-waveplate rotated by an angle
θ, represented in the |H⟩, |V ⟩ and the |L⟩, |R⟩ basis.

Optical element Matrix in |H⟩, |V ⟩ basis Matrix in |L⟩, |R⟩ basis

HWP −i
(
cos 2θ sin 2θ
sin 2θ − cos 2θ

) (
0 ie−2iθ

ie2iθ 0

)
QWP 1√

2

(
1− i cos 2θ −i sin 2θ
−i sin 2θ 1 + i cos 2θ

)
1√
2

(
1 ie−2iθ

ie2iθ 1

)

5.1.3. Generating Vector beams with Q-plates

So far, we have only considered examples of spatially uniform waveplates like half-
waveplates and quarter-waveplates that cause a constant phase retardation across the
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beam profile. For general waveplates, the imprinted phase does not have to be spatially
uniform. This means that in any polarization basis (ν, µ) the electric field components
of the outgoing electric field can vary spatially. Such beams are called vector beams
[Car15]. They have the general form

E⃗(ν,µ)(r, ϕ, z) =

(
cν · Aν(r, ϕ)
cµ · Aµ(r, ϕ)

)
5.13

with different complex-valued electric field components Aν(r, ϕ) ̸= Aµ(r, ϕ) and cylin-
drical coordinates (r, ϕ, z).
A spatially non-uniform phase delay can be achieved by using liquid crystal (LC)
molecules as the birefringent medium in a waveplate: The local orientation of the
molecules defines the direction of the fast and slow axis and therefore the local phase
shift for the light. In principle, one can imprint arbitrary LC patterns where the only
restriction is the resolution limit of the printing technique. We will now focus on a
specific type of general waveplates, called q-plates, that were invented in Naples in
2006 [Rub19]. For q-plates, the imprinted phase only depends on the azimuthal angle
ϕ that goes around the center of the plate. The orientation θ of the LC molecules
follows

θ(ϕ) = q · ϕ+ θ0. 5.14

The order q of the q-plate describes how many times the orientation of the LC
molecules completes one full rotation of 2π around the center of the plate. The param-
eter θ0 sets the initial orientation of the molecules at ϕ = 0 and will be set to zero for
simplicity from now on. Figure 5.1 illustrates the LC pattern for q-plates of different
orders and θ0 = 0.

Figure 5.1.: Liquid crystal pattern for q-plates of order q = 1/2, q = 1 and q = 2 with
θ0 = 0.

Let us now study the effect of a q-plate on light. For this, we take the Jones vector of
the incoming light in the left/right circular polarization basis

E⃗in,(l,r) =

(
cL
cR

)
. 5.15

Then, we insert the angle dependence of the LC orientation, equation 5.14, into the
Jones matrix of a general waveplate, equation 5.12, to find the outgoing electric field

E⃗out,(l,r)(r, ϕ) = ŴP (l,r) · E⃗in,(l,r) = cos(δ/2)

(
cL
cR

)
+ i sin(δ/2)

(
e−2iqϕ cR
e2iqϕ cL

)
5.16
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From the ϕ-dependence in each field component, we can already see that q-plates can
create vector beams. Let us now take a closer look at the electric field created by a q-
plate. We can see that for a phase delay of δ = π, the q-plate completely converts right
circular polarization to left circular polarization (and vice-versa) with an additional
azimuthal phase winding exp (±2iqϕ)1:

E⃗in,(l,r) =

(
0
1

)
→ E⃗out,(l,r) =

(
ie−2iqϕ

0

)
5.17

E⃗in,(l,r) =

(
1
0

)
→ E⃗out,(l,r) =

(
0

ie2iqϕ

)
5.18

This effect is illustrated in figure 5.2 for a q = 1: The incoming beam is purely right
(left) circularly polarized and has a Gaussian intensity profile. The outgoing beam
is fully left (right) circular polarized and the phase winding causes a so-called helical
phase front. Because the phase is undefined in the beam’s center, the intensity has to
be zero here. From a topological point of view, the phase winding creates a topological
vortex with integer charge l = 2q (see [Car15] for details).

Figure 5.2.: Schematic illustration of the effect of a q-plate on light. An incoming beam
with Gaussian intensity profile and right (left) circular polarization enters a q-plate with
q = 1. For a phase delay of δ = π, it is fully converted into left (right) polarized light with
a helical phase front. The intensity profile is given by Laguerre-Gaussian modes with radial
index p = 0 and azimuthal index l = ±2q. Figure taken from [Car15].

Next, we need to find a description for the intensity profile for beams created by
q-plates. Because of their “doughnut-shape”, it seems reasonable to use Laguerre-
Gaussian (LG) modes which is in fact a good approximation in the far-field. Therefore,
we introduce the LG model in the next section. The following section covers the more
sophisticated description in terms of the so-called circular-beam model [Val16]. It
relies on hypergeometric Gaussian modes and predicts the propagation though optical
systems more accurately than the LG beam model.

1 Note that for brevity, we omit writing the spatial dependence of E⃗out,(l,r) on (r, ϕ) from now on.
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5.1.4. Description in the far-field: Laguerre-Gaussian model

Laguerre-Gaussian beams are well-known solutions of the paraxial Helmholtz equation.
They are rotationally symmetric around the direction of propagation and are defined
by two indices: p, the radial index, and l, the azimuthal index. Figure 5.3 illustrates
the intensity and phase profile for the first few LG modes. The full mathematical

Figure 5.3.: Intensity (top) and phase (bottom) profile of the first few Laguerre-Gaussian
modes that are defined by p, the radial index, and l = m, the azimuthal index. Taken from
[Car15].

expression of LG modes can be found in equation 1.42 of [Car15]. Here we consider a
collimated LG mode: z ≪ zR, where zR = πw2

0/λ is the Rayleigh length. LG mode
have a jump in their phase profile in the radial direction for p > 0. Since q-plates only
impact the phase in the azimuthal direction, we can set p = 0 always. Therefore, the
expression of LG modes created by q-plates becomes

LGp=0,l(r, ϕ) =

√
2|l|+1

π w2
0 |l|!

(
r

w0

)|l|

e
− r2

w2
0 L

|l|
0

(
2r2

w2
0

)
eilϕ 5.19

where w0 is the waist and L
|l|
0 (x) are the generalized Laguerre polynomials. We can

now adjust equations 5.15 5.16 to include the LG modes into the description of the
q-plate action. The incoming Gaussian beam can be expressed as a LG0,0 mode:

E⃗in,(l,r) =

(
cL LG0,0(r, ϕ)
cR LG0,0(r, ϕ)

)
5.20
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and the outgoing beam becomes

E⃗out,(l,r) = cos(δ/2)

(
cL LG0,0(r, ϕ)
cR LG0,0(r, ϕ)

)
+ i sin(δ/2)

(
cR LG0,−2q(r, ϕ)
cL LG0,2q(r, ϕ)

)
. 5.21

5.1.5. Propagation through an optical system: Circular beam
model

In the circular beam (CiB) model [Val16], the beam created by a q-plate is described by

a function CiB
(q0,ξ)
−|l|,l that depends on the complex parameters q0 and ξ. The parameter

q0 is defined as
q0 = −d0 + iz0. 5.22

Here, z0 is related to the size of the beam: z0 = kw2
0/2, with w0 the analog of the

Gaussian beam waist, and d0 is the position of the waist. The second parameter ξ
determines the “class” of the CiB. For example, cylindrical beams become LG modes
in the limit of ξ → ±∞ and for q-plate beams, |ξ| = 1 holds. With given beam
parameters q0 and ξ and a fixed transverse plane, a cylindrical beam has the form

CiB
(q0,ξ)
−|l|,l =

Γ(|l|/2 + 1)

|l|!

(
−r2

ξχ2

)|l|/2

G(r) 1F1

(
|l|
2
, |l|+ 1,

r2

χ2

)
eilϕ with|ξ| = 1. 5.23

Here, we have defined the auxiliary function χ and the Gaussian mode G(r)

G(r) =
i

q0

√
kz0
π
e
− ikr2

2q0 ,
1

χ2
=
kz0ξ

q0

1

q0 + ξq∗0
, z0 = Im [q0] .

The Gamma function Γ(x) and the confluent hypergeometric function 1F1(a, b, x) can
be implemented easily e.g. in Python with math.gamma() and scipy.special.hyp1f1.
Let us now describe the propagation of a circular beam through an optical system.
For this, we start at the q-plate with

q0 = iz0 and ξ = 1. 5.24

As the beam propagates, the evolution can be described in terms of the ABCD method
in the paraxial regime. In the ABCD model, each section of the optical system that
the beam passes through corresponds to a matrix MABCD that transforms the beam
parameters:

MABCD =

(
A B
C D

)
, q0 →

Aq0 +B

Cq0 +D
, ξ → Cq∗0 +D

Cq∗0 +D
ξ 5.25

The propagation of a CiB is simulated by consecutive transformation of the beam
parameters according to the ABCD matrices that describe the optical system. Note
that the absolute value of ξ stays constant (|ξ| = 1) throughout propagation which
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ensures that the beam stays in the same class of CiBs and can be described with
equation 5.23. The ABCD matrices for different parts in the optical path are well-
known from geometric optics. For us, the cases of propagating through free space over
a distance d and passing a lens with focal length f are important:

Mfreespace =

(
1 d
0 1

)
, Mlens =

(
0 1

−1/f 1

)
. 5.26

The resulting beam from a q-plate in the CiB model for a given beam parameters
(q0, ξ) is then

E⃗out,(l,r) = cos(δ/2)

(
cL CiB

(q0,ξ)
0,0 (r, ϕ)

cR CiB
(q0,ξ)
0,0 (r, ϕ)

)
+ i sin(δ/2)

(
cR CiB

(q0,ξ)
2q,−2q(r, ϕ)

cL CiB
(q0,ξ)
2q,2q (r, ϕ)

)
. 5.27

Model comparison

Reference [Val16] compares the circular beam model with experimental observations.
The authors use a circularly polarized Gaussian beam with a waist of 890µm and a
wavelength of 810 nm. They place a q-plate with q = 1/2 at the beam waist location
at 0mm and compare the experimentally observed free-space propagation with the
CiB model and a Laguerre-Gauss model. Figure 5.4 shows the results for different
propagation distances d after the q-plate. Clearly, the CiB model (second row) agrees
much better with the experimental observation (first row) than the LG model (third
row) in the near-field (d ≲ z0/10). In the far-field, the LG mode matches the observed
vortex beam and the CiB model in good approximation.

Figure 5.4.: Intensity distribution of a optical vortex beam created by a q-plate at d = 0mm
with an initial Gaussian beam waist of 810 nm. The three rows show the experimental
observation and the prediction by the CiB and the LG model for different propagation
distances d. The similarity parameter S indicates the agreement of each model with the
experiment. Figure taken from [Val16].



50 5. Optical potentials for ultracold erbium atoms using q-plates

5.1.6. Composition and fabrication of q-plates

Q-plates are about 2x2 cm in size and consist of two glass plates with an azo-dye and
a liquid crystal (LC) layer in between, as one can see in figure 5.5(a). The azo-dye is

Figure 5.5.: (a) Schematic illustration of the composition of a q-plate. The glass plates are
coated with the transparent conductor indium-tin oxide (ITO) and connected to electrical
contacts. An azo-dye layer allows for printing patterns into the LC layer thanks to the photo-
alignment technique. (b) Picture of a q-plate that is placed between to crossed polarizers.
Figure taken from [Rub19].

used to imprint the desired q-plate pattern with a photo-alignment technique [Rub19].
For wavelengths in the blue or near-UV, the azo-dye molecules align perpendicular to
the polarization of the light. The LC molecules then align with the dye molecules. For
applications of q-plates, wavelengths of about 600 nm and below have to be carefully
tested since they are likely to damage the q-plate pattern by reorienting the azo-dye
molecules.
Furthermore, a wire is attached to each of the glass plates that are coated with the
transparent conductor ITO so that an electrical voltage can be applied between them.
This allows for controlling the angle of the LC molecules in the direction along the
propagation of the light, changing the phase delay δ and therefore tuning the amount
of conversion to light of opposite handedness in equation 5.21. To ensure that no static
electric charges build up, the voltage signal ranging from 0V to a few volts has to be
alternating (AC) with a frequency of a few kHz.
The manufacturing of q-plates requires advanced fabrication techniques [Rub19]. Mi-
crospacers in between the glass plates create uniform thickness of the LC layer to en-
sure a uniform phase delay δ, see equation 5.8. All materials and devices are carefully
cleaned before the manufacturing process. Nevertheless, there can be imperfections
in the fabrication materials or in the imprinting process that can cause imperfections
in the LC pattern. Unavoidably, q-plates have a defect in the center where the orien-
tation of the LC molecules is undefined. The defect becomes larger for higher orders
of the q-plate. After manufacturing, q-plates can be quality-controlled by placing it
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between two crossed polarizers and observing the LC pattern, as it can be seen in
figure 5.5(b).

5.2. Measuring polarization patterns

While the intensity profile of a light beam can be easily measured with a camera,
reconstructing the polarization pattern is more complicated. One possibility is to
measure the Stokes parameters which are given by the components of the Jones vectors
represented in different bases:

S1 = |ch|2 − |cv|2

S2 = |cd|2 − |ca|2

S3 = |cl|2 − |cr|2 5.28

Here, (h, v), (d, a) and (l, r) correspond to the different polarization bases shown in
table 5.1. Experimentally, this means that the Stokes parameters at each point of a
beam can be found by projecting into the different polarization states n and measuring
the corresponding intensities In:

S1 = Ih − Iv

S2 = Id − Ia

S3 = Il − Ir 5.29

A given set of Stokes parameters corresponds to a point on the Poincaré sphere, sim-
ilar to a qubit state on the Bloch sphere [Car15]. Figure 5.6(a) shows the principle
of representing a polarization state as a point (S1, S2, S3) on the Poincaré sphere.
Here, we always assume fully polarized light so that

√
S2
1 + S2

2 + S2
3 = 1. In polar

coordinates, the point on the sphere is defined by two angles Φ and χ:

S1 = cos(2χ) cos(2ψ)

S2 = cos(2χ) sin(2ψ)

S3 = sin(2χ). 5.30

Sometimes it is more useful to use these angles to visualize the polarization as a
polarization ellipse. As illustrated in figure 5.6(b), Φ gives the orientation of the
ellipse and χ defines its ellipticity. From equations 5.30 it follows that the angles Φ
ans χ are related to the Stokes parameters S1, S2, S3 via

tan (2ψ) =
S2

S1

tan (2χ) =
S3√

S2
1 + S2

2

. 5.31
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(a) (b)

Figure 5.6.: Representations of polarization states. (a) On the Poincaré sphere, each po-
larization state can be mapped to a point on the sphere which is defined by the Stokes
parameters (S1, S2, S3) in cartesian coordinates or by the angles Φ and χ in polar coordi-
nates. Along the equator of the sphere the polarization is linear, the south and north pole
correspond to left and right circular polarization and at all other points the polarization is
elliptical. (b) The polarization ellipse is defined by the angles Φ and χ. For linear polariza-
tion, the polarization ellipse becomes a line, for circular polarization, it becomes a circle.

Note that when solving these equations for Φ and χ, one has to be careful to choose
the the right solution of arctan(x/y) depending on the sign of x and y. For this, one
can use e.g. the numpy.arctan2(y,x) function in Python or atan2(y,x) in Matlab.
Figure 5.7 shows the experimental setup for measuring polarization profiles. First,
the incoming light is made purely linearly polarized with a polarizing beam splitter.
Next, it passes a half-wave plate and a quarter-wave plate that can be set to prepare
any initial polarization state. Now, the q-plate can turn the uniform polarization into
a vector beam. To measure the polarization at each point of the beam profile, the
light is projected onto the different polarization states with a quarter-waveplate and
linear polarizer (a linear polarizer can be replaced by a polarizing beam splitter plus
a half-wave plate). A camera captures the intensity distribution for each projection.
Figure 5.8 illustrates the calculation of the Stokes parameters from the different po-
larization projections according to equation 5.29 and the resulting polarization profile
represented by polarization ellipses.
Figure 5.9 shows the measured and calculated polarization and intensity profiles for
different q-plate beams. Let’s first look at the cases of linear incoming polarization and
full conversion (figure 5.9(a) and (c)): The incoming light consists of equal amounts of
left- and right circular polarized light with a relative phase delay. The q-plate converts
the left into right circular polarized light and vice-versa, so the light after the q-plate
is again linearly polarized. In addition, the helical phase is imprinted, which leads
to a doughnut-shaped intensity profile and the rotation of the linear polarization’s
orientation around the center of the beam, completing one full rotation for q = 1/2
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Figure 5.7.: Experimental setup to create vector beams with a q-plate and measure their
polarization profiles. The polarization optics used here are a polarizing beam splitter (PBS),
a half-wave plate (HWP), a quarter-wave plate (QWP) and a linear polarizer.

Figure 5.8.: Measuring the polarization profile of a vector beam produced by a q = 1
plate with the voltage set to full conversion (Iconv/Itot = 1) and an incoming horizontal
polarization (|ψin = |H⟩⟩). From the projections on different polarization states, the Stokes
parameters are calculated at each point, which allows to plot the corresponding polarization
ellipses (blue lines in the right figure) on top of the intensity profile (orange area).

(figure 5.9(a)) and two full rotations for q = 1 (figure 5.9(c)). For incoming circular
polarization and half conversion (figure 5.9(b) and (d)), half of the beam keeps its
initial polarization and Gaussian intensity profile while the other half is converted into
a doughnut-shaped beam with opposite handedness of the circular polarization. As a
result, the q-plate beam is in its initial polarization state in the middle, and linearly
polarized on the outside, where converted and unconverted beam overlap. Even further
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Figure 5.9.: Measured and calculated polarization and intensity profiles for different q-plate
beams. (a) and (b) are for q = 1/2, (c) and (d) are for q = 1. (a) and (c) correspond to
incoming horizontal polarization and full conversion (Iconv/Itot = 1), (b) and (d) correspond
to incoming left and right handed circular polarization and half conversion (Iconv/Itot = 0.5).

from the center, the Gaussian intensity profile should decay faster, so the converted
circular polarization should be visible. However, the total intensity decreases too fast
on the outside to see this effect.

5.3. Calculation of optical potentials for ultracold
erbium using q-plates

As we discussed in chapter 3.3, the light’s polarization is important in calculating the
optical potential that lanthanides experience. We are now interested in determining
realistic numbers of possible potential landscapes for erbium that can be produced
in our experiment using q-plates. We will take light close to the narrow transition
at 841 nm such that the vectorial and tensorial components of the polarizibility play
a significant role for the total trapping potential2. For the calculation, we assume a

2 Note that in the Ketterle group, the equivalent transition in dysprosium at 741 nm has been
used successfully to generate spin-dependent potentials by relying on the vectorial and tensorial
polarizabilities [Du24].
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beam with 1mm diameter passing through a q-plate. The optical system between the
q-plate and the atoms consists of a telescope with a 50mm lens and a 300mm lens
before our objective that has a focal length of 60mm to create a beam with a size
of about 20µm. This roughly matches the size of our optical dipole traps and would
therefore ensure a large spatial overlap for loading into the 841 nm trap. The initial
beam parameters q0 = 0 and ξ = 1 evolve according the ABCD matrices of the optical
system, see equation 5.25. We insert the resulting beam parameters q0 and ξ into the
circular beam model in equation 5.27 to obtain the intensity and polarization pattern
in the focal plane of the objective. Then, we can calculate the optical potential for
the atoms with equation 3.13 for a certain orientation of the magnetic field B, spin
state mJ and detuning δ from the transition which determines the values of the scalar,
vectorial and tensorial polarizabilities.
Let’s use a q = 3 q-plate, consider atoms in the ground state J = 6, mJ = −6, set
the power of the light to 100mW and the detuning to 5 · 104 Γ841 = 2.5GHz (which
corresponds to αs = 75.5 a.u., αv = −270.5 a.u., αt = 61.2 a.u.). For incoming linear
polarization, the q-plate creates the polarization profile shown in figure 5.10(a). Since
it only contains linear polarization, the vectorial part of the potential will always be
zero (A = 0). Therefore, we can set the orientation of the magnetic field to be in the
xy-plane to maximize the tensorial part of the potential (cos θp = 1). Figure 5.10(b)
shows the resulting optical potential for this configuration. We can see that the ten-
sorial part of the polarizability creates a modulation along the ring and the scalar
part causes a constant offset. If we add a quarter-waveplate after the q-plate, linear

(a)

(b)

Figure 5.10.: (a) Polarization and intensity profile for q = 3 and incoming horizontal
polarization. (b) Corresponding calculated optical dipole potential in units of the light shift
for q = 3, δ = 2.5GHz, the magnetic field oriented in the xy-plane.
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and circular polarization alternates in the polarization profile, see figure 5.11(a). By
setting the magnetic field in the z-direction, this allows us to have a modulation of the
optical potential along the ring because of the vectorial part which is shown in figure
5.11(b). We can also choose a higher order q of the q-plate: Figure 5.12 depicts the

(a)

(b)

Figure 5.11.: (a) Polarization and intensity profile for q = 3 and incoming horizontal
polarization with an additional quarter wave plate after the q-plate. (b) Corresponding
calculated optical dipole potential in units of the light shift for q = 3, δ = 2.5GHz, the
magnetic field oriented in the z-plane.

optical potential for q = 10. Here, we can see that the number of modulations along
the ring increases accordingly. However, the order of the q-plate changes the beam
size which more than doubles in this case.
Note that this calculation model doesn’t include diffraction, meaning that the smallest
modulation that can be created by our optical is given by the diffraction limit. In the
erbium experiment, the objective has a numerical aperture of NA = 0.46 [Laf22], so
the diffraction limit is 1.22λ/(2NA) = 1.1µm.
The discussed examples above are for fixed parameters of the detuning, input polariza-
tion, atomic state and magnetic field angles. We can also change the detuning of the
light to control the absolute and relative strength of the scalar, vectorial and tensorial
polarizabilties. Reducing the detuning from the transition increases the strength of the
vectorial and tensorial parts compared to the scalar part, but this also increases the
phonon scattering the causes heating and atoms loss. At fixed detuning, the relative
strength of vectorial and tensorial part can be tuned by tilting the magnetic field.
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Figure 5.12.: Calculated optical dipole potential in units of the light shift for q = 10, δ =
2.5GHz, the magnetic field oriented in the xy-plane and incoming horizontal polarization.

5.4. Possible challenges for implementing q-plates

Up to now, I have shown that q-plates are a promising tool to create spatial polarization
patterns that can be used to realize potential patterns for our ultracold erbium atoms.
However, there are some challenges one can foresee when implementing q-plates in the
experimental setup:

• Changing the order of the q-plate: The LC pattern on each q-plate is fixed, so
the q-plate has to be exchanged and realigned. Moreover, the optical setup has
to be adjusted if one wants to keep the same beam size at the position of the
atoms, since the beam size depends on the order of the q-plate.

• Photon scattering and heating: In the previous calculations, the scattering rate is
kept below 0.1 s−1, but in the experiment the actual scattering rate can be much
larger. Furthermore, the voltage applied to drive the q-plate has to alternate at
a few kHz which could introduce additional heating.

• Transmission and damage threshold at 841 nm: At the q-plate, some of the light
is lost due to reflection or absorption which reduces the light’s power on the
atoms. We quantify the losses at 841 nm in the following section 5.4.1.

• Longitudinal polarization effects: This can arise due to tight focusing of light
with radial polarization components and are discussed in the following section
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5.4.2.

• Aberrations and imperfections in the optical system: This can give rise to a
spatial non-uniformity of the intensity profile and therefore unwanted effects
on trapping potential for the atoms. To mitigate this issue, one could use an
alternative method to create vector beams which allows for error correction with
active feedback. In the following section 5.4.3, we explain the advantages and
disadvantages of alternative methods to q-plates, which rely on liquid-crystal
spatial light modulators.

5.4.1. Transmission and damage threshold at 841 nm

As with all optical components, some of the light is lost as it passes through the q-
plate because of absorption or back-reflection. The loss fraction can depend on the
wavelength and intensity of the light. Therefore, we tested the loss through a q-plate
with 841 nm light and a waist of 385µm. For the loss fraction

η = 1− Pout

Pin

5.32

we measure η = 20(1)% for Pin = 5.1(1)mW and η = 15(1)% for Pin = 16.8(1)mW.
Unfortunately, we could not test the loss at higher power but from this measurement
we can conclude that we expect a power loss of 15− 20% for 841 nm light.
Laser light can also damage the q-plate by reorienting the liquid crystals. This is ex-
pected to happen only at wavelengths below 600 nm, but should be tested nevertheless
for each wavelength. Therefore, we focus the 841 nm light with 15.5(1)mW down to a
waist of 22µm and shine it on different spots of the plate. By inspecting the q-plate
between two crossed polarizers, no damage to the liquid crystal pattern was found, so
we conclude that the 841 nm light does not affect the q-plate pattern.

5.4.2. Longitudinal polarization effects

For tight focusing of light, the paraxial approximation breaks down and the light can
have a longitudinal polarization component [Ric59, You00, Zha02]. This means that
the polarization vector is no longer restricted to the plane perpendicular to the prop-
agation direction, but can rather have a non-negligible and even dominant component
along the propagation direction.
This effect can be undesired, as described in an optical tweezer experiment for sin-
gle rubidium atoms in the Lukin group [Tho13]: Here, tight focusing of 815 nm light
down to a waist of only 900 nm creates longitudinal polarization effects that cause
a polarization gradient illustrated in figure 5.13. Rubidium is an alkali atom, so it
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experiences a vectorial light shift that depends on the hyperfine state of the atom and
the polarization of the light. In the Lukin experiment, the vectorial light shift due to
the polarization gradient causes unwanted dephasing of the internal hyperfine states
which they successfully mitigate by applying a magnetic bias field.

Figure 5.13.: Longitudinal polarization effects in an optical tweezer. (a) Due to tight
focusing (NA = 0.43) of initially linearly polarized light, the light gets effectively elliptically
polarized in the yz-plane with opposite rotation directions of the polarization vector above
and below the optical axis. (b) The contour lines indicate the degree of ellipticity of the
polarization in the xy-plane at the focus. Adapted from [Tho13].

In contrast, longitudinal polarization effects can also be desired and used a tool in
the wider context of “structured light”, a notion which describes the idea of using
all degrees of freedom to control a light beam for different applications [For21]. For
example, it was first demonstrated experimentally in 2003 that light with strong lon-
gitudinal polarization can be focused down to a significantly smaller spot size than
light with transverse polarization [Dor03]. The tight focusing of light with a spatially
non-uniform polarization pattern allows to create three-dimensional polarization ob-
jects such as a Moebius strip shown in figure 5.14 [Bau15]. In super-resolution optical
microscopy, structured light created by cylindrical vector beams can improve resolu-
tion both in the near-field (e.g. scanning microscopy with a metal or fiber tip) and
far-field (e.g. stimulated emission depletion (STED) microscopy). A nice summary
of recent advances in this field of research can be found in reference [Liu22a]. Fur-
thermore, longitudinal polarization effects are well-known for light-matter interfaces
in nanophotonics where atoms are placed at subwavelength distances from dielectric
boundaries [Lac12]. For example, by exploiting longitudinal polarization effects, the
spontaneous emission of atoms into a nanophotonic waveguide can be forced to go
only into only one direction with an efficiency of 90% [Mit14].
To estimate the amount of longitudinal polarization we can have for tight focusing
with our numerical aperture of NA = 0.46, we use the Richards-and-Wolf method
[Ric59] that is explained now using references [Nov12, Zha09, Bau17]. We start with a
incident electric field that is paraxial in the sense that it is only polarized in the plane
transverse to the propagation direction z:

E⃗in(ρ, ϕ) = E(ρ)(cosφ0 e⃗ρ + sinφ0 e⃗ϕ). 5.33
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Figure 5.14.: Polarization topology achieved by tight focusing (NA = 0.9) of light emerging
from a q-plate. The plots show the main axis of the 3d-polarization ellipse that exhibits a
Moebius-strip topology. For q = −1/2 (A-B), the strip has three half-twists and for q = −3/2
(C-D) the strip has five half-twists. The upper row corresponds to theoretical calculations,
the bottom row shows experimental results obtained from reconstructing the electric field
distribution by collecting light scattered from a gold nanoparticle. Taken from [Bau15].

Here, we use cylindrical coordinates (ρ, ϕ, z) with the corresponding unit vectors
(e⃗ρ, e⃗ϕ, e⃗z). The amplitude of the initial electric field is given by E(ρ) and its polariza-
tion by φ0 where φ0 = 0 for azimuthal polarization φ0 = π/2 for radial polarization
as illustrated in figure 5.15.
The key part of the Richards-and-Wolf method is now to transform the plane that the
incident field occupies into a so-called reference sphere with radius f as shown in figure
5.16. This means that we have to transform the cylindrical coordinates to spherical
coordinates so that the electric field on the sphere becomes

E⃗∞(θ, ϕ) = E ′(θ)(cosϕ0 e⃗θ + sinφ0 e⃗ϕ) 5.34

where the subscript of E⃗∞ indicates that the reference sphere is in the far field of
the focal plane (z ≪ f). Looking at the corresponding unit vectors in cartesian
coordinates

e⃗ρ = cosϕ e⃗x + sinϕ e⃗y 5.35

e⃗ϕ = − sinϕ e⃗x + cosϕ e⃗y

e⃗θ = cos θ e⃗ρ − sin θ e⃗z

it becomes clear this transformation introduces a longitudinal component of the electric
field since e⃗θ is the only unit vector with a z-dependence (e⃗ρ and e⃗ϕ are the same in
both coordinate systems). The electric field strength transforms as

E ′(θ) = E(f sin θ)
√
cos θ 5.36
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Figure 5.15.: (a) Azimuthal and (b) radial polarization of the incoming electric field with
the intensity profile of the Laguerre-Gauss mode LG0,1.

where the factor of
√
cos θ is required for power conservation and the ρ -dependence of

the field strength E(ρ) is eliminated by using the Abbe sine condition ρ = f sin θ that
most objective lenses fulfil.
The last step of the Richards-and-Wolff method is to calculate the resulting electric
field E⃗(r, φ, z) close to to the focus. According to the far-field approximation of Fourier
optics,

E⃗(r, φ, z) =
−ik
2π

x

Ω

dΩ E⃗∞(θ, ϕ)eiks⃗·r⃗ 5.37

where s⃗ = (kx, ky, kz)/k is a unit vector on the reference sphere and k = 2π/λ is the

wave number. Basically, the idea here is to calculate the electric field E⃗(r⃗) at each

point r⃗ = (r, φ, z) close to the focus by integrating over the electric field E⃗∞ and all
vectors s⃗ on the reference sphere in the solid angle Ω (a more rigorous proof of equation
5.37 can be found in [Nov12]). Close to the focus

s⃗ · r⃗ = z cos θ + r sin θ cos(ϕ− φ) 5.38

holds, so we get

E⃗(r, φ, z) =
−ik
2π

∫ θmax

0

dθ

∫ 2π

0

dϕE⃗∞(θ, ϕ)eikz cos θeikr sin θ cos(ϕ−φ) 5.39

which can be simplified with the help of the Bessel functions Ji(x) of the first kind
since ∫ 2π

0

dϕ cos(nϕ)eix cos(ϕ−φ) = 2πinJn(x) cos(nφ))∫ 2π

0

dϕ sin(nϕ)eix cos(ϕ−φ) = 2πinJn(x) sin(nφ)) 5.40
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Figure 5.16.: Illustration of the Richards and Wolf method. The incoming electric field
E⃗in is restricted to the plane transversal to the propagation direction. Tight focusing with
a lens with focal length f and numerical aperture NA = sin θmax can give rise to a longitu-
dinal polarization effects. The field E⃗ in the focal plane is calculated by transforming the
transversal plane into a sphere and calculating the far-field Fourier integral of the field E⃗∞
on the sphere.

With this, we arrive at the final expression for the electric field close to the focus

E⃗(r, φ, z) = k

∫ θmax

0

dθ E(f sin θ) sin θ
√
cos θ eikz cos θ× 5.41cosφ0

cos θ cosφJ1(kr sin θ)
cos θ sinφJ1(kr sin θ)
i sin θJ0(kr sin θ)

+ sinφ0

− sinφJ1(kr sin θ)
cosφJ1(kr sin θ)

0

 .

Now, we calculate the electric field for specific configurations of interest. We use the
incident field strength of the Laguerre-Gauss mode LG0,1

E(ρ) = E0
ρ

w0

e−ρ2/w2
0 5.42

with intensity profile shown in figure 5.15. First, we use the same parameters w0/f =
0.95, NA = 0.9 and λ = 530 nm as in reference [Bau17] to compare their results
for a consistency check. Indeed, the results shown in figure 5.17 agree with figures
2.4 and 2.5 in [Bau17]. For azimuthal polarization of the incoming field, there is no
longitudinal component of the electric field while for radial polarization, 44.7% of the
total power go into the longitudinal component.
For our case, we have λ = 841 nm and NA = 0.46. For choosing the parameter w0/f ,
we see from figure 5.15 that we can cut the intensity profile of the Laguerre Gauss
beam at 3/2w0. Therefore, the maximum w0 for our objective with diameter d is
w0 = 2/3 · d/2. Since f = d for our objective, we get w0/f = 1/3. The results of



5.4. Possible challenges for implementing q-plates 63

(a) For E⃗in azimuthally polarized

(b) For E⃗in radially polarized

Figure 5.17.: Results of the Richards and Wolf method in the focal plane for (a) azimuthal
and (b) radial polarization of the incoming electric field: Intensity in the transversal x- and
y-component and in the longitudinal z-component of the electric field as well as the total
intensity for the parameters λ = 530 nm, w0/f = 0.95 and NA = 0.9 used in [Bau17]. All
intensities are normalized to the maximum of the total intensity.

Figure 5.18.: Results of the Richards and Wolf method in the focal plane for radial po-
larization of the incoming electric field with our parameters λ = 841 nm, w0/f = 1/3 and
NA = 0.46. All intensities are normalized to the maximum of the total intensity.

the Richards and Wolf method are shown in figure 5.18. For the worst-case scenario
of radial polarization of the incoming beam and maximum waist w0, only 8.7% of
the total power goes into the longitudinal polarization component. This means that
we can expect that effects coming from longitudinal polarization components will be



64 5. Optical potentials for ultracold erbium atoms using q-plates

rather minor. Since the light with the longitudinal component is distributed at the
center of the beam, it does not affect the potential formed by the intensity ring of the
Laguerre-Gauss mode.

5.4.3. Alternative methods to implement vector beams

Liquid-crystal spatial light modulators (LC SLMs) allow to create optical fields with
tailored phase and intensity profiles [Yan23]. This is achieved by controlling the LC
orientation at each pixel of the SLM, which imprints a phase pattern on the incoming
beam. To obtain a spatial modulation of the intensity, one observes the beam profile
in the Fourier plane of the SLM.
The control over each pixel of the SLM allows to create arbitrary intensity and phase
profiles and to correct for optical aberrations relying on an active feedback mech-
anism. The most widely used technique for this is the Gerchberg-Saxton algorithm
that is based on iterative Fast Fourier Transforms (FFT) of the electric field in the SLM
plane to the far-field Fourier plane and vice-versa via inverse FFT. An advanced ver-
sion of this algorithm for better uniformity of the reconstructed image is the weighted
Gerchberg-Saxton algorithm that has been realized for an SLM in our group [Hen23].
One disadvantage of SLMs is that the voltage applied to the SLM pixels has to be
alternating, which leads to the same temporal fluctuations as for the q-plate. In the
context of SLMs, this cycling rate is called phase flicker and lies in the range of a few
Hz to kHz depending on the device. A review about the phase flicker as well as efforts
to reduce it can be found in reference [Yan20].
The main drawback of SLMs is that they require incident light with a specific orienta-
tion of linear polarization. This means that one can not choose arbitrary polarizations
of the incoming light to obtain the desired polarization pattern at the output. However,
by letting two Laguerre-Gauss or Hermite-Gauss modes of orthogonal linear polariza-
tion interfere one can create arbitrary vector beams [Mau07, Liu18, RG17]. Figure
5.19 shows that for this, the light is split into two beams that each illuminate one half
of the SLM. In one path, there is a λ/2 waveplate to rotate the linear polarization
to the right orientation before and after the reflection at the SLM. There exist also
different methods to create arbitrary vector beams with SLMs, such as cascading two
SLMs [GM20] or spatial multiplexing (superimposing two holograms) on a single SLM
[Ott18, RG20].



4 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

HeNe-laser

Polarization
analyser

QP 45° Wollaston

SLM

Pol. 0°

HP 22,5°

Pol. 45°
Pol. 0°

Pol. 90°

HP 45° Pol. 0°

Pol. 0°

Vector-beam

Figure 1. Experimental set-up: a linearly polarized laser beam is deflected by a
non-polarizing beam splitter cube to a Wollaston-prism. The prism splits the input
beam into two orthogonally polarized beams with equal intensities. A half-wave
plate (HP) in one of the beams rotates its polarization axis, such that it matches
the vertical polarization direction required by the SLM. Two adjacent holograms
displayed at the SLM transform the modes of the beams and diffract them back to
the Wollaston prism, where they are recombined. Behind the beam splitter cube
a quarter-wave plate transforms the orthogonal linear polarizations of the two
superposed beams into right- and left-circular polarizations, respectively.

SLM has a resolution of 1920 × 1180 pixels, each with a rectangular area of 10 × 10 µm2.
Each pixel acts as an individually programmable phase shifter in an interval between 0 and 2π,
which is addressable by the grey value of the corresponding image pixel. The total diffraction
efficiency into the first order is about 30%. The holograms are blazed phase grating structures,
designed such that they exactly reverse the propagation directions of the two incoming beams
in their respective first diffraction orders (indicated in the figure). Additionally, the holograms
are programmed such that they transform the incoming vertically polarized TEM00 beams into
selected beam modes (like a Laguerre–Gauss mode) of the same vertical polarization. In order
to optimize the performance of the SLM, we have measured its spatial phase profile with an
interferometric method (registering an aberration from ‘perfect’ flatness with an amplitude on
the order of 1.5 µm), and incorporated an appropriate correction function to the holograms.
Each of the two beams is diffracted at its own hologram consisting of a 500 × 500 pixel
hologram window.

The corresponding holograms are calculated by using the analytically known wavefront
cross-section of the desired mode, E(x, y), like that of equation (1) later in this paper, that
consists of an amplitude and a complex phase angle. In order to produce an off-axis hologram
that generates this mode in its first diffraction order in a direction of k = (kx, ky), the complex
field amplitude E(x, y) is multiplied with exp(i(kxx + kyy + )).  denotes an offset phase that
is used to control the relative phase between the beams diffracted at the two adjacent SLM
holograms. The values of kx and ky are interactively optimized such that the first order diffracted
beam is back-reflected. Then the phase angle of the obtained complex function is calculated
modulo 2π which results in a blazed grating structure that is displayed as a phase hologram
at the SLM. Since this procedure neglects a possible modulation of the absolute value of the
amplitude of the desired mode, it works only well for ‘simple’ modes like LG beams with a

New Journal of Physics 9 (2007) 78 (http://www.njp.org/)

Figure 5.19.: Interferometric method for generating arbitrary vector beams with an SLM.
Linearly polarized light is deflected by a non-polarizing beam splitter, then a Wollaston prism
splits the light into two beams with orthogonal polarization and equal intensity. To match
the polarization orientation required by the SLM, a λ/2 wave plate rotates the polarization
in one of the beams. The SLM displays two adjacent holograms that transform the beams
into Laguerre-Gauss or Hermite-Gauss modes that are diffracted back and interfere at the
Wollaston prism. The λ/4 wave plate turns the orthogonal linear polarizations into left- and
right-circular polarizations. Figure taken from [Mau07].
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6
Conclusion and Outlook

Summary

The first goal of this thesis was to install a new scanning optical dipole trap with
far-detuned 1064 nm light in the experiment. For this, we periodically displace the
1st diffraction order of an acousto-optical modulator. Because this “scanning” of the
beam takes place at a frequency faster than the harmonic trap frequency, the atoms ef-
fectively see an time-averaged potential given by the elliptical beam shape. To achieve
the scanning, we have to change the bandwidth of the radio-frequency signal that is
generated with a voltage-controlled oscillator and controls to the AOM. To test this
offline, the optical setup is installed on a small breadboard. Because of the limited
space on the experimental table, the setup is very compact and therefore challenging
to align. However, we managed to get a symmetric beam profile, where the waist
in the scanning direction is tunable from 22.38(2)µm to 169.3(2)µm and the waist
in the other direction stays constant with a waist of 25.5(2)µm. This means that
the maximum aspect ratio is 6.8 which is below the theoretically achievable aspect
ratio of about 9. Possible reasons for this are imperfections in the alignment and the
limited bandwidth of the VCO. After implementing the setup into the experiment,
we perform trap frequency measurements by exciting the dipole mode and measuring
the oscillation frequency of the atomic cloud. We conclude that the trap frequency
in the scanning direction can be tuned from 2π × 203.3(6)Hz without scanning to
2π × 64(3)Hz at the maximum scanning amplitude. To fully characterize the trap in
the future, we will have to determine the aspect ratio for different scanning amplitudes
by additionally measuring the trap frequency in the direction without scanning.
The second goal of this master thesis was to investigate possible applications of q-
plates for our experiment. Q-plates consist of a liquid crystal material where a specific
liquid crystal pattern is imprinted. This introduces a helical phase on light passing
the plate, thus generating an optical vortex. The intensity profile of the beam can
be described by a circular beam model and approximated by Laguerre-Gauss modes
in the far-field. Q-plates can generate vector beams with a polarization profile that
varies in the radial direction. Because the atom-light interaction of erbium atoms is
polarization-dependent, q-plate beams could be used to generate optical potentials for
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erbium with a ring lattice geometry. To calculate the potential landscape, we first
use the ABCD matrix formalism together with a circular beam model to get the po-
larization and intensity profile of the beam in the focal plane of the objective. We
find that the potential landscape can be tuned by inserting a quarter wave plate af-
ter the q-plate, or changing the order of the q-plate. Even though the calculations
are promising, the implementation of q-plates into the experiment could pose several
challenges, especially regarding atom loss due to photon scattering and aberrations
and imperfections in the optical system that could introduce unwanted effects on the
trapping potential.

Next steps regarding optical lattices

The first step towards loading atoms into a optical lattice was setting up the new
scanning optical dipole trap, as the old one blocked the space needed for the lattice
beam paths. The next steps are to install the two crossed lattice beams at 532 nm
in the horizontal plane and the vertical lattice beam at 1064 nm. Once these beams
are well-aligned, the atoms can be loaded into the lattice and the lattice depth can
be calibrated. This can be done by measuring the number of atoms in the diffraction
peaks of the matter-wave interference pattern that can be observed with absorption
imaging after time of flight [Gad09].
One motivation for setting up the optical lattice is to facilitate collisional studies of
spin-polarized erbium atoms. With our spin preparation scheme that relies on the nar-
row inner-shell 1299 nm transition, we can prepare bosonic erbium in its ground state
(J = 6) in any spin state (Zeeman sublevels mJ = −6...6) [Cla24]. Collisional losses
occur mainly due to two processes: two-body spin exchange (where one atom changes
its spin state as ∆mJ = +1 and the other as ∆mJ = −1) and two-body spin relax-
ation (where one or both atoms lower their spin ∆mJ = −1). By driving the 1299 nm
transition, we induce a light shifts on a selected Zeeman sublevel and therefore close
the spin relaxation loss channel. This allows us to deterministically prepare dual-spin
mixtures, opening up the exciting possibility to systematically study the intra- and
interspin Feshbach resonances of erbium. However, the remaining magnetic-field de-
pendent spin relaxation process modifies the atomic loss spectrum when investigating
Feshbach resonances. By confining the atomic sample in an optical lattice, spin relax-
ation can be diminished [Pas10].
Furthermore, dipolar atoms in optical lattices are promising platforms to realize Bose-
and Fermi-Hubbard models for quantum simulation. More specifically, we could load
to the fermionic isotope into the optical lattice which has already been achieved before
[Pat20], and aim for realizing the anisotropic t-J model investigated theoretically for
polar molecules in reference [Faz19]. The long-range interaction gives rise to a rich
phase diagram, including topological superconducting phases. However, investigating
these predictions experimentally poses several challenges, for example controlling the
anisotropy of the nearest-neighbor couplings and the filling fraction. Moreover, to
prove topological order and superconductivity, one has to determine specific non-local
order parameters and the decay of certain correlation functions, which requires spin-
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resolved single-site resolution. So far, only one quantum gas microscope with dipolar
atoms has been achieved in the Greiner group [Su23]. It relies an accordion lattice
that expands the lattice for imaging. Due to technical limitations, this deterministic
super-resolution technique is not feasible for us. However, stochastic super-resolution
imaging that is inspired from biology [Liu22b, Jac20] and has already been applied in
ultracold atom experiments [Sub19, McD19] could solve this issue.

Outlook on using 841nm light for a second stage MOT and generating
optical potentials with q-plates

We have recently bought a Toptica 841 nm laser that has an output power of 2W
and will be used for two purposes: a second stage of the MOT and generating optical
potentials with q-plates or a DMD. The reason why we want to add a second stage
to the MOT is to decrease the duration of the experimental sequence. Compared to
the 583 nm transition (Γ583 ≈ 2π × 190 kHz), the Doppler temperature ℏΓ/(2kB) of
the 841 nm transition (Γ841 ≈ 2π× 8 kHz) is much lower, so a MOT operating on this
transition can achieve the temperature and phase-space density for loading into the
optical dipole traps faster (with the drawback of a lower radiation pressure force to
hold the atomic cloud against gravity). A MOT with blue-detuned 841 nm light has
been demonstrated by Berglund et al. in 2008 [Ber08] and a MOT with red-detuned
841 nm light as a second stage to a 583 nm MOT has been realized in the Greiner group
in 2020 [Phe20, Phe19]. In the latter case (with an additional stroboscopic technique
for loading into the ODTs), it was possible obtain a BEC of 8×104 erbium atoms with
a condensate fraction of 85% in 800ms and a degenerate Fermi gas in 4 s, a drastic
speedup compared to typical cycle times in ultracold experiments of 10 s to a minute.
In order to use the 841 nm light for the MOT and optical trapping potentials, we need
to lock the laser to an ULE cavity that has been built by our group [Rie12]. Currently,
the plan is to lock the laser at GHz detuning from the transition and to use this light
for the optical trapping potentials generated by q-plates. For the MOT, the light needs
to be detuned only by few MHz at most, so we intend to shift the frequency closer to
the transition with a fiber-coupled electro-optical modulator (fEOM). In this way, we
aim to use the 841 nm light for a second stage MOT to significantly reduce the 12 s
cycle time of our experiment.
Regarding the implementation of q-plates, the atoms could be loaded from the optical
dipole trap into the ring lattice in three steps: First, as the 841 nm light is turned on,
the voltage at the q-plate is set to zero conversion to obtain a Gaussian beam and
hence a harmonic trap at 841 nm. Then, the voltage can be changed adiabatically to
achieve full conversion of the light to a circular beam, but the incoming polarization
is circular to create a uniform ring trap. Last, the incoming polarization changes to
linear to create the modulations on the ring. The first step could improve the loading
efficiency compared to loading directly into the ring trap by ensuring a larger spatial
overlap with the ODT beams, depending on their relative size. In the ring lattice, the
transition from the Mott insulator state to superfluid and density-wave states could
be investigated [Mai11].
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Appendix

A.1. Electronic circuit for the scanning ODT

For the implementation of the scanning ODT, the electronics that generate the RF-
signal for the AOM have to be interfaced with the control software of the experiment.
Therefore, the electronics of the offline testing described in section 4.3 have to be
modified. We implement the electronic circuit shown schematically in figure A.1. The

𝑈𝑠𝑖𝑔𝑛𝑎𝑙 ∙
𝑈𝑔𝑎𝑖𝑛

10𝑉
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𝑈𝑔𝑎𝑖𝑛

𝑈𝑜𝑓𝑓𝑠𝑒𝑡
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FREQ IN

𝑈𝑚𝑜𝑑

Figure A.1.: Schematic drawing of the electronics implemented on the experiment. The
output signal only has to pass one more amplifier before it reaches the AOM.

input channels Uoffset, Ugain and Umod can be connected to voltage outputs that are
controlled by software of the experiment. The shape of the modulation signal Usignal is
generated by a function generator as for the offline testing. The voltages Uoffset, Ugain

and Usignal are combined with a mixer to create the signal

UFREQIN = Ugain
Usignal

10V
+ Uoffset A.1

that goes to the VCO’s FREQ IN channel. In this way, we can control the amplitude of
the modulation signal independently of the offset: We can change Ugain and don’t rely
on changing Umod which would multiply the full VCO output signal by some factor.
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The VCO’s output signal can be switched on and off with an RF-switch that is also
controlled by the experiment’s software. Finally, the modulation signal is sent to the
pre-amplifier and another amplifier before it reaches the AOM.
To realize the electronic scheme in figure A.1, we implement the circuit in figure A.2. It
powers the RF-switch (5V), the pre-amplifier (15V) and the VCO (24V) and controls
the VCO’s input signals. The electronics are now more compact compared to the
old scanning ODT: The circuit in figure A.2, the RF-switch and the pre-amplifier fit
conveniently in one rack-mounted electronics box. Furthermore, the VCO is attached
directly to this box and only one additional amplifier is needed after the VCO because
of the pre-amplifier. Figure A.3 shows a photo of the inside of the electronics box.

Figure A.2.: Electronic circuit for controlling the scanning ODT.

For setting up the electronics, we set the voltages as follows: The voltage Umod is set to
constant 5V internally, Uoffset is set internally such that we are at the center frequency
of the AOM. For Usignal, we use the same arc-cos signal as for the offline testing. The
gain of the last amplifier is optimized to achieve the right power of the RF-signal.
Then, we can change Ugain during the MOT loading and evaporation sequence.



Figure A.3.: Photo of the electronics box.
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second production of a quantum degenerate gas .

[Pit16] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation and Superfluid-
ity , Oxford University Press, 01 2016.

[Pla01] M. Planck, Ueber das Gesetz der Energieverteilung im Normalspectrum, An-
nalen der Physik 309, 553–563 (1901).

https://doi.org/10.1038/ncomms6713
https://doi.org/10.1038/ncomms6713
https://link.aps.org/doi/10.1103/PhysRevLett.123.050402
https://link.aps.org/doi/10.1103/PhysRevLett.123.050402
https://link.aps.org/doi/10.1103/PhysRevX.8.041054
https://link.aps.org/doi/10.1103/PhysRevX.8.041054
https://api.semanticscholar.org/CorpusID:244671613
https://api.semanticscholar.org/CorpusID:244671613
https://link.aps.org/doi/10.1103/PhysRevA.87.053613
https://link.aps.org/doi/10.1103/PhysRevA.87.053613
https://dx.doi.org/10.1088/2040-8986/aadef3
https://dx.doi.org/10.1088/2040-8986/aadef3
https://link.aps.org/doi/10.1103/PhysRevA.81.042716
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023050
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023050
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023050
https://dash.harvard.edu/handle/1/42029576
https://arxiv.org/abs/2007.10807
https://arxiv.org/abs/2007.10807
https://doi.org/10.1093/acprof:oso/9780198758884.001.0001
https://doi.org/10.1093/acprof:oso/9780198758884.001.0001
https://doi.org/10.1002/andp.19013090310


BIBLIOGRAPHY 81

[Pol17] C. Politi, Optical dipole trap for an erbium and dysprosium mixture, Master
Thesis (2017).

[RG17] C. Rosales-Guzmán, N. Bhebhe, and A. Forbes, Simultaneous generation
of multiple vector beams on a single SLM , Opt. Express 25, 25697–25706
(2017).

[RG20] C. Rosales-Guzmán, X.-B. Hu, A. Selyem, P. Moreno-Acosta, S. Franke-
Arnold, et al., Polarisation-insensitive generation of complex vector modes
from a digital micromirror device, Scientific Reports 10, 10434 (2020).

[Ric59] B. Richards and E. Wolf, Electromagnetic Diffraction in Optical Systems.
II. Structure of the Image Field in an Aplanatic System, Proceedings of the
Royal Society of London Series A 253, 358–379 (1959).

[Rie12] A. Rietzler, Narrow-Line Cooling Light for a Magneto-Optical Trap of Er-
bium Atoms , Master Thesis (2012).

[Rub19] A. Rubano, F. Cardano, B. Piccirillo, and L. Marrucci, Q-plate technology:
a progress review (Invited), J. Opt. Soc. Am. B 36, D70–D87 (2019).

[Sal91] B. Saleh and M. Teich, Fundamentals of Photonics , John Wiley Sons, Ltd,
1991.

[Su23] L. Su, A. Douglas, M. Szurek, R. Groth, S. F. Ozturk, et al., Dipolar quan-
tum solids emerging in a Hubbard quantum simulator , Nature 622, 724–729
(2023).

[Sub19] S. Subhankar, Y. Wang, T.-C. Tsui, S. L. Rolston, and J. V. Porto,
Nanoscale Atomic Density Microscopy , Phys. Rev. X 9, 021002 (2019).

[Tho13] J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletic, and M. D. Lukin,
Coherence and Raman Sideband Cooling of a Single Atom in an Optical
Tweezer , Phys. Rev. Lett. 110, 133001 (2013).

[Val16] G. Vallone, A. Sponselli, V. D’Ambrosio, L. Marrucci, F. Sciarrino, et al.,
Birth and evolution of an optical vortex , Opt. Express 24, 16390–16395
(2016).

[vB10] R. M. W. van Bijnen, N. G. Parker, S. J. J. M. F. Kokkelmans, A. M. Martin,
and D. H. J. O’Dell, Collective excitation frequencies and stationary states
of trapped dipolar Bose-Einstein condensates in the Thomas-Fermi regime,
Phys. Rev. A 82, 033612 (2010).

http://www.erbium.at/FF/wp-content/uploads/2017/11/Master_Claudia_Politi.pdf
https://opg.optica.org/oe/abstract.cfm?URI=oe-25-21-25697
https://opg.optica.org/oe/abstract.cfm?URI=oe-25-21-25697
https://doi.org/10.1038/s41598-020-66799-9
https://doi.org/10.1038/s41598-020-66799-9
http://dx.doi.org/10.1098/rspa.1959.0200
http://dx.doi.org/10.1098/rspa.1959.0200
http://www.erbium.at/FF/wp-content/uploads/2015/10/master_alexander_rietzler.pdf
http://www.erbium.at/FF/wp-content/uploads/2015/10/master_alexander_rietzler.pdf
https://opg.optica.org/josab/abstract.cfm?URI=josab-36-5-D70
https://opg.optica.org/josab/abstract.cfm?URI=josab-36-5-D70
https://onlinelibrary.wiley.com/doi/book/10.1002/0471213748
https://doi.org/10.1038/s41586-023-06614-3
https://doi.org/10.1038/s41586-023-06614-3
https://link.aps.org/doi/10.1103/PhysRevX.9.021002
https://link.aps.org/doi/10.1103/PhysRevLett.110.133001
https://link.aps.org/doi/10.1103/PhysRevLett.110.133001
https://opg.optica.org/oe/abstract.cfm?URI=oe-24-15-16390
https://link.aps.org/doi/10.1103/PhysRevA.82.033612
https://link.aps.org/doi/10.1103/PhysRevA.82.033612


82 BIBLIOGRAPHY

[Wei98] M. Weitz, S. Friebel, R. Scheunemann, J. Walz, and T. W. Hänsch, A
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