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Figure 1: Under the Wave off Kanagawa (Kanagawa oki

nami ura), Katsushika Hokusai (ca. 1830–32). Taken from

the Metropolitan Museum of Art open access library.

But even so, amid the tornadoed Atlantic of my being, do I myself still for ever

centrally disport in mute calm; and while ponderous planets of unwaning woe

revolve round me, deep down and deep inland there I still bathe me in eternal

mildness of joy.

Ishmael
Moby Dick by Herman Melville (1851)
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Synopsis

Ultracold quantum gases are driving the study of new exotic phases of matter and

are promising platforms for quantum simulations. Most quantum gas experiments

have focused on working with alkali and alkaline earth atoms with predominantly

short-range isotropic interactions. More recently, the creation of quantum gases

of strongly magnetic atoms such as dysprosium and erbium has allowed the study

of systems with additional dipole-dipole interactions. These interactions are long-

range and anisotropic.

A hallmark feature of superfluids undergoing rotation are quantized vortices. These

vortices appear in quantum gases as holes in the density distribution and have been

studied since the early days of the field. They play a crucial role not only in quantum

gases but also in many other systems, such as superconductors or neutron stars.

This thesis has two main topics. The first part reports on the first nucleation of

quantised vortices in a rotating dipolar Bose-Einstein condensates. To achieve this,

a new technique has been developed, called magnetostirring, where angular mo-

mentum is imparted to the dipolar condensate by exploiting the anisotropy of the

dipole-dipole interactions. It is also shown that the vortices arrange themselves in a

striped configuration along an external magnetic field, in contrast to the triangular

Abrikosov lattice for non-dipolar BECs.

The second topic concerns the superfluid nature of the quantum gas in the super-

solid state. When the contact and dipolar interaction strengths are similar, trapped

dysprosium spontaneously exhibits spatial modulation and is globally coherent. This

state is called supersolid, because it shows both solid and superfluid properties. The

reported work is concerned with confirming the superfluid nature of the supersolid.

The foundation for this work is the first realisation of a cylindrical symmetric 2D

supersolid. An approach to quantify the superfluid fraction of this state is described,

following a proposal by Leggett, by exciting angular oscillations such as the scissors

mode. However, the complex excitation spectrum of the supersolid makes it difficult

to access the superfluid fraction experimentally. Finally, the direct proof of the

superfluid nature is given by the observation of quantised vortices in the rotating

supersolid. This work opens the door to further studies of vortices in supersolid

systems and may in the future serve as a test bed for other complex vortex systems,

such as superconductors or neutron stars.
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Zusammenfassung

Ultrakalte Quantengase treiben die Erforschung neuer exotischer Zustände der Ma-

terie voran und sind vielversprechende Plattformen für Quantensimulationen. Die

meisten Quantengasexperimente konzentrierten sich auf die Arbeit mit Alkali- und

Erdalkaliatomen mit überwiegend isotropen Wechselwirkungen über kurze Distanzen.

In jüngerer Zeit hat die Erzeugung von Quantengasen aus stark magnetischen Atomen

wie Dysprosium und Erbium die Untersuchung von Systemen mit zusätzlichen Dipol-

Dipol-Wechselwirkungen ermöglicht. Diese Wechselwirkungen sind langreichweitig

und anisotrop.

Ein charakteristisches Merkmal von Supraflüssigkeiten, die rotiert werden, sind quan-

tisierte Vortices. Diese Vortices treten in Quantengasen als Löcher in der Dichtev-

erteilung auf und werden seit den Anfängen des Fachgebiets untersucht. Sie spielen

nicht nur in Quantengasen, sondern auch in vielen anderen Systemen, wie Supraleit-

ern oder Neutronensternen, eine entscheidende Rolle.

Diese Arbeit hat zwei Hauptthemen. Der erste Teil berichtet über die erste Nuk-

leierung von quantisierten Vortices in einem rotierenden dipolaren Bose-Einstein-

Kondensat. Um dies zu erreichen, wurde eine neue Technik entwickelt, die als Mag-

netostirring bezeichnet wird und bei der dem dipolaren Kondensat einen Drehimpuls

verliehen wird, indem die Anisotropie der Dipol-Dipol-Wechselwirkungen ausgenutzt

wird. Es wird auch gezeigt, dass sich die Vortices in einer streifenförmigen Konfigura-

tion entlang eines externen Magnetfeldes anordnen, im Gegensatz zum dreieckigen

Abrikosov-Gitter bekannt von nicht-dipolare BECs.

Das zweite Thema betrifft die supraflüssige Natur des Quantengases im suprafesten

Zustand. Wenn die Stärke der Kontaktwechselwirkung und der dipolaren Wech-

selwirkung ähnlich sind, zeigt das gefangene Dysprosium spontan eine räumliche

Modulation und ist global kohärent. Dieser Zustand wird als suprafest bezeichnet,

da er sowohl feste als auch superfluide Eigenschaften aufweist. In der vorliegenden

Arbeit geht es darum, die supraflüssige Natur des Suprafestkörpers zu bestätigen.

Die Grundlage für diese Arbeit ist die erste Realisierung eines zylindersymmetrischen

2D-Suprafestkörpers. Ein Ansatz zur Quantifizierung des supraflüssigen Anteils dieses

Zustands wird, einem Vorschlag von Leggett folgend, durch Anregung von Rotationss-

chwingungen wie der Scherenmode beschrieben. Das komplexe Anregungsspektrum

des Suprafestkörpers erschwert jedoch den experimentellen Zugang zum supraflu-

iden Anteil. Der direkte Beweis für die supraflüssige Natur wird schließlich durch

die Beobachtung von quantisierten Vortices in dem rotierenden Suprasfestkörper

erbracht. Diese Arbeit öffnet die Tür für weitere Untersuchungen von Vortices in

suprafesten Systemen und könnte in Zukunft als Testumgebung für andere komplexe
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Vortexsysteme dienen, wie z. B. Supraleiter oder Neutronensterne.
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Chapter1
From superfluids to supersolids

1.1 Introduction

In the case of all things which have several parts and in which the totality is not,

as it were, a mere heap, but the whole is something beside the parts, there is a

cause; for even in bodies contact is the cause of unity in some cases, and in others

viscosity or some other such quality.

Aristotle (translated by W. D. Ross)
Metaphysics: Book VIII(350 B.C.)

The beauty of nature is that systems made up of a large number of elementary building blocks are more

than just the sum of their parts. This means that the collective properties of the system can be radically

altered only by, for example, a structural change in the ensemble. Probably the best known example of this

is a large ensemble of H2O-molecules, which at ambient pressure form water at room temperature, but

become ice below 0 ◦C and water vapour above 100 ◦C. These are of course the three classical states of

matter liquid, solid and gas1 and most large systems of atoms and molecules will be in one of these states

under certain conditions. Historically, these states of matter have been distinguished by their behaviour

in a container: Solids retain their shape and volume, liquids retain their volume but adopt the shape of

the containment and gases adopt both the volume and shape of the container. But of course there are

many more collective properties that differentiate these systems. We find materials that are electrical

conductors or insulators, that exhibit magnetic phases such as ferromagnetism or antiferromagnetism or

that have different structural phases in solids, such as the crystalline phase or the amorphous phase [2].

An illustrative example of this is graphite and diamond: Both materials are made purely from carbon

atoms, but graphite is dark gray in colour and brittle due to the hexagonal layered structure while diamond

is clear, transparent and very strong due to its diamond cubic structure [3].

In condensed matter physics in particular researchers are interested in understanding how these macro-

scopic properties emerge from the microscopic state of the system. Especially the "quantumness" of

many of these materials gives rise to many new exotic phases of matter, such as charge density wave

(CDW)[4] states or topological phases[5]. A better understanding of these systems helps to synthesise

materials with the desired properties and to discover new phases of matter. An enigmatic example is

1omitting the plasma state of matter
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CHAPTER 1. FROM SUPERFLUIDS TO SUPERSOLIDS

the research into high-temperature (Tc) superconducting materials. These materials, without requiring

extensive cooling, lead to compact and affordable high-precision sensors [6], low-loss electrical grids [7]

and quantum computing devices [8]. Since the discovery of superconductivity in mercury at below 4.2 K [9]

more than 100 years ago, much research has been done to find materials with higher critical temperatures

and to develop theories that could explain this phenomena [10]. In 1957 John Bardeen, Leon N. Cooper and

Robert Schrieffer finally proposed the first microscopic theory [11], which could accurately predict type-I

and type-II superconducting materials. However, the BCS theory fails for unconventional superconducting

(UcS) materials such as cuprates[12], heavy fermions [13], organic superconductors [14], layered nitrides [15]

or iron-based superconductors [16]. So far it is not clear which microscopic theory can universally describe

the superconducting properties of all these materials, making it difficult to predict new types of materials.

In the realm of gas-phase quantum matter these microscopic theories can be studied and even simulated

on a fundamental level [17, 18]. The foundation of this new branch of studying quantum phases of matter

was laid with the first experimental realisation of quantum degenerate gases in 1995 [19, 20]. Here, in-

stead of investigating dense solids with average distances between the atoms of a few Ångström, gases

provide a system with much larger average distances and a highly controllable platform to study different

quantum phases. These systems have led to the direct observation of Bose-Einstein condensation [19, 20],

degenerate Fermi gases [21, 22, 23] and the Mott-insulating phase [24] or topologically protected phases

such as the Haldane insulator [25]. These systems can help to simulate theoretical models relevant to the

above solid state systems and also lead to the discovery of new exotic phases [18].

1.1.1 Ultracold neutral atoms

Gases are typically more than ten orders of magnitude less dense than solids, and because they are

so dilute, the interactions between atoms can be well controlled. However, to realise quantum phases

of matter with gases, we must first cool the gas down significantly. Bose and Einstein predicted that

if the ensemble comprises indistinguishable bosonic particles, cooling the ensemble below a critical

temperature Tc will cause many atoms to occupy the lowest energy state [26]. This state of matter is

called a Bose-Einstein condensate.

An intuitive picture comes from the fact, that at low temperatures the matter-wave character of the single

atoms becomes relevant. The extent of the wave is on the order of the thermal de Broglie wavelength

λdB =

√
2πℏ
mkBT

(1.1)

where ℏ is the Planck constant,m is the mass of the single atom, kB is the Boltzmann constant andT is

the temperature of the ensemble. By reducing the temperature the size of the matter wave grows and

eventually to the length scale of the inter-particle spacing l̃ = (VN )
1/3 [27]. For typical densities, the gas

has to be cooled to temperatures of a few hundred nanokelvin to condense.

Early pioneering ideas of laser cooling [28, 29] and optical [30] and magnetic trapping [31] paved the way

for cold atom experiments. Using these techniques, for the first time temperatures low enough to produce
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a Bose-Einstein condensate (BEC) were achieved [19, 20]. Just a few years later, the first degenerate Fermi

gases were created in the laboratory [21, 22, 23].

These states are so important because through this transition the gas becomes a quantum many-body

state where the atoms are in a macroscopic superposition with a single phase [27].

Another milestone was that by studying the scattering properties of the gas [32] it was found that the

interactions between the atoms could be precisely tuned by controlling an external magnetic field in the

vicinity of Feshbach resonances [33, 34]. These results motivated the subsequent emergence of more than

a hundred groups working on quantum gas experiments around the world [35] and even in space [36].

Today, BECs are regularly created and are a state of matter that is intensly studied, from the dynamics of

a collapsing gas [37, 38] and the creation of quantum vortices under rotation [39, 40], to studies of critical

behaviour at the phase transition [41] and the study of interference between multiple BECs [42, 43] to name

but a few.

There are many other ways to achieve different quantum phases in these gases. For instance, by tuning

the interaction of quantum degenerate Fermi gases the BCS-BEC crossover can be studied[44, 45, 46, 47].

Moreover, the study of gases in strongly confined 2-D and 1-D systems, effectively freezing out the dynamics

of the atoms in the other directions, allows for the creation of Tonks-Giradau (TG) gases [48, 49] and the

observation of the Berezinskii-Kosterlitz-Thoules (BKT) transition [50, 51, 52, 53]. Finally, by confining atoms

in optical lattices – periodic potentials created by interfering lasers – Bose- and Fermi-Hubbard models

can be realised [54, 55, 56, 57], which allows to study phases of matter such as the Mott insulator phase [24],

antiferromagnetism [58, 59] or many-body localisation [60, 61]. In addition, by setting up experiments with

two or more different species, quasiparticle excitations such as polarons can be studied [62, 63, 64, 65].

From these examples we can see how universal these phases are. Many of the phenomena mentioned

are also found in solid state systems [18], nuclear physics [66] or astronomy [67]. Ultracold quantum gas

experiments can be designed to study less well understood exotic quantum phases, such as the strange

metal phase [68] or topological phases [69].

Which phases can be explored in a particular quantum gas depends, among other parameters on the

interactions between the atoms. Early quantum gas experiments have focused on setups with alkali

metal atoms, where the dominant interactions are short-range and isotropic. Recently, new experiments

have been designed in which additional long-range, anisotropic dipole-dipole interactions (DDI) play

a significant role. Such systems are ultracold heteronuclear molecules [70], cavity systems with light-

mediated interactions [71] or Rydberg gases [72].

There has been particular progress in systems with atoms outside the alkali metal series which have

large intrinsic magnetic dipole moments, such as chromium [73] or some of the lanthanide atoms such

as erbium [74] or dysprosium [75]. Fascinating new phenomena have been observed in these quantum

degenerate gases such as a deformed Fermi surface [76], d-wave collapse [77] or the appearance of a

roton minimum [78]. What makes these systems even more interesting is that for erbium and dysprosium,

for certain parameters, they form a supersolid state (SS), a phase at which the gauge symmetry as well

as the translational symmetry are spontaneously broken. This leads to a paradoxical state that has the

properties of both a solid and a superfluid.

The SS state, predicted more than 50 years ago [79, 80, 81], was expected to be observable in solid helium,
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but convincing evidence for it in such systems is still lacking [82]. In other ultracold gas experiments

also some of the defining properties of supersolids could be induced such as in spin-orbit coupled

systems [83, 84] or cavity systems [85, 86].

In this thesis I discuss our recent works, which are focused on studying the dipolar BEC and the supersolid

state. Especially for the supersolid phase it is discussed how this state emerges from a gas of magnetic

atoms, and we study the superfluid properties of this state.

The thesis is divided into six different chapters: In Ch. 1 I introduce the interactions of the system and

give an introduction to dipolar BECs and supersolids. In Ch. 2 I describe the experimental apparatus and

the technical details of how to cool the gas to quantum degeneracy, tune the interactions and image

the final state. Chapter 3 discusses the work on the nucleation of quantised vortices in dipolar BECs.

In Ch. 4 we create a 2D supersolid state and probe the superfluidity by exciting the scissor mode and

nucleating quantized vortices. In Ch. 5 the future plan of a dipolar double species quantum gas microscope

is explained and the implementation of a transport setup is described.

1.2 Interactions

The ability to finely tune the interactions between atoms allows us to explore very different physical

phenomena even within the same experimental setup. For example, in a bosonic system we can tune

the interactions to be repulsive and obtain a stable BEC ground state, but tuning the interactions to be

attractive can lead to a collapse of the system [87]. In fermionic ensembles, this tunability allows the

study of the BEC-BCS crossover and the unitary regime.

In the following, I give a brief introduction to the short-range contact interactions and the long-range

dipole-dipole interactions (DDI) that governs the quantum gas of magnetic atoms described in this thesis.

1.2.1 Contact interaction

Because gases are very dilute the range of interatomic forces r0 is generally smaller than the average

atomic distance l̃ . To describe the interactions we can therefore assume that the atoms move freely and

that most scattering events involve only two atoms. An elastic scattering process of two atoms can be

described in the centre-of-mass frame by the atoms scattering at a central potentialU (r ). The resulting

full wave function at the position r far from the scattering centre |r| ≫ r0 can be described by an incident

plane wave and a radial wave function originating at the scattering centre [88]

e i k z + f (k , ϑ) e
i k r

r
(1.2)

where the atoms approaching each other along the z-direction with momentum k and ϑ is the angle

between k and r. The far-field scattering amplitude f (k , ϑ) can be expanded in partial waves

f (k , ϑ) =
∞∑
ℓ=0

(2ℓ − 1)fℓPℓ (cos ϑ) (1.3)
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where Pℓ (cos ϑ) are the Legendre polynomials and fℓ =
1
2i k

(
e2i δℓ − 1

)
depends on a phase shift δℓ .

The total scattering cross section can be calculated by integrating over the full solid angle

σ (k ) =
∫

|f (k , ϑ) ± f (k , π − ϑ) |dΩ =


∑
ℓ∈even σℓ (k ); Bosons∑
ℓ∈odd σℓ (k ); Fermions

(1.4)

where the partial cross sections are given by σℓ (k ) = 4π (2ℓ + 1) |fℓ |2 and for symmetry reasons the

amplitudes for bosons (fermions) add up (substract) [88]. For potentials of the formU (r) ∝ 1/r n and low

energies k → 0 the phase shift can be estimated as [89, 90]

δℓ ∝

k 2ℓ+1 for ℓ < 1

2 (n − 3)

k n−2 otherwise
(1.5)

Usually the most dominant interaction between two neutral atoms is of the van der Waals type, which scales

at large distances asUc (r) ∝ −C6/r 6. From (1.5) we see, that only the s-wave part ℓ = 0 contributes

significantly for k → 0. Therefore the interaction is isotropic in the far field and this interaction is

considered to be short-range [91]. This allows the complex van der Waals potential to be replaced by a

delta pseudo-potential [88]

Uc (r) ≈ gδ (r) (1.6)

which simplifies it to a contact-type interaction. The interaction parameter g depends only on the mass

m of the particle and on the s-wave scattering length as

g =
2πℏ2as
m

(1.7)

The scattering length as is tunable by changing the magnetic field due to Feshbach resonances. This is

discussed in more detail in Sec. 2.2.5. This allows the interaction to be tuned from attractive (as < 0 a0)

to repulsive (as > 0 a0). The strength of the scattering length can in principle be tuned arbitrarily, only

limited by experimental contraints, but typical values range from as = 0 a0 to about as = 2000 a0. In the

course of this thesis we will only consider systems with repulsive contact interactions.

1.2.2 Dipole-Dipole interaction

In addition to the contact interaction, atoms also interact due to their dipole moment. The dipole-dipole

interactions (DDI) between two atoms with the dipole moments oriented along ei separated by r are

described by the potential [91]

UDDI(r) =
Cd

4πr 3

[
e1 · e2 − 3

(e1 · r) (e2 · r)
r 2

]
(1.8)

where Cd is the coupling strength. In this thesis we only consider interactions between magnetic dipoles,

where the coupling strength is given by Cd = µ0µ1µ2, with the magnetic dipole moment µi and the
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Figure 1.1: Dipole-Dipole interaction (DDI) potential between 2 atoms polarised along ®B . Depending on the angle ϑ ,

the potential is attractive (red) or repulsive (blue). The magic angles ϑm = [54.74◦, 125.26◦, 234.74◦, 305.26◦],
at whichUDDI = 0, are presented as dashed lines.

vacuum magnetic permeability µ0. But there are also systems with strong electric dipole moments di

such as heteronuclear molecules in electric fields, where the coupling strength is given by Cd = d1d2/ε0
with the electric vacuum permeability ε0.

In typical quantum gas experiments an external magnetic field is present which aligns the magnetic

dipoles along its direction such that e1 = e2 = e. Therefore (1.8) simplified to

UDDI(r) =
Cd
4π

1 − 3 cos2 ϑ

r 3
(1.9)

where ϑ is the angle between r and e. This potential is shown in Fig. 1.1. Two essential differences to

the contact interaction potential become apparent. First, the potential has aUDDI ∝ 1/r 3 dependence.

Looking at (1.5) we see that this time the phase shift is δℓ ∝ k for all partial waves. This means that all

partial waves contribute to the scattering, leading to scattering even at distances of the atoms beyond the

centrifugal barrier
2ℓ (ℓ+1)ℏ2
mr 2

. The DDI is therefore effectively a long-range interaction [91]. Implications of

this can be observed in single component Fermi gases, where systems with significant DDI thermalise

even though s-wave interactions are strongly suppressed [92].

Second, unlike s-wave contact interactions, DDIs are anisotropic. When atoms scatter head-to-tail, the

interactions are attractive and when the atoms scatter side-by-side, the interactions are repulsive.

To compare the relative strength between the DDI and the contact interaction we can define the dipolar
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length add [93]

add =
Cdm

12πℏ2
(1.10)

The relative strength εdd is then defined by

εdd =
add

as

=
Cd

3g
(1.11)

Since the strength of the dipole-dipole coupling is fixed by the magnetic moments of the scattering atoms,

we can change the relative strength by tuning as. We can then define εdd > 1 as the dipole dominated

regime and εdd < 1 as the contact dominated regime. In the next section we will discuss the profound

changes in the ground state of the system for the different regimes, but we will also see that even deep in

either regime the contributions of the individual interactions are non-negligible [91].

1.3 Quantum degenerate dipolar gases

The above discussion would not lead one to expect B.E. (Bose-Einstein) condensa-

tion in a solid, because the assumption of no long-range configurational order is

valid for a Quid phase only. In fact, it can be argued that a solid does not show

B.E. condensation, at least for T=O K.

Oliver Penrose and Lars Onsager
Bose-Einstein Condensation and Liquid Helium (1956) [94]

Now that we understand the relevant interactions between the atoms in the quantum gas, we can discuss

in more detail the quantum degenerate state created when the cloud is cooled beyond the critical

temperature.

At temperatureT = 0 we consider that all atoms occupy the absolute ground state. The gas can therefore

be well described by mean-field theory, where we can replace the field operator Ψ̂(r, t ) by the classical

field Ψ(r, t ) [95]. The time evolution of the system is described by the extended Gross-Pitaevskii equation

(eGPE), originally developed by Gross and Pitaevskii considering purely contact interactions [96, 97] and

extended to include DDI [93]

iℏ
∂Ψ(r, t )
∂t

=

[
− ℏ2

2m
+2︸   ︷︷   ︸

kinetic

+ V (r)︸︷︷︸
ext. Pot.

+Uc |Ψ(r, t ) |2︸        ︷︷        ︸
CI Pot.

+V mf
dd (r)︸ ︷︷ ︸

DDI Pot.

]
Ψ(r, t ) (1.12)

with the DDI potential given byV mf
dd

(r) =
∫
d r′UDDI( |r − r′ |) |Ψ(r′, t ) |2. V (r) describes the confining

potential and is usually given by a harmonic trapV (r) = 1
2mω

2
xx

2 + 1
2mω

2
y y

2 + 1
2mω

2
z z

2.

The solution of the eGPE is given by

Ψ(r, t ) = |ψ (r, t ) |e i S (r,t ) (1.13)
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where |ψ (r, t ) | is the amplitude of the wave function and S (r, t ) is the macroscopic phase of the system.

To find specific solutions for the amplitude and phase Eq. (1.12) must generally be solved numerically.

However, the eGPE can be simplified if the gas is in the Thomas-Fermi regime N a
aho

≫ 1, where N is

the atom number of the ensemble and aho is the harmonic oscillator length aho =
√
ℏ/(mωho) and the

geometric mean of the trap frequencies is ωho = (ωxωyωz )1/3. In this regime the kinetic term in (1.12)

can be omitted and analytic solutions of the wave function can be found.

As we can see, the interactions have a profound effect on the state (1.13). Therefore, in the following I will

first discuss the contact dominated regime εdd → 0 and then the intermediate and dipole dominated

regime εdd ≥ 1.

1.3.1 Dipolar Bose-Einstein condensate

In the contact dominated regime the dipolar term in Eq. (1.12) becomes almost negligible. We will see that

even in this regime the DDI has noticeable effects compared to non-dipolar systems.

The ground state is given by the Bose-Einstein condensate with the typical parabolic density distribu-

tion [95]

n (r) = n0

(
1 − x 2

R 2
x

− y 2

R 2
y

− z 2

R 2
z

)
(1.14)

and the phase is uniform S (r) = φ0. Here the density at the centre is given by n0 = 15N
8πRxRyRz

. In an

axially symmetric trap Rx = R y = R⊥ and the dipoles aligned along the z-direction. The radius is then

given by [98]

R⊥ =

[
15

gN κ

4πmω2
⊥

{
1 + εdd

(
3

2

κ2f (κ)
1 − κ2

− 1

)}]1/5
(1.15)

with the cloud aspect ratio κ = R⊥/Rz , f (κ) = 1+2κ2
1−κ2 − 3κ2arctanh

√
1−κ2

(1−κ2 )3/2 [98]. We find that for ε → 0

Eq. (1.15) is greatly simplified and the radii are given by the non-dipolar solution [95] where R i ∝ ω−1
i ,

meaning that the shape of the BEC corresponds to the shape of the trap. For finite ε the cloud stretches

along the z-direction and squeezes in the radial direction compared to the non-dipolar case, which is

called the magnetostriction effect [99, 100, 101]. For the more general case where the dipoles are not

aligned along the z-direction and Rx , R y the analytical functions become much more complex [102],

but the general behaviour of the atomic cloud stretching along the dipole direction persists. The effect of

magnetostriction will play a crucial role in part 3 to rotate the gas.

1.3.2 Emergence of the Roton minimum

When we tune our interactions towards the dipolar dominated regime ε > 1 the ground state develops

a density modulation. To understand this we need to look at the elementary excitation spectrum of

condensed quantum gases. The spectrum can be obtained by linearising the eGPE around the ground

8
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Figure 1.2: Excitation spectrum for a condensed dipolar gas in an infinite tube. Top: The atoms are confined in

an infinite tube along the y-direction and the dipole moments are polarised along the z-direction. Middle: The

excitation spectrum is given for decreasing as (bright to darker red). The spectrum develops a roton minimum

at krot with an minimum energy of ∆rot. Eventually the roton mode softens ∆rot ≤ 0, leading to a macroscopic

occupation of the roton excitation. Bottom: Two excitation scenarios are illustrated. For excitations k ≪ krot the

DDI are mainly repulsive, leading to an increase in energy. For excitations k ≈ krot the DDI are mainly attractive,

leading to a reduction on energy and the roton minimum. Figure adapted from [104]

state [91]. This gives the dispersion relation for a uniform gas [103]

ϵ (k) =

√
ℏ2k 2
2m

[
ℏ2k 2
2m

+ 2gn
(
1 + εdd

(
3 cos2 θk − 1

) ) ]
(1.16)

where ϵ (k) is the energy of the mode with momentum k, n is the density of the gas and θk is the angle

between the dipole direction and k.

For ε → 0, we recover the well-known dispersion relation for interacting non-dipolar BECs [95], with a

linear phonon branch for k < ξ−1, where ξ =
√

ℏ2
2mgn is the healing length, followed by the free particle

branch for large k, where the dependence is quadratic.

The dispersion changes dramatically for trapped gas for finite εdd [105], as we can see in Fig 1.2. Con-

sidering that the gas is tightly confined ωz > ωx ,y in the dipole direction (oriented in the z-direction),

trapping introduces a length scale lz , at which excitations with finite k ≈ l −1z are energetically lowered

by increasing εdd. This eventually leads to a minimum at finite krot with an energy gap ∆rot called the

roton minimum [78], following the studies of the dispersion relation of helium-4 by Landau [106]. An
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intuitive understanding comes from the fact, that the DDI is anisotropic and attractive when two atoms are

head-to-tail. Therefore, by increasing the relative strength of the DDI, excitations that increase the density

at finite k become energetically more favourable as more atoms are head-to-tail then side-by-side. At

values of ε ≥ 1 the energy of the modes is lowered to a level where the gap ∆rot closes, or in other words,

where the roton softens. At this point the finite k excitations are spontaneously populated, resulting in an

observable density modulation with krot. The roton softening has been observed experimentally [104]

which has been the entrance door to study supersolids in ultracold dipolar gases.

1.3.3 Beyond mean-field: LHY correction

These excitations were expected to be rather short-lived, as large increases in density lead to large atomic

losses due to three-body collisions [88]. Similar collapses are known for BECs with strong attractive contact

interactions [87] as well as for weakly dipolar systems such as chromium [77]. In addition, mean-field

studies suggest a similar result for stronger dipolar systems such as dysprosium and erbium [107].

But instead it was found experimentally that the lifetimes of these modulated states were much longer

than expected [108, 109]. These results were puzzling at first. The key to understanding the unexpected

stability beyond mean-field effects had to be taken into account. The assumption of a pure BEC, where

all particles occupy the lowest energy state is no longer valid in such dense systems. Instead, this can

be corrected by assuming a spontaneous population of single-particle excited states and interactions

between excited and ground state atoms. These quantum fluctuations lead to corrections of the total

energy of the state.

These corrections were first calculated by Lee, Huang and Yang (LHY) in 1957 [110, 111] and were later

extended to include the dipolar interactions [112, 113, 114]

E =
g

2

N 2
0

V

[
1 + 128

15
√
π

√
n0a

3
sQ5 (εdd)

]
(1.17)

where n0 = N0/V is the density of atoms, and Qℓ (εdd) =
∫

dθ sin θ
[
1 + x

(
3 cos2 θ − 1

) ]ℓ/2
. Consid-

ering repulsive contact interactions as > 0, the LHY correction term increases with increasing density

E ∝ n3/20 . The quantum fluctuations thus have a regulating effect on the density.

Density regulation competes with the increasing loss of atoms at large densities due to three-body

interactions. If the density increases too much too many atoms are rapidly lost and the state collapses.

Eq. (1.17) scales strongly with the interaction length E ∝ a5/2s . Due to the small dipolar length of chromium

add = 15 a0 [115], the LHY corrections do not stop the collapse. But for erbium and dysprosium with

dipolar lengths almost ten times larger than chromium the LHY corrections stabilise the gas at lower

densities and prevent the collapse. The modulated state is stable and significantly different from the

dBEC ground state discussed in sec. 1.3.1.
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1.3.4 Emergence of Supersolids and droplet crystals

Before discussing supersolids and droplet crystals, let us start with a single droplet state or macrodroplet.

Consider a cigar-shape confinement (ωz < ωx ,y ) where the dipoles are along the weakest confining axis.

Increasing εdd will eventually lead to the roton instability, but instead of the modulated state a single

droplet state is observed where the DDI leads to overall attractive interactions stabilised by quantum

fluctuations [109]. Compared to the BEC, the density is increased and the droplet is more elongated [116].

Additionally, quantum droplets are self-bound, which means that even without external confinement

their shape is preserved. In experiments this can be seen in time-of-flight measurements [117]. Due to

continuous atom loss in experiments, the atom number eventually falls below a critical number Nc , at

which point the droplet state collapses [118].

Considering now the trap discussed for the roton minimum (ωz > ωx ,y ), deep in the dipole-dominated

regime εdd ≫ 1 the ground state is given by multiple isolated droplets (ID), which repel each other and

therefore arrange in a regular array or crystal pattern [91]. Since each of the droplets is disconnected from

each other, the macroscopic phase of each droplet is independent.

Improved theoretical models, including the LHY term, allow theT = 0 ground states to be simulated

for different parameters such as εdd and atom number [119]. An example of a 164Dy ground state phase

diagram is shown in Fig. 1.3. The simulations show that by decreasing εdd towards the transition to the

BEC, the overlap between adjacent droplets increases monotonically. Instead of isolated droplets, we

find a fully connected modulated density profile, and because the system is connected it acquires global

phase coherence. This intermediate regime is the supersolid regime. And indeed, in 2019 the groups in

Stuttgart [120], Pisa [121] and Innsbruck [122] were able to observe the first supersolid state in the quantum

degenerate gas of 162Dy , 166Er and 164Dy with a ground state that shows both density modulation and

global phase coherence. The initial lifetime of the modulated state was only about 20ms in the Stuttgart

and Pisa experiments, but in Innsbruck 164Dy the supersolid was observed for about 150ms. Further

studies in the following years now lead to states, where the supersolid survives for about a second [123].

Before discussing the supersolid state further, I need to clarify the notation used in this thesis regarding

supersolids and droplet crystals. The term ’droplet’ was originally termed for the self-bound state found in

the single droplet regime and for the isolated droplets. In the latter case, every droplet acquires a phase

independent of the other droplets, the system is separable, and the individual droplets can be discussed

independently. The supersolid state is described by the single wave function (1.13) with a modulated

density distribution and global phase coherence. This state is not separable and the different lobes of the

modulation are not self-bound. Nevertheless, for the sake of a simplicity, the supersolid state is described

in parts of this thesis as a combination of ’droplets’ and a ’superfluid background’. These terms should

help the reader to get a more intuitive understanding of the phenomena described.

1.3.5 How ’super’ is the supersolid

A supersolid by definition paradoxically combines solid properties with superfluid flow. The solid character

of the degenerate dipolar quantum gas can be seen e.g. in the appearance of crystal modes [125] and in
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Figure 1.3: Ground state simulation ofT = 0 phase diagram for 164Dy confined in a cigar-shaped trap. a) Illustration

of the trap confinement. The trap frequencies are given by [ωx ,ωy ,ωz ] = 2π×[229, 37, 135] s−1 and the magnetic

moment is aligned along the z-direction. b) The ground state phase diagram for different as and condensed atom

number N . The different regions are quantified by the link strength L = 1 − nmax−nmin

nmax+nmin
where nmax(nmin) are the

maximum (minimum) density in the central region. For large as > 92 a0, the ground state is a BEC (grey). Reducing

the scattering length leads to the narrow supersolid phase with significant ink strength L (red). Decreasing as
leads to very weak links, leading to the isolated droplet regime (blue). c) Illustration of density profiles for the

isolated droplet (ID) phase, supersolid phase (SSP) and BEC phase. Figure adapted from [124].

recent theoretical studies where solid parameters such as the shear modulus can be measured [126, 127].

The superfluid property of the gas is more subtle.

Let us first discuss, how a superfluid is defined. We are talking about fluids that can either flow through

containers without losing energy, or fluids through which we can move small objects without resistance.

The commonality of these to cases is that the flow is dissipationless. This flow behaviour breaks down

above a critical velocity vc defined by the Landau criteria [128]

vc = min
k

ϵ (k)
|k| (1.18)

Eq. (1.18) let us also understand the cause of this dissipationless flow: For velocities v < vc there are no

accessible modes that can be excited and therefore no energy that can be transferred. In interacting BECs

the critical velocity is given by the phonon branch v BEC
c = vph =

√
gn0
m . It is important to note that for a

non-interacting BEC g = 0 the critical velocity is vc = 0 and therefore the state is not superfluid.

The original reasoning for a supersolid being superfluid is therefore rather indirect: since the state is

globally phase coherent and the gas is interacting, all the ingredients for a BEC to be superfluid are

fulfilled.
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CHAPTER 1. FROM SUPERFLUIDS TO SUPERSOLIDS

But this argument can be challenged. Landau discussed superfluidity in the context of 4He, where the

critical velocity is not given by the phonon branch, but by the roton minimum vc ≈ ∆rot

|krot | . Now for our

solid to exist we go to the region where the roton softens ∆rot → 0. Does this mean that the state stops

being superfluid due to the roton softening vc → 0?

The question of whether a solid can be superfluid has been heavily debated for more than 50 years. While

originally rejected by Penrose and Onsager [94] it was theorised later, that solids could acquire superfluid

properties [79, 80, 81]. Leggett suggested that superfluidity in this context is not a binary property, but that

a modulated condensed system can be fractionally superfluid. For such a system on an annular Leggett

defined a bound for the superfluid fraction [81]

fs ≤
[
1

2π

∫ 2π

0

dθ

ρ (θ) /ρ0

]−1
(1.19)

where ρ (θ)/ρ0 is the ratio of the modulated density at an angle θ on the annulus to the density without

modulation. Leggett also proposed to measure the superfluidity of the system phenomenologically, in

this case by measuring the non-classical moment of inertia (NCMI) of the state.

Even after the first observation much experimental and theoretical effort has gone into proving superfluidity

in supersolids more directly. The measurement of the Goldstone modes shows phase rigidity, which

is related to the superfluid stiffness of a system [129, 130, 125], the scissors mode oscillation of linear

supersolid arrays has been measured to obtain the NCMI [131] and josephson oscillations between single

droplets have been probed [132].

In Ch. 4 I will present the work of our laboratory where we have investigated the possibility of measuring

the superfluid fraction by exciting scissors mode oscillations in non-linear arrays and nucleating quantized

vortices in supersolids, a hallmark of superfluidity.

This concludes the introduction to dipolar quantum gases and the relevant interactions, which are the

foundation of the works presented in the next chapters.
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Chapter2
The Erbium-Dysprosium experiment

I am among those who think that science has great beauty. A scientist in his

laboratory is not only a technician: he is also a child placed before natural

phenomena which impress him like a fairy tale. We should not allow it to be

believed that all scientific progress can be reduced to mechanisms, machines,

gearings, even though such machinery also has its beauty. Neither do I believe

that the spirit of adventure runs any risk of disappearing in our world. If I see

anything vital around me, it is precisely that spirit of adventure, which seems

indestructible and is akin to curiosity.

Maria Salomea Skłodowska-Curie
Madame Curie: A Biography (1937)

From the first chapter we know, that we can create "quantum matter" from a gas of neutral atoms, and by

choosing magnetic atoms such as dysprosium or erbium, we get a system that interacts by the means of

both short-range, isotropic contact interactions and long-range, anisotropic dipolar interactions. We are

able to tune the relative strengths of these interactions, allowing us to create intriguing quantum phases

such as a Bose-Einstein condensate or a supersolid and even drive phase transitions between them [91].

In this chapter, the experimental apparatus of the Erbium-Dysprosium experiment is explained. The basic

properties of dysprosium (Sec. 2.1) and the relevant techniques for cooling and trapping the atoms in

a magneto-optical trap (Sec. 2.2.1), evaporating them in an optical dipole trap (Sec. 2.2.2 and Sec. 2.2.3),

imaging them (Sec. 2.2.4) and tuning the interactions by changing the magnetic field (Sec. 2.2.5).

2.1 Basic properties

There are 118 elements in the periodic table from which to choose from for an ultracold atom experiment.

A small subset of these elements has already been brought into quantum degeneracy, such as the alkali

and alkaline- earth atoms, chromium and some atoms of the lanthanide series, to name but a few. In this

chapter, we will discuss the relevant properties of dysprosium such as the strong, permanent magnetic

moment and the narrow optical transitions that enable us to create dipolar quantum gases.

The Erbium-Dysprosium experiment (ErDy) is, as the name implies, a quantum mixture experiment

designed to cool dysprosium (Dy) and erbium (Er) [133]. The primary focus of this thesis are single species

experiments conducted with dysprosium. However, many of the properties and transitions discussed have
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CHAPTER 2. THE ERBIUM-DYSPROSIUM EXPERIMENT

analogues counterparts for erbium. A very detailed description on the properties of erbium can be found

in the thesis Albert Frisch [134].

Dysprosium is an atomic species from the lanthanide series, found in the 6th period of the periodic table.

In its solid form it is comparatively soft and looks metallic, but oxidises slowly in humid air. Dy is one of

the so-called rare-earth metals, which is a bit of a misnomer, because the abundance of it in the Earth’s

crust is much larger than, for example, the abundance of gold, but these elements are not usually found

in large ore deposits [135]. Dysprosium is widely used in high-tech industries. It is most commonly known

for its application in the production of high-strength neodymium-iron-boron (NdFeB) permanent magnets

to enhance their performance, particularly at high temperatures [136].

In our experiment we are interested in the atomic properties of dysprosium. Dysprosium has the atomic

number 66. It has four significantly abundant isotopes (> 15%) of which two are fermionic and the

other two are bosonic isotopes. The basic properties are summarised in table 2.1. Together with the

isotopes of erbium, we can therefore create heteronuclear, degenerate Bose-Bose-, Fermi-Fermi-, and

Bose-Fermi-mixtures [137]. But even experiments with just the bosonic isotopes of dysprosium are so rich

in unexplored physics that all the publications discussed in this thesis have worked with either 162Dy or

164Dy .

One outstanding feature of dysprosium, which ultimately leads to the dipolar physics studied throughout

this thesis, is its large permanent magnetic dipole moment of µ ≈ 10 µB , where µB = eℏ
2me

is the Bohr

magneton. But why is the magnetic moment so much larger than, e.g., for the atoms of the alkali series with

µ ≈ 1 µB ? To understand this, we need to look at the electronic structure of dysprosium: The outermost

shells are the 6s-shell, which is completely filled, and a submerged, sparse f-shell with 10 electrons,

leading to the electronic configuration [Xe]4f 106s2. In accordance to the Russel-Saunders coupling the

electronic ground state can be characterized by the quantum number triplet 5I8 (S = 2, L = 6, J = 8).
This state characterises the bosonic isotopes with nuclear spin quantum number I = 0 and we find a rich

spectrum of 17 internal spin states mJ ∈ {−J,−J + 1, ..., J − 1, J} for the electronic ground state. Just for

completeness, the fermionic isotopes 161Dy and 163Dy have an additional non-zero nuclear spin of I = 5/2
and therefore the quantum number for the hyperfine structure is F ∈ {11/2, 13/2, ..., 21/2}. This leads

to the ground states 161Dy : 5I8, F = 21/2 and 163Dy : 5I8, F = 11/2. Here the large difference in F is due

to the opposite sign of their nuclear spins I [138]. The large spin manifold of fermionic dysprosium sparks

a great interest in studying these systems, e.g. for long-lived spin-orbit coupled systems [139] or to create

topological systems with synthetic dimensions to study quantum hall systems [140].

Back to the bosons: The dysprosium atoms in this experiment are always prepared in the lowest-lying

stretched state J = 8 and mJ = −8 1. In our experiment the atoms are constantly exposed to an external

magnetic field B, providing a quantisation axis for the total angular momentum vector J and F for bosons

and fermions, respectively [141]. We are interested in the z-projection of the average magnetic moment

1Also the state J = 8 and mJ = 8 is a stretched state and can be used in experiment.
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161Dy 162Dy 163Dy 164Dy

Abundance (%) 18.89 25.48 24.90 28.26

Atomic mass (u) 160.9 161.9 162.9 163.9

Neutron number 95 96 97 98

Statistics F B F B

El. ground state (2S+1LJ)
5I8

Nuclear spin +5
2 0 − 5

2 0

Hyperfine quantum number (F) 21
2

11
2

Table 2.1: Basic properties of the dysprosium isotopes with an abundance larger than 14% taken from [1]. The signs

+ and − describe the relative orientation of the nuclear spin I .

⟨µJ ⟩z

⟨µJ ⟩z = −mJgJµB (2.1)

⟨µF ⟩z = −mF gF µB (2.2)

with the approximate Landé factor gJ ≈ 1 + J (J+1)+S (S+1)−L (L+1)
2J (J+1) and mJ = −8 for bosons and gF ≈

gJ
F (F +1)−I (I +1)+J (J+1)

2F (F +1) andmF = −21/2 for fermions2 in our experiment. Using these values in eq. (2.1)

leads to

⟨µJ ⟩z ≈ 10µB (2.3)

⟨µF ⟩z ≈ 10µB (2.4)

Additional corrections have to be applied to gJ and gF to get a more accurate expression, and experimen-

tally it has been found that the Landé factors are gJ = 1.24166(7) and gF = 0.94603(7) [142]. From

this follows ⟨µJ ⟩z = 9.93272 µB and ⟨µF ⟩z = 9.93328 µB for the values of the magnetic moment.

Another distinguishing feature of dysprosium is the large manifold of optical transition (see Fig. 2.1). This

is due to the submerged f-shell structure of the atom. In the experiment we only drive the transitions

J = 8 to J = 9. These transitions are used to optical cool, image and manipulate the atoms. The transitions

important for the work of this thesis are listed in the following. The electronic structure of the excited

state is given and the notation describes the closed xenon nucleus ([Xe]), followed by the LS -coupled

4f -electrons (4f n (2S+1L
p
J1
)), where n is the electron number and p is the parity. These are then coupled

to the other 6s-, 6p- or 5d -electrons, which are either J J -coupled with (J1, J2)pJ , or LS -coupled. The

structures are taken from [143]:

2Note, that the term for the nucleus is neglected because the nuclear magneton µN is much smaller than the Bohr magneton

µB
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Figure 2.1: Energy level spectrum of dysprosium for the total angular momentum quantum numbers J = 7, 8, 9, 10
up to the wavenumber ν̄ < 27000cm−1. The red and black lines represent even and odd parity states respectively.

The arrows indicate the important transitions in the experiment as described in the text. This figure is a modified

version of [146] with data from [147]

• 421nm – [Xe]4f 10(5I8)6s6p (1Po1 ) (8, 1)9 – promoting one s-shell electron to the 6p state which

then couples with the other 6s atom to form the singlet state 1P1. This is reminiscent of the D2-line

of the alkali atoms and results in a strong transition with a linewidth of Γ421/2π = 32.2MHz.

• 626nm – [Xe]4f 10(5I8)6s6p (3Po1 ) (8, 1)9 – here the 6s and 6p electron couple to the triplet state

3P1 and because of the ∆S = 1 it is an intercombination line. This reduces the transition rate

significantly leading to a narrower linewidth of Γ626/2π = 135 kHz.

• 741nm – [Xe]4f 9(6Ho )5d6s2 5Ko9 – and 1001nm – [Xe]4f 9(6Ho )5d6s2 7Io9 – exciting an 4f electron

to the 5d state leading to a narrow linewidth of Γ741/2π = 1.78 kHz and a linewidth in the Hz range

Γ1001/2π = 53Hz [144]. In the publications of this thesis not yet applied, these transitions can

function for spin manipulation and optical cooling schemes.

Having access to a strong MHz line to pre-cool the atoms and a large selection of narrow lines to either

optically cool the atoms to very low temperatures or excite the atoms to states with lifetimes on the

order of seconds is a great toolbox for atomic physicists. Additionally, the branching ratio for the 421 nm

transition is small enough (> 1 × 10−5) to be used for the first cooling steps without the need of a

repumping laser and the other transitions are cycling transitions [145, 138].
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CHAPTER 2. THE ERBIUM-DYSPROSIUM EXPERIMENT

2.2 The experimental apparatus

We are stuck with technology when what we really want is just stuff that works.

Douglas Adams
The Salmon of Doubt: Hitchhiking the Galaxy One Last Time (2002)

As you can probably imagine, getting our ensemble of dysprosium atoms to "behave quantum mechanically"

is not a trivial task, and so far not a simple do-it-yourself project in your garage3. Therefore before we can

talk about supersolids and quantised vortices, we need to talk about the nuts and bolts and coherent

light sources.

A generation of Ph.D. students, together with post-docs, masters and bachelor students and under

the guidance of the professor and senior scientist have worked on creating the machine to cool down

dysprosium (and erbium) atoms to the degenerate state and this is described in great details in their

theses [137, 149, 150, 151]. This thesis would not have been possible without the groundwork done by these

people, and I was mainly involved in maintaining, optimising and adding specific functionalities for the

experiments done within this thesis, as well as the preparation for future experiments (see Ch. 5). This

chapter will focus on discussing the optical cooling schemes to cool the atoms down to the microkelvin

regime, the optical setup to create an optical dipole trap, the evaporation, the imaging setup and the

magnetic coil setup.

2.2.1 Zeeman slower and Magneto-Optical trap

The experimental apparatus is shown in Fig. 2.2. The raw material – highly purified solid dysprosium and

erbium – is inside the oven chamber on the right-hand side of the experiment. The whole apparatus is

sustaining a ultra high vacuum (UHV) with ion pumps at the atomic beam shutter section (p ≈ 10−10 mbar)

and getter pumps close to the chambers where the atoms are trapped and cooled to quantum degeneracy.

The main chamber for the work discussed in this thesis is the FRAnZ4 chamber. During this thesis we

have extended the experimental apparatus and added a glass cell in which we will set up a quantum

gas microscope for erbium and dysprosium (see Ch. 5). This chamber is referred to as SiSi5 chamber

(p ≈ 10−11 mbar) [137]. The UHV environment is necessary because any collision of dysprosium atoms

with the background gas will lead to heating, loss of atoms, and eventually decoherence of the ultracold

ensemble.

Dysprosium and erbium have slightly different melting temperatures of 1412 ◦C and 1529 ◦C, respectively.

The atoms are evaporated from the solid at temperatures just below the melting temperature and to

generate a temperature gradient towards the exit of the chamber, to avoid the atoms to condense in the

chamber again, and achieve a similar vapour pressure for erbium and dysprosium, the oven chamber

is separated into a hot lip section (T = 1200 ◦C) loaded with erbium and an effusion cell section

3Or is it? If you have enough financial assets it might be possible [148]
4FRAnZ: Ferlaino’s Rare-earth Atoms near Zero
5SiSi: Single Site resolved
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Zeeman Slower (ZS)

Transversal cooling (TC)

Oven chamber

Single-Site Chamber (SiSi)

FRAnZ chamber

x
y

z

Figure 2.2: Illustration of the experimental apparatus. The atoms are coming from the oven chamber and the atomic

beam is focused in the Transversal cooling chamber before they are slowed in the ZS slower part and finally trapped

in the FRAnZ chamber, where the experiments are performed. The SiSi chamber is not yet used in the experiments

done during this thesis, but will be discussed in Ch. 5.

(T = 1100 ◦C) loaded with erbium and dysprosium. The atoms exit the oven chamber through a 30 mm

long nozzle with a 3 mm aperture, reducing the angular spread of the atomic beam towards the FRAnZ

chamber [152, 153].

The mean velocity voven ≈ 457m/s [137] of the atom beam emitted from the oven is too large to be

trapped by the magneto-optical trap in the FRAnZ chamber (vcap ≈ 13.4m/s [137]) and we need to

collimate the atomic beam more to increase the atom flux through the capture range of the MOT. For the

collimation we employ a transversal cooling (TC) scheme and to slow down the atoms we use a Zeeman

slower (ZS). The atoms first enter the transversal cooling (TC) stage as can be seen in Fig. 2.2. To decrease

the transversal velocity of the atoms we apply two retro-reflected laser beams of the strong transition

421 nm light as illustrated in Fig. 2.3 a. The beams form a two-dimensional optical molasses, creating a

linear damping force depending on the momentum of the atoms, which effectively collimates the atomic

beam [154].

For the ZS setup, a 421 nm beam is sent towards the oven chamber. The atoms absorb the incoming resonant

photons −ℏkin and eventually spontaneously emit a photon in an arbitrary direction ℏkout [154]. This

leads to an effective momentum transfer of ∆patom = −ℏk per photon, where k = 2π
λ is the wavenumber

of the light. However, the resonance frequency f of the light for atoms with velocity v is shifted due to

the Doppler shift ∆f = f vc ≫ Γ421/2π . By applying a magnetic field BZS(x ) we can change the energy

between the ground and excited state due to the Zeeman effect to compensate for the shift. The magnetic

field is also position dependent along the beam direction to account for the reduction in mean velocity

towards the FRAnZ chamber (see Fig 2.3b). The exact magnetic field profile is shown in [137].
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The average velocity of the atomic beam is now lower than the capture velocity of our magneto-optical

trap (MOT) vcap = 13.4m/s [137], which allows efficient loading. Note that at this point we can estimate

the temperature of the atomic beam to beT ≈ 1 K, which is still orders of magnitude too high to get

close to a quantum degenerate gas. Ultimately, we want the atoms trapped in a well-defined harmonic

potential and as cold asT ≈ 100 nK. A MOT combines a momentum selective molasses with a position

dependent force due to the magnetic quadrupole field, not only slowing down the atoms but also trapping

them [154]. Here it should be noted that our MOT for dysprosium has a few properties that differentiates it

from the typical one of alkali atoms:

• We use the 626 nm transition, which has a very small natural linewidth compared to the D2-lines of

the alkali atoms (in the MHz range). This means, that instead of the usual linear restoring force

over the whole space of the MOT, the atoms see something more similar to hard walls. Although

the narrow linewidth leads to a very low capture velocity, the advantage is the very low Doppler

temperature TD = 3.5 µK which sets the minimum temperature the MOT can achieve. Similar

approaches are used for ytterbium [155, 156] and strontium [157, 158].

• Because dysprosium is very heavy, the gravitational force is significant for the MOT.

This means that we can cool and trap the atoms in an open-top MOT which is created by two collimated,

retro-reflected horizontal beams of 626 nm light, but only a non-retro-reflected vertical beam from the

bottom of the chamber (see Fig. 2.3 c). The resulting cloud sits below the centre of the magnetic quadrupole

field, which means that for a sufficiently large detuning mostly the σ−-polarised beam from the bottom is

absorbed. Therefore, the atoms become fully spin-polarized in the lowest Zeeman sublevel mJ = −8
without additional optical cooling steps [146]. This setup also allows for optical access from the top, which

is used for a high resolution imaging system we will discuss in Sec. 2.2.4. We typically load the MOT for

5 − 7 s and compress the the size afterwards by decreasing the magnetic field gradient and the detuning

of the MOT light. We typically obtain 7 × 107 atoms and a final temperature of TcMOT ≈ 10 − 12 µK.

2.2.2 Optical dipole trap

From the compressed MOT we load the atoms into a far-detuned crossed optical dipole trap (cODT). The

cODT plays a crucial role in the work presented in this thesis. In it we evaporate the atoms to quantum

degeneracy. Whether the ground state is a BEC or a supersolid depends among other parameters on

the geometry of the trap. Typically, the trap near the intensity maximum can be well approximated by a

harmonic potential

Udip(x , y , z ) =
1

2
mω2

xx
2 + 1

2
mω2

y y
2 + 1

2
mω2

z z
2 (2.5)

where the confinement is defined by the trap frequencies ωx ,y ,z . For our experiment, we want to be able

to change the trap frequencies independently, so that we can create a variety of different trap geometries,

such as cigar-shaped traps (ωx ≃ ωy ≫ ωz ) or pancake-shaped traps (ωx ≃ ωy ≪ ωz ).

To this end, we combine three Gaussian beams with a wavelength of λODT = 1064 nm. As shown in Fig.
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Transversal cooling (TC) Zeeman slower (ZS) Magneto-optical trap (MOT)a) b) c)

Figure 2.3: Illustration of the optical cooling techniques used in the experiment. a) Transverse cooling (TC). Two

retroreflected beams are applied orthogonal to the atomic beam flux to collimate the atomic beam. b) Zeeman slower

(ZS). The atoms are slowed down by a laser beam directed towards the beam flux. The detuning of the transition is

varied along the length of the ZS (435 mm) by a spatially changing magnetic field along the ZS. c) Magneto-optical

trap (MOT). The MOT consists of a magnetic trap created by a pair of coils in anti-Helmholtz configuration and five

laser beams with λ = 626 nm creating the velocity dependent force profile.

2.4 we cross two round beams at θ = 90◦ with a waist ofwstat1/stat2 = 60 µm (static ODT 1 & 2) and add

another beam along the y-direction with a vertical waist ofwz ,scan = 15 µm and an adjustable waist along

the x-direction withwx ,scan ≈ 15 − 105 µm (scanning ODT). The horizontal beam size can be adjusted

by rapidly scanning the RF frequency of an AOD (ftrap ≪ fscan = 20 kHz), which leads in a rapid position

change of the focus position in the x-direction. This projects an average potential onto the atoms with a

maximum beam waist ratio ofwx/wz ≈ 7 for our setup.

For wmax
x ,scan ≈ 105 µm we can approximate the trap frequencies resulting from the three overlapping

beams as

ωx ≈
√

4U0,stat1

mw 2
stat1

+ 2U0,stat2

mz 2
R ,stat2

(2.6)

ωy ≈
√

4U0,stat2

mw 2
stat2

+ 2U0,stat1

mz 2
R ,stat1

(2.7)

ωz ≈
√

4U0,scan

mw 2
z ,scan

+ 4U0,stat1

mw 2
stat1

+ 4U0,stat2

mw 2
stat2

(2.8)

whereU0,i =
1
ϵ0c

Re(α) Pi
πwx ,i (z )wy ,i (z ) where i defines the three beams and we omit the contribution of the

scanning ODT beam to the horizontal trap frequencies ωx ,y due to the large beam size and the 45◦ angle

between the traps. Note that the x , y , z directions of the traps are rotated by 45◦ to the experimental

coordinate system given in Fig. 2.2.

Assuming thatU0,scan ≈ U0,static1 ≈ U0,static2, we can simplify Eq. (2.6)-(2.8). For the static traps the ratio

between zR and w is given by
zR
w = πw

λ ≈ 177 and therefore we find that the second terms in (2.6)

and (2.7) are vanishingly small. The ratio between the waists of the scanning ODT and the static ODTs

is
wscan

wstat1/stat2
= 4 leading to a comparatively small contribution of the last two terms in (2.8), which we

can therefore also omit. The resulting trap frequencies can therefore be controlled independently by
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Figure 2.4: Illustration of optical dipole trap (ODT) setup. Adapted from [151]

adjusting the power in each beam, as long as the initial assumption is valid

ωx ≈
√

4U0,stat1

mw 2
stat1

ωy ≈
√

4U0,stat2

mw 2
stat2

ωz ≈
√

4U0,scan

mw 2
z ,scan

(2.9)

However, a challenge arises from the three-beam trap setup. The validity of the harmonic approximation

depends on how well the three beams are overlapped, as can be seen in a few different cases in Fig. 2.5.

Ideally the three beams overlap at their foci as shown in Fig. 2.5 a. Figure 2.5 shows the residual between the

harmonic approximation and the actual potential from the overlapped beams. We see that displacements

in the horizontal direction of the beams to each other of about∆x0 ≈ 30 µm do not dramatically influence

the potential shape (Fig. 2.5 b). But for vertical displacements ∆z0 ≈ 40 µm the potential is significantly

anharmonic (Fig. 2.5 c). Experimentally the beams can be misaligned due to the finite precision with which

we can align the beams. To mitigate this factor, we have installed piezo mirror mounts6 for the static 1 ODT

beam, which gives us a step size of ∆x = 185(7) nm for the horizontal and vertical beam position. This

allows us to align the beams well within the required accuracy. Other causes of misalignment can be due

to, for example, thermal lensing [159]. Figure 2.5 d also shows that we can compensate for misalignment

by changing the power balance between the two static traps.

The λODT = 1064 nm is provided by a 55 W laser system7. The light is distributed to three polarisation

maintaining single mode fibres8, which ensure a clean TEM00 mode for all three beams. The optical setup

of the distribution and the beam paths in front of the experimental chamber are described in great detail

in Claudia Politi’s thesis [151].

6Thorlabs KC1-P/M with the Thorlabs MDT693B driver
7Coherent Mephisto MOPA 55 W
8NKT Photonics LMA-PM-15
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Figure 2.5: Trap potentials due to displaced beams and power imbalance. The potential depthUtrap (top) and the

residual ∆Utrap = Uharm −Utrap (bottom) is shown for different beam displacements and different powers. The red

lines represent the scanning ODT (dashed), the static ODT 1 (dashdotted) and the static ODT 2 (dotted). The squares

around the minimum of the potential show the region of the residual. a) The beams are all overlapped in the centre

of the figure. b) Displacement of the centre of the static ODT 1 beam by ∆x0 = 30 µm. c) Additionally displacing

the static ODT 2 beam along the z-axis by ∆z0 = 40 µm. The powers of the beams for a)-c) are Pscan = 0.8W ,

Pstat1 = 0.5W , Pstat2 = 0.5W. d) Displacement as in c) but the power balance of the static beams (Pstat1 = 0.3W ,

Pstat2 = 0.6W) is changed to compensate for the misalignment.

2.2.3 Evaporation

The evaporation of atoms to achieve a PSD high enough for the atoms to condense is a crucial concept for

ultracold atom experiments [27]. In the following an analytical model is discussed to illustrate how to

efficiently evaporate and achieve large numbers of condensed atoms necessary to create the BEC and

supersolid states the works are concerned with. The analytical model is also the basis for Monte-Carlo

simulations that simulate the optimal transport of atoms to the SiSi chamber described in Ch. 5.2.

In order to reduce the temperature of the atomic gas, the high energy atoms have to be released and

the cloud has to thermalise afterwards as shown in Fig 2.6. This is done by reducing the trap potential,

which leads to atoms with high kinetic energy Ekin > Epot becoming untrapped. A simple semi-analytical

model developed by Davis and colleagues is used to calculate the reduction in kinetic energy [160]. The

temperature change can be described by

T ′

T
=
N ′

N

γ

(2.10)

where N and N ′ as well asT andT ′ are the atom number and temperature before and after reducing

the potential. The exponent γ quantifies how much energy the evaporated atoms have removed from the

gas. The larger γ, the more efficient the evaporation is. To estimate γ it is considered, that all atoms are

colliding elastically and that all atoms with a kinetic energy below the truncated potential Eatom < ηkBT
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Spilling Thermalizationa) b) c)
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Figure 2.6: Illustration of the evaporation process of a thermal cloud. a) The cloud is thermalized in the ODT and the

momentum of the atoms corresponds to a Maxwell-Boltzmann distribution. b) The ODT trap depth is truncated to

VODT = ηkBT . Atoms with energies Eatom > VODT are spilled from the trap and the velocity distribution is truncated

as well. c) The atoms left in the trap are colliding elastically and the cloud thermalized. The velocity distribution is a

Maxwell-Boltzmann distribution with smaller vp and therefore the atomic cloud has a smaller temperature.

stay trapped and redistribute kinetically. γ is then given by [160]

γ =
εeff (η)

(3/2) + ξ − 1 (2.11)

where ξ = d
m is given by the dimension of the cloud d = 3 and the order of the trapping potential

m = 2 (for harmonic confinement). The term εeff (η)kBT gives the kinetic energy per atom removed from

the cloud. For large truncation parameters η → ∞ the removed energy approaches εeff → η + 1 and

therefore γ → ∞, so we get a very efficient but slow evaporation. For smaller η the evaporation efficiency

reduces monotonically to γ = 2/(3 + 2ξ).
The second important factor for efficient evaporation is a high thermalisation rate and a low number of

inelastic collisions leading to atom loss or heating of the gas. We can estimate the thermalisation rate by

estimating the average collision time of the atoms

τtherm =
α

nvaσ
(2.12)

where n = n0e
−η is the density of the cloud, α is the average number of collisions needed for thermali-

sation, va =
√

16kBT
πm is the average velocity of an atom and the scattering cross section for a thermal

dipolar gas is given by σ = 8πa2s + 32π
45 a

2
dd

depending on the scattering lengths as and add[161]. The

shorter the thermalisation time, the faster the evaporation can take place. Therefore the density and

scattering cross section should be comparably high.

The final factor is the atom loss during evaporation. These loss mechanisms can be summarised in a

general equation [162]

¤N (t ) = − 1

τv
N (t )︸     ︷︷     ︸

one−body

− 1

β

∫
V
n2(r, t )d 3r︸                 ︷︷                 ︸

two−body

−1

γ

∫
V
n3(r, t )d 3r︸                 ︷︷                 ︸

three−body

−O(n4) (2.13)
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One-body loss results mostly from atoms colliding with the background gas. The loss rate is defined

by the lifetime τv and can be generally be reduced by improving the vacuum [163, 164]. Atoms are also

lost from very shallow ODTsUODT < Erec when scattering spontaneously with the trap photons. Typical

lifetimes can be on the order of minutes [90].

The second term describes atom loss due to inelastic two-body collisions of the trapped atoms. In addition

to elastic collisions which lead to thermalisation, collisions can also lead to changes in the internal state

of the involved atoms. In this processes the internal energy converts to kinetic energy which leads to

atom loss or heating. In our experiment spin relaxation is such a process [165]. We prepare dysprosium in

the lowest energetical statemJ = −8 as discussed in Sec. 2.1, and therefore inelastic two-body collisions

are not possible.

The last term in (2.13) describes the three-body collisions of atoms. These collisions cause significant

losses in dense atomic clouds, even though the atoms are prepared in their lowest energy state. In these

collisions, two atoms form a bound dimer transferring the released energy to the third atom, leading to

the loss of all three atoms. The loss can be minimised by reducing the interaction strength as between

the atoms and is discussed in section 2.2.5.

Of course there are also higher order loss terms [166], but these contributions are generally omitted in

our experiment, since we work at comparably small scattering lengths as < 150a0.

The final evaporation sequence is very complex due to the three independent ODT beams. Therefore,

we optimize the the sequence experimentally by tuning the powers of the different beams as well as

the scanning range of the AOD of the scanning ODT beam. The final atom number and condensate

fraction depend strongly on the final trap geometry and whether the achieved state is a BEC, supersolid or

independent droplets. We will discuss the exact parameters for the different experiments, but commonly

we achieve in a trap with (fx, fy, fz) = (50, 50, 120) Hz BECs with 1 × 105 atoms and a condense fraction

of ≈ 60%.

2.2.4 Imaging system

After the degenerate gas has been prepared and manipulate, the atoms are imaged. In our experiment,

we use two different imaging techniques. Absorption imaging is a robust technique to image the thermal

cloud and the BEC and to measure the atom number and temperature of the cloud, and for very dense

clouds such as supersolids and independent droplet states we are using the phase-contrast imaging

technique.

When light, propagating along the z-direction, travels through a dielectric medium it can be described

by [141]

E (z , t ) = E0e
i(k ′z−ωt ) = E0e

i(k z−ωt )e−β (2.14)

where E0 is the amplitude of the light field and k = ω/c and ω are the wave number and frequency

in vacuum. When propagating through a medium, the speed of light and therefore the wave number

k ′ = ω/c′ is modified. This can be expressed by the exponent β which for light propagating through a
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Vertical Imaging
Objective + Camera

Horizontal Imaging
Objective + Camera

Figure 2.7: Illustration of imaging beam paths. The horizontal light is guided through the chamber onto a dichroic

mirror and through a periscope to the camera. The vertical imaging beam is send from the bottom through the

chamber and the objective and then send to the camera over a dichroic mirror.

dilute gas can be approximated as [141]

β =
σ0nz (x , y )

4∆2 + Γ2(I /Isat)

(
iΓ∆ + Γ2

2

)
(2.15)

where nz (x , y ) is the column density of the cloud, ∆ = ω − ω0 is the detuning of the light to the

resonance frequency ω0 with the atoms, Γ is the spontaneous excited state decay rate, Isat =
ℏΓω3

0

12πc2
is

the saturation intensity of the transition and σ0 =
3λ2

2π is the atom-photon scattering cross-section. The

imaginary part of Eq. (2.15) leads to a dispersive phase shift of the propagating light, and the real part

leads to a damping and therefore absorption.

If the light is on resonance ∆ → 0 only the absorptive part is relevant and Eq. (2.15) turns into the

Beer-Lambert law [167]. Absorption imaging is a commonly used technique in ultracold gas experiments.

In our experiment we work in the low saturation regime [27] and use the λ = 421 nm light to resonantly

drive the closed broad transition |8,−8⟩ → |9,−9⟩. The column density nz (x , y ) can then be inferred

by the integrated Beer-Lambert law [168]

nabs
z (x , y ) = − 1

σ0
ln

(
Iout(x , y ) − Idark(x , y )
I in(x , y ) − Idark(x , y )

)
(2.16)

where σ0 =
3λ2

2π is the atom-photon scattering cross-section, Iout(x , y ) (I in(x , y )) is the local intensity

on an image taken with (without) the atomic cloud and Idark(x , y ) is the local intensity of a picture
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without light, to correct for any noise from the camera such as dark currents or faulty pixels. These images

are taken in rapid succession for each experimental sequence.

At large densities, our absorption imaging becomes saturated (Iout → 0) and we use phase-contrast

imaging for the modulated states instead. For this technique, the light is far detuned ∆ ≫ Γ from the

resonant transition frequency, such that the dispersive term in Eq. (2.15) dominates. The phase change of

the light after passing the cloud can therefore be approximated as [169]

β (x , y ,∆) ≈ i
1

4
σ0nz (x , y )

Γ

∆
(2.17)

The information of the phase gets lost when imaging the intensity profile of the outgoing light Iout. Instead,

we do Faraday imaging [169, 108]. By sending linear polarised light along the polarisation axis (direction of

the homogeneous magnetic field), the atoms experience a 50/50 mix of right and left circularly polarised

light. Atoms interact differently with σ+ and σ− polarised light due to the greatly different Clebsch-Gordan

coefficients
C 2
−

C 2
+
= 153 [150], which means that the phase change of the σ−-polarised light is larger than

of the σ+-polarised light as it passes through the atom cloud. By adding a polariser in front of the camera

we filter a polarisation dependent part of the light, and the resulting intensity distribution reveals the

density distribution of the cloud. The relationship between phase change and intensity distribution as a

function of the angle of the polariser Θ was derived in detail in Max Sohmen’s thesis [150]. We introduce

a polariser at an angle Θ = 45◦ to the original linear polarisation of the light and the intensity ratio is

described by [150]

Ip(x , y )
I0(x , y )

≈ 1

2
[1 − iβ (x , y ,∆)] (2.18)

where Ip/I0 is the ratio of the intensity profile of the incoming and outgoing beam and φ is the phase

acquired due to dispersion. At this angle, the intensity is linearly dependent on the phase. From (2.17) and

(2.18) we find the density distribution

nPC
z (x , y ) = − 4∆

Γσ0

[
I ∗p (x , y )
I ∗

ref
(x , y ) − 1

]
(2.19)

where I ∗
p/ref

(x , y ) = Ip/ref (x , y ) − Idark(x , y ) are the intensities corrected for noise from the camera,

just as with the absorption imaging.

In the experiment, we have a horizontal and a vertical imaging setup. The horizontal setup consists of an

objective made from a home-build 2"-lens triplet, which gives a magnification ofM = 3.2 and a scientific

CMOS-based camera9. Therefore, each pixel represents an area of ≈ 2 µm× 2 µm but is diffraction limited

to d horz
min

≈ 3.5 µm. This setup is used to image the atoms at any stage from the cMOT to the condensed

state after a time-of-flight (TOF), and exclusively absorption imaging is performed.

To resolve small structures such as droplets (d ≈ 5 µm) or vortices (d ⪅ 1 µm) in-situ, a vertical objective

with a higher NAvert
max = 0.45 is installed. This setup is possible due to the open-top MOT design. The

9Andor Neo 5.5 sCMOS, 16.6mm × 14.0mm chip size, 2560 × 2160 pixels, 6.5µm × 6.5µm pixel size, AR-coated window for 401nm,

421nm, 583nm and 626nm
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horizontal imaging vertical imaging

absorption absorption phase contrast

working distance 250mm 55mm

effective focal length ≈ 200mm 65mm

magnification ×3.2 ×15.3(1)

pixel size 6.5 µm × 6.5 µm 8 µm × 8 µm

max. NA 0.07 0.45

FOV ≈ 2mm > 130 µm

resolution (421 nm) 3.5 µm 0.71(1) µm

detuning 0MHz 0MHz 1085MHz

Table 2.2: Relevant properties of horizontal and vertical imaging systems. Data taken from [150, 137]

measured diffraction-limited resolution of the system is Res = 0.71(1) µm [150]. We use a magnification

of M = 15.3(1) leading to a pixel resolution of 0.52µm x 0.52µm10. This allows us to resolve droplets

in-situ and vortices after a short TOF.

The vertical imaging setup is used for both in-situ and TOF measurements, where the atoms fall along the

imaging axis. To keep the atoms in focus, the objective can be displaced along the vertical direction by up

to 12 mm using a high-precision stepper motor. This allows to keep the gas in focus for up to tTOF = 40ms.

The vertical imaging setup is designed as such that the detuning and polarisation of the light can be

switched easily to perform either absorption or phase-contrast imaging.

Due to the high resolution of the vertical imaging system, the system is also highly sensitive to blurring

due to photon scattering. By absorbing and spontaneously re-emitting a photon, momentum is transferred

to the atoms and its velocity changes, which can be estimated by

∆v
∆t

=
ℏΓ
2m

I

Isat

(kab − kem) (2.20)

where kab and kem are the wave vectors of the absorbed and re-emitted photon respectively. The movement

of the atoms in the imaging plane resembles a random walk and therefore leads to blurring of small

structures such as vortices. To avoid this, one needs to keep the illumination duration ∆t = t img short.

To understand what duration t img is suitable for our experimental parameters, we perform Monte-Carlo

simulations with Eq. (2.20) as the underlying model. The photons of the imaging light are absorbed after

each time step τ = 1/Γphs and re-emitted in a random direction in the next step. For these simulations,

interactions between atoms are not considered. The result of the simulations can be seen in Fig. 2.8.

10During the time of this thesis we have used 2 different cameras in this setup. The Andor Neo 5.5 sCMOS and the Luca EM R

604 EMCCD camera, 8mm x 8mm chip size, 1004 x 1002 pixels, 8 µm × 8 µm pixel size. The calculated pixel resolution is for the

Luca camera
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Figure 2.8: Monte-Carlo simulation of vortex blurring due to the absorption imaging for different exposure times
t img. The initial state at t img = 0 µs is generated for N = 50000 generating a cloud with a Thomas-Fermi radius of

RTF ≈ 6 µm and a density depletion is imprinted in the center of the cloud with the size ξ ≈ 1 µm. Every single

atom absorbs a photon every τ = 1/Γphs and emitting it one simulation step later. The resulting density profile

(integrated along the imaging direction) is shown for different exposure times t img = [0, 5, 10, 15, 20] µs, showing

a fading of the density depletion for longer exposures. Additional blurring due to the imaging signal and defocusing

are not considered.

Here we simulate, comparable to typical experimental conditions, a Thomas-Fermi distribution of 50000

randomly arranged atoms with a density depletion in the centre with a radius of ξ ≈ 1 µm. This depletion

represents a small structure that is reminiscent, for example, of vortices. While the structure is clearly

visible initially, the contrast decreases drastically for exposure times tmax
img
> 10 µs, reducing the fidelity

of recognising these structures in the images. Note that this simulation does not include other sources of

image blur due to the finite resolution of the imaging system or defocusing of the cloud due to momentum

transfer along the imaging direction. In our experiment, the shortest possible pulse times for vertical

absorption imaging before the signal-to-noise ratio becomes too small are about t img = 3 − 4 µs which is

well below tmax
img

.

2.2.5 Magnetic fields – Controlling atomic interactions

There are many possible ways to manipulate atoms in ultracold atom experiments [170]. For the experi-

ments discussed in this thesis we focus on controlling the scattering properties of the atoms with magnetic

fields.

As already discussed in Sec. 1.2, dysprosium atoms interact through contact interactions (CI) and dipole-

dipole interactions (DDI). As can be seen in Eq. (1.9) the DDI strength is set by the intrinsic dipole moment

of the atoms, the distance of the atoms and the relative direction of the dipole moments of the interacting

atoms. While the first two points are set by the properties of the atoms and by the trap geometry and

density of the gas, we can influence the relative collision angle by setting the direction of the magnetic

field relative to the trap. The DDI lead to magnetostriction, where the gas elongates along the magnetic

field direction compared to non-dipolar gases [99, 100, 101], leading to a deformation of the gas that can

be controlled by the magnetic field.

And in Sec. 1.3.4 it has been already discussed that the direction of the dipoles compared to the direction

of the weakest and strongest confinement axis of the trap can lead to radically different condensate

ground states, such as the macrodroplet state or the supersolid state.

29



CHAPTER 2. THE ERBIUM-DYSPROSIUM EXPERIMENT

17 18 19 20 21 22 23

Magnetic field B (G)

0

0.2

0.4

0.6

0.8

1

N
or

m
. A

to
m

nu
m

be
r

5 5.2 5.4

Magnetic field B (G)

17.6 17.8 18

Magnetic field B (G)

0

0.5

1

N
or

m
. A

to
m

nu
m

be
r

18.1 18.2 18.3 18.4

Magnetic field B (G)

0

0.5

1

19.1 19.2 19.3 19.4

Magnetic field B (G)

0

0.5

1

23 23.2 23.4

Magnetic field B (G)

0

0.5

1

a b

c d e f

Figure 2.9: Atom-loss spectroscopy of 164Dy and 162Dy . a) Spectroscopy of 164Dy in the magnetic field region

|B| = 17 − 23 G. b) Spectroscopy of 162Dy around |B| = 5.2 G. c)-f) Details of relevant regions marked in a). The

methodology of the atom-loss spectroscopy is discussed in appendix A.

The control of the magnetic field allows us to widely tuned the contact scattering length as and therefore

also εdd in the vicinity of Feshbach resonances [88, 33]. The contact scattering length as is phenomeno-

logical described by [34]

as(B) = abg

(
1 − ∆

B − B0

)
(2.21)

where B0 is the centre of the Feshbach resonance, ∆ is the width of the resonance and abg is the

background scattering length. The position and width of these Feshbach resonances depend on the

internal structure of the colliding atoms and are discussed in reviews [171, 88] and textbooks [172].

As can be seen in Fig. 2.9 dysprosium exhibits a large amount of Feshbach resonances, compared to the

Feshbach spectrum of, for example, alkali atoms [173]. This gives us a large variety of different magnetic

field regions already at low magnetic fields, which allows us to tune the interaction strength to the desired

values. However, most of the Feshbach resonances in dysprosium are much narrower than a single Gauss,

which makes a high control of the magnetic field necessary.

Furthermore, the complex internal structure of the dysprosium atoms and the resulting large spectrum of

resonances make it difficult to calculate the background scattering length abg and determine the scattering

length depending on the magnetic field strength from coupled-channel theoretical models as done for

alkali atoms [174, 175]. Therefore, other techniques are necessary to determine as(B) for a given magnetic

field, such as cross-dimensional thermalisation measurements [176, 161] or measuring on-site interactions

in optical lattices [177]. For many of the magnetic field regions relevant for this thesis, the scattering length
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Big Bias coil

Compensation Cage X
Compensation Cage Y

Small Bias coil

Figure 2.10: Illustration of the magnetic field coil setup. The X-&Y-Compensation Cages (red and yellow), Big Bias

Coils (green) and Small Bias Coils (cyan) are indicated.

as(B) has not been characterised before. In the experiments carried out during this thesis, the Feshbach

resonances have been mapped out through atom-loss spectroscopy (described in detail in appendix A)

and as was inferred by measuring the ground state of the degenerate state and comparing it with eGPE

simulations.

The important magnetic field regions for the experiments discussed in the following chapters are shown

in Fig. 2.9. The FB spectrum for 164Dy from 16.5 G to 23.5 G is shown in Fig. 2.9 a where we can find BEC, SS

and ID states for the trap parameters used in experiment (regions highlighted in Fig. 2.9 c-f). Figure 2.9 b

shows the FB spectrum for 162Dy around 5.3 G, where we find a BEC state. Additional in-situ images of the

corresponding ground states are shown in the appendix A.

The magnetic field is contolled by four independent pairs of coils in Helmholtz configuration generating

homogeneous fields along the three directions of space (taken from [137]):

• Big bias coils – The magnetic field in the main chamber is generated by a pair of large coils (27 × 2

windings) mounted above and below the chamber to create a homogeneous magnetic field in z-

direction. Coils are rated for currents up to 200 A11. The magnetic field provided is Bz = 4.372 G/A

with a flatness of 10−4 within ±1.5mm of the centre along the z-axis. Therefore, magnetic fields

B > 800 G can be generated. To increase the stability a self-build PID is moderating the current

measured with a transducer12. With this setup we can keep the current stable to ∆I < 5mA, which

gives a magnetic field stability of ∆B < 20mG at B = 20 G.

11Supplied by Delta Elektronika SM 30-200
12LEM IT 200-S Ultrastab
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• Small bias coils – We have an additional pair of smaller coils (6 windings). These produce a magnetic

field of Bz = 0.779 G/A with a (relative) flatness of 10−4 within ±0.5mm of the centre along the

z-axis [137]. The connected bipolar power supply delivers a current of up to I = ±10 A with an

integrated current probe and PID circuit, and therefore the coils supply Bz > 7 G with a stability of

∆B < 20mG. The smaller winding number allows the current to change faster than for the larger

coils due to the smaller inductance.

• X- and Y-Compensation coils – Magnetic fields in the horizontal direction are generated by two pairs

of rectangular coils (11x2 windings). The larger of the two pairs creates a homogeneous magnetic

field in the x-direction of Bx = 1.04 G/A and the smaller pair By = 1.12 G/A in the y-direction. We

can send up to I = ±14 A to the coils with bipolar power supplies of the same type as for the small

bias coils and therefore generate magnetic fields of Bx/y > 14 G with a stability of ∆B < 20mG,

which allows us not only to compensate for stray magnetic fields in the horizontal direction but also

to point the magnetic field vector in any direction as long as the magnetic field strength |B| < 14 G.

The magnetic fields at the atoms are calibrated by radio frequency spectroscopy as described in the

appendix B. Our setup gives us the ability to rotate the magnetic field in all directions as long as we stay

at |B | < 14 G. For the rotation of the supersolid we rotate at magnetic fields |B | > 14 G, which limits the

tilt from the vertical axis to θ < 40◦.

This concludes the cooling, trapping, imaging, and manipulation toolbox necessary for the experiments

that follow in the next chapters.
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Chapter3
Vortices in dipolar Bose-Einstein condensates

The second part concerns the case in which vorticity of the superfluid exists.

Our position here is less satisfactory and more uncertain. It is described here in

considerable detail because of the interesting problem it presents.

Richard Feynman
Progress in Low Temperature Physics I (1955)

In this chapter we discuss the interacting Bose-Einstein condensates under rotation, which leads to

quantised vortices. In particular we look at the influence of dipolar interactions, which has so far not

been studied. The superfluid properties of the interacting BECs lead to the existence of vortex states with

quantised 2π phase windings which can be observed as density depletions in the condensate, reminiscent

of tornadoes or whirlpools.

These vortices have been of interest to physicists since the early days of quantum fluids. Experiments

in rotating discs containing helium allow to measure the transition between the normal and superfluid

flow at a critical temperature [178, 179]. Landau defined a critical velocity vc up to which the fluid exhibits

superfluid flow [106]. But, inconsistent with Landau’s theory, in these experiments dissipation was ob-

served at unexpectedly low rotation frequencies. The key insight came from Feynman [180] – inspired by

Onsager [181] – who proposed that the nucleation of quantised vortices was the reason for the dissipative

behaviour.

And indeed, vortices [182, 183, 184] as well as vortex rings [185] could be observed in superfluid he-

lium. At the same time, quantised magnetic vortices could also be detected in superconducting materi-

als [186, 187, 188]. And not long after the advent of ultracold atomic gas experiments and the first creation

of BECs the first vortices were created and directly observed [39, 189, 190], as well as the first vortex

lattice [40]. Ultracold gases proved to be ideal test beds for studying the dynamics of vortices, in particular

because of the high degree of control over confinement and interactions, and the low density compared

to solid-state systems, which leads to comparably large and directly observable vortices. Studies include

the nucleation of vortices [191, 192, 193, 194], the precession of vortices [189], vortex bending [195], vortex

lattice dynamics and Tkachenko modes [196, 197, 198] and Kelvin modes [199]. It has even been possible

to bring the rotating BEC into a lowest Landau level (LLL) by geometric squeezing [200, 201]. Quantised

vortices have also been studied in different geometries such as box potentials [202] and ring traps [203]

and in lower-dimensional 2D systems to study, for example, the Berezinskii-Kosterlitz-Thouless (BKT)
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crossover [50, 53]. They play a significant role for quantum turbulence [204, 205] and have also been

observed in fermionic systems [206].

So far, the work on vortices in quantum gases has been limited to systems with short-range contact

interactions. With the paper "Observation of vortices and vortex stripes in a dipolar condensate" [207]

we were able to create vortices for the first time within an atomic cloud of dipolar atoms in the context

of ultracold gases. The following section reviews the basic properties of quantised vortices in trapped

ultracold gases and discusses novel aspects brought in by the dipolar interactions between the atoms.

3.1 Quantized Vortices: Rotate the irrotatable

When we compare our idealised model with reality, we have to admit one profound

difference: the distributions of vorticity which occur in the actual flow of normal

liquids(1) are continuous [...]
(1)Vortices in a suprafluid are presumably quantized; the quantum of circulation is h/m,

where m is the mass of a single molecule.

Lars Onsager
Statistical Hydrodynamics (1949) [181]

What exactly are vortices, how can we create them, and how do they show up in our system? This chapter

gives an introduction to vortices in rotating dipolar condensates and additional information on the paper

"Observation of vortices and vortex stripes in a dipolar condensate".

3.1.1 Basic properties of quantised vortices

A Bose-Einstein condensate is irrotational. This means that if the condensate is rotated, the curl of the

velocity field of the BEC is zero

+ × v(r, t ) = 0 (3.1)

This follows from the fact that the velocity field of the condensate is defined by[95]

v(r, t ) = ℏ
m
+S (r, t ) (3.2)

where m is the mass of an atom and S (r, t ) is the phase of the condensate as seen in Eq. (1.13). Since

S (r, t ) is a scalar field, the identity + × (+S (r, t )) = 0 holds, leading to Eq. (3.1).

The consequence of (3.1) is that the BEC – and in general solutions of the eGPE (1.12) – can only adopt

certain velocity fields v(r) when rotated. For example, a rigid body-like rotation, where the flow field

around a core increases linearly with radius |v| ∝ r would be rotational ω (r, t) , 0.

Instead, a valid solution (1.13) of a rotating condensate is the flow field around a vortex, as shown in Fig.

3.1. Since the phase S (r, t ) must be single-valued in a BEC, the total phase change along a closed loop
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Figure 3.1: Example of phase, velocity and density around a quantized vortex. a) Looking along the rotation axis, the

phase winds around the central point from 0 → 2π . b) The resulting velocity vector field v(x , y ), along with c)

the absolute value of the velocity |v(x , y ) | along the x-axis for y = 0. d) An example of the density distribution

n (x , y ) at z = 0. e) The normalised density distribution along the x-axis for y = 0. The corresponding healing

length is indicated in red.

must be a multiple of 2π ∮
+Sd l = q2π (3.3)

which leads directly to the quantity of circulation

Γ =

∮
vd l = q2π

ℏ
M

(3.4)

In this thesis I will refer to the natural number q as the vortex charge. Eq. (3.4) shows that the circulation

of the vortices is quantised as predicted by Onsager [181]. However, it has been shown theoretically and

experimentally that the energy of a solution of multiple singly charged vortices is generally lower than the

solution with a single multi-charged vortex [180], so q = ±1 depending on the direction of circulation will

be considered in the remainder of this thesis. Higher charged vortices have so far only been stabilised in

supercurrents in toroidal traps [208]. Instead, for large rotational frequencies Ω, single-charged vortices

are generally found to arrange in a lattice structure, where the number of vortices is fixed by the rotational

frequency [40, 206].

In the density distribution of BECs, vortices appear as local density depletions along the rotation axis,
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reminiscent of swirls in classical fluids or tornadoes. To understand this, we consider a constant velocity

field v(r⊥, z ) around an isotropic vortex core, as shown in Fig. 3.1

v(r⊥, z ) =
ℏ
mr⊥

êϕ (3.5)

where the rotation axis is along the z-direction and r⊥ is a vector from the vortex centre perpendicular

to the rotation axis. For simplicity, it is assumed that the position of the vortex centre does not change

along the z-axis, leading to a straight vortex tube. This velocity field is irrotational as defined in (3.1). For

r → 0, the velocity diverges. Therefore, to prevent the kinetic energy from diverging, the density at the

centre of the vortex reduces to zero.

To find the density distribution including the vortex, one generally has to solve (1.12) numerically. But

considering that the vortex size is much smaller than the condensate r⊥ ≪ R⊥, where R⊥ is given by

(1.15), the local density can be assumed to be homogeneous and the density distribution around a vortex

can be approximated by nv (r⊥, z ) = |Ψv (r⊥, z ) |2 [95] where

Ψv (r⊥, z ) =
√
n0f

(
r⊥
ξ

)
(3.6)

where n0 = n (0, z ) is the density for the solution without vortex at the centre of the BEC. The dimen-

sionless function f (η) satisfying the equation 1
η
d
dη

(
η dfdη

)
+

(
1 − q2

η2

)
f − f 3 = 0, which is obtained by

inserting (3.6) into the stationary (iℏ ∂Ψ(r,t )
∂t = 0), homogeneous (V (r) = const.) eGPE (1.12). For large

distances from the vortex core f (∞) = 1, the cloud assumes the density without the vortex, and for

η → 0 the solution tends to zero as f ≈ ηq . The size of the vortex core is given by the healing length ξ,

which can be approximated in the dipolar case by [95, 91]

ξ (r) = ℏ√
2m

[
gn0 +V mf

dd
(r)

] (3.7)

A consequence of the DDI is that the healing length is anisotropic. If the axis of rotation and direction of

polarisation of the dipoles are not aligned, the density around the vortex core becomes anisotropic, as

has been shown in simulations [209, 98]. Vortices are expected to elongate along the projection of the

polarisation direction of the dipoles in the x-y plane, orthogonal to the rotation axis.

When the vortex state is the ground state of the rotating system depends on the rotation frequency of

the cloud Ω. So far, the vortex solution has been calculated in the laboratory reference frame. This is

appropriate because we assume that the total angular momentum of the system is held by the vortex and

that the cloud itself is not rotating. The total energy of the system is then given by the energy of the state

without vortex plus the additional energy having the vortex E = E0 + Ev . In general, a BEC rotating at

a constant frequency Ω can be described in the rotating frame of reference, where the total energy is

given by E = E ′ + Ω · L, where E ′ = E0 is the energy of the stationary solution in the rotating frame of

reference and L is the total angular momentum of the system. Considering the rotation axis along the

z-direction, this means that there is a critical Ωc =
Ev
Lz

, above which the vortex solution is energetically

favourable.
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It has been shown that as long as ε ≪ 1, the energy of a state with a single centred vortex is well

approximated by the analytical solution for the non-dipolar BEC [210, 172].

Ev =
4πn0
3

ℏ2

m
Rz ln

(
0.671

R⊥
ξ0

)
(3.8)

Here the peak density n0 is given by the non-vortex solution (1.14), the corresponding healing length ξ0

by (3.7), and the cloud radius R⊥ by (1.15) as well as Rz by κ in (1.15). All of these values are modified by

the DDI compared to the non-dipolar gas.

Similarly, the angular momentum Lz in a harmonically trapped condensate is given by [172]

Lz =
8π

15
n0R

2
⊥Rzℏ (3.9)

and therefore the critical frequency Ωc is given by

Ωc =
5

2

ℏ
mR 2

⊥
ln

(
0.671

R⊥
ξ0

)
(3.10)

Eq. (3.10) gives the minimal rotation frequency, such that the vortex solution is the energetical ground

state and therefore stable. In experiments dissipation due to the interactions of the vortices with the

thermal part of the gas [211] leads either to expulsion of the vortex (Ω < Ωc ) or to the vortex moving

towards the centre (Ω > Ωc ) [212].

We can estimate the size and energy of the vortex for the parameter used in the experiment. We trap 162Dy

atoms in a dipole trap with [ω⊥,ωz ] ≈ 2π × [50, 140] Hz, the condensed atom number is Nc ≈ 15, 000

and the contact interaction is as ≈ 111a0 [207]. The Thomas-Fermi approximation N a
aho
> 1 is sat-

isfied, so we can calculate the radius of the gas from Eq. (1.15). For the above parameters, we find

[R⊥, Rz ] ≈ [5.2, 2.9] µm and that the size of the vortex cores is ξ ≈ 480 nm. We can also calculate the

critical rotation frequency to be Ωc ≈ 0.22ω⊥

3.1.2 Nucleating the vortices

To generate or to destroy “Wirbelbewegung” in a perfect fluid can only be an act

of creative power.

Sir William Thomson (Lord Kelvin)
On Vortex Atoms (1867) [213]

In the experiment, we are starting with a non-rotating, vortex-free BEC and by rotating the system, we are

nucleating vortices. As we see from Eq. (3.5), the vortex solution has a singularity in the velocity field at the

centre of the vortex. This means that the state with a vortex is topologically different from the vortex-free

state, where we do not have any singularity. There is no continuous deformation from one state to the

other and, therefore, the vortex state is topologically protected [98]. This leads, even though the vortex
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state might be the energetical ground state, to a significant energy barrier that must be overcome to

transition from the vortex-free state to nucleating vortices.

Therefore, to nucleate vortices in BECs, rotation frequencies much larger than Ω ≫ Ωc have to be

achieved [193]. As a nucleation mechanism, it is suggested that for a sudden application of a constant

rotation frequency Ω the spontaneous formation of surface deformations drastically reduces the energy

barrier and favours the nucleation of vortices. The polarity of surface deformation ℓ and the corresponding

rotation frequency Ω = ω⊥/
√
ℓ at which the instability is triggered depends on the way the condensate

is rotated [214, 190]. Other possibilities are the adiabatic increase of Ω, where at Ω > ω⊥/
√
ℓ dynamical

instabilities lead to the nucleation of vortices [193, 192, 191].

In ultracold gas experiments, there are many different ways to impart angular momentum to the cloud

and nucleate vortices:

• Continuous rotation of a slightly anisotropic trap [190, 40, 215, 196]. Reminiscent of a rotating

bucket, the BEC can be rotated in a rotating anisotropic trap. In this case, a quadrupol deformation

ℓ = 2 leads to the nucleation of vortices. The advantage of this technique is that all the vortices

nucleated have the same charge q . Therefore, large vortex lattices can be created at high rotation

frequencies.

• Dragging a small repulsive potential through the BEC [216, 217, 218, 219, 204, 220]. Moving a repulsive

optical potential through the condensate above the critical velocity vc leads to the generation of

turbulent flow and hence vortices with random quantised charge. However, with certain techniques,

such as the chopstick method [219], it is possible to create deterministically vortex pairs of opposite

charges.

• Direct phase imprinting [221, 222, 203, 39, 208]. By creating a gradient in the chemical potential of

the cloud for a fixed period of time, the phase can be evolved into the vortex solution. There are

different methods to achieve this: The phase can be imprinted by overlaying a potential gradient on

the cloud for a time shorter than the density response time of the atoms [203], or by illuminating

the atoms with a Laguerre-Gaussian beam for which all photons carry angular momentum, which

they transfer to the atoms [208], or by an off-resonant laser beam with circular motion around the

BEC providing an AC-stark gradient which changes the phase [39].

• Rapid cooling into the BEC state [223, 224, 41, 225, 226, 227, 228]. Rapid cooling of atoms from the

thermal phase to the BEC state leads to local fragmentation of the phase, and vortices can form

during homogenisation. This technique does not involve a rotating system, and therefore the

created vortex state is energetically unstable.

All of these techniques have been used to create vortices in experiments. However, for most of the

techniques, the ability to create arbitrary potentials and rotate them continuously is needed.
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Magnetostirring

The DDI offer a different way to rotate the cloud continuously at arbitrary Ω. To rotate the atomic gas or,

in other words, to impart angular momentum, we need a system with broken rotational symmetry. This

can be naturally realised in dipolar condensates in radially symmetric traps. Due to magnetostriction

the cloud aspect ratio is no longer identical to the trap aspect ratio. The term magnetostriction was first

coined for solid magnetic materials, such as iron rods, which change their length when a magnetic field is

applied along the rod [229, 230]. This effect is due to the electrons aligning themselves along the magnetic

field, slightly changing the size of the atoms. Therefore, each individual atom takes more space along

the magnetic field direction, and the rod effectively elongates. A very similar effect can be seen in our

gas. The dipoles of the atoms align with an external magnetic field. Due to the dipolar interactions the

atoms attract each other head to tail and the atomic cloud elongates along the magnetic field direction to

reduce its energy compared to the non-dipolar case. In an axisymmetric trap where ωx = ωy the cloud is

therefore no longer symmetric (Rx , Ry ), when the magnetic field is tilted away from the symmetry axis

by a tilt angle θ. By continuously rotating the tilted magnetic field, the cloud can be rotated.

To simplify further discussion, we will call this technique magnetostirring. This technique has several

advantages:

• Simple technical setup: The rotation of magnetic fields has been used for neutral atoms since the

early days of time-averaged orbital potential (TOP) traps [231]. Most of the ultracold gas experiments

have magnetic field coils for all directions to compensate for magnetic stray fields. These coils, if

the magnetic field generated is large enough, can be used to generate the rotating fields, so this

technique is quickly implemented.

• Tilted magnetic field: Since the rotation is generated by the magnetic field, the magnetic field is

tilted and static in the rotating frame, which allows for studying effects such as anisotropic vortex

cores and vortex stripe lattices.

The aspect ratio Rx/R y of the stationary BEC in an isotropic trap for different magnetic field tilt angles θ

can be found from numerical eGPE calculations and is shown for our experimental parameters in Fig. 3.2.

Tilting the magnetic field from the z-direction into the x-y symmetry plane results in an aspect ratio

AR = 1 − 2.2. As shown in the theoretical work of Bland et al. [232] there are three stability regimes

rotating at different θ. For θ < θ∗1 the aspect ratio of the cloud during adiabatically ramping up the

rotation frequency Ω → ω⊥ remains almost constant and no vortices are nucleated. For θ∗1 < θ < θ
∗
2

the aspect ratio increases significantly up to a critical rotation frequency Ω∗(θ), where the AR reduces

rapidly and the vortices are nucleated due to a dynamical instability as discussed before. For large tilt

angles θ > θ∗2 , the cloud continuously elongates up to the simulated Ω = ω⊥. Here, the elongation of the

cloud and the tilted magnetic field along this elongation lead to a dominantly attractive force between the

atoms due to the DDI. The cloud is thereby held together, and dynamical instabilities are suppressed. For

θ → 90◦, the rotating BEC even transitions to a trap-bound droplet for large rotation frequencies [232]. In

the study, the critical tilt angles are given by θ∗1 ≈ 20◦ and θ∗2 ≈ 50◦, but they are strongly dependent on

system parameters such as the trap aspect ratio ω⊥/ωz and as. To generalise the results, further studies
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Figure 3.2: Aspect ratio Rx/Ry for different tilt angles θ. The aspect ratios are taken from eGPE simulations with the

parameters N = 15000, as = 110a0, [ω⊥,ωz ] = 2π × [50, 130] Hz. The data is taken from Fig. 3 from [232]

are necessary.

As described in section 2.2.5 the magnetic fields in our experiment are generated by the magnetic bias

field coils Bbias
z and the two compensation cages for the x- (B comp

x ) and y-direction (B comp
y ). To create a

rotating magnetic field of constant strength |Btot | and constant tilt angle θ, the magnetic fields produced

by the different pairs of coils are given by

Btot = B
comp
x + B comp

y + Bbias
z (3.11)

B comp
x = |Btot | sin(θ) cos(Ωt + φ0) (3.12)

B comp
y = |Btot | sin(θ) sin(Ωt + φ0) (3.13)

Bbias
z = |Btot | cos(θ) (3.14)

with the rotation frequency Ω and the initial starting angle φ0. In our experiment, we work with a tilt of

θ = 35◦, which results in an aspect ratio of AR ≈ 1.2 and lies inbetween θ∗1 and θ∗2 for our experimental

parameters. The frequency of the current sent to the coils can be easily set between Ω = 0 − 50Hz

allowing one to either adiabatically ramp the rotation frequency or quasi-instantaneously turn on the

rotation frequency. The experimental results of the cloud AR during an adiabatically ramped rotation

frequency are shown in the publication in Fig. 1 c.

3.1.3 Image the vortices

Vortices appear along the axis of rotation as hollow tubes in the density distribution. In our experiment

both the imaging and the rotation are along the z-direction, so the vortices appear as holes. However,

the in-situ size of the vortex core we calculated in Sec. 3.1.1, is on the same scale as our vertical imaging

resolution.

The vortex core can be magnified in time-of-flight (TOF) [190, 194]. Due to the expansion of the BEC, the
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Figure 3.3: Example of vortex profiles. Density profiles after rotating the BEC for 600 ms at Ω = 0.75ω⊥ and spiral

the magnetic field to θ = 0 for another 100 ms. To measure the size of the vortices the density along the y-axis is

integrated between the white dotted lines and the resulting density profile is shown below the image. The density

profile is fit by n = nTF + nT + nv. Hereby, pictures from the dataset were chosen, where a vortex is clearly visible

near the centre of the cloud and other signatures of vortices are omitted for the fit. The experimental parameters are

as = 109a0, trap frequencies [ω⊥,ωz ] = 2π × [50, 130]Hz, atom number N = 10000 and a TOF of tTOF = 3ms.

density is reduced, leading to an increasing healing length ξ ∝ n−1/2. We can estimate the growth by

assuming ballistic expansion of the cloud [27]

R i (tTOF) = R i (0)
(
1 + ω2

i t
2
TOF

)
(3.15)

where ωi are the trap frequencies in the corresponding directions and tTOF is the expansion time. Since

the density is given by Eq. (1.14) the healing length increases with ξ ∝
√
Rx (t )R y (t )Rz (t ). In our case,

we are working in an oblate trap where the rotation axis is along the flat direction. For our values, for

an expansion of tTOF = 3ms, we find that the radius of the cloud increases by RTOF/R ≈ (1.4, 1.4, 2.8)
and the healing length approximately doubles from ξTOF/ξ ≈ 2.3 to about ξTOF ≈ 1.1 µm, bringing the

vortices into the resolution range of our imaging system.

Longer expansion times lead to a greater magnification of the vortices, but we are limited by the noise

of our imaging system. With a longer TOF the density of the cloud decreases rapidly and therefore the

signal-to-noise ratio for the imaging decreases as well. We find the ideal regime at tTOF = 3ms, where

the vortices are resolvable and the cloud is still dense.

From the resulting images, we count and analyse the vortices. To do this, we use an algorithm similar to

that used in [233]. We take each image n img and create a reference image nref by applying a 2D Gaussian

filter with σ = 5 pixel to the original image. The result is a smoothed density profile, where all signatures

of vortices are removed. Both images are normalised and subtracted from each other to create a residual

image nres = n
norm
img

− nnorm
ref

. The resulting residual ideally shows a homogeneous density distribution

with the vortices as density minima. To avoid overcounting vortices at the edges of the cloud, where the
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Figure 3.4: Vortex number distribution for a magnetic field angle of θ = 35◦ and θ = 0◦. Vortex number distribution

after rotating the cloud for 500 ms at θ = 35◦ over(red / 115 images) and after rotating the cloud for 600 ms at

θ = 35◦ and then rotating the magnetic field up to θ = 0◦ for another 100 ms (blue / 121 images). A residual image

nres = nnorm
img

− nnorm
ref

is given for the tilted and non-tilted magnetic field respectively, with the vortex positions

marked as ’o’. The experimental parameters are as = 109a0, trap frequencies [ω⊥,ωz ] = 2π × [50, 130] Hz,

N = 10000 and a TOF of tTOF = 3ms.

signal-to-noise ratio is worse, we look for vortices only in the region where nnorm
ref
> 0.1. We identify

vortices by finding the local minima and filtering out the minima that have low contrast and are too close

together in space. This results in an algorithm that robustly finds the clear signs of vortices in the centre

of the cloud, but may underestimate the actual number of vortices, because vortices in the lower density

regime and with low contrast are not counted. Therefore, when vortices are detected, we know with high

confidence that the vortices exist and the lower limit of the vortex number.

3.1.4 Dipolar stripe vortex lattice

The maximum angular momentum carried by a vortex is L = qNℏ. This means for q = 1 that if we impart

more angular momentum to the cloud, more vortices will be created and the maximum number can be

estimated by Nv ≃ 2πR2
⊥Ω/Γ where Γ is the quantum of circulation defined in Eq. (3.4) [194].

We can see in our experiment and in eGPE simulations that for short rotation times the vortices are

nucleated on the outside of the cloud and, as the rotation continues, slowly move towards the centre of the

cloud. In non-dipolar gases, once the vortices are formed, they assemble into a regular triangular [40, 197,

198]. This lattice structure was predicted by Abrikosov [234] and can be found not only in ultracold gases,

but also as flux vortex lattice in superconductors [235, 236]. It is also expected in superfluid helium [237],

but has not yet been directly observed.

The situation changes for gases with dipolar atoms. Theoretical studies of dipolar gases have mostly been

done for quasi-2D systems and we have to distinguish between two different scenarios: First, the dipole
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moments of the atoms are aligned along the rotation axis, and second, the dipole moments are tilted

away from the rotation axis.

For the first scenario, the interactions along the trap symmetry axes are isotropic, but due to the long-range

nature of the interactions, the ground-state lattice structure acquires different geometries: for small

ε the lattice is triangular and increasing ε then leads from a square to a stripe to a hexagonal lattice

structure [238, 239].

In the second scenario, the tilt of the dipole moment breaks the rotational symmetry of the system. In fact,

a strip pattern is predicted for interaction strengths of εdd ≥ 0.8 and tilt angles θ > 51◦ [240]. We can

understand this by looking at the dipolar potentialV mf
dd

in (1.12). The dipolar potential can be rewritten

as [99, 241, 242]

V mf
dd = −gεdd [3∂nnφ (r) + n (r)] (3.16)

with φ (r) = 1
4π

∫
d r′ n (r′ )

|r−r′ | and ∂nn = ∂n(∂n), where ∂n = n̂x∂x + n̂y ∂y + n̂z∂z and n = n̂x + n̂y + n̂z
is the derivative along the polarisation direction of the dipoles. The "potential" φ (r) is reminiscent of

an electrostatic potential with charge distribution n (r). The absence of density in the vortex cores in a

"charged" environment can be interpreted as anti-dipoles and the resulting potential (3.16) mimics the

dipolar potential itselfV mf,vort

dd
≈ 1 − 3 cos2(θ), at least for the 2D limit [209]. Therefore, the total energy

is reduced when the vortices are aligned "head-to-tail", forming a stripe pattern.

In our experiment, we were able to observe a vortex stripe pattern in a rotated 3D dBEC with trap

frequencies (ωr ,ωz ) ≈ (50, 130) Hz and an interaction parameter of εdd ≈ 1.2, an angle of θ = 35◦ and

a rotation frequency of Ω = 0.75ω⊥.

As we can see in Fig. 3.4 in our experiment we are able to measure a wide spread in the vortex count

for every experimental run for the magnetic field tilted at θ = 35◦ for the whole rotation sequence, but

also when spiraling up the magnetic field in the last 100ms before imaging the cloud. The average vortex

number we measure for the tilted (non-tilted) magnetic field is Nv = 6.2(2) (Nv = 5.3(1)). For the

rotation frequency used and the estimated radius from Sec. 3.1.1 we expect a maximum vortex number of

N estim
v ≈ 13 instead. There are several reasons for this large discrepancy:

• Due to the imaging resolution, noise and the algorithmic vortex counting, we underestimate the

vortex number in our images.

• The vortex nucleation phase is not completed [243]. Many vortices are still on the edge of the cloud,

where they are not identified and therefore not counted by the algorithm. An indication of this is

the wide spread of the vortex number distribution, which shows images with very low number of

vortices showing the very early stage of nucleation and few images with a vortex number close to

N estim
v at the late stage of nucleation.

• Dissipative effects can reduce the vortex number [233]. Our cloud has a finite temperature and

therefore, following Landau’s two-fluid model, we can separate the cloud into a superfluid and a

normal part [244]. Although superfluidity is defined by the absence of dissipation, the appearance

of vortices introduces the possibility of dissipation. Vortices can interact with the normal fluid and
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Figure 3.5: Vortex and vortex stripe spacing from averaged Fourier Transform of the residual images. a) Rotating

the magnetic field for 500ms at a tilt angle of θ = 35◦. b) Rotating the magnetic field for 600ms at a tilt angle

of θ = 35◦ and then spiralling the magnetic field up to θ = 0◦ for a further 100ms. a1/b1) A single example

image taken after a TOF of tTOF = 3ms. a2/b2) Fast Fourier transform (FFT) of the residual images, averaged over

49 shots/121 shots. a3/b3) The FFT profile along the white line in a2/b2) is shown. The average wavenumber of

the stripe pattern k stripe

FFT (a3) and the average vortex distance k vortex
FFT (b3) can be extracted by finding the peak

position between 1µm−1 > k > 2µm−1. The upper and lower bounds of the estimate are given by the minimum at

k ≈ 0.8µm−1 and the intersection of the horizontal line with the profile for k > kFFT. The measured wavenumbers

are k stripe

FFT = 1.30+0.08−0.21µm−1 and k vortex
FFT = 1.15+0.29−0.22µm−1. The experimental parameters are as = 109a0, trap

frequencies (ω⊥,ωz ) = 2π × [50, 130]Hz and N = 10000.

thus dissipate energy. Furthermore, vortices can dissipate energy through sound modes [233, 199].

Due to the low resolution and the turbulent positions of the vortices, the stripe pattern is not obvious

from single images, as can be seen in Fig. 3.5 a1. Instead, the stripe structure is indicated by the increased

density along the magnetic field. We analyse the structure by taking the absolute value of the 2D Fourier

transform (FT) of the individual residual images. By taking a large number of repetitions (105 images),

taking the 2D FT of the residuals and averaging them (see Fig. 3.5 a2) we find a repeatable stripe structure.

The average 2D FT shows two peaks perpendicular to the x-y projection of the magnetic field direc-

tion. From the distance between the peaks we can calculate the distance between the stripes(Fig. 3.5 a3)

rstr = 2π/kFFT = 4.83+0.93−0.29 µm. So we have a clear indication that the vortices are aligning in stripes

along the magnetic field.

As a control, we created the vortices and then rotated the magnetic field up to θ = 0◦ over a time

τspiral = 100ms as shown in Fig. 3.5 b1. We also perform the 2D FFT analysis and the resulting mean
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profile shows an isotropic ring from which we can estimate the average distance between the vortices as

rvort = 2π/kFFT = 5.46+1.28−1.11 µm. This indicates that the vortices are no longer aligned in stripes.
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Quantized vortices are the prototypical feature of superfluidity. Pervasive in all natural systems,
vortices are yet to be observed in dipolar quantum gases. Here, we exploit the anisotropic nature of
the dipole-dipole interaction of a dysprosium Bose-Einstein condensate to induce angular symmetry
breaking in an otherwise cylindrically symmetric pancake-shaped trap. Tilting the magnetic field
towards the radial plane deforms the cloud into an ellipsoid through magnetostriction, which is
then set into rotation. At stirring frequencies approaching the radial trap frequency, we observe
the generation of dynamically unstable surface excitations, which cause angular momentum to be
pumped into the system through vortices. Under continuous rotation, the vortices arrange into a
stripe configuration along the field–in close corroboration with simulations–realizing a long sought-
after prediction for dipolar vortices.

Since the first experiments on gaseous Bose-Einstein
condensates (BECs), the observation of quantized vor-
tices has been considered the most fundamental and
defining signature of the superfluid nature of such sys-
tems. Their very existence sets a unifying concept
encompassing a variety of quantum fluids from liq-
uid helium1 to the core of neutron stars2, and from
superconductors3 to quantum fluids of light4. Their clas-
sical counterparts have as well fascinated scientists from
different epochs and fields as vortices are found in many
scales of physical systems, from tornadoes in the atmo-
sphere to ferrohydrodynamics.

In the quantum realm, a quantized vortex may emerge
as a unique response of a superfluid to rotation. It can
be understood as a type of topologically protected singu-
larity with a 2π phase winding that preserves the single-
valuedness of the superfluid wavefunction and the irrota-
tional nature of its velocity field. In contact-interacting
BECs, vortical singularities have been observed ex-
perimentally in the form of single vortices5,6, vortex-
antivortex pairs7, solitonic vortices8,9, vortex rings10 and
vortex lattices6,11,12 using a number of different tech-
niques. Moreover, vortices play a fundamental role in the
description of the Berezinskii-Kosterlitz-Thouless transi-
tion in two-dimensional systems13, as well as in the evo-
lution of quantum turbulence14–16, and have been ob-
served in interacting Fermi gases along the BEC-to-BCS
crossover8,17.

Recently, a new class of ultracold quantum gases are
being created in various laboratories around the world,
using strongly magnetic lanthanide atoms18,19. Such a
system, providing a quantum analogue of classical fer-
rofluids, enables access to the physics of dipolar BECs,
in which atoms feature a strong long-range anisotropic
dipole-dipole interaction (DDI)20,21 on top of the tradi-
tional contact-type isotropic one. This intriguing plat-
form provided the key to observe, e.g., extended Bose-

Hubbard dynamics22, roton excitations23–25, the quan-
tum version of the Rosensweig instability26, supersolid
states of matter27–30, and is foreseen to host novel phe-
nomena for quantum simulation and metrology20,21.

The dipolar interaction is predicted to also inti-
mately change the properties of vortices in quantum
gases31. For instance, theoretical works predict single
vortices to exhibit an elliptic-shaped core for a quasi-two-
dimensional setting with in-plane dipole orientation32–35,
or the presence of density oscillations around the vortex
core induced by the roton minimum in the dispersion
relation32–36. For vortex pairs, the anisotropic DDI is
expected to alter the lifetime and dynamics35,37, and can
even suppress vortex-antivortex annihilation35. These in-
teraction properties are predicted to give rise to a vortex
lattice structure that can follow a triangular pattern32,36,
as is typical for non-dipolar BECs11, or a square lattice
for attractive or zero contact interactions38,39 when the
DDI is isotropic (dipoles aligned with the rotation axis).
A very striking consequence of the dipoles tilted into the
plane is the formation of vortex stripes32,40,41. Moreover,
vortices could provide an unambiguous smoking gun of
superfluidity in supersolid states42–46. However, despite
these intriguing predictions, vortices in dipolar quantum
gases have yet to be observed.

This paper presents the experimental realization of
quantized vortices in a dipolar BEC of highly mag-
netic dysprosium atoms. Following a method pro-
posed in Ref. 41, we show that the many-body phe-
nomenon of magnetostriction47, genuinely arising from
the anisotropic DDI among atoms, provides a natural
route to rotate the systems and nucleate vortices in a
dipolar BEC. We carry out studies on the dynamics of the
vortex formation, which agree very well with our theo-
retical predictions. Finally, we observe one of the earliest
predictions for dipolar vortices: the formation of vortex
stripes in the system.
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In non-dipolar gases, quantized vortices have been pro-
duced using several conceptually different techniques.
For instance by rotating non-symmetric optical6,11 or
magnetic48 potentials, by rapidly shaking the gas15,
by traversing it with obstacles with large enough
velocity7,49, by rapidly cooling the gas across the BEC
phase transition50,51, or directly imprinting the vortex
phase pattern52. Dipolar quantum gases, while able to
form vortices with these same standard procedures31,
also offer unique opportunities that have no counterpart
in contact-interacting gases. Crucially, the DDI gives
rise to the phenomenon of magnetostriction in position
space47. When dipolar BECs are polarized by an ex-
ternal magnetic field–defining the dipole orientation–the
DDI causes an elongation of the cloud along the polar-
ization direction. This is a direct consequence of the sys-
tem tendency to favor head-to-tail dipole configurations,
which effectively reduces the interaction energy21.

Such a magnetostrictive effect provides a simple
method to induce an elliptic effective potential and drive
rotation with a single control parameter. This modifi-
cation of the effective potential is shown in Fig. 1a for a
BEC in an oblate trap with cylindrical symmetry about
the z-axis. While a non-dipolar BEC takes the same
shape as the confining trap (a1), introducing dipolar in-
teractions with polarization axis along z stretches the
cloud along this axis, yet maintains cylindrical symme-
try (a2). Tilting the ~B-field leads to a breaking of the
cylindrical symmetry, resulting in an ellipsoidal deforma-
tion of the cloud shape, as seen from the density projec-
tion onto the x-y plane (a3). Finally, under continuous
rotation of the magnetic-field, which we coin “magne-
tostirring”, the condensate is predicted to rotate (a4).
This unique approach to stir a dipolar condensate can
eventually lead to the nucleation of vortices41,53, realiz-
ing genuinely interaction-driven vorticity through many-
body phenomena.

We explore this protocol using a dipolar BEC of 162Dy
atoms. We create the BEC similarly to our previous
work45 with the distinction that here the magnetic field
unit vector, B̂, is kept tilted at an angle of θ = 35°
with respect to the z-axis both during evaporative cooling
and magnetostirring (see Fig. 1a3 and Methods). After
preparation, the sample contains about 2×104 condensed
atoms confined within a cylindrically symmetric optical
dipole trap (ODT) with typical radial and axial trap fre-
quencies (ω⊥, ωz) = 2π× [50.8(2), 140(1)] Hz. Here, prior
to stirring, the magnetostriction is expected from simula-
tions to increase the cloud aspect ratio in the horizontal
plane from 1 up to 1.03, whereas the trap anisotropy is
negligible. We use a vertical (z) absorption imaging to
probe the radial (x,y) atomic distribution after a short
time-of-flight (TOF) expansion of 3 ms. The atom num-
ber is instead measured using horizontal absorption imag-
ing with a TOF of 26 ms.

Similarly to a rotation of a bucket containing super-
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FIG. 1. Magnetostirring of a Dy dipolar BEC and
evolution of the cloud aspect ratio. a, Illustration of a
non-dipolar (a1) and dipolar BEC with B 6= 0 (a2-a4) in a
cylindrically symmetric, oblate trap. The magnetic-field angle
with respect to the z axis varies from θ = 0° (a2) to θ = 35◦

(a3) and rotating at θ = 35◦ around z (a4). b, Representa-
tive axial absorption images showing the dipolar BEC while
spinning up the magnetic field for tΩ̇ = [140, 430, 627, 692] ms
(b1) and subsequent constant rotation at Ω = 2π × 36 Hz
for tΩ = [0, 6, 11, 17] ms (b2). c, Cloud aspect ratio AR for
different final rotation frequencies. Ω is linearly increased to
its final value at a speed of Ω̇ = 2π × 50 Hz/s. To mitigate
influences of trap anisotropies on the AR, a full period at the
final rotation frequency is probed. The error bars are smaller
than the symbol size. The solid (dashed) black line shows the
corresponding eGPE simulations with a 2 s (1 s) ramp and
as = 110 a0, (ω⊥, ωz) = 2π × [50, 130] Hz, and N = 15000.

fluid helium or of a smoothly deformed ODT for non-
dipolar BECs, magnetostirring is predicted to transfer
angular momentum into a dipolar BEC41,53. In response
to such an imposed rotation, the shape of an irrota-
tional cloud is expected to elongate with an amplitude
that increases with the rotation frequency Ω. This phe-
nomenon is clearly visible in our experiments, as shown
in Fig. 1b. Here, we first revolve the tilted B̂ around
the z-axis with a linearly increasing rotation frequency
(Ω̇ = 2π × 50 Hz/s) and observe that the dipolar BEC
starts to rotate at the same angular speed as the field
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FIG. 2. Observation of vortices in a dipolar BEC. Each column shows the simulated (upper) and experimental (lower)
images for various rotation times tΩ. For the experiment, the atoms are imaged along the z direction. In each experimental
run, we rotate the magnetic field counter-clockwise at Ω = 0.74ω⊥ for different rotation times tΩ. The magnetic field value
is kept to |~B| = 5.333(5) G. The initial condensed atom number is N = 15000. The decreasing size of the cloud suggests
a decrease in atom number. However, for states with vortices or spiral shapes, appearing at large tΩ, our bimodal fit to
extract the atom number breaks down. For the corresponding simulations, the parameters are as = 112 a0, trap frequencies
(ω⊥, ωz) = 2π × [50, 150] Hz, N = 8000, and Ω = 0.75ω⊥.

and deforms with increasing elongation (b1). We then
stop the adiabatic ramp at a given value of Ω and probe
the system under continuous rotation. We now find that
the cloud continues rotating in the radial plane with an
almost constant shape (b2). Note that |~B| is held con-
stant at 5.333(5) G, where we estimate a contact scatter-
ing length of about as = 111 a0 (Methods).

We further explore the response of our dipolar BEC
to magnetostirring by repeating the measurements in
Fig. 1b1, but stopping the ramp at different final values of
Ω. The maximum value used for Ω approaches ω⊥, corre-
sponding to a ramp duration of 1 s. We quantify the cloud
elongation in terms of the aspect ratio AR= σmax/σmin,
where the cloud widths σmax and σmin are extracted by
fitting a rotated two-dimensional Gaussian function to
the density profiles. Figure 1c summarizes our results.
We observe that initially the AR slightly deviates from
one due to magnetostriction. It then slowly grows with
increasing Ω, until a rapid increase at around 0.6ω⊥ oc-
curs, as this allows the angular momentum to increase,
which decreases the energy in the rotating frame54. Sud-
denly, at Ωc ≈ 0.74ω⊥, the AR abruptly collapses back
to AR ≈ 1, showing how the superfluid irrotational na-
ture competes with the imposed rotation.

To substantiate our observation, we perform numeri-
cal simulations of the zero-temperature extended Gross-
Pitaevskii equation (eGPE)55–58 (see Methods). Quan-
tum and thermal fluctuations are added to the initial
states, which are important to seed the dynamic insta-
bilities once they emerge at large enough Ω; see later
discussion. The lines in Fig. 1c show our results. The
dashed line is obtained through the same procedure as
the experiment, whereas for the solid line we halve the
ramp rate, spending more time at each frequency. Both
ramp procedures show quantitatively the same behaviour
up to Ω = 0.8ω⊥, and are in excellent agreement with

the experimental results. The stability of the 1s ramp
exceeds the experimentally observed critical frequency.
We partly attribute this discrepancy to asymmetries of
the rotation in the experiment that are not present in
the simulations, which may lead to an effective speedup
of the dynamical instabilities. However, in all cases, the
AR rapidly decreases to about one.

The growing AR and subsequent collapse to one is a
signature of the dynamical instability of surface modes,
known for being an important mechanism for seeding vor-
tices and allowing them to penetrate into the high-density
regions of rotated BECs54,59,60, as also predicted for our
dipolar system41. To search for quantum vortices in our
system, we perform a new investigation where we directly
set Ω close to Ωc. We then hold the magnetic-field rota-
tion fixed at this constant frequency for a time tΩ. As
shown in Fig. 2 (lower row), the cloud rapidly elongates,
and the density starts to exhibit a spiral pattern, emanat-
ing from the tips of the ellipsoid. As early as tΩ = 314 ms
clear holes are observed in the density profile, forming in
the density halo around the center, the first clear indica-
tion of vortices in a dipolar gas. These vortices, initially
nucleated at the edge of the sample, persist as we con-
tinue to stir, and eventually migrate towards the central
(high-density) region. Owing to their topological protec-
tion, vortices are still visible in the experiment after one
second of magnetostirring, although our atom number
decreases throughout this procedure. Our observations
bear a remarkable resemblance to the simulations; Fig. 2
(upper row) showing the in situ column densities. Taking
a fixed atom number of N = 8000, but otherwise repeat-
ing the experimental sequence, we observe many similar
features. First, the spiral density pattern appears be-
fore the instability, forming two arms that are filled with
vortices close to the central density. Next, turbulent dy-
namics ensue as the density surface goes unstable and
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vortices emerge in the central high density region. This
turbulence, however, inhibits the creation of a vortex lat-
tice on these timescales.

The observed evolution of the system under constant
rotation shows some concurrence between the appear-
ance of vortices in the absorption images and the forma-
tion of a round density pattern in the radial plane with
AR ≈ 1 (Fig. 2). To study this dynamical evolution in
more detail, we adopt an analysis protocol for both the
experiment and theory that allows us to quantitatively
track the evolution of the average number of vortices,
N v (Methods). The result is shown in Fig. 3a. In brief,
for each single image (a1) we create a blurred reference
image by applying a 2D Gaussian filter61,62. We then
calculate the difference between each single image (a1)
and the corresponding reference (a2) to obtain the resid-
ual image (a3), from which we count N v by finding local
minima below a certain threshold.

For the experimental density profiles, which are af-
fected by both the limited resolution of the imaging sys-
tem and the weak contrast in the low-density zones (halo)
where the vortices initially nest, we expect N v to be un-
derestimated relative to the number expected by theory.
However, in order to carry out a quantitative comparison
with the simulations, we apply a blurring filter and add
noise to the latter that mimics the actual resolution in
the experiment (Methods).

Figure 3b shows both the evolution of N v and cloud
AR as a function of rotation time, tΩ. Solid lines are
the results from the eGPE simulations without any ad-
justable parameters. For tΩ < 200 ms, N v is below 1,
where vortices, if present, are at the edge of the cloud.
For longer times, N v increases and saturates to an aver-
age value of about three and a maximum of six vortices
(see Fig. 3a for an example of five vortices). The observed
saturation might be due to the decreased visibility and to
the atom-loss-induced shrinking of the BEC size, which
is not accounted for in the theory. We also compare the
course of the average vortex number with the AR of the
cloud. After initial large oscillations, due to the sudden
jump in rotation frequency, the AR declines towards ≈
160. This happens as the vortex number simultaneously
increases.

One fascinating prediction with dipolar vortices under
the influence of a rotating magnetic field relates to the
structure of the resulting vortex lattice. Due to magne-
tostriction and the anisotropic vortex cores, the result-
ing vortex configuration is also anisotropic, producing a
stripe phase in the strongly dipolar regime31,32, instead
of the usual triangular lattice in non-dipolar BECs6. The
ground state stripe lattice solution for our parameters is
shown in Fig. 4a, with a cloud AR = 1.08. In the vor-
tex stripe phase, vertical planes of high density regions,
parallel to the magnetic field, alternate with low density
ones, that host rows of vertical vortex filaments. Such
a configuration promotes head-to-tail dipolar attraction
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FIG. 3. Time evolution of the average vortex number,
N v, and cloud aspect ratio AR. a1, Sample image after
rotating for tΩ = 474 ms. a2, Blurred reference image (σ =
2.1µm). a3, Residuals with markers (black circles) indicating
the identified vortices. b, The detected vortex number N v

(top panel) and the AR of the cloud (bottom panel) after
the rotation time tΩ. Data points and error bars show the
mean and standard error from about 10 experimental runs.
Solid lines indicate the averaged results from 10 corresponding
simulations with different initial noise for parameters as =
110 a0, (ω⊥, ωz) = 2π × [50, 130] Hz, N = 10000 and Ω =
0.75ω⊥, the shaded area gives its standard error.

within the high density ridges, and this acts to lower the
energy. It should be noted that these states are distinct
from the oscillating vortex sheets states, which appear
after squeezing a triangular vortex lattice63.

To explore this prediction, we perform two new sur-
veys. First, we slightly reduce the magnetic field value,
reducing the scattering length to as ≈ 109 a0 and hence
making the system relatively more dipolar, while still
avoiding the droplet regime. We magnetostir the BEC
at a constant rotation frequency Ω = 0.75ω⊥ for 500 ms,
but during TOF we stop the magnetic-field rotation and
keep it in place at θ = 35◦. The stripe structure is re-
vealed in Fig. 4b1 for a single experimental run, and is
clearly visible in the residual image, Fig. 4b2, where the
vortices align along three stripes. The spatial structure of
the residual image can be assessed through the absolute
value of two-dimensional Fourier transform (FT). After
taking the FT of each residual image, we then average the
result, see Fig. 4b3, finding a clear peak at the k of the
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FIG. 4. Stripe nature of dipolar vortices. a1, Ground state stripe lattice solution for our experimental parameters
as = 109 a0, trap frequencies (ω⊥, ωz) = 2π× [50, 130] Hz, N=10000 and Ω = 0.75ω⊥. a2, Corresponding residual image, found
by subtracting the ground state from the blurred image, with circles showing the detected vortices. a3, Fourier transform of
the residual image. b1, Single experimental image after 500 ms of continuous rotation at Ω = 0.75ω⊥. b2, The corresponding
residual image. b3, Fourier transform of the residual images, averaged over 49 runs, with example shots shown to the right.
c1, Simulation result for the dynamic experimental procedure in b. c2-c3, Residuals and FT analysis (115 temporal images)
as in b2-b3. d1-d3, Same as b1-b3 for 121 runs, but we rotate for an additional 100 ms and then spiral the magnetic field to
θ = 0◦ over a further 100 ms before imaging. e1-e3, Simulation result for procedure in d. All simulation images are rotated to
have the same magnetic field direction as the experiment.

inter-stripe spacing. This shows that the stripe spatial
structure survives the averaging, implying that the ma-
jority of images show stripes with the same spacing, and
they also have the same orientation as set by the mag-
netic field, as evidenced by the example images shown in
the right of Fig. 4. Note that these observations do not
rely on our ability to resolve individual vortices, as the
stripes are an ensemble effect of many aligned vortices. In
fact, by comparing with the numerical simulations of the
dynamical procedure (Fig. 4c1-c3), we expect there are
more vortices than detected here that fill in the stripes,
forging out this structure. In general, our simulations
show that the stripes appear faster when the scattering
length is lower, and when the atom number is larger. In
the long time limit of the scenario presented in Fig. 2, we
expect the stationary solution to also be the stripe state,
but this is not observable on our timescales.

Remarkably, the stripe structure washes out when
we subsequently tilt the magnetic-field orientation to
θ = 0◦ (parallel to the trap symmetry axis), as shown in

Fig. 4d1. Here, after 600 ms of magnetostirring, we add
another step in which we spiral up the magnetic field to
θ = 0◦ (with Ω fixed) over 100 ms, before imaging. Under
these conditions, all vortex properties are again isotropic
within the plane. The final non-equilibrium positioning
of the vortices is arbitrary, and if we average the FT of
the residuals directly, we observe a homogeneous ring in
the average FT (Fig. 4d3). Also, this behavior is con-
firmed by the simulations, as shown in Fig. 4e1-e3.

By exploiting magnetostirring — a novel, robust,
method of generating angular momentum — we have
observed quantized vortices in a dipolar quantum gas,
and the appearance of the vortex stripe configura-
tion. Future works will focus on investigations of the
individual vortex shape and behaviour, such as the
anisotropic nature of the vortex cores for in-plane
magnetic fields32–35, the interplay between the vortex
and roton excitations32–36, exotic vortex patterns such
as square lattices31, and investigations into anisotropic
turbulence64. This work also opens the door to studying
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more complex matter under rotation, such as dipolar
droplets65–67 and supersolid states42–45. Such pro-
posals will be challenging due to the intricate density
patterns68, however such observations would provide
conclusive evidence of superfluidity in supersolids.
Rotating the magnetic field at frequencies far larger
than the radial trap frequencies, but smaller than the
Larmor frequency, has been observed to tune the sign
and magnitude of the dipole-dipole interaction69,70–a
method also employed in Nuclear Magnetic Resonance
spectroscopy71–but there remain open questions on
the stability of this procedure72,73, which if rectifiable
would unlock new research directions69. Other vortex
generation methods, such as thermally activated pairs
in quasi-2D to assess the Berezinskii-Kosterlitz-Thouless
transition, and stochastically generated vortex tangles
through temperature quenches to assess the Kibble-
Zurek mechanism, remain unexplored in dipolar gases31.
The technique introduced here is also applicable to a
wide range of systems governed by long-range interac-
tions through the manipulation of magnetic or electric
fields.
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13. Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and
J. Dalibard, Berezinskii–Kosterlitz–Thouless crossover in
a trapped atomic gas, Nature (London) 441, 1118 (2006).

14. T. W. Neely, A. S. Bradley, E. C. Samson, S. J. Rooney,
E. M. Wright, K. J. H. Law, R. Carretero-González, P. G.
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and F. Ferlaino, Observation of roton mode population in
a dipolar quantum gas, Nat. Phys. 14, 442 (2018).

25. J.-N. Schmidt, J. Hertkorn, M. Guo, F. Böttcher,
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S. Graham, P. Uerlings, T. Langen, M. Zwierlein, and
T. Pfau, Pattern formation in quantum ferrofluids: From
supersolids to superglasses, Phys. Rev. Res. 3, 033125
(2021).

69. Y. Tang, W. Kao, K.-Y. Li, and B. L. Lev, Tuning
the Dipole-Dipole Interaction in a Quantum Gas with a
Rotating Magnetic Field, Phys. Rev. Lett. 120, 230401
(2018).

70. S. Giovanazzi, A. Görlitz, and T. Pfau, Tuning the Dipo-
lar Interaction in Quantum Gases, Phys. Rev. Lett. 89,
130401 (2002).

71. M. Maricq and J. S. Waugh, NMR in rotating solids, The
Journal of Chemical Physics 70, 3300 (1979).

72. S. B. Prasad, T. Bland, B. C. Mulkerin, N. G. Parker,
and A. Martin, Instability of rotationally tuned dipolar
bose-einstein condensates, Phys. Rev. Lett. 122, 050401
(2019).

73. D. Baillie and P. B. Blakie, Rotational tuning of the

dipole-dipole interaction in a Bose gas of magnetic atoms,
Phys. Rev. A 101, 043606 (2020).

74. Y. Tang, A. Sykes, N. Q. Burdick, J. L. Bohn, and
B. L. Lev, s-wave scattering lengths of the strongly dipo-
lar bosons 162Dy and 164Dy, Phys. Rev. A 92, 022703
(2015).

75. Y. Tang, A. G. Sykes, N. Q. Burdick, J. M. DiSciacca,
D. S. Petrov, and B. L. Lev, Anisotropic Expansion of a
Thermal Dipolar Bose Gas, Phys. Rev. Lett. 117, 155301
(2016).

76. E. Lucioni, L. Tanzi, A. Fregosi, J. Catani, S. Gozzini,
M. Inguscio, A. Fioretti, C. Gabbanini, and G. Modugno,
Dysprosium dipolar Bose-Einstein condensate with broad
Feshbach resonances, Phys. Rev. A 97, 060701 (2018).
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Methods

Experimental Procedure

We prepare an ultracold gas of 162Dy atoms in an op-
tical dipole trap (ODT). Three 1064 nm laser beams,
overlapping at their foci, form the ODT. The experimen-
tal procedure to Bose-Einstein condensation is similar to
the one followed in our previous work45, but the mag-
netic field unit vector, B̂, is tilted by an angle of θ = 35°
with respect to the z-axis during the whole sequence. Af-
ter preparation, the sample contains about 2 × 104 con-
densed atoms. The corresponding trap frequencies are
typically (ω⊥, ωz) = 2π× [50.8(2), 140(1)] Hz. For all our
measurements, the deviation of the trap aspect ratio in
the xy-plane ARtrap = ωy/ωx from 1 is always smaller

than 0.6%. We evaporate the atoms at |~B| = 5.423(5) G
and jump to the final magnetic-field value during the last
evaporation ramp. After the preparation of the BEC,
the magnetic field is rotated as described in the next
section. We use standard absorption imaging to record
the atomic distribution. We probe the vortices using the
vertical imaging taken along the axis of rotation (z), for
which the dark spots within the condensate correspond
to the cores of individual vortices. The vertical images
are taken with a short TOF of 3 ms and a pulse duration
of 3-4µs. For the data in Fig. 1-3, we let the magnetic
field spinning during TOF, whereas for Fig. 4 we use a
static field orientation.

Control of the magnetic field

Calibration: Three pairs of coils – each oriented along
a primary axis in the laboratory frame – enable the cre-
ation of a homogeneous field with arbitrary orientations.
The absolute magnetic field value |~B| of each pair of coils
is independently calibrated using radio frequency (RF)
spectroscopy. The RF drives transitions to excited Zee-
man states, leading to a resonant dip in the atom number.
The long-term stability – measured via the peak position
of the RF resonance over the course of several days – is
on the order of ∆B = ±1 mG, while shot-to-shot fluctu-
ations – measured via the width of the RF resonance for
a single calibration set – is ∆B = ±5 mG.
Rotation: We drive the rotation of the magnetic field by
sinusoidally modulating the magnetic-field value compo-
nents Bx and By with a phase difference of 90◦ between
them. Since we want to keep the absolute magnetic field
value |~B| constant during rotation, we measure it for var-
ious values of the azimuthal angle φ and fixed θ = 35◦

by performing Feshbach loss spectroscopy around 5.1 G.
We find an average shift of |~B| of about 10 mG from the
θ = 0◦ case, which we take into account. We also find
small deviations as a function of φ of ∆|~B| < 20 mG,

which might appear due to slightly non-orthogonal align-
ment of the magnetic fields. We did not correct these
deviations for the sake of simplicity.

Scattering length

The scattering length in 162Dy is currently not known
with large accuracy74–77. To estimate the scattering
length in the small magnetic-field range around B =
5.3 G, relevant to this work, we use the well-known re-
lation as = abg

∏
i[1 − ∆Bi/(B − B0,i)]

78, where B0,i

and ∆Bi are the center position and the width of the
Feshbach loss features reported in Ref. 77, respectively.

The value of the background scattering length, abg, is
empirically fixed by measuring the magnetic field value
at which the supersolid transition occurs and comparing
it with the corresponding critical as predicted from sim-
ulations. Such an approach leads to as = 111(9) a0 at
B = 5.333 G. Extended Data Fig. 1 shows the result-
ing scattering lengths for the relevant magnetic fields.
Although such an approach gives very good agreement
between theory and experiments, future works on a pre-
cise determination of as, similar to the one achieved with
erbium79, would be desirable.

Magnetostirring

Tilting the magnetic field vector ~B away from the sym-
metry axis of our cylindrical trap leads to an ellipsoidal
deformation of the cloud47 and therefore to a breaking of
the cylindrical symmetry. This allows for the transfer of
angular momentum to the sample by rotating the mag-
netic field (magnetostirring). In all our measurements

we use a ~B tilted with respect to the z-axis by 35° and
a constant value |~B|. That value is |~B| = 5.333(5) G for

the surveys in Figs. 1-3 and |~B| = 5.323(5) G for Fig. 4.
For these parameters, the magnetostricted aspect ratio
of the cloud is AR = 1.03. For all our measurements,
the measured trap ARtrap < 1.006 is much smaller than
the deformation due to magnetostriction. Additionally,
we have confirmed with simulations that even with trap
asymmetries of up to 10%, e.g. (ωx, ωy) = (55, 50)Hz, this
procedure can still generate vortices in a lattice configu-
ration.
Adiabatic frequency ramp: We employ different magnetic-
field rotation sequences for the different data sets. For
the data set of Fig. 1c, the rotation frequency of the mag-
netic field is linearly increased to different final values
at a speed of Ω̇ = 2π × 50 Hz/s and for a duration of
tΩ̇ = 0-1 s. The ramp time is much longer than the pe-
riod of the rotation Ω−1 for higher rotation frequencies
Ω >∼ Ωc, and therefore the ramp is adiabatic for the
regimes considered, until the onset of dynamical insta-
bilities. After the ramp, the magnetic field direction is
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rotated at the target rotation frequency Ω for one final
period (as shown in Fig. 1b2). We sample 10 different
final magnetic field angles during this last rotation, mea-
suring the corresponding aspect ratio and averaging the
result in order to remove any potential biases due to la-
tent trap anisotropies. Each data point is then obtained
with 8-10 experimental runs.
Constant rotation frequency: For the dataset of Fig. 2,
Fig. 3 and Fig. 4b we directly start to rotate at the fi-
nal rotation frequency Ω without any acceleration phase.
The magnetic field is then rotated for a variable time tΩ,
after which the atoms are released from the trap and a
vertical image is taken.
Spiral up magnetic field: For the dataset of Fig. 4d we em-
ploy a similar sequence as described above. However, af-
ter constantly rotating the magnetic field at Ω = 0.75ω⊥,
the magnetic field is spiraled up in 100 ms to θ = 0° by lin-
early reducing θ while continuing rotating. Afterwards,
the atoms are released from the trap and a vertical image
is taken.

Theoretical model

We employ an extended Gross-Pitaevskii formalism
to model our experimental setup. In this scheme, the
inter-particle interactions are described by the two-body
pseudo-potential,

U(r) =
4πh̄2as

m
δ(r) +

3h̄2add

m

1− 3 (ê(t) · r)
2

r3
, (1)

with the first term describing short-range interactions
governed by the s-wave scattering length as, with
Planck’s constant h̄ and particle mass m. The sec-
ond term represents the anisotropic and long-ranged
dipole-dipole interactions, characterized by dipole length
add = µ0µ

2
mm/12πh̄2, with magnetic moment µm and

vacuum permeability µ0. We always consider 162Dy, such
that add = 129.2 a0, where a0 is the Bohr radius. The
dipoles are polarized uniformly along a time-dependent
axis, given by

ê(t) = (sin θ(t) cosφ(t), sin θ(t) sinφ(t), cos θ(t)) (2)

with time dependent polarization angle θ(t) and φ(t) =∫ t
0

dt′Ω(t′), for rotation frequency protocol Ω(t).

Beyond-mean-field effects are treated through the in-
clusion of a Lee–Huang–Yang correction term80

γQF =
128h̄2

3m

√
πa5

s Re {Q 5(εdd)} , (3)

with Q 5(εdd) =
∫ 1

0
du (1 − εdd + 3u2εdd)5/2 being the

auxiliary function, and the relative dipole strength is
given by εdd = add/as. Finally, the full extended Gross-

Pitaevskii equation (eGPE) then reads55–58

ih̄
∂Ψ(x, t)

∂t
=

[
− h̄2∇2

2m
+

1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

+

∫
d3x′ U(x− x′)|Ψ(x′, t)|2 + γQF|Ψ(x, t)|3

]
Ψ(x, t) ,

(4)

where ωx,y,z are the harmonic trap frequencies. The
wavefunction Ψ is normalized to the total atom num-
ber N =

∫
d3x|Ψ|2. The stationary solution for Fig. 4a

from the main text is found through the imaginary time
procedure in the rotating frame, introducing the usual
angular momentum operator ΩL̂z into Eq. (4). The ini-
tial state Ψ(x, 0) of the real-time simulations is always
obtained by adding non-interacting noise to the ground
state Ψ0(x). Given the single-particle eigenstates φn
and the complex Gaussian random variables αn sam-
pled with 〈|αn|2〉 = (eεn/kBT − 1)−1 + 1

2 for a temper-
ature T = 20 nK, the initial state can be described as
Ψ(x, 0) = Ψ0(x) +

∑′
n αnφn(x), where the sum is re-

stricted only to the modes with εn ≤ 2kBT
81. Through-

out, the density images are presented in situ, with a scal-
ing factor to account for the 3ms TOF for the experi-
mental images.

In order to obtain the average residual Fourier Trans-
form images for Figs. 4c3 and e3, we first Fourier Trans-
form 115 frames from the simulation between 700ms and
1.1s in the rotating frame before averaging the result.

Atom number

Extended Data Fig. 2 shows the condensed atom num-
ber Nc for the measurement with an adiabatic ramp of
the magnetic-field rotational velocity (Ω̇ = 2π×50 Hz/s),
corresponding to the data of Fig.1c of the main text. To
extract the atom number, we use the horizontal imag-
ing with 26 ms of TOF. About 3 ms before flashing the
imaging resonant light to the atoms, we rotate the mag-
netic field in the imaging plane and perform standard
absorption imaging. From the absorption images, we
extract Nc from a bimodal fit up to 700 ms. At later
times, the system undergoes a dynamic instability (see
discussion in the main text) and the density profile de-
viates from a simple bimodal distribution. During the
observation time, we see a slight decrease of Nc and for
our theory simulations we use a constant atom number
of Nc = 15000. Note that in all following datasets, in
which we abruptly accelerate the magnetic-field rotation
to the desired final velocity, we observe a faster decay and
our simulations are performed with either Nc = 8000 or
Nc = 10000.
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Vortex detection

Vortex detection algorithm: Since vortices appear as
dark holes in the density profile of a BEC, which would
otherwise have a smooth profile, our approach to extract
the number of vortices is to look at deviations between
the image and an unmodulated reference image. To ex-
tract the vortex number from the raw images, we proceed
as follows:

First, we prepare the image nimg, the reference image
nref and the residual image nres. The image is normalized
such that the maximum density max(nimg) = 1. We cre-
ate the reference image by blurring the image via apply-
ing a 2D Gaussian filter with σ = 5 pixel, corresponding
to about 2.1µm. This blurring smoothens any structure
on the lengthscale of the filter width, therefore any holes
in the density profile wash out. We then normalize the
atom number of the reference to be the same as from the
image Nref =

∫ ∫
nref

.
= Nimg =

∫ ∫
nimg. The residual

image is calculated as the difference between the image
and the reference nres = nimg − nref. We additionally
mask the region where the density of the reference is be-
low a certain threshold (nres = 0 where nref ≤ 0.1).

Second, we identify local minima in the residual im-
age and determine if they are connected to vortices. For
this, we create a list of local minima (xmin, ymin), defined
by the condition that the pixel density nres(xmin, ymin)
is lower than of all surrounding pixels. Then we remove
minima with density values above zero nres(xmin, ymin) ≥
0 or which are within one pixel distance of the mask bor-
der. Now we determine a local contrast for each minimum
by calculating the difference between its central density
value and the mean of the density values ±2 pixel val-
ues away from it ncon(xmin, ymin) = nres(xmin, ymin) −
mean(nres(xmin± 2 px, ymin± 2 px)), and remove minima
above a certain threshold ncon > −0.11. As a last step
we check the distance d between all remaining minima to
avoid double counting of minima too close to each other.
In case d is below the threshold d < 5 px the minimum
with the higher residual density value nres is discarded.

Preparation of theory density profiles: For the direct
comparison of the vortex number shown in Fig. 3b, we ap-
ply additional steps to the density profiles obtained from
theory. First, we reduce the resolution by a 2×2 binning
to make the pixel size of the theory density profiles ntheo

img

essentially the same as for the experimental images (sizes
are within 5%). After normalizing to max(ntheo

img ) = 1 we
apply Gaussian white noise with zero mean and a vari-
ance of 0.01 to each pixel, recreating the noise pattern
from empty regions of experimental images. Then we
blur the image using a 2D Gaussian filter with σ = 1 pixel
(∼ 0.42µm), this recreates the same resolution condition
as our experimental setup. The resulting density pro-
file is taken as the input image for the vortex detection
algorithm described above.

Benchmarking the vortex detection algorithm: As the
vortex positions for the simulation images are known a
priori due to the available phase map, we can derive the
fidelity of the vortex detection algorithm for simulation
data. For the theory data shown in Fig. 3b in the time
frame between 600 and 700 ms, the average detected vor-
tex number in the simulated density profiles (applying
the preparation scheme described above) is about 9, while
the real number of vortices present in the same area of the
image is about 33 in average. This mismatch is explained
by the conservative choice of the thresholds for vortex
detection together with the added noise, which results
in only counting clear density dips as vortices, throwing
out many vortices in the low density region. This conser-
vative choice of thresholds on the other hand leads to a
very high fidelity of > 97%, where we define the fidelity
as the percentage of detected vortices which correspond
to actual present vortices in the data. For raw simula-
tion data (without resolution reduction, added noise and
blurring) the vortex detection algorithm would detect up
to 80% of the vortices present with a fidelity of > 95%.

Note that for the visualization of the vortex posi-
tions for Fig. 4 we slightly increased the local threshold
ncon > −0.08 and decreased the minimum distance be-
tween vortices d < 3 px, which increases the overall num-
ber of vortices detected. For the density distributions
obtained from theory, we additionally omit the resolu-
tion reduction, addition of noise and blurring steps.
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Extended data figures
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Extended Data Fig. 1. Calculated B-to-as conversion for
162Dy. Scattering length as a function of the magnetic-field
value with the background scattering length abg = 129(9) a0.
We find as = 111(9) a0 at B = 5.333 G.
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Extended Data Fig. 2. Condensed atom number Nc dur-
ing magnetostirring (Fig. 1c). Condensed atom number
as a function of spin-up time tΩ̇ for the same sequence as in
Fig. 1c. The condensed atom number is extracted by fitting a
two-dimensional bimodal distribution of Thomas-Fermi and
Gaussian function to the horizontal density distributions.
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3.2 Outlook

I am an old man now, and when I die and go to Heaven there are two matters

on which I hope for enlightenment. One is quantum electrodynamics, and the

other is the turbulent motion of fluids. And about the former I am really rather

optimisitic.

Sir Horace Lamb
Conversation with Sydney Goldstein (1932) taken from [245]

We were able to create vortices in a dipolar condensate for the first time. We saw the effects of the dipolar

interaction on the geometry of the vortex lattice, which formed stripes in the direction of the magnetic

field. And to create the vortices we developed the new technique – magnetostirring – to rotate the gas,

exploiting the magnetostriction effect due to the dipolar interactions. Not only did we observe interesting

new physics, but this work also laid the foundation for creating vortices in a supersolid, which will be the

subject of the next part.

As the last part of my Ph.D. focused on angular oscillations and the rotation of the supersolid, I did not

have time to study the dipolar BEC further. However, there are still many interesting topics and directions

in rotating dipolar Bose-Einstein condensates that can hopefully be explored in this or other experiments

in the future.

One topic is the change in the core structure of the vortices. Similarly to the lattice structure, the core

geometry is also predicted to be influenced by the anisotropy of the DDI and to elongate along the

magnetic field and to form density ripples orthogonal to the magnetic field associated with the roton

minimum [246, 247, 248, 209]. The exact structure of the vortex core could not be extracted from our

data because the resolution of our imaging system was insufficient, and other effects, such as vortex

bending, are thought to make this effect difficult to observe. As with theoretical predictions, which are

generally performed in a quasi-2D environment, it would also be helpful experimentally to work in such

an environment, as effects such as vortex bending are reduced.

Another milestone will be the creation of larger vortex lattices in dipolar BECs. The early rotated non-

dipolar BEC experiments showed that it is possible to create and observe vortex lattices with more than

100 vortices [40]. In our experiment, we would need to increase the number of condensed atoms by at

least one order of magnitude. With the larger lattices it will be possible to study the structure of the

lattice in equilibrium and to measure and create different lattice structures by changing the direction and

strength of the dipolar interactions [238, 239, 98]. It would also be interesting to observe the influence of

dipolar interactions on Tkachenko oscillations [237, 249, 250].

An important topic is the dissipation of superfluid systems with vortices. The friction between the superfluid

and the normal part can be mediated by vortices, due to the scattering of thermal quasi-particles off the

vortex core [183, 251, 252]. Additional dissipation mechanisms are the spontaneous excitation of Kelvin

modes [233, 199]. All of these effects should be interaction dependent. Improving the number of vortices

and the lifetime of the condensate should allow us to study the influence of dipolar interactions. Further

experimental studies of the rotation for different tilts θ of the magnetic field are also interesting. In the
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paper by Bland et al. [232] this has been theoretically studied. Tilting the magnetic field angle further

than the magic angle θ > θc drastically changes the behaviour under fast rotations. The cloud elongates

to a large extent, but does not collapse at Ω ≈ 0.75ω⊥. It seems that there is no dynamical instability

anymore to seed the vortices. We assume that due to the reduction of the effective radial trap frequency

ωeff
⊥ , the cloud geometry moves towards the quasi-2D regime and the DDIs are mainly attractive, leading

to the transition from a BEC to a macrodroplet and therefore a different behaviour. It would be interesting

to study the behaviour for different trap parameters and as. It would also be interesting to see whether it

is experimentally feasible to nucleate vortices before transition to the droplet state.

Finally, it would also be interesting to study phenomena such as quantum turbulence [253, 202] and the

BKT transition in a 2D system [254, 255]. As can be seen, we have taken the first steps to open up a large

field of study that will further our understanding of quantum hydrodynamics in the future.
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Chapter4
Rotational dynamics in Supersolids

The behavior of large and complex aggregates of elementary particles, it turns

out, is not to be understood in terms of a simple extrapolation of the properties

of a few particles. Instead, at each level of complexity entirely new properties

appear, and the understanding of the new behaviors requires research which I

think is as fundamental in its nature as any other.

P.W. Anderson
More is different (1972) [256]

More than 50 years ago Gross [257], Andreev and Lifshitz [79], Chester [80] and Leggett [81] discussed the

question "Can a solid be superfluid". This question was posed in the context of solid Helium-4 and Leggett

concluded that if it could be cooled down to low enough temperatures, then it should be possible to

measure very weak superfluid flow properties from this solid. However, experimental proof of supersolid

Helium-4 remains elusive [258].

The experimental realisation of the supersolid state in ultracold dipolar gases [120, 121, 122] has opened

another door to answer this question experimentally. Due to the anisotropic, long-range dipolar interac-

tions the density profile of the ground state is modulated (the solid characteristic) and the whole state is

still globally coherent (the BEC/superfluid characteristic). However, we discussed already in 1.3.5, that

global coherence is not sufficient to claim, that the state is superfluid. This has already motivated the

search for a direct probe of superfluidity in supersolids [129, 131].

To this end, we look into the rotational dynamics of the condensed cloud. First we try to measure the

non-classical moment of inertia (NCMI) as suggested by Leggett [81] by exciting the scissor mode. This

work is described in Sec. 4.2 and in the publication 3 "Can angular oscillations probe superfluidity in

dipolar supersolids?" [259].

As we already know from Chapter 2, quantized vortices are the hallmark of superfluid flow. Using the

proven method of magnetostirring to impart angular momentum to the cloud, we want to show quantized

vortices in supersolids and thus prove the superfluid properties. This is described in Sec. 4.3 and in the

publication 4 "Observation of vortices in a dipolar supersolid" [260].

In order to carry out these studies, we first have to create two-dimensional arrays of supersolids and

prove that these systems are still globally coherent. This is described in Sec. 4.1 and in the publication 2

"Two-dimensional supersolidity in a dipolar quantum gas" [261].
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Figure 4.1: Experimental in-situ and TOF images of linear, zigzag and hexagonal supersolid states Top row: In-situ

(tTOF = 0.2ms) images of modulated states in different trap geometries resulting in a (a) linear, (b) zigzag and (c)

hexagonal state. Middle row: Corresponding time-of-flight images (tTOF = 36ms) averaged over 27-68 runs of a

supersolid. Below: Normalised fourier transforms (FT) of the individual TOF images integrated along y between

the dashed lines. The red and green line represent AM and Aφ respectively. In the supersolid state the ’droplets’

are coherent with each other and therefore AM and Aφ are very similar. Bottom row: Corresponding time-of-flight

images (tTOF = 36ms) averaged over 46-89 runs of independent droplets. Below: The FT of the integrated density

and AM and Aφ are shown. In the ID state the droplets have an independent phase and therefore AM and Aφ
diverge strongly.

4.1 From 1D- to 2D-supersolids

We have already discussed in Sec. 3.1 that it is necessary for the nucleation of vortices to create the

condensate in an almost axial-symmetric trap. We will also see in Sec. 4.2, that the roundness of the

state plays a crucial role in quantifying the superfluid properties of the supersolid with the scissor mode

measurements and that these axial-symmetric states exhibit a rich excitation spectrum.

From their first experimental observations [120, 122, 121] until the work described in this thesis, supersolids

of dipolar gases have been produced exclusively in cigar-shaped traps, resulting in a one-dimensional
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density modulation1 consisting of typically 2-6 droplets (see Fig. 4.1 a). In our recent experiments, we

have been able to significantly increase the lifetime of supersolids with 164Dy from a few hundred mil-

liseconds to about a second [123] and were curious to see if we could advance supersolids beyond the

one-dimensional array. We are particularly inspired by experiments with ions, which also assemble into

arrays due to their strong repulsive Coulomb interactions. By loosening one of the tight trap directions,

the ion systems undergo a structural transition from a single line, to a zigzag structure, to multiple lines

of ions [262, 263, 264, 265]. Would we see a similar transition, if we go from a cigar shape towards a

pancake-shape, where the magnetic field is along the tightest axis of the trap?

We find theoretical validation for a structural change of the supersolid that is reminiscent of ion exper-

iments by performing eGPE simulations [266, 267]. The simulations show that the supersolid can also

change from a linear chain to a zigzag to a multiple line structure. The difference between the ion systems

and our supersolid is that the different droplets are composed of many atoms, which allows the droplet

size to change, leading to interesting dynamics such as Goldstone modes [129]. Two-dimensional arrays

promise even more complex dynamics as the degrees of freedom increase [118, 268, 126].

We can define the trap frequencies as ωtrap = (ω⊥,ω⊥/αt ,ωz ), where αt ≤ 1 is the trap aspect ratio

and the dipole direction is along the z-axis. To create a two-dimensional supersolid, there are a few more

key factors important than just the trap aspect ratio:

• The final state depends on the 2D density [266]: For a fixed trap frequency ωz along the magnetic

field and a fixed dipole strength εdd, the resulting state can be assumed to remain in the supersolid

state as long as the 2D density ρ =
Nω2

⊥
4π2αt

is constant. This means, that we have to compensate for

an increase of αt by increasing the total atom number of the system in order to obtain a supersolid

in a pancake-shaped ODT. This can also be understood intuitively: There is a minimum atom number

Nc needed for a self-bound droplet state [91]. If the density drops too low, this minimum number

is not reached and no stable modulation is possible, leading to a transition back to the BEC state.

Optimizing the atom number in the experiment to get to up to N = 6.5(5) × 104 has been a major

challenge.

• Direct evaporation into a 2D supersolid reduces phase fluctuations compared to an interaction

quench from a BEC into the 2D supersolid [269]: A common technique to create supersolids is to

condense the atoms into the BEC state and then perform an interaction quench into the supersolid

regime. For the 1D supersolid this transition has only a weak first order character or may even be

continuous, because the density pattern from the roton instability has a very similar wavenumber

krot as the final density distribution of the supersolid [270, 271]. The situation changes for a two-

dimensional supersolid. The modulation is seeded in the central high-density region and propagates

outwards until the equilibrium state is reached. The final state has a significantly different k , krot.

This leads to phase fluctuations and global phase coherence is established only at about t = 150ms

after the quench [269], which is a significant part of the lifetime of the state. Additionally, crystal

1In this and the following chapters the terms "one-dimensional" and "two-dimensional" refer exclusively to the density

structure (or crystal structure). The gas still has all three-dimensional degrees of freedom and is not in a quasi one- or

two-dimensional confinement where the condition ℏω ≫ kkBT is satisfied.
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excitations are seen for up to t = 300ms. Here, further additional experimental effort could

help to narrow down the dissipation parameter γ used in the theory and to better understand the

mechanism in order to develop an analytical theory for the dissipation after the quench to the

dipolar supersolids.

Instead, we evaporate directly into the supersolid state, where the global coherence is already

established at about t = 50ms [269]. We therefore prepare the thermal gas at εdd > εdd,c and

keep the magnetic field constant during evaporation. This method has already been shown to work

well for the one-dimensional supersolid [123].

4.1.1 Probing the supersolid state

We measure the density modulation and the global phase coherence of the state separately:

Density modulation: To distinguish a supersolid or isolated droplet state from a Bose-Einstein condensate,

we look at the in-situ density distribution of the state. While the BEC shows an unmodulated state defined

by the Thomas-Fermi profile and a thermal background, the SS/ID state should show a modulated density

profile on top of a superfluid background and a thermal part. Since the peak density of SS/ID systems is

about one order of magnitude larger than that of the BEC state, we image it using phase contrast imaging,

which allows us to see the high density region well, while the thermal and superfluid background are not

visible beyond the background noise as can be seen in Fig. 4.1 a-c. The width of the density modulation is

approximately d = 5 µm which is well resolved by our objective discussed in Sec. 2.2.4.

To quantitatively characterize the modulated state we measure the number of droplets and the structure

and geometry of the state. The number of droplets and the structure can be determined by using a peak

finding algorithm and excluding all peaks below a certain threshold (40% of the highest peak value) to

ignore peaks from the background fluctuations. We determine the aspect ratio of the state αa = σl /σs
by performing a 2D Gaussian fit to the state.

In the publication P2 we show that the structural transition from the linear array to a zigzag state appears

as a discontinuity in αa , where the critical trap aspect ratio is given by α∗
t ≈ 0.34 for our experimental

parameters.

Global phase coherence: Once we know, that the state is modulated, we need to measure the global

phase coherence to distinguish between the coherent SS state and the incoherent ID state. To obtain the

relative phases between the droplets, we exploit the fact that this modulated state expands similarly

to separated independent BECs: Expanding a SS/ID state during TOF leads to matter-wave interference

between the different "droplets" and the resulting pattern gives us information about the relative phases

(matter-wave interferometry [272]). This can be seen in Fig. 4.1 d-h. If the phase is globally coherent, the

interference pattern should be repeatable for each shot (Fig. 4.1 d-f). On the other hand, if we are in the

isolated droplet regime, each individual droplet acquires a unique phase independent of the rest of the

state, leading to a varying interference pattern(Fig. 4.1 g-h).

The interference pattern also depends on the density distribution of the state. In anisotropic traps αt , 1,

the ground state crystal structure is generally non-degenerate and hence repeatable from shot to shot.

However, it should be noted that in isotropic traps or near structural transitions the density distribution

may fluctuate, making the determination of the phase coherence difficult.
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We can quantify the density modulation and phase coherence by performing a fourier transform (FT) on

the individual TOF images. This gives us a phasor P̃i(x ′) = F
{
n i,TOF (x )

}
from which we can calculate

the incoherent ÃM(x ′) and the coherent means ÃΦ (x ′)

ÃM(x ′) =
〈��P̃i (x ′)��〉i ÃΦ (x ′) =

��〈P̃i (x ′)〉i �� (4.1)

For the incoherent mean ÃM(x ′) we remove the phase information of the modulation before averaging,

giving us a peak at x ′
mod

. The coherent mean gives a peak at x ′
mod

, where the height of the peak gives

us information about the repeatability of the interference pattern. In the case of the supersolid, both

values should have a peak at finite x ′ while for isolated droplets the peak of the coherent mean should

be strongly suppressed.

As shown in Fig. 4.1 d-h, we use this method to show the global coherence for the modulated state. To do

this, we take a slice of the density profile after a TOF of tTOF = 36ms and integrate the density profile to

obtain a 1D dataset. There is a clear difference between the supersolid (Fig. 4.1 d-f) and isolated droplet

cases (Fig. 4.1 g-h). Hence, we have shown that it is possible to create 2D supersolids with dipolar gases

and opened the doors to study the superfluidity of the supersolid.
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Supersolidity — a quantum-mechanical phenomenon characterized by the presence of both su-

perfluidity and crystalline order — was initially envisioned in the context of bulk solid helium, as

a possible answer to the question of whether a solid could have superfluid properties [1–5]. While

supersolidity has not been observed in solid helium (despite much effort)[6], ultracold atomic gases

have provided a fundamentally new approach, recently enabling the observation and study of super-

solids with dipolar atoms [7–16]. However, unlike the proposed phenomena in helium, these gaseous

systems have so far only shown supersolidity along a single direction. By crossing a structural phase

transition similar to those occurring in ionic chains [17–20], quantum wires [21, 22], and theoreti-

cally in chains of individual dipolar particles [23, 24], we demonstrate the extension of supersolid

properties into two dimensions, providing an important step closer to the bulk situation envisioned

in helium. This opens the possibility of studying rich excitation properties [25–28], including vortex

formation [29–31], as well as ground-state phases with varied geometrical structure [7, 32] in a highly

flexible and controllable system.

Ultracold atoms have recently offered a fundamentally
new direction for the creation of supersolids — rather
than looking for superfluid properties in a solid system
like 4He, ultracold atoms allow one to induce a crys-
talline structure in a gaseous superfluid, a system which
provides far greater opportunity for control and obser-
vation. This new perspective has enabled supersolid
properties to be observed in systems with spin-orbit cou-
pling [33] or long-range cavity-mediated interactions [34],
though in these cases the crystalline structure is exter-
nally imposed, yielding an incompressible state. In con-
trast, dipolar quantum gases of highly magnetic atoms
can spontaneously form crystalline structure due to in-
trinsic interactions [11–13], allowing for a supersolid with
both crystalline and superfluid excitations [14–16]. In
these demonstrations, supersolid properties have only
been observed along a single dimension, as a linear chain
of phase-coherent “droplets”, i.e. regions of high density
connected by low-density bridges of condensed atoms,
confined within an elongated optical trap.

The extension of supersolidity into two dimensions is a
key step towards creating an ultracold gas supersolid that
is closer to the states envisioned in solid helium. Com-
pared to previous studies of incoherent two-dimensional
dipolar droplet crystals [8, 35], we work with both a sub-

stantially higher atom numberN and relatively strong re-
pulsive contact interactions between atoms. This leads to
the formation of large numbers of loosely bound droplets,
enabling us to establish phase coherence in two dimen-
sions. In our system, the repulsive dipolar interactions
between droplets facilitate a structural transition from
a linear to a two-dimensional array, analogous to the
Coulomb-interaction-mediated structural phase transi-
tions observed with ions [17–20]. Unlike ions however,
our droplets are compressible and result from the spon-
taneous formation of a density wave, allowing for dynam-
ical variation in both droplet number and size. Further,
the exchange of particles between droplets enables the
spontaneous synchronization of the internal phase of each
droplet across the system, and the associated superfluid
excitations [14–16].

Dipolar quantum gases exhibit a rich set of ground-
and excited-state phenomena due to the competition
between many energetic contributions. These include
mean-field interactions of both contact and dipolar na-
ture, quantum fluctuations, and external confinement,
parameterized by potentially anisotropic trapping fre-
quencies fx,y,z. Such systems can be described with
great accuracy by using an extended Gross–Pitaevskii
equation (eGPE) [36–39]. Even a fine variation of the
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FIG. 1. Calculated phases of dipolar droplet array. a.

In-trap ground-state density profiles calculated using eGPE

for atom numbers N ∈ [3.3, 4.4, 5.8] × 104 in the droplets

and trap aspect ratios αt = fx/fy ∈ [0.33, 0.35, 0.39] (left

to right). The scattering length a = 88 a0, where a0 is the

Bohr radius. Green dots depict the droplet positions obtained

from the variational model, assuming the same N and droplet

number ND as the eGPE. Stars connect to experimentally

observed density profiles in Fig. 2b. b. Phase diagram, ob-

tained from our variational model, as a function of N and αt

for fx = 33 Hz, fz = 167 Hz. Linear (two-dimensional) phases

with ND droplets are labelled as 1DND (2DND ).

strength of these energetic contributions can lead to dra-
matic qualitative changes in the state of the system, for
example enabling a transition from a uniform conden-
sate to a supersolid, or in our present case, from a linear
supersolid to a two-dimensional one.

Fig. 1a shows ground-state density profiles calculated
across this transition using the eGPE at zero temper-
ature. These profiles feature arrays of high-density

droplets, immersed in a low-density coherent “halo” that
establishes phase-coherence across the system. As the
trap becomes more round, the initially linear chain of
droplets acquires greater transverse structure, eventually
forming a zig-zag state consisting of two offset linear ar-
rays.

Although the eGPE has remarkable predictive power,
full simulations in three dimensions are numerically
intensive, making a global survey of the array properties
as a function of our experimental parameters difficult.
To overcome this limitation, we employ a variational
ansatz that captures the key behavior of the system, and
allows us to disentangle the competing energetic contri-
butions. In this approach, we describe an array of ND
droplets by the wavefunction ψ(r) =

∑ND
j=1 ψj(r), where

the j–th droplet is assumed to be of the form: ψj(r) ∝
√
Nj exp

(
− 1

2

(
|ρ−ρj |
σρ,j

)rρ,j)
exp

(
− 1

2

(
|z−zj |
σz,j

)rz,j)
, in-

terpolating between a Gaussian and a flat-top profile
characteristic of quantum droplets [40]. For a given total
number of atoms N and droplet number ND, energy
minimization provides the atom number Nj in each
droplet, as well as their widths σρ(z),j , exponents rρ(z),j ,
and positions ρj = (xj , yj). Repeating this energy
minimization as a function of ND gives the optimal
number of droplets. This model provides a good quali-
tative description of the overall phase diagram (Fig. 1b),
revealing that the interplay between intra-droplet
physics and inter-droplet interaction results in a rich
landscape of structural transitions as a function of the
atom number and the trap aspect ratio αt = fx/fy.

Several trends are immediately visible from the phase
diagram. Larger N and higher αt generally produce
states with larger numbers of droplets. Further, as with
ions, a large number of droplets favors a 2D configuration,
while tighter transverse confinement (small αt) favors 1D
[17–20]. A transition from 1D to 2D is thus expected
when moving towards larger N or to higher αt. In stark
contrast to the case of ions, the number of droplets typi-
cally increases across the 1D to 2D transition, implying a
first-order nature, while only narrow regions in the phase
diagram may allow for a 1D-to-2D transition at constant
droplet number.

The variational results are in excellent agreement with
our eGPE numerics, in terms of predicting the qualitative
structure of droplet array patterns, as shown in Fig. 1a.
Slight discrepancies exist between the two theories re-
garding the predicted droplet positions and the location
of the 1D-to-2D transition. This is likely because of the
presence of the halo in the eGPE simulation (and pre-
sumably in the experiment), visible in Fig. 1a, which is
not accounted for in the variational model. This halo ap-
pears to accumulate at the ends of the trap, pushing the
droplets toward the trap center and likely increasing the
effective trap aspect ratio experienced by the droplets.

To explore the 1D to 2D transition experimentally, we
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FIG. 2. Linear to zig-zag transition in an anisotropic trap. a. We confine and condense dipolar 164Dy atoms within

an anisotropic optical dipole trap (ODT) formed by the intersection of two laser beams. By tuning the aspect ratio of the

trap in the x-y plane (αt), perpendicular to an applied magnetic field B, we induce a transition between linear and zig-zag

configurations of droplets. b. Single-trial images of the in-trap density profile of atoms at different αt, showing structural

transition from linear to zig-zag states, as well as an increase in droplet number for higher αt. Stars indicate values αt and N

corresponding to the eGPE calculations of Fig. 1a. c. Atomic aspect ratio αa versus trap aspect ratio αt. αa is the ratio of

minor to major axes of a two-dimensional Gaussian fit to the imaged in-trap density profile (inset). For the supersolid droplet

array (black markers) we see an abrupt change in αa at the critical trap aspect ratio α∗t , extracted from the fit (gray line, see

methods). The shape of the transition agrees well with eGPE prediction (green diamonds, see methods). For an unmodulated

condensate (white markers), no abrupt change is evident. d. Distribution of droplet number versus αt, showing a distinct

increase in droplet number at the transition of linear to zig-zag configurations.

use a condensate of highly magnetic 164Dy atoms con-
fined within an anisotropic optical dipole trap with in-
dependently tunable trap frequencies fx,y,z. The trap,
shown in Fig. 2a, is shaped like a surf-board with the
tight axis along gravity and along a uniform magnetic
field that orients the atomic dipoles and allows tuning
of the contact interaction strength. Typically, we per-
form evaporation directly into our state of interest at
our desired final interaction strength, as demonstrated
in Refs. [13, 41]. A combination of in-trap and time-of-
flight (TOF) imaging provides us with complementary
probes of the density profile of our atomic states, and
the phase coherence across the system.

We begin by studying the transition from one to two
dimensions by changing the strength of transverse con-
finement provided by the trap. Our optical setup allows
us to tune fy from roughly 75 to 120 Hz, while leaving
fx, fz nearly constant at 33(2), 167(1) Hz, and thus to
vary the trap aspect ratio αt in the plane perpendicu-
lar to the applied magnetic field and our imaging axis.

For small αt, the atoms are tightly squeezed transversely,
and form a linear-chain supersolid (as seen in in-trap im-
ages of Fig. 2b). As we increase αt above a critical value
α∗t = 0.34(2), we observe a structural phase transition
to a two-dimensional (2D) state with two side-by-side
droplets in the center of the chain. By further increasing
αt, the 2D structure extends to two offset lines of droplets
in a zig-zag configuration. The observed patterns match
well with the ground-state predictions from the eGPE
calculations when we globally fix the scattering length to
88a0.

We obtain higher atom numbers in the more oblate
traps (higher αt), giving N = 6.5(5) × 104 at αt = 0.44
and N = 2.5(4) × 104 at αt = 0.28. This further facil-
itates the crossing of the 1D to 2D transition, by favor-
ing states with larger numbers of droplets in the broader
traps. In the zig-zag regime, two-dimensional modula-
tion is clearly visible for durations beyond one second.
Further, the droplet configuration patterns are fairly re-
peatable, with clear structure visible in averaged images



4

a.

-40 -20 0 20 40
y position (µm)

-40

-20

0

20

40

x 
po

si
tio

n(
µm

)

b.

-40 -20 0 20 40
y position (µm)

-40

-20

0

20

40

x 
po

si
tio

n 
(µ

m
)

c.

-40 -20 0 20 40
y position (µm)

-40

-20

0

20

40

x 
po

si
tio

n 
(µ

m
)

FIG. 3. Coherence in linear and zig-zag states. Upper panels show averaged images of experimental TOF interference

patterns, along with projections along horizontal and vertical directions of average (solid black lines) and individual images

(gray lines). The vertical projection is calculated between the dashed lines. Lower panels show interference patterns calculated

for the pictured in-trap droplet configurations (green outlines). a. Linear chain of phase-coherent droplets, showing uniaxial

modulation persisting in averaged image (26 trials). b. Zig-zag configuration of phase-coherent droplets, showing modulation

along two directions that persists in averaged image (51 trials), and hexagonal structure. The spacing of rows in the simulation

was adjusted to approximate the observed aspect ratio of TOF image. The image outlined in blue shows the average momentum

distribution calculated from a series of 20 variational calculations converging to slightly different droplet configurations, showing

the tendency of such fluctuations to broaden features in the interference pattern while maintaining the underlying structure.

c. Zig-zag configuration of phase-incoherent droplets. Modulation remains in single images, as evidenced by the spread of gray

traces in projection, but washes out in average (43 trials).

as shown in the inset of Fig. 2c, which is an average of 23
trials taken over roughly two hours.

The transition from 1D to 2D is immediately visible
when plotting the atomic aspect ratio αa versus αt, as
shown in Fig. 2c. We find that αa undergoes a rapid
change at α∗t , as the single linear chain develops two-
dimensional structure. For comparison, we plot αa mea-
sured for an unmodulated BEC, formed at a different
magnetic field, which does not feature the sharp kink
present for the supersolid state.

In Fig. 2d, we show the number of droplets present for
different αt. In the 1D regime, we typically see between
five and six droplets. This number abruptly jumps up by
approximately one droplet for 2D states near the tran-
sition point, and then increases up to an average value
of eight droplets as αt is further increased. The change
in droplet number indicates that the transition that we
observe is not of simple structural nature, but is also

accompanied by a reconfiguration of atoms within the
droplets, as expected from theory (see Fig. 1).

The measurements of in-trap density presented above
inform us about the structural nature of the transition,
but not about phase coherence, which is the key distin-
guishing feature between an incoherent droplet crystal
and a supersolid. Previous observations of 2D droplet
arrays [35] were performed in traps where the ground
state is a single droplet [8], and the observed droplet
crystal was likely a metastable state lacking inter-droplet
phase coherence. In contrast, we expect from our theo-
retical calculations that the 2D array is the ground state
of our surfboard-shaped trap (for αt > α∗t ), facilitating
the formation of a phase-coherent, and therefore super-
solid state for our experimental parameters.

We experimentally demonstrate the supersolid nature
of our 2D modulated state using a matter-wave interfer-
ence measurement, as previously used in linear supersolid
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chains [11–13], (Fig. 3a). In this measurement, an array
of uniformly spaced droplets creates an interference pat-
tern with spatial period proportional to the inverse of the
in-trap droplet spacing. The relative internal phase of the
droplets determines both the contrast and spatial phase
of the interference pattern [42]. When averaging over
many interference patterns, obtained on separate runs
of the experiment, clear periodic modulation persists for
phase-coherent droplets, but averages out if the relative
droplet phases vary between experimental trials. Thus,
the presence of periodic modulation in an average TOF
image provides a clear signature of supersolidity in our
system, as it indicates both periodic density modulation
and phase coherence.

Figure 3a shows an example of such an averaged inter-
ference pattern for a linear chain. Uniaxial modulation
is clearly present along the direction of the chain, indi-
cating a high degree of phase coherence. For comparison,
we also show the expected interference pattern calculated
for a linear array of four droplets from free-expansion cal-
culations, showing similar structure.

For conditions where in-trap imaging shows a 2D zig-
zag structure, the averaged interference pattern exhibits
clear hexagonal symmetry (Fig. 3b). This is consistent
with our expectation, and is indicative of the triangular
structure of the underlying state. To confirm that the
observed modulation is not present without phase coher-
ence, we repeat the measurement of Fig. 3b at a mag-
netic field corresponding to independent droplets, and
also compute averaged interference pattern for a zig-zag
state with the phases of the individual droplets random-
ized between simulated trials (Fig. 3c). In both cases, the
averaged image does not show clear periodic modulation.

By exploiting the transition between linear and zig-
zag states, we have accessed a regime where the super-
solid properties of periodic density modulation and phase
coherence exist along two separate dimensions. Future
work will focus on further understanding the spectrum
of collective excitations in the full two-dimensional sys-
tem [26–28, 43], where both the crystalline structure and
the exchange of particles between droplets will play an
important role. Further investigations may elucidate in
more detail the nature of the phase transitions and ex-
pected configurations in a wider range of trap aspect ra-
tios, as well as the role that defects play in the 2D system,
either as phase-slips in the zig-zag patterns [44, 45], or as
vortices trapped between droplets of the array [29–31].
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Methods

Experimental apparatus and protocols: Our ex-
perimental apparatus has been described in detail in
Ref. [46]. Here, we evaporatively prepare up to N =
6.5(5) × 104 condensed 164Dy atoms in a crossed opti-
cal dipole trap formed at the intersection of two beams
derived from the same 1064 nm laser, although detuned
in frequency to avoid interference. One beam (the static
ODT) has an approximately 60 µm waist. The second
(the scanning ODT) has an 18 µm waist, whose position
can be rapidly scanned horizontally at 250 kHz to cre-
ate a variably anisotropic time-averaged potential. By
tuning the power in each beam, and the scanning range
of the scanning ODT, we gain independent control of the
trap frequencies in all three directions. The two trapping
beams propagate in a plane perpendicular to gravity, and
cross at a 45° angle, which leads to the rotation of the
zig-zag state at high αt visible in Fig. 2b.

We apply a uniform magnetic field oriented along grav-
ity and perpendicular to the intersecting dipole traps,
with which we can tune the strength of contact interac-
tions between atoms. This allows us to create unmod-
ulated Bose-Einstein condensates, supersolid states, or
states consisting of independent droplets at fields of B =
23.2 G, 17.92 G, and 17.78 G, respectively.

Details of our imaging setup are provided in Ref. [41].
In-trap and TOF images are performed along the vertical
direction (along B and gravity), using standard phase-
contrast and absorption techniques, respectively. The
resolution of our in-trap images is approximately one mi-
cron. We use a 36 ms TOF duration for imaging interfer-
ence patterns.
Atom number: We extract the condensed atom number
N from absorption imaging performed along a horizontal
direction in a separate set of experimental trials under
otherwise identical experimental conditions. This allows
for a larger field of view, and better fitting of thermal
atoms. N is determined by subtracting the fitted thermal
component from the total absorption signal.

For comparison between experiment and theory, and
between the variational and eGPE theory methods, we
associate N with the number of atoms in the droplets,
and not in the diffuse halo that surrounds the droplets.
From simulation of TOF expansion, we find that the halo

is repelled at early expansion times, and is likely indis-
tinguishable from the thermal cloud in our TOF mea-
surements. While it is possible that some of the halo is
counted in N , we neglect this possibility and assume that
N includes only atoms within droplets.

Scattering length: The positions of phase boundaries
between different droplet configurations are quite sensi-
tive to the scattering length a, which is not known with
high precision in our range of magnetic fields. For all
theory, we use a value of a = 88 a0, where a0 is the Bohr
radius, as this value provides good agreement between
experiment and theory for the 1D-to-2D transition point.

Extracting critical aspect ratio: The critical aspect
ratio α∗t is extracted from fit to the function αa = α0 for
αt < α∗t , αa =

√
α2
0 + b(αt − α∗t )2 for αt > α∗t , where

α∗t , α0, and b are fit parameters. The error bars reported
in Fig. 2c represent the standard error on the mean, and
are smaller than the markers on most points.

Interference patterns: The predicted interference pat-
terns of Fig. 3 are calculated by assuming free expansion
of Gaussian droplets. In reality, the droplets are prob-
ably not Gaussian, and interactions during TOF expan-
sion may modify the interference pattern. However, the
droplet shape primarily effects the envelope of the inter-
ference pattern, which is not our primary interest here,
and from eGPE simulations, we expect the effects of in-
teractions to be minor, provided that the droplets be-
come unbound in a time short compared to the TOF,
which we verify by both looking at shorter TOFs and
comparing the fringe spacing observed in TOF with that
expected from the in-trap droplet spacing. The positions
and size of the droplets are tuned to provide illustrative
interference patterns.

Droplet number: We extract the droplet number from
our in-trap images using a peak-finding algorithm ap-
plied to smoothed images. The algorithm finds the local
maxima above a threshold, which is chosen to be 40%
of the overall peak value. Each in-trap density distribu-
tion is classified as linear array or 2D zig-zag based on
the atomic aspect ratio. Finally, the counts with a given
droplet number are normalized by the total number of
trials to get the probability shown in Fig. 2d. Fluctua-
tions in the number of atoms in a given trial can push
droplets above or below the threshold value, contributing
to the spread in extracted droplet number for a given αt.
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4.2 Can we measure the superfluid fraction with the scissors mode?

Leggett suggested in his paper "Can a solid be ’superfluid’?" [81], that the moment of inertia of the proposed

supersolid should be measured to show its superfluid character. He considered an annular container3 of

solid He-4. When a classical solid is rotated, the moment of inertia is easily calculated by Θrig = NmR2,

where N is the number of atoms inside the ring, m is the mass of a single atom and R is the radius of the

ring. However, if the solid also has superfluid characteristics, the moment of inertia reduces. He named

the new ’reduced’ value a non-classical moment of inertia (NCMI). In the case of a ring geometry, the

change in moment of inertia can quantify the superfluid fraction of the system according to [81]

ΘNCMI = (1 − fs )Θrig (4.2)

Leggett also showed, that the upper limit of the superfluid fraction is given by

fs ≤
[
1

2π

∫ 2π

0

dθ

ρ (θ) /ρ0

]−1
(4.3)

depending on the ratio of modulated ρ (θ) and the unmodulated ρ0 density distribution [81, 273]. This

limit connects smoothly between a classical solid fs = 0 and a homogeneous BEC fs = 1. It is reasonable

to assume that (4.3) is also applicable to supersolids in cigar- and pancake-shaped traps [131], so this

means that fs should be clearly distinguishable for the ID, SS and BEC state. And we can measure fs

by measuring the moment of inertia of our system. However, the situation turns out to be much more

complex since the change of geometry between BEC and 1D-SS also introduces a structural change in the

moment of inertia, giving rise to misleading observations [131, 274].

In general, one can measure the moment of inertia, by exciting the rotational modes and measuring

its frequencies. We assume, that the excitation of the system is done by a small perturbations, e.g.

perturbations of the external potential δVext. Different modes n are populated and the spectrum is

described by the dynamical structure factor [95]

S (Lz ,ω) =
∑
n

|⟨n |L̂z |0⟩|2δ (ℏω − ℏωn ) (4.4)

where |⟨n |L̂z |0⟩|2 is the coupling between the unperturbed state and a given mode n , where ωn is its

resonance frequency. Here we explicitly look for rotational modes coupled by L̂z as suggested by Leggett.

4.2.1 Relation between scissors mode and moment of inertia

The relation between the structure factor and the moment of inertia is given by [274]

Θ = 2

∫
dω

S (Lz ,ω)
ω

(4.5)

3with negligible width d
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Bose-Einstein condensate Supersolid
Irrotational �ow ?

Solid
Rigid-body �ow

?

Figure 4.2: How does a supersolid respond to rotation? The flow of superfluids, such as interacting Bose-Einstein

condensates, is irrotational. This leads to the scissor mode for small rotational perturbations. Solids, on the other

hand, move as rigid bodies. Understanding the flow of a supersolid can give insight into its superfluid nature.

following from the static linear response of the system to a perturbation of the form −ΩLz . Since we

cannot resolve the mode spectrum completely experimentally, we do not have full access to the structure

factor. However, using the sum-rule approach we find a relation between the moments of the response

and the minimum response frequency ωmin [95]

(ℏωmin)2 ≤ m1(Lz )
m−1(Lz )

(4.6)

wheremp are the energy weighted momentsmp (Lz ) =
∫
dωωpS (Lz ,ω). The relation (4.4) gives us an

upper bound on the frequency ωmin of the lowest state excited by the angular momentum operator L̂z .

From Eq. (4.5) we find a direct relation between the inverse energy weighted momentm−1(Lz ) and the

moment of inertia Θ [275]

2m−1(Lz ) = NΘ (4.7)

with N the condensed atom number.

On the other hand, the energy weighted momentm1 for a harmonically confined gas is described by [275]

2m1(Lz ) =
〈[
L̂z ,

[
Ĥ , L̂z

] ]〉
= Nℏ2m

(
ω2
y − ω2

x

) 〈
x 2 − y 2

〉
(4.8)

wherem is the mass of the atoms, ωx/y are the trap frequencies in the the long and the short directions

of the anisotropic trap respectively, and x and y are defined along the trap axes. In systems with dipolar

interactions, Eq. (4.8) is only valid if the component L̂z is along the direction of the dipole moment and

therefore
[∑

i j Vdd

(
ri − rj

)
, L̂z

]
commutes.
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Combining Eq. (4.6) with Eq. (4.8) and (4.7) leads finally to

ω2
min ≤

m
(
ω2
y − ω2

x

) 〈
x 2 − y 2

〉
Θ

(4.9)

Therefore measuring the lowest frequency mode excited by L̂z gives an upper bound on the moment of

inertia and hence a lower bound on the superfluid fraction. But what is the lowest frequency mode we

need to measure? Studies of non-dipolar BECs have shown that the mode corresponding to ωmin is the

scissors mode [276]. The scissors mode is a shape-conserving, collective oscillation of the atoms, after a

sudden rotation of the cloud. It is defined by a counterflow velocity field of v(x , y ) ∝ +x y . The systems

that we are studying are different from system envisioned by Leggett in that we are not studying perfectly

round annular, but depending on our trap geometries, the structure of the supersolid varies between

almost round and highly elongated. The geometry of the system plays a crucial role for the moment of

inertia of the system and can be described in a phenomenological way [275, 131]

Θ = (1 − fNCRI) Θrig + fNCRIβ
2Θrig (4.10)

with the geometric factor β =
⟨y 2−x2⟩
⟨y 2+x2⟩ , where the first term is given by (4.2) and the second term describes

the moment of inertia for superfluid systems in elliptic geometries.

Note, that even though one compares the moment of inertia of the SS and BEC state in the same trap

geometry α , the geometric factor β of the supersolid can be significantly larger than of the BEC. An

example is given in Fig. 4.3, where for a trap with α = 0.828(9) the BEC state was to be measured at

β = 0.806(4) and the SS was measured at β = 0.901(4). If one would assume that both states have

purely non-classical (irrotational) rotational inertia (NCRI) fNCRI = 1 and would insert the values of β into

Eq. (4.10), one would find a significant difference in the moment of inertia for the BEC (ΘBEC = 0.650(7)Θrig)

and SS (ΘSS = 0.821(7)Θrig) and could misinterpret the larger moment of inertia of the SS as a sign of a

lower superfluid fraction.

The importance of the geometry can also be seen by inserting (4.10) into (4.9) and realising that the scissor

mode frequency is bound between the case of purely classical (rigid) moment of inertia (fNCRI = 0) ωrig

and the case of NCRI (fNCRI = 1) ωirr

ωrig =
√
(ω2

y − ω2
x )β ωirr =

√
(ω2

y − ω2
x )/β (4.11)

The scissors mode frequencies is then ωrig < ωSS < ωirr and Eq. (4.11) shows that ωrig and ωirr are

indistinguishable for β = 1 and grow continously appart for β → 0. The scissor mode frequencies have

been measured for supersolids in elongated cigar-shaped traps, where β ≈ 1 [131]. In this case we see

from Eq. (4.11) that the region ωrig < ωSS < ωirr becomes vanishingly small and therefore difficult to

measure, as shown by the large error bars in [131]. Therefore, measuring the scissor mode frequencies in

two-dimensional supersolids with β ≪ 1 should provide a clearer distinction between a rigid and an

irrotational response.
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Figure 4.3: Comparison of β between modulated and BEC state for different trap aspect ratios α . In-situ

images of the modulated (a,b,c) and BEC (d,e,f) states for different trap geometries α =

����ω2
y −ω2

x

ω2
y+ω2

x

���� =

[0.944(2), 0.828(9), 0.391(8)]. The clouds are fitted with a 2D Gaussian fit and the contours of it are shown

at 34.1%. The resulting geometric factor β shows, that the modulated state is generally much more elongated than

the BEC state.

4.2.2 Complex rotational dynamics

In our experiment, we prepare BEC and modulated states in traps with variable geometry α . We apply

a kick to the condensed state by varying the power of the three ODT beams for 6 ms before returning

the power to the original value. Because the scanning ODT beam being crossed at an angle α = 45◦ we

get a perturbation of the external potential of δVext ∝ sin(α) cos(α)x y , 0, which naturally excites

the scissors mode [95]. However, it should be noted that with our excitation protocol, we cannot avoid

additional excitations such as compressible modes. The scissors mode frequency is measured by taking

in-situ images along the rotation axis, fitting a 2D-Gaussian to the cloud and extracting the angle θ from

the fit. These data points result in a damped oscillation and the frequency can be extracted by fitting a

simple damped oscillator model

θ (t ; εdd, β ) = θ0 sin(ωsci(εdd, β )t + φ0) exp{−λt } (4.12)

where θ0 and φ0 are the initial angular deflection and phase of the shape oscillation respectively, and

λ the damping factor. To change the between the modulated and the unmodulated state we tune the

interactions εdd by controlling the magnetic field. And we modify β by adjusting the trap frequencies,

changing the relative powers of the dipole trap beams. We measure the oscillation frequencies for the
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different states and varying geometries and compare them with the limiting cases (4.11) seen in Fig. 2 of

the paper.

Initially we were puzzled by the experimental results. While we measured the frequency of the scissors

mode in the BEC case to be in good agreement with the limiting case ωirr, we would have expected

to find the frequencies for the modulated state to be significantly lower, especially for nearly round

geometries. Instead we find that we measure very similar frequencies and the experimental results are

further strengthened by corresponding eGPE simulations. We would therefore have to conclude that the

moment of inertia is very similar for the modulated and the BEC cases.

The fallacy lies in assuming, that the scissor mode is the lowest energy mode. This is no longer generally

true for the modulated state. To show this, we apply the Fourier Transform Image Analysis (FTIA) protocol

– a model independent method for the analysis and visualization of the cloud dynamics – to both the

experiment as well as the eGPE simulations. The dynamics of the system is recorded by taking images at

fixed time steps ∆texp = 1ms (∆t theo = 3ms) and arrange them into a 3D data set, where the third axis is

time. For the experimental data we take several repetitions per time step and average the images nexp(t ) =∑
i=1 n

i
exp(t )/N t

img
, where N t

img
is the number of images for the time t = m∆texp. We are only interested

in looking at the density change, so we subtract the average over all time navg =
∑
t=m∆t n (t )/N t +1 from

each individual time step image nres(t ) = n (t ) − navg, where N t is the total number of time steps. We

then Fourier transform the 3D data along the time axis ñres(f ) =
∑Nt −1
j=0 nres(t ) exp{−i2πf j∆t }, which

gives us density profiles in the frequency space with a frequency step size of ∆f = 1/∆t . The resulting

residuals ñres(f ) give us a direct representation of the different modes and their oscillation frequencies.

In addition, we can extract the spectral power of the modes by simply integrating the absolute square

of each residual SP(f ) = ∑
i ,j |ñ

(i ,j )
res (f ) |2 at a given f , which represents the prominence of the specific

mode, similar to the dynamic structure factor.

Looking at Fig. 4 of the paper we can see the results of this analysis. For the BEC case we can see, that

the scissors mode is well visualised by the FTIA and that it is the dominant and lowest energy mode

excited. Already in the elongated case for the modulated state, we see from the simulations that the

mode becomes very complicated, since we can observe the dynamics of the individual droplets. However,

this detail is lost in the experimental analysis, since each sequence gives a slightly different ground state

and slightly different dynamics. We therefore concentrate on the results of the simulations. Here we see a

multimodal response due to the crystal dynamics. While the scissors mode remains the most prominent

mode, we find modes that are lower in energy than the scissors mode. It is particularly noteworthy,

that both the supersolid as well as the independent droplet system exhibit a rotational mode, which is

significantly lower than the lower bound given by ωrig. Since ωrig is only an upper bound anyway, this

does not contradict the generality of the sum-rule approach.

We see that the dynamics of the supersolid is much more complex due to the additional crystal dynamics.

One consequence is that the scissors mode is not a robust and easily applicable tool for obtaining

information about the moment of inertia of the system and thus a measure of the superfluid property of

the supersolid. Our work shows, that the difference in oscillation frequency shown in [131] is rather due to

the change in geometry between the BEC and the supersolid for the same trap parameters. To obtain

an accurate measure of the moment of inertia and therefore a quantitative measure of the superfluid
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character of the supersolid we need to be able to map out the mode spectrum more accurately. To

do this we would either need to improve the repeatability in creating the exact same state (or better

post-processing), look at the dynamics with non-destructive imaging (using for example phase contrast

imaging [277]), or develop a technique to excite different modes in an isolated way (using for example

SLMs [278, 279]). There is also progress in quantifying the superfluid fraction in 1D supersolids [132] and

simulations for Leggetts original idea of supersolids in an annular [280].

While this study did not provide the holy grail of experimental proof of the superfluid character of

the supersolid, it gives us access to study the multimodal response of the supersolid to rotational

perturbations. Further work in this direction may shed more light on the dynamic behaviour of modulated

quantum states [274]. To highlight the superfluid nature of the supersolid state unambiguously, we instead

study a different quanum phenomenon: quantised vortices.
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P3 Can angular oscillations probe superfluidity in dipolar supersolids?
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Angular oscillations can provide a useful probe of the superfluid properties of a system. Such
measurements have recently been applied to dipolar supersolids, which exhibit both density modulation
and phase coherence, and for which robust probes of superfluidity are particularly interesting. So far, these
investigations have been confined to linear droplet arrays, which feature relatively simple excitation
spectra, but limited sensitivity to the effects of superfluidity. Here, we explore angular oscillations in
systems with 2D structure which, in principle, have greater sensitivity to superfluidity. In both experiment
and simulation, we find that the interplay of superfluid and crystalline excitations leads to a frequency of
angular oscillations that remains nearly unchanged even when the superfluidity of the system is altered
dramatically. This indicates that angular oscillation measurements do not always provide a robust
experimental probe of superfluidity with typical experimental protocols.

DOI: 10.1103/PhysRevLett.129.040403

Some of the most distinctive manifestations of super-
fluidity in ultracold quantum gases relate to their behavior
under rotation. These include the presence of quantized
vortices [1–3] and persistent currents in ring traps [4], as
well as shape-preserving angular oscillations associated
with a “scissors” mode [5]. Measurements of the scissors
mode frequency have long been used to illuminate the
superfluid properties of a variety of systems [6–11]. With
the recent advent of dipolar supersolids [12–18]—states
that possess both the global phase coherence of a superfluid
and the spatial density modulation of a solid—the scissors
mode provides a tempting way to quantify changes in
superfluidity across the superfluid-supersolid transition
[19,20]. Angular oscillations have also been used to search
for superfluid properties in solid helium [21]. In this case,
however, a change in oscillation frequency initially attrib-
uted to superfluidity was eventually traced, instead, to other
reasons [22]. In this Letter, we study more deeply the
connection between angular oscillations and superfluidity
in dipolar supersolids to determine the extent to which such
experiments can inform our understanding of superfluidity
in these systems.
The goal of these angular oscillation measurements is to

infer the flow patterns allowed for a given fluid. A super-
fluid is constrained by the single-valued nature of its wave
function to irrotational flow (IF), while a nonsuperfluid
system faces no such constraint and, in certain situations,
may be expected to undergo rigid-body rotation (RBR).
Prototypical velocity fields for angular oscillations under
IF (v⃗ ∝ ∇xy) and RBR (v⃗ ∝ rθ̂) are depicted in Figs. 1(a)
and 1(b), respectively. The velocity field associated with

angular rotation is related to the moment of inertia of the
system and, thus, the frequency of angular oscillations.
The ability to distinguish between RBR and IF (and,

thus, in principle, between a classical and superfluid

θ

(a)

(d)

(b) (c)
x

y

FIG. 1. Characteristic velocity profiles for irrotational flow (a)
and rigid-body rotation (b). A wide atomic state (light turquoise
oval) samples a region of space where the two differ significantly,
while a highly elongated state (dark turquoise oval) samples a
region where the two patterns are nearly indistinguishable. (c) We
excite oscillations in the angle θ of our atomic gas by rapidly
rotating the anisotropic trap (dashed oval), then returning it to its
original orientation and observing the subsequent dynamics.
(d) Typical example of experimental angular oscillation for the
zigzag modulated state shown on the right (image averaged over
nine iterations). In this case, the errors from the fit to the state angle
are smaller than themarkers. The red line is a damped sinusoidal fit
used to extract the angular oscillation frequency fosc.
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system) depends critically on the geometry of the system,
and is sensitive only to the character of the flow pattern
where the atomic density is appreciable. As illustrated in
Figs. 1(a) and 1(b), highly elongated states sample only the
region along the weak axis of the trap (near x ¼ 0) where IF
and RBR are identical for small rotations (dark turquoise
regions), while rounder states (light turquoise regions)
sample regions of space where the flow patterns differ
significantly and, thus, are far more sensitive to the
irrotational constraint. Recent works have focused on
systems that form a short linear chain of about two
“droplets” [23] in the supersolid regime [19,20].
In this Letter, we study angular oscillations in systems

with linear and two-dimensional modulation to disentangle
the effect of three important contributions: (i) a narrowing
of the aspect ratio of the gas (geometrical change), (ii) a
reduction in the population of the low-density superfluid
“halo” that occupies the outer regions of the trap, and (iii) a
reduction in the density of the interdroplet connection that
enables the exchange of atoms between droplets, which is
key to the superfluid nature of supersolid systems. We find
that, in linear systems, contributions (i) and (ii) dominate
the change in oscillation frequency associated with the
onset of modulation, while (iii) has a negligible effect.
In dipolar condensates with two-dimensional structure,

which have been a focus of recent work [24–28], the effects
of geometry and superfluidity may be disentangled, and
one may expect to observe a direct link between a change of
the superfluid fraction and a modification of the angular
oscillation frequency. However, we find that the physics at
play is much more complex. Indeed, not only does the
oscillation frequency fail to approach its rigid-body value
for states with a vanishing superfluid connection, but it
remains very close to the value predicted for a superfluid
state. We extensively investigate the system behavior as a
function of geometry and interaction parameters, revealing
a unique multimode response of the dipolar supersolid.
Experimentally, we use a dipolar quantum gas of 164Dy

atoms (up to approximately 5 × 104 condensed atoms),
confined within an optical dipole trap (ODT) of tunable
geometry, formed at the intersection of three laser beams
[25,27,29]. The trap geometry and particle number at the
end of the evaporative cooling sequence determine the
character of the modulated ground state, which can form
linear, zigzag, or triangular lattice configurations [28]. By
varying the applied magnetic field in the vicinity of
Feshbach resonances near 18–23 G, we can access scatter-
ing lengths that correspond to either unmodulated BECs or
modulated states. In past works, we have demonstrated that
modulated states created at the corresponding field have
global phase coherence [25,27]. In this Letter, we expect
the same to be true, but refer to these experimental states
simply as modulated, as we do not repeat the characteri-
zation for every trap condition used. We excite angular
oscillations by using the well-established protocol of

applying a sudden small rotation of the trap, by varying
the relative powers in the ODT beams for 6 ms before
returning them to their original values [Fig. 1(c)]. Using our
high-resolution imaging [30], we observe the in-trap
density profile at a variable time from the excitation, and
extract the angle of the major and minor axes using a
two-dimensional Gaussian fit to the state [31].
A typical angular oscillation is shown in Fig. 1(d), for a

“zigzag”modulated state [25]. From such oscillation traces,
we extract the dominant oscillatory frequency fosc using a
fit to an exponentially damped sinusoid. Typically, the
statistical error on our measurements of fosc is on the sub-
Hertz level, better than our knowledge of the trap frequen-
cies, due to drifts between calibrations. We perform such
measurements for trap geometries ranging from an elon-
gated cigar shape to pancake shaped, and for different
scattering lengths, as summarized in Fig. 2(a).
Within a single-mode approximation, the angular oscil-

lation frequency fosc can be predicted using either a sum-
rule based approach [19,34], or considerations based on
hydrodynamic flow [5]. For RBR, the angular oscillation

frequency is given by frig ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf2y − f2xÞβ

q
, whereas for IF,

the predicted value is firr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf2y − f2xÞ=β

q
[19,20]. Here,

fx;y are the trap frequencies along directions x and y. β ¼
hx2 − y2i=hx2 þ y2i is a geometrical factor that quantifies
the degree of elongation of the atomic cloud (but carries no

(a)

(b)

FIG. 2. Normalized oscillation frequencies fosc from experi-
ment (a) and simulation (b). Blue points represent unmodulated
BECs, red points represent modulated states (expt.) and super-
solid states (sim.), and green points represent independent droplet
arrays. Solid lines are predictions for irrotational flow firr. Dashed
lines are predictions for rigid body rotation frig. The trap frequ-
encies used in the simulation, from left to right, are ðfx; fyÞ ¼
½ð43; 53Þ; ð40; 57Þ; ð37; 62Þ; ð32; 70Þ; ð26; 87Þ� Hz. fz ¼ 122 Hz
for all cases. A similar range is used in the experiment.
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information about the superfluid fraction). As shown in
Fig. 2, frig and frig are more distinct for smaller values of β.
Remarkably, independent of trap geometry or the presence
of modulation, we observe fosc close to the IF prediction
and far from the RBR prediction when the two predictions
differ appreciably.
To gain a deeper understanding of our observations, we

theoretically study the oscillation dynamics using a real-
time simulation of the extended Gross-Pitaevskii equation
(EGPE) [35–37]. To compare to the experimental obser-
vations of Fig. 2(a), first, we calculate the ground state for a
given trap, scattering length, and atom number. Then, we
apply a 0.5° rotation of the trap for 6 ms (we have
confirmed that the character and frequency of the response
do not change for much larger excitations), and then let the
state evolve for 50 ms. Then, we perform the same fitting
procedure as used in the experiment to extract fosc. For the
simulation, we calculate β directly for the ground state (we
confirm that the exact value of β agrees with that extracted
from a Gaussian fit at the 5% level). For simulations
performed on states ranging from the unmodulated BEC to
supersolid (SS) to independent droplet (ID) regimes, with
vanishing superfluid connection between droplets, we
again find that fosc is always very close to firr, in very
good agreement with the experimental data. For isolated
droplet states in particular, fosc can actually be even higher
than the expected value for irrotational flow, indicating that
the oscillation frequency is not necessarily in between
the irrotational and rigid body values.
To further illuminate the dependence fosc on super-

fluidity, we analyze the results of the simulation as a
function of the s-wave scattering length as (Fig. 3).
Scattering lengths of 85a0 yield arrays of (nearly) inde-
pendent droplets, while as ¼ 97a0 produces an unmodu-
lated BEC. In between, we find supersolid states, with low-
density connections between droplets. Inspired by the
formulation of Leggett [38], we quantify the degree of
interdroplet density connection as C ¼ ½R dx=ρðxÞ�−1,
where ρðxÞ is the projected atomic density, evaluated over
the interdroplet connection [Fig. 3(a)] [39].
As shown in Fig. 3, despite the rapid reduction of C with

as, the simulated fosc exhibits a rather constant behavior
with a value always close to the purely irrotational
predictions, firr, for both a linear (1D) and hexagon state
(2D). This observation indicates that (i) the degree of
interdroplet connection is not actually a major determinant
of the angular oscillation frequency and (ii) that the system
does not undergo RBR even for vanishingly small inter-
droplet density connection. The latter conclusion is par-
ticularly evident for hexagon states, where the rigid-body
prediction substantially departs from the irrotational one.
For the linear array, the elongated geometry means that the
frig and firr differ only slightly; see Supplemental Material
for further discussion [31].
At this point, we can clearly see the geometrical

limitations of the linear systems. In linear systems, the

narrowing of the atomic density distribution that occurs
with the onset of modulation causes the dominant con-
tribution to a modification in oscillation frequency as well
as a reduction in sensitivity of the oscillation frequency to
superfluidity. Simultaneously, the transfer of atoms from
the halo to the droplets leads to a reduction of the super-
fluidity of the composite halo-droplet system, which is
accompanied by a small change in the oscillation fre-
quency. However, because the motion induced by rotation
in a linear system is perpendicular to the interdroplet axis,
these effects should not be interpreted as a result of the
weakening superfluid connection along the interdroplet
axis. In contrast, systems with two-dimensional structure
maintain a relatively round aspect ratio in the modulated
regime, and the rotational motion does orient along certain
interdroplet axes.
To better understand the nonrigid nature of the angular

oscillations, we employ a method to extract the character of
the system’s response by analyzing our experimental and
EGPE simulation dynamics in the frequency domain with
respect to time, but in the position domain with respect to
the spatial coordinates. A similar technique has been
applied along one dimension to understand the mode
structure of an elongated condensate [40]. This technique,
which for convenience we refer to as “Fourier transform
image analysis” (FTIA) [31], allows us to extract a power
spectrum of density fluctuations driven by the angular
excitation, as well as the spatial form of the density
fluctuations at each frequency. For comparison, we also

ID SS BEC
(a)

(b)

FIG. 3. Impact of scattering length on simulated scissors mode
frequencies. (a) Interdroplet connection C (defined in text) versus
scattering length for different trap geometries. The calculated
ground state in each trap is shown on the right, with correspond-
ing border colors. (b) Scissors mode frequency versus scattering
length. Solid lines are predictions for irrotational flow firr.
Dashed lines are predictions for rigid body rotation frig. β ranges
from 0.93 to 0.99, and 0.27 to 0.31 in the linear and hexagonal
cases, respectively.
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calculate the spectral power of our rotational signal through
a Fourier transform. For computational robustness, we use
the fitted angle θ in the experimental case, and hxyi for the
simulations. To enhance our frequency resolution, we
analyze simulations with longer durations than are acces-
sible in the experiment (160 to 290 ms).
We apply the FTIA to both simulation and experimental

images in Fig. 4(a). For a BEC, the FTIA gives a dominant
peak in both simulation and experiment, whose frequency
and shape are consistent with a scissors mode oscillation at
the frequency observed from the angular response. For a
zigzag modulated state, we again predominantly observe a
single peak in the FTIA spectrum at the frequency of the
angular oscillation. In the simulation, we can see that the
mode corresponds to the motion of the different droplets in
a pattern reminiscent of IF in an unmodulated superfluid,
and clearly distinct from RBR. In the experiment, the
response of individual droplets is not visible due to shot-to-
shot fluctuations in the exact number and position of
the droplets, but the overall structure is similar to the
simulation.
For hexagonal supersolid [Fig. 4(b)] and isolated droplet

[Fig. 4(c)] states, the FTIA reveals a clear multifrequency
response. For the supersolid, we observe the excitation of
modes near 3 and 25 Hz that do not contribute strongly to
hxyi. The droplet motion associated with the 3 Hz mode is
approximately (but not exactly) shape preserving, and the
frequency is much lower than would be expected for a
single-mode RBR response. For the isolated droplet array,
we again observe a nearly shape-preserving low-frequency
response from FTIA, as well as a dominant angular
response that is split into two frequencies, both above
the scissors mode frequency firr expected for a super-
fluid with the same geometry. In the experiment, the

combination of nonangular excitations associated with
our method used to rotate the trap and relatively rapid
damping of the oscillation prevent us from observing
meaningful mode profiles for small β.
Importantly, the FTIA reveals that, even in cases where

we observe an apparently single-frequency response in
typical rotational observables like θ or hxyi [as in Figs. 4(a)
and 4(b)], the response of the system may, in fact, be
multimode in nature, breaking the single-mode approxi-
mation used to analytically extract firr and frig [19,34]. In
the case of a multifrequency response, firr and frig, instead,
provide an upper bound for the frequency of the lowest
energy excitation—an excitation that is difficult to see with
experimentally accessible observables. Features of these
subdominant modes, including the lack of a strong rota-
tional signal in the low-frequency oscillations and the
apparent similarity between the droplet motion (the motion
of the halo is quite different) near 25 Hz to that of the
dominant rotational mode, remain interesting topics for
future investigation.
As we have noted, not only does the dominant angular

response frequency fail to approach the rigid-body value in
the isolated droplet regime, but it also stays near to the
irrotational prediction. A possible intuitive explanation for
this observation is that the flow pattern of Fig. 1(a)
resembles that of a quadrupolar surface mode, and it is
well known that, for sufficiently strong interactions, the
frequency of such modes is predominantly determined by
the trap parameters, rather than the details of the inter-
particle interactions [34].
In conclusion, measurements of angular oscillation

frequencies offer a simple way to demonstrate superfluidity
in certain conditions. However, care must be taken when
making and interpreting such measurements—geometrical
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(a) (b) (c)

FIG. 4. Analysis of mode shapes and response due to angular excitation. Solid lines are the power spectrum obtained from the
rotational signal (θ in the experiment and hxyi in the simulation), and dashed lines are obtained from FTIA (see text, Supplemental
Material [31] for description). Inset panels show the mode shapes for selected modes. Red and blue indicate out-of-phase changes in
density, overlaid onto the average density profile in the panels corresponding to simulation (gray to white). Solid and dashed vertical red
lines represent firr and frig, respectively. (a) Responses in elongated traps from simulation (top) and experiment (bottom), for an
unmodulated BEC (left) and a zigzag droplet state (right). Trap frequencies are fx;y ¼ ½31ð1Þ; 73ð1Þ; 128ð1Þ� Hz, and fx;y;z ¼
½32; 70; 122� Hz for the experiment and theory, respectively. (b) Simulated response of supersolid hexagon state (as ¼ 92a0).
(c) Simulated response of droplet crystal hexagon state (as ¼ 85a0). Note that the ground state has a different orientation for the two
scattering lengths in this trap. Trap frequencies are fx;y;z ¼ ½43; 53; 122� Hz for (b) and (c).

PHYSICAL REVIEW LETTERS 129, 040403 (2022)

040403-4



changes can mask the effects of changing superfluidity, and
usual predictions to which one might compare rely on the
assumption of a single-frequency response of the lowest
energy rotational mode. While the moment of inertia of the
system is defined as the angular momentum of a system in
response to a shape-preserving, steady-state drive, oscil-
lation measurements involve a time-localized change in the
rotation rate of the trap, which may excite modes that do not
meet this criterion. In small, linear systems, the simple exci-
tation spectra means that approximately shape-preserving
oscillations can still be excited [31]. However, we find that
a supersolid with 2D structure, which one might expect to
be an ideal candidate for such measurements, can exhibit an
apparently single-frequency response associated with a
mode that is not the lowest in energy. Further, this exci-
tation frequency is typically very close to that of a purely
superfluid system, even for systems where the effects of
superfluidity are minimal. Therefore, such measurements
do not provide a robust indicator of superfluidity for
modulated systems. In the future, it may be possible to
extract information about superfluidity using a modified
excitation scheme to preferentially excite the lower energy
modes and a more comprehensive analysis scheme suitable
for multifrequency response [41]. However, such tech-
niques would require detailed knowledge of the exact
excitation applied and measurement of response ampli-
tudes, both of which are considerably more challenging
in an experiment than measuring the frequency of an
oscillation.
Finally, we note that, even in the case of single-frequency

response, where the frequency of angular oscillations has a
direct connection to the moment of inertia of the system,
making a clear connection between the moment of inertia
and quantities like a superfluid fraction can be problematic.
Past works have predicted that a system which is partially
superfluid should have a moment of inertia in between the
RBR and IF predictions, linearly interpolated according to
a superfluid fraction [20,38]. While this interpretation may
be valid for systems featuring a rigid crystalline structure
and a uniform distribution of crystalline and superfluid
components, as in [38], it is not necessarily valid for our
small dipolar supersolids, which, in addition to coupled
superfluid-crystalline excitations, feature a nonuniform
degree of modulation across the system.
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EXCITATION PROTOCOL

In both experiment and simulation, we excite the
atoms by suddenly rotating the trap, holding for 6 ms,
then returning it to its initial orientation. This was im-
portant in the experiment, as the trap frequencies gener-
ally change slightly as the trap is rotated, and we want to
observe the evolution of a state that is equilibrated to the
trap prior to the rotation. To explore whether the exact
excitation protocol influences our results, we performed
additional simulations where the trap angle was rotated
and held in the new orientation, but not rotated back.
We find that the same modes are excited in this case,
and the frequency of their responses are the same. For
some parameters the relative contributions of the modes
to the spectrum of 〈xy〉 can differ between the two proto-
cols, but for the parameters we explore the frequency of
the peak response remains unchanged. In particular, for
the droplet crystal hexagon shown in Fig. 4c of the main
text, the contribution of the low-frequency mode to the
〈xy〉 power spectrum becomes appreciable, though is still
smaller than the contribution of the modes near 60 Hz.
Thus, the multimode response appears to be a generic
feature of possible schemes to excite angular oscillations.
While the spectral content of the excitation may differ,
influencing the relative amplitudes of different modes, the
frequency and character of the modes is determined by
the system, not the drive.

We have also performed excitation in the simulation by
directly imprinting a small phase variation αxy onto the
ground-state wavefunction. This protocol produces qual-
itatively similar results to those described above. Again,
the same modes are excited and respond with the same
frequencies, though sometimes with different amplitudes.
The dominant mode excited is the same as the rotate-
and-return protocol for all cases investigated.

EXTRACTING ANGULAR POWER SPECTRUM

Several methods can be used to extract the angular
response of our system. For the experiment, we perform
a two-dimensional Gaussian fit to the in-trap image, and
record the angle of the major and minor axes as a func-
tion of time. For the simulation, we report the angu-

lar response obtained using one of two observables. For
direct comparison to the experiment, we use the state
angle extracted from a 2D Gaussian fit, as in the ex-
periment. For more detailed spectral analysis, we use
the quantity 〈xy〉, as this is expected to have a strong
response to a rapid rotation of the trap and we find it
to be numerically more robust. We have confirmed that
these and other similar observables, such as the direc-
tions of maximal and minimal variance, provide consis-
tent results (up to overall normalization). In some cases,
the Fourier spectrum of 〈L̂z〉 (though not experimentally
accessible) shows different relative response amplitudes
between modes compared to 〈xy〉, particularly for those
modes at low frequencies.

FOURIER TRANSFORM IMAGE ANALYSIS

Time Time

Subtract 
mean 
image

Frequency
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In-trap images

(averaged for each 

timestep)

FIG. S1. Procedure for Fourier transform image analysis
(FTIA). See text for description.

The goal of our Fourier transform image analysis
(FTIA) protocol is to visualize the density response of our
atomic system in real-space with respect to position, but
in frequency space with respect to time. This provides
a simple way to extract the spatial profile of excitation
modes. The process is illustrated in Fig. S1. To perform
the FTIA, we assemble images of projected density pro-
files corresponding to single time-steps (directly from the
simulation, or averaged over several in-trap images from
the experiment), then subtract the average (over all time-
steps) image from each. We then Fourier transform the
results along the time axis. The output is then a sequence
of real-space images, showing the fluctuation pattern at
a given frequency. Because each pixel is now represented



2

by a complex number (encoding the amplitude and phase
of the density variations at that location), we plot with
respect to the global phase for each frequency that shows
maximum variation, thus plotting the in-phase quadra-
ture of the oscillation.

In order to obtain a power spectrum (useful for locat-
ing the frequencies of excited modes), we compute the
sum of the absolute square of the fluctuations over a re-
gion of interest containing the atomic cloud for each fre-
quency. This power spectrum can be used to identify the
frequency and spatial character of modes, but is not ex-
pressed in physically meaningful units, and so should not
necessarily be used to compare the strength of different
mode responses.

We note that there are some similarities between the
FTIA method and principal component analysis (PCA)
[1, 2]. Both provide a model-free way of extracting the
form of excitations present in a system. PCA does so
by finding correlated patterns of fluctuations within a
set of images, with no prior information about the time-
sequence of the images. This makes it well-suited to
revealing modes that are excited incoherently, for ex-
ample by thermal or quantum noise. In contrast, our
FTIA method explicitly incorporates the time-domain
information associated with the images. This makes it
well-suited to extracting modes that are coherently ex-
cited (FTIA, as we apply it, would not work for inco-
herently excited modes). In practice, we find that the
FTIA is more robust than PCA at extracting fluctuation
patterns that each exhibit a single-frequency response.
While PCA often returns components whose weights vary
with multiple frequencies (indicating that they actually
correspond to a linear combination of eigenmodes), FTIA
by construction returns a fluctuation pattern associated
with a single frequency. We find that this feature makes
it more robust for identifying eigenmodes of a system
subject to a coherent drive.

SPECTRA/TABLE FOR ALL PARAMS

Excitation power spectra from simulation for a range of
traps and scattering lengths used in the main manuscript
can be found in Fig. S2.

PREDICTIONS FOR ROTATIONAL MODE
FREQUENCIES

The rotational response of a gas can be calculated us-
ing hydrodynamic equations [3] or a sum-rule approach
[4, 5]. From the sum-rule approach, an expression can
be derived for the rotational oscillation frequency, under
the assumption that the response is single-frequency:

ω2 =
m〈y2 − x2〉(ω2

x − ω2
y)

Θ
(1)

Here, Θ is the moment of inertia associated with steady-
state rotation.

The numerator of Eq. 1 can be interpreted as a ro-
tational spring constant: kτ = −τ/θ, where τ is the
torque exerted on a state whose major and minor axes
y and x are rotated relative to the their equilibrium po-
sition in the trap by an angle θ. To see this, consider
a mass element m at position (x, y) in a trapping po-
tential V = (mωxx

2 + mωyy
2)/2, which exerts a torque

τ = xFy − yFx = xym(ω2
x − ω2

y). We can then calcu-
late kτ = −∂τ/∂θ = −m(y∂x/∂θ + x∂y/∂θ)(ω2

x − ω2
y) =

m(y2 − x2)(ω2
x − ω2

y). Summing over mass elements pro-
vides the numerator of Eq. 1. This highlights that the
numerator of this expression is purely geometrical, inde-
pendent of whether the state is superfluid or classical. In
the case of multi-frequency response, Eq. 1 (as defined by
the sum rule) becomes an inequality, defining the upper
bound for the lowest frequency angular excitation in the
system [4].

BETA VERSUS SCATTERING LENGTH FOR 1D
AND 2D

In Fig. S3, we show the change in the anisotropy of the
atomic state in response to a change in scattering length
for a variety of traps, featuring both linear and 2D array
modulated configurations. Here, we consider the quan-
tity β2 = (〈x2 − y2〉/〈x2 + y2〉)2, as this quantity gives
the expected change in moment of inertia between irro-
tational flow (IF) and rigid-body rotation (RBR). As β2

approached unity, the difference between the two van-
ishes, so such states can exhibit minimal sensitivity to
superfluidity.

States in more elongated traps generally have values of
β2 closer to one than their rounder counterparts. How-
ever, even in relatively round traps, such as those of
Refs. [5, 6], low atom numbers can lead to the formation
of linear arrays, which are highly elongated. In these
cases, the sensitivity of the state to superfluidity is dra-
matically reduced upon entering the modulated regime.
In contrast, combinations of trap parameters and atom
number that lead to a 2D modulated state typically main-
tain values of β2 substantially different from one even in
the low scattering length, independent droplet regime.

LINEAR CASE

In Fig. S4, we explore the parameters of refs [5, 6],
where a change in scattering length induces a transi-
tion from an unmodulated BEC to a linear array of two
droplets. This transition is accompanied by a dramatic
change in the aspect ratio of the atomic state, as evident
in the near convergence of the predictions for rigid body
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FIG. S2. Response sepctra extracted from simulations for different trap parameters (rows) and scattering lengths (columns).
Upper rows correspond to more elongated traps, while lower rows correspond to more round ones. From top to bottom,
(fx, fy) = [(26, 87), (32, 70), (37, 62), (40, 57), (43, 53)] Hz. fz = 122 Hz for all cases. Red vertical dashed and solid lines
correspond to the rigid-body rotation and irrotational flow predictions, respectively. Gray traces are power spectra extracted
from FTIA, while black traces are from 〈xy〉. In all cases, as = 97a0 corresponds to an unmodulated BEC, while lower scattering
lengths correspond to modulated states, with the overlap between droplets decreasing with scattering length. (fx, fy) = (26, 87)
is a linear droplet chain for all scattering lengths that produce a modulated state. All other modulated states have transverse
structure, increasing in prevalence as the trap becomes more round.

and irrotational flow (frig and firr) at lower scattering
lengths, corresponding to the droplet state.

We see that the dominant frequency of angular re-
sponse is between frig and firr, indicating a change in
the level of superfluidity in the system. We find that
the angular response in the supersolid regime (as = 90
or 92 a0) has two clear frequency components, though in
this case the dominant frequency observed matches the
prediction from the sum rule (with moment of inertia
calculated under static rotation). Because of the geome-
try of the system, rotation does not lead to a significant
transfer of mass between the two droplets. Thus, we at-
tribute the change in superfluidity to the low-density halo
that surrounds the droplets, rather than the inter-droplet
connection itself.

∗ Correspondence should be addressed to
Francesca.Ferlaino@uibk.ac.at
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a.

b.

FIG. S4. Analysis of linear two-droplet arrays of [5, 6]. a.
Dominant angular oscillation frequency (markers) extracted
from simulations versus scattering length, through transition
from BEC (right) to isolated droplets (left). The irrotational
and rigid-body predictions firr and frig are shown as solid and
dashed lines, respectively. b. The Fourier spectrum of 〈xy〉
for the point near as = 92a0 exhibits a response with domi-
nant and sub-dominant mode contributions. The fluctuation
profiles associated with these two frequencies are shown in the
insets. Solid and dashed vertical red lines represent firr and
frig, respectively.



CHAPTER 4. ROTATIONAL DYNAMICS IN SUPERSOLIDS

4.3 Vortices in supersolids

It is of interest to note that defects of a fundamentally new type may exist in a

superfluid crystal. The question concerns vortex lines, i.e., linear defects for which

the phase of the condensate’s wave function changes by 2π upon going around

the defect.

A. F. Andreev and I. M. Lifshitz
Quantum Theory Of Defects In Crystals (1969) [79]

Quantised vortices are an hallmark of supefluidity. In this chapter we report on our experimental efforts

on probing the superfluid nature of the supersolid by nucleating quantised vortices. Additionally, the

ability to create vortices in this modulated quantum state provides us with a toolbox to study interesting

phenomena such as vortex pinning [281, 282] or the glitch mechanism in neutron stars [283, 126].

A detailed introduction to quantised vortices has already been given for dipolar BECs in Ch. 3. We know

that stable vortex solutions exist for BECs rotated at the frequency Ω > Ωc = Ev −E0
Lz

and that these

vortices exist due to the single-valuedness of the phase of the macroscopic wavefunction (1.13). Since

the supersolid wave function is simply another solution of (1.12), which is also described by (1.13), the

hydrodynamic equations are valid as described in Ch. 3.1. It can be deduced that the vortices should have

very similar properties to those of BECs. Indeed, eGPE simulations suggest that stable vortex solutions

should exist for supersolids [281]. However, prior to our work, vortices have not yet been observed

experimentally in supersolids.

Vortices in ultracold quantum gases have only been studied in quasi-homogeneous states: The length

scale in BECs at which density changes is much larger than the core size of the vortices. The vortices

experience a homogeneous density distribution and therefore the vortex motion is not constrained by

the superfluid but is mostly influenced by other vortices [254]. This situation changes in a supersolid. As

we have seen from Eq. (3.8), the vortex reduces its kinetic energy by moving towards a lower density and

therefore the vortex will sit on the interstitial site between three droplets. Not only that, but since the size

of the vortex is related to the healing length ξ, which is inversely proportional to the density ξ ∝ n−1/2

as given by (3.7), the vortex core size can be on the same length scale as the density change. Therefore,

the vortex dynamics is constrained by the structure of the state.

We are able to combine the knowledge of creating supersolids in axial-symmetric pancake ODTs, nucleating

vortices in dipolar condensates, and understanding the multimode response of the supersolid to rotation

to experimentally nucleate vortices in supersolids. We work with 164Dy for which we can observe supersolid

state lifetimes of τ ≈ 1 s [123] larger than the vortex nucleation times observed in the dBEC. However, the

challenge is to create a supersolid state where the droplet number does not change during the rotation

time t rot = 0 − 1000ms and is repeatable from shot to shot. We find states with seven, four and three

droplets to be well repeatable due to their symmetric hexagonal (as shown in Fig. 4.1 c), diamond (as

shown in Fig. 4.4 a) and triangular structure (not shown). In experiment there can be structural transitions

between these states due to atom loss, which makes the results more difficult to interpret. We find

experimental parameters for which the four or three droplet state during the rotation over the duration
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Figure 4.4: Preparation, rotation and melting sequence to observe vortices in supersolids. In-situ images of single

runs are shown for a) θ = 0◦ before rotation (|B | = 18.3G), b) θ = 30◦ during rotation(|B | = 18.3G) and c) θ = 30◦

after the rotation and after quenching the magnetic field to |B | = 19.3G. d) |B |, φ and θ during the last part of the

experimental sequence.

of t rot is stable. Another advantage of these states is that for a solution with a single vortex, this vortex

tends to be in the centre of the cloud. The magnetic fields we use in the experiment to work with the four

and three droplet state are B = 18.30(2)G and B = 18.24(2)G respectively.

The sequence to rotate the cloud is shown in Fig. 4.4 d. We use the magnetostirring technique, which is

discussed in Sec. 3.1.2. In the case of the modulated state the rotation is clearly visible as the droplets

align along the magnetic field (see Fig. 4.4 b), which is tilted away from the axis of rotation by θ = 30◦.

Looking at the projection of the droplets in the x-y plane, we see that the long axis of the droplets rotates

synchronously with the magnetic field. Interestingly, we observe that there is a secondary rotation of the

centre of mass motion of the droplets, which initially has a different rotation frequency and eventually

synchronises with the magnetic field rotation. The synchronisation is related to vortex nucleation4 and

shows the complex velocity field of the rotating modulated state. An example of such a velocity field was

simulated in [275, 281] for the magnetic field along the rotation axis. And as for the BEC, tilting the magnetic

field beyond θ > 51.3◦ will lead to a transition to a macrodroplet for large rotation frequencies [232].

Nevertheless, nucleating vortices in the supersolid presents a new challenge. Because the vortices are

located at the low density region between the droplets, where our phase-contrast imaging cannot detect

atoms due to the background noise (see Fig. 4.4 a), vortex and non-vortex states are indistinguishable.

4Manuscript is in preparation at the time of the submission of this thesis.
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4.3.1 How to observe vortices: Melting the supersolid

How can we directly observe vortices in a supersolid? A solution was described in [284] and is also

reminiscent of the method used to show vortices in degenerate Fermi gases in the BCS regime [206].

Instead of observing the vortices in the supersolid state just before the imaging sequence, when the

vortices are already nucleated, we melt the supersolid into a BEC state by changing the interactions with

a magnetic field quench over tquench = 1ms (see Fig. 4.4 d). During the transition from the supersolid to

the BEC state the vortices are topologically protected and continue to exist [284]. The vortices are then

well observable with absorption imaging after a short TOF tTOF = 3ms as described in 3.1.3 and as shown

in Fig. 4.4c.

Experimentally melting the supersolid comes with a challenge. Ideally we could change the interaction

strength from εdd ≈ 1.41 (SS regime for the experimental trap parameters and atom number) to εdd ≈
1.26 (BEC regime) by the means of a single broad Feshbach resonance, but as we already discussed in

Sec. 2.2.5, there are many narrow Feshbach resonances in between. Therefore the magnetic field for the SS

regime B = 18.30(2) G is separated by 1 G to the magnetic field for the BEC B = 19.30(2) G with many

narrow FB resonances in between. Although it was theoretically suggested to slowly ramp from the SS

regime to the BEC regime in t ramp = 100ms, we had to go much faster with a ramp of t ramp = 1ms, to

avoid the resonances.

4.3.2 Threshold behaviour for vortex seeding

We know from the vortices in the dipolar BEC, that it is not enough to rotate the gas at Ω > Ωc , where the

vortex state is energetically favourable compared to the vortex-free state. These two states are topological

different and therefore their must be a mechanism such as the dynamical instability we discussed in

Sec. 3.1.2, to nucleate the vortices, and for the BEC we find that this instability is triggered when the rotation

frequency is resonant with the quadrupol oscillations Ω ≈ Ωnucl = 1/
√
2ω⊥[193].

This nucleation behaviour changes drastically for supersolids. We can see in Figure 3 of the paper, that

compared to the BEC, the nucleation frequency range has become much larger, starting at Ω ≈ 0.5ω⊥

and nucleation is evident even for large Ω > 0.8ω⊥. Therefore we see much more a threshold behaviour

of the nucleation than a resonance behaviour for a very specific nucleation frequency as we know it from

the BEC. This can be attributed to the multimode response to rotation that we discussed already in the

last section. While for BECs only the quadrupole mode leads to a dynamic instability, due to the complex

crystal structure there are additional crystal modes that can also lead to the dynamical instability. Looking

at the eGPE simulations, we can identify three Goldstone modes with the appearance of vortices during

rotation [285, 286, 129, 130]: one related to the broken U(1) symmetry connected to the superfluidity of

the system and two related to the the broken translational symmetry in the x and y direction, which are

almost degenerate due to the circular trap geometry.

The energetically lowest mode is associated with the superfluid part of the supersolid. The downshift

compared to the BEC state can be understood intuitively due to the much lower density of the superfluid

background compared to a BEC state in a comparable trap. This reduces the energy required to excite the

quadrupole mode.
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The other two modes correspond to the excitation of the droplet crystal leading to a complex mode

spectrum that we have discussed in Sec. 4.2.2. This complexity leads to a threshold behaviour of the vortex

nucleation.

With our work we provide for the first time evidence of the existence of vortices in the supersolid state

and therefore a direct proof of the superfluid nature of the supersolid state in a dipolar quantum gas.
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Supersolids are states of matter that spontaneously break two continuous symmetries: translational invariance
due to the appearance of a crystal structure and phase invariance due to phase locking of single-particle wave
functions, responsible for superfluid phenomena. While originally predicted to be present in solid helium1–5,
ultracold quantum gases provided a first platform to observe supersolids6–10, with particular success coming
from dipolar atoms8–12. Phase locking in dipolar supersolids has been probed through e.g. measurements of
the phase coherence8–10 and gapless Goldstone modes13, but quantized vortices, a hydrodynamic fingerprint of
superfluidity, have not yet been observed. Here, with the prerequisite pieces at our disposal, namely a method to
generate vortices in dipolar gases14,15 and supersolids with two-dimensional crystalline order11,16,17, we report on
the theoretical investigation and experimental observation of vortices in the supersolid phase. Our work reveals
a fundamental difference in vortex seeding dynamics between unmodulated and modulated quantum fluids. This
opens the door to study the hydrodynamic properties of exotic quantum systems with multiple spontaneously
broken symmetries, in disparate domains such as quantum crystals and neutron stars18.

Rotating fluids on all scales exhibit a whirling motion known
as vorticity. Unique to the interacting quantum world, how-
ever, is that this rotation is quantized due to the single-
valued and continuous nature of the underlying macroscopic
wavefunction19,20. Observing quantized vortices is regarded
as unambiguous evidence of superfluidity, relevant for a
wide variety of many-body quantum systems from super-
fluid 4He 21,22 through gaseous bosonic23 and fermionic24

condensates, exciton-polariton condensates25, to solid-state
superconductors26,27. Remarkably, this phenomenon persists
over a wide range of interaction scales, since it only requires
the irrotational nature of the velocity field. However, all of
these examples refer to the case in which the vortices are free
to move in the system, and any density non-uniformity due
to, e.g., the trap, occurs on scales much larger than the vortex
core.

The supersolid phase does not belong to this category,
spontaneously breaking this spatial uniformity. Super-
solids, characterized by the coexistence of superfluid and
solid properties1–5, have been investigated through two dis-
tinct approaches. The first approach involves infusing su-
perfluid characteristics into a solid, as demonstrated in
phenomena such as pair density wave phases28 in 3He29,
superconductors30,31, and through a 4He monolayer on
graphite32. The second approach entails imparting solid
properties into superfluid systems, as observed in ultracold
atomic settings in optical cavities7, those with spin-orbit
coupling6, and with atoms exhibiting a permanent magnetic
dipole moment8–11. Among these systems, supersolids com-
posed of dipolar atoms have emerged as a versatile platform
for exploring the superfluid characteristics and solid proper-
ties of this long sought-after state12, including the sponta-
neous density modulation and the global phase coherence8–10,
the existence of two phononic branches, one for each broken

symmetry13,33,34, and Josephson-type dynamics35,36. Where
these tests have found a roadblock is in probing the response
to rotation. One consequence of irrotational flow is the scis-
sors mode oscillation, where the signature of superfluidity is
the lack of a rigid body response to a sudden rotation of an
anisotropic trap37. However, supersolids show a mixture of
rotational and irrotational behavior, leading to a multimode re-
sponse to perturbation. This complexity hinders a straightfor-
ward extraction of the superfluid contribution16,38,39. Instead,
the presence of quantized vortices is an unequivocal signal
of irrotationality, and thus unambiguously proves the super-
fluidity of the system. These vortices are also anticipated to
exhibit other distinctive characteristics, including a reduced
angular momentum40,41, and unusual dynamics due to their
interplay with the crystal such as pinning and snaking18,42,43.
Nevertheless, a critical gap exists in the current experimen-
tal exploration of supersolids — an investigation into whether
the supersolid can maintain its structure and coherence un-
der continuous stirring, as well as if, and how, vortices may
manifest and behave in this unique state. The experimental
challenge lies in the inherent complexity and fragility of the
supersolid phase, which lives in a narrow region within the
phase diagram12. In our work, we explore this uncharted ter-
ritory by investigating the supersolid response to rotation, us-
ing a technique known as magnetostirring14,15,44. Combining
experiment and theory, our study explores both the unmod-
ulated and modulated states, revealing distinctive signatures
associated with the presence of vortices in the supersolid.

Predicting the supersolid response to rotation
Owing to the inherent long-range interactions among atoms,
a dipolar gas exhibits a density distribution that extends
along the magnetic field direction, a phenomenon known as
magnetostriction45. This imparts an elliptical shape to the
cloud. The rotation of the magnetic field consequently in-
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duces stirring of the gas44. This method, referred to as magne-
tostirring, has recently been employed to generate vortices in
unmodulated dipolar quantum gases14. These vortices eventu-
ally organize into distinctive patterns, forming either triangu-
lar or stripe vortex lattices15,44.

Generating vortices in the supersolid phase through mag-
netostirring has not yet been investigated, therefore, we the-
oretically explore the zero temperature dynamics of our state
through the so-called extended Gross-Pitaevskii equation46–49

(eGPE). This takes into account the cylindrically symmetric
harmonic trap, the short-range interactions, through the tun-
able s-wave interaction strength as, and long-range interac-
tions, with fixed amplitude add = 130.8a0 for 164Dy. Also in-
cluded are beyond-mean field effects resulting from the zero-
point energy of Bogoliubov quasiparticles–shown to be cru-
cial for the energetic stability in the supersolid phase49. By
tuning the short-range interactions, we can access both the su-
persolid (typically ϵdd = add/as ≳ 1.3 for experimentally rel-
evant trap geometries) and unmodulated Bose-Einstein con-
densate (BEC) phases (ϵdd ≲ 1.3).

Figure 1 comparatively shows exemplar density and phase
distributions of an unmodulated dipolar BEC [a] and super-
solid phase (SSP) [b] rotating the magnetic field at increasing
frequency Ω, from left to right. In a BEC, Fig. 1a, at small
frequencies, with respect to the radial trap frequency ω⊥, the
cloud density is almost unchanged from the static result [a(i)].
Rotating faster, the cloud elongates, and we observe an irrota-
tional velocity field in the phase profile [a(ii)]. When rotating
faster than a given Ω∗

BEC, the irrotational flow can no longer be
maintained, and quantum vortices, observable as density holes
and quantized 2π phase windings, penetrate the condensate
surface following a quadrupole mode instability [a(iii)]14.

In contrast to unmodulated BECs, supersolids present a new
scenario, see Fig. 1b. Our simulations reveal that the system
is more susceptible to quantized vortex creation, happening at
significantly lower frequencies than the BEC case. At small
frequencies, the crystalline structure and surrounding ‘halo’ of
atoms follow the magnetic field in lockstep without generat-
ing vortices [b(i)]. At higher frequencies, yet still Ω < Ω∗

BEC,
we now see vortex lines smoothly entering into the interstitial
regions between the crystal sites [b(ii)]40,41,43. These vortices
persist even at higher frequencies, arranging into a regular lat-
tice structure [b(iii)].

To gain further insight, we study the total vortex number ob-
tained after 1 s of rotation as a function of Ω. Figure 1c shows
a striking difference in the response to rotation between the
two quantum phases. The BEC shows the well-known reso-
nant behavior, in which the rotation frequency must be at res-
onance with half the collective quadrupole mode frequency
ωQ. This drives an instability of the condensate surface, al-
lowing vortices to enter the state. For a non-dipolar BEC
ωQ =ω⊥/

√
250–52, while for dipolar quantum gases, small de-

viations from this value can occur depending on the dipolar
interaction and the trap geometry53. For our system, we see
the onset of the resonant behavior at Ω∗

BEC = 0.6ω⊥, reaching
its maximum at Ω ≈ 0.75ω⊥.

FIG. 1. Simulation of vortex nucleation in a supersolid and un-
modulated BEC. Density isosurfaces and their corresponding nor-
malized integrated density and phase profiles for the a unmodulated
BEC and b supersolid phases after 1 s of rotation at (i) Ω = 0.2ω⊥,
(ii) 0.4ω⊥, and (iii) 0.7ω⊥. Isosurfaces are shown at 15% of the
max density in all plots, and additionally at 0.5% in the SSP to
show the halo. Vortex tubes are shown in black in the 3D im-
ages and appear as 2π windings in the phase plots. c Compar-
ison of the time-averaged vortex number as a function of Ω be-
tween the SSP (red) and BEC (green), averaged between 0.75 s and
1 s of rotation, and the colored shading shows the standard devia-
tion. The yellow shaded area highlights Ω∗

SSP < Ω < Ω∗
BEC (see

main text). The results are obtained from eGPE calculations with
(ω⊥, ωz) = 2π× [50, 103] Hz, magnetic-field angle from the z-axis
θ = 30◦, atom number N = 5× 104, and scattering length as = 95a0

(104a0) for the SSP (BEC) phase.

In the supersolid phase, we observe a vastly different be-
havior. The dual superfluid-crystalline nature of the state leads
to two distinguishing features: the reduced superfluidity re-
sults in vortices nucleating at a lower rotation frequency and
the solidity gives rise to a monotonic increase in vortex num-
ber at faster frequencies, reminiscent of rigid body rotation;
see Fig. 1c. This can be understood by studying the excita-
tion spectrum. A two-dimensional supersolid exhibits three
quadrupole modes: one from the broken phase symmetry as-
sociated with superfluidity and one from each direction of the
broken translational symmetry40. In our case, the latter are
nearly degenerate due to the cylindrically symmetric dipole
trap. Excitation of the ‘superfluid’ quadrupole mode is re-
sponsible for the weak resonance starting at Ω∗

SSP ≈ 0.25ω⊥
and centered around Ω≈ 0.35ω⊥, where just a few vortices
are created. The position of this resonance is highly depen-
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FIG. 2. Magnetostirring of a 164Dy dipolar supersolid. a
Density isosurfaces and corresponding integrated density of a
four droplet supersolid. b Column densities of a four droplet
supersolid state from theory (top row) and experiment (bot-
tom row) with Ω = 0.3ω⊥; the images were taken after (i-v)
1, 19, 43, 70, 274 ms. Experimental parameters: B = 18.24(2) G,
N ≈ 7× 104, and (ω⊥, ωz) = 2π× [50.5(3), 135(2)] Hz. Illus-
trative simulation parameters: as = 92.5a0, N = 6× 104, and
(ω⊥, ωz) = 2π× [50, 135] Hz.

dent on the superfluid fraction, eventually vanishing in the
isolated droplet regime40. As we will discuss later, the de-
tection of this subtle effect is at the edge of our current ex-
perimental capability, indicating compatibility, albeit with a
low signal strength. Beginning at Ω≈ 0.45ω⊥, the system ex-
hibits instead a threshold response to rotation, where the an-
gular momentum, and thus vortex number, linearly increases
with Ω40,41. This prominent feature arises due to the near de-
generate crystal quadrupole mode resonance.

Experimental magnetostirring of a dipolar supersolid
Bolstered by the acquired theoretical understanding, we ex-
perimentally explore the suitability of magnetostirring to nu-
cleate vortices in the supersolid phase. We first produce an
optically trapped supersolid quantum gas of highly magnetic
bosonic 164Dy atoms via direct evaporative cooling10,11,17,54

and then apply magnetostirring14,15,44 to rotate the gas.
In all the experiments presented, the three-dimensional op-

tical dipole trap (ODT) is cylindrically symmetric, with radial
frequency ω⊥ ≈ 2π× 50 Hz and a trap aspect ratio ωz/ω⊥
that varies between 2 and 3. Throughout the evaporation se-
quence, we apply a uniform magnetic field along the z-axis
and tilt the magnetic field vector by θ= 30◦ in the last cooling
stage to prepare for magnetostirring14. With this sequence, we
obtain a supersolid typically composed of four density max-
ima (droplets) on top of a low-density background (halo) of
coherent atoms, which we probe by taking phase-contrast im-
ages after 3 ms of expansion. This gives us access to the 2D
density profiles integrated along the axial direction, as illus-
trated in Fig. 2a. We magnetostir the system by rotating the
magnetic-field vector around the z-axis with a constant angu-
lar velocity Ω; see Fig. 2b. As predicted by theory, the droplets
align themselves along the magnetic-field direction, breaking
the cylindrical symmetry, thus enabling rotation. We are able
to stir the supersolid for hundreds of milliseconds without de-
stroying the state, as shown in Fig. 2b(i-v). This result is par-
ticularly relevant since it allows several full rotations, even for
small driving frequencies, giving the vortices enough time to
nucleate and percolate into the system.

Observation of vortices in a dipolar supersolid
Based on our simulations, on the one hand, we anticipate
vortex nucleation in the supersolid already at modest rota-
tion frequencies, but on the other hand, the density modu-
lated initial state poses a unique challenge in vortex detec-
tion. Traditional methods for probing quantized vortices in
quasi-homogeneous ultracold quantum gases typically rely on
observing density depletions of an expanded cloud23,24,55,56.
In the context of supersolids, vortices nest within the low-
density interstitial areas between the droplets, reducing the
contrast18,57. We implement an imaging sequence inspired
by recent theoretical proposals57 that draws parallels with a
protocol employed to observe vortices in strongly interacting
Fermi gases24. In particular, we project the SSP into the BEC
phase just before releasing the atoms from the trap by rapidly
(1 ms) increasing the scattering length. This projection effec-
tively “melts” the high density peaks, providing a more homo-
geneous density profile, see Methods. Since vortices are topo-
logically protected defects, they are expected to survive dur-
ing this state projection57. Finally, we probe the system with
vertical absorption imaging after 3 ms of expansion, without
allowing time for further dynamics in the BEC phase.

Figure 3 summarizes our main results, where we compare
the behavior of a BEC and SSP under magnetostirring. Akin
to theory, we see three regimes. At low frequencies (Ω <
Ω∗

SSP), we do not observe vortices in either state [b(ii)]. For
Ω∗

SSP < Ω < Ω∗
BEC, a striking difference between the BEC

and the SSP response to rotation appears [b(iii)]. While the
former does not show vortices, in the supersolid we clearly
observe the appearance of a vortex in the central region of
the cloud. Finally, at a larger frequency (Ω > Ω∗

BEC), we
observe multiple vortices in both cases [b(iv)]. This confirms
the expected reduction in vortex nucleation frequency, the first
characteristic feature of the impact of supersolidity.

In what follows, we generalize our observations to the full
range of driving frequencies, in order to identify the threshold
nucleation values and the vortex number behavior as a func-
tion of rotation frequency. We trace the time evolution of the
rotating system both in the SSP and BEC phase and extract for
each time step and Ω the number of vortices. We show the av-
erage vortex number obtained for each measurement in Fig. 3
together with the corresponding numerical simulations. In the
unmodulated case (Fig. 3a), we observe the expected resonant
behavior around Ω≈ 0.7ω⊥14. After 0.5 s of rotation, both the
experiment and theory show Ω∗

BEC ≈ 0.6ω⊥.
In the supersolid case (Fig. 3c), we are able to observe clear

evidence for the threshold behavior for vortex nucleation. For
driving frequencies greater than Ω≈ 0.4ω⊥, vortices persist
even up to 1 s, and there is an increase of vortex number
with rotation frequency. This behavior is in contrast to the
BEC case, where above Ω = 0.75ω⊥ we do not observe vor-
tices, unveiling the competing superfluid and solid contribu-
tions. Additionally, theory predicts a superfluid quadrupole
resonance centered at Ω≈ 0.3ω⊥, with one or at most two
vortices entering the cloud. A detailed analysis of the experi-
mental data reveals a signature compatible with the existence
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FIG. 3. Vortex nucleation in a dipolar supersolid and BEC. Vortex number as a function of rotation time and Ω for an a unmod-
ulated BEC and c supersolid. Top plots show the simulations (nBEC

max = 8, nSSP
max = 7.6429), bottom plots the experimental observation

(nBEC
max = 2.5, nSSP

max = 2), where in a the absolute value of the magnetic field is held at 19.30(2) G, but in c is instead ramped from
18.30(2) G to 19.30(2) G in 1 ms at the end of the rotation. Exemplar images taken after 251 ms of rotation are shown in b. All images
are taken after 3 ms expansion, except the non-rotating supersolid state, which is a phase-contrast image with θ = 0◦. In the experiment,
the trap has frequencies (ω⊥, ωz) = 2π× [50.3(2), 107(2)] Hz, and the initial condensed atom number is N ≈ 3 × 104. For the simulation:
(ω⊥, ωz) = 2π× [50, 103] Hz, with a as = 104a0, initial N = 2× 104, and c as = 93a0, N = 3× 104, where three-body recombination
losses have been added.

of this resonance, see Methods. However, a dedicated inves-
tigation beyond the scope of this work would be required to
confirm this feature.

Interference patterns
The modulation of supersolid states presents a unique possi-
bility for extracting the phase information, as the presence or
absence of a vortex strongly impacts the interference pattern
after time-of-flight (TOF)40. This is readily observable by per-
forming expansion calculations with the eGPE, as shown in
Fig. 4a. In the presence of a vortex, the interference pattern
shows a pronounced minimum in the central region of the sig-
nal [a(ii)], which is clearly not the case in a vortex free super-
solid [a(i)]. This remarkable feature is a direct consequence
of the phase winding and can even be reproduced by a simple
toy model simulating the expansion of three non-interacting
Gaussian wavepackets, as shown in the insets of Fig. 4a(i)
and (ii). Note that in the eGPE, the expansion time was set
to 36 ms, during which the self-bound nature of the droplets
slows down the expansion corresponding to a few ms in the
toy model. Furthermore, this time is strongly dependent on
interaction and trap parameters, making the pattern very sen-

sitive to parameter variations, see Methods for more details.
Unlike vortex interference patterns from unmodulated states,
there is no longer a simple hole left in the center of the cloud,
but rather a three-pointed star structure reflecting the symme-
tries present in the density. The spiral arms appear due to the
nonlinear azimuthal 2π phase winding43, where between each
droplet there is a line of minimum signal given by the phase
difference of each droplet, in this case, 2π/3. In our calcula-
tion, we opt for an initial state featuring three droplets instead
of the previously used four droplet state. The symmetry of
this state, characterized by equal interdroplet spacing, yields
a singular and simple interference pattern when the vortex is
in the center of the system, facilitating the distinction between
a vortex and vortex-free state. Our simulations show that the
critical nucleation frequency is Ω∗ ≈ 0.1ω⊥ for this state.

When performing the experiment with similar parameters
as the theory, we observe a remarkable similarity. Figure 4b
shows an example interference pattern for a non-rotating sam-
ple [b(i)] and the one for a three droplet supersolid when ro-
tating above Ω∗ [b(ii)]. In the latter case, we clearly observe
a signal minimum at the center, providing the observation of
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FIG. 4. Time-of-flight interference pattern. a 36 ms real-time
expansion interference pattern for three droplets (i) in the absence
of a vortex and (ii) with a vortex. b Experimental observation af-
ter TOF (i) without rotation and (ii) after 189 ms of rotation at
Ω = 0.3ω⊥ with θ = 30◦, before spiraling up to θ = 0◦ in 11 ms,
while Ω is kept constant. The supersolid is produced at 18.24(2) G
with (ω⊥, ωz) = 2π× [50.0(4), 113(2)] Hz, the condensed atom
number N ≈ 5 × 104. The theoretical parameters: N = 5 × 104,
(ω⊥, ωz) = 2π× [50, 113] Hz and as = 92.5a0.

vortices directly in the supersolid state. To test the robustness
of this observation, we repeat the measurement many times,
and study the occurrence of the non-vortex [b(i)] or vortex
[b(ii)] pattern. Among the images with a clear interference
pattern, about 70% contain a vortex signature when rotating
above Ω = 0.3ω⊥, see Methods. This can be understood by
considering that supersolid states exist in a very small pa-
rameter regime58, and typical shot-to-shot atom number and
magnetic-field (as) fluctuations can significantly alter the ob-
served interference pattern.

Conclusions
After three decades since the original predictions59, we re-
port on the observations of vortices in a supersolid state. This
result is relevant not only because it adds the final piece to
the cumulative framework of evidence for superfluidity in this
state12, but also because it reveals a distinctive vortex behav-
ior in the supersolid. The system’s characteristic response
to rotation can serve as a fingerprint to identify supersolid-
ity in diverse systems with multiple broken symmetries, over
scales ranging from solid-state systems30, high-temperature
superconductors60,61, and helium platforms29–32, to a neutron
star’s inner crust18,62.

Furthermore, in the context of supersolids, a fascinating in-
terplay of competing length scales emerges. These include
the separation between vortices, the wavelength of the self-
forming crystal, and the diameter of the vortex core. This
competition has the potential to lead to intriguing dynamics,
ranging from constrained motion and pinning to avalanche es-
cape. These phenomena are genuinely unique to supersolids.
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9. L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C. Gabban-
ini, R. N. Bisset, L. Santos, and G. Modugno, Observation of
a Dipolar Quantum Gas with Metastable Supersolid Properties,



6

Phys. Rev. Lett. 122, 130405 (2019).
10. L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann,
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Methods

Experimental procedure
We prepare an ultracold gas of 164Dy atoms in an optical
dipole trap (ODT), similar to our previous work14. The trap
is formed through three overlapping laser beams, operating
at 1064 nm. All the studies are performed in a cylindrically
symmetric trap, typically with ω⊥ = 2π× 50.3(2) Hz, where
ω⊥ is the geometric average ω⊥ =

√
ωxωy . The aspect ratio

ωz/ω⊥ varies from 2 to 3; the specific values of ωz are stated
in the figures’ captions. The aspect ratio ωx/ωy is crucial for
the applicability of magnetostirring14: throughout the paper,
the deviation of ωx/ωy from 1 is < 2%.

For this work, we tilt the magnetic field vector B from the
vertical position to θ= 30◦ from the z-axis in the last stage of
evaporation, while maintaining its magnitude constant. The
values of the magnetic field are: 19.30(2) G for the unmodu-
lated BEC, 18.30(2) G for the SSP in Fig. 3, and 18.24(2) G
for Figs. 2 and 4. The magnetic field is calibrated through
radio frequency (RF) spectroscopy. Moreover, 164Dy has a
dense spectrum of narrow Feshbach resonances, as shown in
Extended Data Fig. 1. We use the positions of such resonances
as references to compensate for drifts of the magnetic field.
The condensed atom number after the evaporation sequence
ranges from 3× 104 to 7× 104, depending on the measure-
ment.

After preparation, the magnetic field is rotated; details can
be found in the following sections. Finally, we image the
quantum gas using a 421 nm light pulse, propagating along
the z-axis. For the data in Figs. 2 and 3, we let the atomic
cloud expand for 3 ms and take a phase contrast and absorp-
tion image, respectively. When comparing theoretical and ex-
perimental images, we rescale the image size by 1.36 in the
theory to account for this small expansion time. The results
of Fig. 4 are instead obtained with absorption imaging after
36 ms TOF.

For the experimental images in Fig. 2, we enhanced the
contrast of the droplets by applying a Gaussian filter of size
σ= 1 px (≃ 0.5µm) followed by a sharpening convolution fil-
ter with kernel F :

F =




0 −1 0
−1 5 −1
0 −1 0


 . (1)

Magnetostirring
To magnetostir the atomic cloud, we rotate the magnetic field
vector around the z-axis14. In brief, the breaking of cylindri-
cal symmetry that enables the transfer of angular momentum
by rotating the magnetic field vector B (magnetostirring) is
achieved by tilting B into the plane. This is a direct con-
sequence of the phenomenon of magnetostriction45. For all
the measurements in this paper, B is tilted from the z-axis
by an angle θ= 30◦. At our magnetic field values, this an-
gle is optimal for vortex nucleation within the experimental
time scales15. In general, smaller angles would increase the

nucleation time; at the same time, a much bigger angle would
make the dipolar interaction dominantly attractive, holding the
cloud together and thus also increasing the nucleation time.
From the experimental point of view, θ= 30◦ enables the ob-
servation of the droplets aligning along B while retaining the
ability to discern individual droplets when observing the in-
tegrated density, see Fig. 2. For all datasets, we then directly
rotate B at the chosen frequency Ω. The rotation is continued
for a rotation time tΩ after which the ODT is turned off, and
an image is taken after expansion.
Scattering length
The conversion from magnetic field to scattering length for
164Dy at our magnetic field values has not been mapped.
However, combining knowledge on the conversion in other
magnetic field ranges63–65, together with the theoretical iden-
tification of the critical scattering lengths for the BEC to SSP
transition, allows for an educated guess. It is important to
highlight that the isotope 164Dy has the advantage of ex-
hibiting supersolidity at the background value of the scat-
tering length, while the BEC phase usually requires some
mild tuning of as. The specific values used in this paper are
highlighted on the Feshbach loss spectrum in Extended Data
Fig. 1. For our theoretical simulations (see below), we find
that a scattering length as in the range 90a0-95a0 gives a good
agreement with the experimentally observed supersolid states.
Interaction quench
For the in situ detection of vortices in the supersolid phase, we
map the supersolid into an unmodulated BEC, similarly to the
approach used to observe them in the BCS phase of strongly
interacting Fermi gases24. In particular, we increase the abso-
lute value of the magnetic field from 18.30(2) G to 19.30(2) G
in 1 ms after stopping the rotation and we then release the
sample from the trap. We repeat this sequence for different
values of angular velocity Ω and for different rotation times
tΩ. For each experimental point in Fig. 3a and 3c, we take 7-9
pictures. Using phase contrast imaging, we ensured that the
ramp time is long enough to melt the droplets into an unmod-
ulated state, but also short enough to avoid atom losses when
crossing the Feshbach resonances present between the initial
and final magnetic field values (see Extended Data Fig. 1).
Extended Gross-Pitaevskii equation
At the mean-field level, the ground state solutions, time-
dependent dynamics, and nature of the BEC-to-SSP tran-
sitions are well described by the extended Gross-Pitaevskii
formalism46–49. This combines the two-body particle inter-
actions, described by the two-body pseudo-potential,

U(r) =
4πℏ2as
m

δ(r) +
3ℏ2add

m

1 − 3 (ê(t) · r)
2

r3
, (2)

where the first term describes short-range interactions gov-
erned by the s-wave scattering length as, with Planck’s con-
stant ℏ and particle mass m. This quantity is independently
tunable through Feshbach resonances. The second term rep-
resents the anisotropic and long-ranged dipole-dipole inter-
actions, characterized by dipole length add =µ0µ

2
mm/12πℏ2,
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with magnetic moment µm and vacuum permeability µ0. We
always consider 164Dy, such that add = 130.8 a0, where a0 is
the Bohr radius. For the trap parameters and atom numbers
used here, the supersolid phase is found for scattering lengths
in the range as = [90, 95]a0, i.e. ϵdd = add/as ≥ 1.37. The
dipoles are polarized uniformly along a time-dependent axis,
given by

ê(t) = (sin θ(t) cosϕ(t), sin θ(t) sinϕ(t), cos θ(t)) (3)

with time dependent polarization angle θ(t) and
ϕ(t) =

∫ t

0
dt′Ω(t′), for rotation frequency protocol Ω(t).

Three-body recombination losses are prevalent in dipo-
lar supersolid experiments due to the increased peak density
when compared to unmodulated states. In the theory, these
are introduced through a time-dependent atom loss

Ṅ = −L3⟨n2⟩N , (4)

for density n. We take the fixed coefficient
L3 = 1.2× 10−41m6s−1 for our simulations47. This leads
to an additional non-Hermitian term in the Hamiltonian
−iℏL3n

2/2.
Beyond-mean-field effects are treated through the inclusion

of a Lee–Huang–Yang correction term66

γQF =
128ℏ2

3m

√
πa5s Re {Q5(ϵdd)} , (5)

where Qn(x) =
∫ 1

0
du (1−x+3xu2)n/2, which has an imag-

inary component for x > 1. Finally, the full extended Gross-
Pitaevskii equation (eGPE) then reads46–49

iℏ
∂ψ(r, t)
∂t

=

[
− ℏ2∇2

2m
+ Vtrap − iℏL3|ψ(r, t)|4/2

+

∫
d3r′ U(r − r′)|ψ(r′, t)|2 + γQF|ψ(r, t)|3

]
ψ(r, t) , (6)

where ωx,y,z are the harmonic trap frequencies in
Vtrap = 1

2m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
. The wavefunction

ψ is normalized to the total atom number N =
∫

d3r|ψ|2.
Stationary solutions to Eq. (6) are found through the standard
imaginary time procedure. The initial state ψ(r, 0) of the
real-time simulations is obtained by adding non-interacting
noise to the stationary solution ψ0(r). Given the single-
particle eigenstates ϕn and the complex Gaussian random
variables αn sampled with ⟨|αn|2⟩= (eϵn/kBT −1)−1 + 1

2 for
a temperature T = 20 nK, the initial state can be described as
ψ(r, 0) =ψ0(r) +

∑′
n αnϕn(r), where the sum is restricted

only to the modes with ϵn ≤ 2kBT
67.

Toy model interference pattern
Taking ND static Gaussian wavepackets with parameters of
the jth wavepacket given by the widths σj = (σ1,j , σ2,j , σ3,j),
positions r0j = (r01,j , r

0
2,j , r

0
3,j), atom numbers Nj , and phase

ϕj , the initial total wavefunction is

ψ(r, 0) =

ND∑

j

√
Nj

(2π)
3/2

exp (iϕj) (7)

×
∏

k=1,2,3

√
1

σk,j
exp

[
−1

4

(
rk − r0k,j

)2
/σ2

k,j

]
.

On the assumption that these wavepackets are non-interacting,
then their expansion due to kinetic energy alone can be ana-
lytically calculated by applying the free particle propagator in
three dimensions, such that the time-dependent solution is

ψ(r, t) =

∫ ∞

−∞
d3r′ ψ(r′, 0)K(r, t; r′, 0) , (8)

where

K(r, t; r′, t0) =

(
m

2πiℏ(t− t0)

)3/2

exp

(
im(r − r′)2

2ℏ(t− t0)

)
.(9)

Applying Eq. (8) to Eq. (7) gives the time-dependent multi-
wavepacket solution. For brevity, it is not stated here, but
the exact solution transpires to be a simple time-dependent re-
placement of the widths

{
σk,j →σk,j

√
1 + iℏt/(2mσ2

k,j)
}

appearing in Eq. (7). An example of the evolution of the TOF
pattern is shown in Extended Data Fig. 2 with the parameters
of Fig. 4 for longer times. Note that the 3ms TOF pattern,
equivalent to the 36 ms when simulating the eGPE (i.e. in-
cluding interactions), has not yet evolved into the momentum
distribution.

Quadrupole modes calculation
We employ real-time simulations with the extended Gross-
Pitaevskii equation to investigate the quadrupole mode fre-
quency of the system with the tilted magnetic field, both in the
BEC and in the supersolid phase. We initially perturb the sys-
tem with a sudden small quadrupolar deformation of the trap
and, then, we let the system evolve for 1 s. The deformation is
done by increasing (decreasing) the trap frequency by 0.5 Hz
in the x-direction (y-direction) for 1 ms and then restoring the
trap to the original value. During the time evolution, the den-
sity distribution in the slice z= 0 is fitted with a Gaussian
profile, from which we extract the time-dependent width of
the system during the evolution. The Fourier transform of the
time-dependent width gives the frequency spectrum of all the
expected superfluid and crystal quadrupole modes excited by
the sudden deformation40,68. These frequencies are in agree-
ment with the features of the rotational response of the BEC
and supersolid discussed in the main text.

Vortex detection in the theory
The number of vortices is determined by counting 2π wind-
ings in the central slice of the phase, arg(ψ(x, y, z= 0)). We
restrict the search to a circle of radius 6µm, such that vortices
are only counted inside the condensate surface in the BEC
case, or within the halo in the supersolid state. To visualize
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the vortex tubes plotted in Fig. 1, we plot isosurfaces of the
velocity field.

In-situ vortex detection algorithm
To count the number of vortices, we identify the number of
voids in the density in the in-situ images, following a simi-
lar procedure of our earlier work14. In short, we first apply a
Gaussian filter of size σ= 1 px (≃ 0.5µm), then the sharpen-
ing convolution filter of Eq. (1) to each image nimg for noise
reduction. We then prepare a blurred reference image nref by
applying a Gaussian filter of size σ= 3 px (≃ 1.5µm) to each
nimg and calculate the residuals between this reference and
the original image nres =nref − nimg. Finally, vortices are
detected as peaks in the residual image nres using a peak de-
tection algorithm (peak local max from the SKIMAGE Python
library). To avoid spurious vortex detection, we discard peaks
with a distance below 3 px, and peaks with an amplitude be-
low a chosen contrast threshold of 0.34.

We verify the robustness of the vortex detection by varying
this contrast threshold between 0.34 and 0.42, which changes
the number of selected peaks but gives the same qualitative
result on the whole data set (see Extended Data Fig. 4). In
the experimental data (Extended Data Fig. 4b) there is a small
peak centered at Ω = 0.35ω⊥ for all thresholds considered,
hinting towards the expected superfluid quadrupole mode res-
onance, see Fig. 3.

Time-of-flight vortex detection algorithm
In the interference pattern, a striking difference between a sin-
gle vortex and a vortex-free state is the absence or presence of
a central density feature. This feature provides us with another
fingerprint of vortices, thus allowing for binary classification
of the experimental TOF images and extraction of the vortex
occurrence probability as a function of Ω. In the following
paragraphs, our classification protocol is described.

First, we prepare all the images, ni, by denoising them with
a Gaussian filter of size σ = 2 px and by normalizing to the
maximum density, max(ni) = 1. Among those, we then select
two reference images, one for each case: the presence (nvr ) or
absence (n∅

r ) of a vortex; see insets in Extended Data Fig. 5a.
These will be used to classify all images.

Then, using ‘Powell’ minimization69, we translate and ro-
tate each image to best overlap with the references. To quan-
tify the similarity of the images to each reference image, we
calculate the sum squared differences, S{v, ∅}, between ni and
n{v, ∅}. Here, high values of S{v, ∅} indicate large dissimilar-
ity between the images.

We generate a cumulative distribution function for Sv and
S∅, which are normalized by the total number of images (see
Extended Data Fig. 5a). Using the cumulative distribution, we
generate one subset of images for each reference, which are
the X% most similar images. The remaining images are not
classified. Note that so far, the analysis is rotation frequency
independent. Finally, we extract the number of images within
each category as a function of rotation frequency (Ω), see Ex-
tended Data Fig. 5b. Renormalizing to the total number of
classified images, we obtain the ratio of images that have a

central vortex, see Extended Data Fig. 5c.
At low rotation frequency, the vortex-free interference pat-

tern is dominating. Crucially, the ratio of images with a vor-
tex increases with increasing Ω, consistent with our eGPE
simulations and experimental findings shown in Fig. 3. This
result is robust against choice of the classification threshold
X as shown in Extended Data Fig. 5c(1-2) for X = 15 % and
X = 30 % (see dashed-dotted line in Extended Data Fig. 5a).
Note that fluctuations of the experimental parameters lead to
a non-zero vortex signal even without rotation. Note that the
selection threshold is kept low, ensuring unambiguous catego-
rization of the images.
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Extended Data Fig. 1. Loss spectrum of 164Dy. The spectrum is obtained from horizontal absorption imaging, by varying the magnetic field
at which the evaporative cooling (T ≈ 500 nK) is conducted, with a step size of 20 mG. The magnetic field values used are highlighted in red
(SSP) and green (BEC). Error bars represent the standard error.
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Extended Data Fig. 2. Time of flight predictions from the Gaussian toy model. Longer TOF density profiles for the solution shown in
Fig. 4 of the main text. The inset of the first figure shows the initial condition for all states. After 10 ms the density pattern has frozen into
the momentum distribution of the initial cloud. The gray lines show the axis center (0,0), highlighting the immediate difference between a no
vortex and vortex expansion from the central density.
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Extended Data Fig. 3. Image processing for the detection of vortices. Each row indicates different rotation frequency and duration parameters
(indicated on the left). Each column is a step of the processing protocol which goes as follows. The data (column 1) is normalized and denoised
with a Gaussian filter of size σ = 1 (column 2), and a sharpening mask is applied to magnify the presence of vortices (column 3). The reference
image is built from the data image where all density variations are eliminated with a Gaussian filter of size σ = 3 (column 4). The residuals
(column 5) are obtained from the subtraction of the data to the reference, converting the density depletions to a positive signal. The vortices
(black circles) are detected with a peak detection algorithm with threshold 0.38. The last column shows the location of the vortices on the
original image data. Varying the threshold value modifies the absolute vortex count of each individual image but not the overall qualitative
result (see Extended Data Fig. 4).
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Extended Data Fig. 4. Vortex detection as a function of the threshold parameter. Normalized vortex occurrence integrated over 500 ms
of rotation in the BEC phase (left) and in the supersolid phase (right) as a function of the rotation frequency, for varying contrast threshold
between 0.34 and 0.42 (see Extended Data Fig. 3). The shaded areas indicate the error on the mean, i.e. the standard deviation divided by the
square root of the number of points (8). The solid lines are visual help. The results of the extended-GPE simulations (see Fig. 3) are plotted in
thick solid lines as a comparison.

Extended Data Fig. 5. Probability of detecting a vortex as a function of the rotation frequency. a Cumulative distribution function obtained
from the calculated sum squared differences over the whole data set, with each of vortex (solid line) and vortex-free (dashed line) references
(see inset images). b With a defined threshold X (dashed-dotted lines on a) on the cumulative distribution function, each image is assigned
to a category: vortex (red empty circles), vortex-free (blue filled circles), or no classification (grey filled circles). c Probability of detecting a
vortex signal and vortex-free signal out of the selected images in b. The error bars indicate the Clopper-Pearson uncertainty associated with
image classification. Top and bottom rows show the classification result for respective thresholds 0.15 and 0.30 on the cumulative distribution
function, showing the independence of the signal from the threshold.
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4.4 Outlook

"Can a solid be ’superfluid’?" was asked by Gross, Andreev, Lifshitz, Chester, and Leggett more than 50 years

ago [257, 79, 80, 81] and we can finally answer it with a clear "Yes!". We have shown that quantized vortices

are nucleated in rotating ultracold dipolar gases in the supersolid state, which is a hallmark signature of

superfluid flow. Together with the observation of Goldstone modes [129] and the study of the josephson

effect [124, 132], this result cements our understanding of the supersolid state exhibiting superfluid

and solid properties (as studied in [126, 127]). These works open the door to further understanding of

supersolids. In the following, I would like to give a brief outlook on three possible research directions:

Rotating ID regime - In our work we have compared the rotational dynamics of BECs and supersolids. The

third phase of independent droplets is experimentally challenging, because the lifetime and stability

of a fixed number droplet state is limited by large three-body losses due to the high densities of the

droplets [287, 91]. Therefore the experiment needs further improvements to either increase the lifetime of

the states, e.g. by improving the stability of the magnetic field, or to reduce the time needed to impart

angular momentum while in the ID regime, e.g. by rotating the cloud before condensing [215]. This would

then allow us to experimentally study, for example, the dynamics of 2D arrays of independent droplets

and the fate of a vortex-bearing SS state as it crosses the transition to the ID regime, where the global

coherence is lost and vortices can no longer exist.

Vortex pinning - For the first time we were able to nucleate vortices in an ultracold gas experiment with a

modulated density distribution. The consequence is, that the vortex dynamics are strongly restricted by

its environment. In such a system interesting phenomena such as vortex pinning can be studied. Vortex

pinning (or in solid state physics often "flux pinning") means that vortices are inhibited from moving

by a local potential, such as that caused by impurities in type-II-superconductors [288]. Understanding

vortex pinning is valuable as effects such as vortex pinning are desirable for superconductors because

they prevent "flux creep". This effect can lead to pseudo-resistance and therefore poorer performance for

the superconducting material [289]. In supersolids this pinning force is defined by the density profile and

therefore the interaction strength εdd, atom number N and the external trap parameters ωtrap, giving us a

large toolbox to study the pinning.

Rotating supersolids as simulators - A major interest lies in the possibility of constructing model systems

in the laboratory with a high degree of control that can simulate physical systems that are costly to

simulate on classical computers (such as frustrated magnetism [68], the Fermi-Hubbard model [290] or

the quantum hall effect [291]) or inaccessible experimentally yet. Astronomical systems such as neutron

stars are among the latter, since we do not have the means to look into them directly and understand

their structure [292]. Earth-based simulators may allow to verify theories about these systems. In the

inner crust of neutron stars heavy nuclei are forced so close together by gravity that neutrons drip

into the environment and form a superfluid background around the cores [293]. Additionally, neutron

stars are rapidly rotating objects, where the rotation frequency can be measured. This is reminiscent

of the supersolid state that was presented in this thesis. Therefore, dipolar quantum gas experiments

promise to serve as simulators of a 2D version of the inner crust of neutron stars. This already resulted in

theoretical studies of the glitch mechanism [294, 295] in our group using the supersolid as a simulator
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platform [283, 126]. Improving the atomnumber and stability of our supersolid state as well as improving

our phase-contrast imaging so that it is non-destructive [277] would allow us to follow vortex motion inside

the rotating cloud and study phenomena such as the glitch mechanism experimentally in our laboratory.
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Chapter5
What’s next? A dipolar, double species Quantum Gas Microscope

(ddQGM)

And now for something completely different.

The Announcer
Monty Python’s Flying Circus (1969-1974)

So far, we have worked with large clouds of atoms, probing macroscopic observables such as density

distribution, temperature or the dynamics of the system. In the previous chapters, we observed how

precise control over interactions and trap geometry enables studies of the ground state phase diagram,

collective modes, and quantized vortices. These studies typically involved atomic ensembles of tens- to

hundredthousends of atoms in bulk ODTs. Another question that arises is how the DDI modify the ground

stae and excitations in the strongly correlated regime, e.g. when the atoms are confined in crystal-like

structures. To this end it is advantageous to have access to the microscopic properties such as the local

density or spin down to the single atom level.

Single particle resolution and control are well established in similar systems such as arrays of ions [296].

Machines with single ion control and therefore deterministic state preparation and comprehensive state

characterisation are nowadays one of the leading platforms for quantum computing [297, 298]. In these

systems the ions are naturally arranged into arrays due to their long-range Coulomb interactions, resulting

in typical separations of d > 1 µm [299]. This allows for imaging systems with moderate resolution to

observe the single ions with high fidelity [300].

Unlike ions, the single atoms in trapped neutral atomic clouds are not localized and have typical densities

of n ≈ 1013 − 1014 cm−3 or in other words an average distance of just a few 100 nanometres [27]. By

loading these atoms into deep optical lattices – periodic potentials created by interfering laser beams

– single atoms can be localized at distances of the order of the wavelength of the lattice light λ. The

atoms are now separated on a length scale resolvable by state-of-the-art high-resolution objectives with

signal-to-noise ratios good enough to identify the number of atoms at every lattice site. Since these

systems allow for direct observation of the microscopic state of the atomic cloud, they are referred to as

Quantum Gas Microscopes (QGM) [301].

Richard Feynman famously proposed to use highly controllable quantum systems to simulate other com-

plex systems [302]. Ultracold atoms in optical lattices realize such strongly correlated, but controllable
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Figure 5.1: Image of the SiSi chamber. An artistic visualisation of individual atoms in an optical lattice above the

high-resolution objective.

quantum systems. They enable the implementation of systems with specific Hamiltonians, such as the Bose-

and Fermi-Hubbard models. For bosonic systems these systems have revealed phenomena such as the

Superfluid-to-Mott insulator transition [303, 304], quantum walks of the single atoms [305], entanglement

in quantum many body systems [306, 307, 308, 309] and chaotic quantum dynamics [310]. Spinor bosons

have also demonstrated intriguing spin dynamics of mobile spins [311] or the superexchange dynamics [312].

With fermions, QGMs enable the observation of metallic to Band insulating states [313, 314], Magnon bound

states [315], polarons [316], Doublon-hole correlations [317] and antiferromagnetic order [318, 319, 320].

Much of the pioneering QGM work has focused on systems with alkali and alkaline-earth atoms, where

interactions are predominantly short-range. Therefore interactions between nearest neighbouring (NNI)

atoms could be omitted. Expanding these systems to include long-range interactions promise even richer

physics [321].

Recent advancements have introduced QGMs with permanent long-range interactions, achieved using

ultracold molecules [322, 323] and dipolar atoms [324]. Ultracold molecules provide strong dipolar in-

teractions [70], but their preparation and cooling to the rovibrational ground state – a prerequisite to

obtain the strong dipolar interactions in the first place – remains complex and an ongoing research

challenge [325, 322].

Magnetic atoms such as erbium and dysprosium have weaker dipolar interactions, but the sequences

to cool the atoms to quantum degeneracy are considerable less complex. This allows for large scalable

systems from sparse to unit lattice filling.

Bosonic systems of magnetic atoms allow the implementation of the extended Bose-Hubbard model
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(eBHM) [326, 327, 177]

H = −t
∑
⟨i ,j ⟩

(
â†
i
âj + h.c .

)
︸                    ︷︷                    ︸

tunneling

+ µ
∑
i

n̂ i︸  ︷︷  ︸
chem. Pot.

+ U
2

∑
i

n̂ i (n̂ i − 1)︸               ︷︷               ︸
on-site int.

+
∑
i<j

Vi ,j n̂ i n̂ j︸       ︷︷       ︸
NNI

(5.1)

where â†
i
âj describes the tunneling to the nearest site with the amplitude t , the density operator is given

by n̂ i , µ is the chemical potential,U is the on-site interaction potential andVi ,j is the NNI potential. For

Dysprosium, NNI on the order of 100Hz´can be achieved depending on the interatomic separation. These

systems enable the exploration of fractional Mott insulating states with chequerboard and stripe patterns,

supersolid phases and the superfluid phase in two dimensional lattices [328]. A recent realization of a

QGM with erbium has shown the chequerboard pattern and the influence of the magnetic field on the

stripe phase [324]. Also other exotic phases with highly non-local order parameters such as the Haldane

insulator are expected to be observable in such systems [329, 330].

In spin systems, the dipolar interactions have profound effects on the observable ground state and

dynamics of the system. For example, the t-J model describes the physics in a system with t ≪ U

with a spin-exchange term Jex. The spin-exchange term for lattice systems with non-dipolar gases

can be realized through the superexchange Jex = −4t 2/U , but is strongly suppressed due to its t 2-

dependents [54]. In dipolar systems this term can be realized through the dipolar interactions Jex ∝Vi ,j
and is therefore not directly dependent on t . This allows to study a much larger parameter space of the

t-J model in dipolar systems [331, 332, 91], a microscopic theory relevant to high-Tc superconductivity in

cuprates [333]. Also other intriguing phenomena can be studied in these systems , for example magnetic

frustration [334, 335, 336, 337], leading to spin liquid systems [338], or many-body chaos [339].

We extend the capabilities of our experiment further by developing a dual species, dipolar Quantum Gas

Microscope (ddQGM) with erbium and dysprosium. An interesting application of these mixture systems

would be the creation of heteronuclear molecules with large electrical dipole moments [340, 322]. However,

even without creating molecules, the dipolar mixture allows us to explore effects such as the superfluid

spin hall effect [341], pair-superfluid behaviour [342, 343], phase separation [344] and spin pair creation in

bilayers [345]. The mixture also opens possible research directions towards quantum computation [346].

The foundation for the ddQGM was laid by attaching the SiSi chamber – a glass cell with wide optical

access and an in-vacuum high-resolution objective – to the experimental apperatus. The last part of this

thesis describes the first steps towards the realisation of the ddQGM, focusing on the implementation of

the transport setup from the FRaNZ chamber to the SiSi chamber.

5.1 The ddQGM blueprint

For our quantum gas microscope we are planning to use a lattice with a spacing of λ/2 < 300 nm. To

resolve the single atoms in the lattice and collect enough photons to detect the exact number of atoms

per lattice site with high fidility, we need an objective with large numerical aperture (NA). The design of

our objective with NA = 0.89 is discussed extensively in [150, 347]. It is optimized for imaging wavelengths

λDy

img
= 421 nm and λEr

img
= 401 nm. The large NA is possible because of the short effective focal length of
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f = 20mm but the FRaNZ chamber does not offer sufficient optical access to accommodate this objective.

Furthermore, extensive optical access for the beams to trap, manipulate and image the atoms in the

quantum gas microscope is necessary.

To address these challenges, we install an additional chamber, which is specifically designed for the

quantum gas microscope (see Fig. 5.1). The glass cell provides optical access from seven horizontal view-

ports and a large viewport on the top. To further enhance horizontal access a mirror crown comprised

of eight mirrors is installed around the in-vacuum objective, which reflects the vertical beams from the

top viewport into the horizontal direction. In the center of the last lens of the objective a small mirror is

installed, which allows to create a retroreflected vertical lattice. This ensures a fixed distance between the

vertical lattice sites and the objective. The precise positioning is crucial, as the large NA of the objective

results in a width of the focal plane of just a few microns. The design of the new chamber is described in

great detail in Max Sohmen’s thesis [150].

The atoms are initially cooled and trapped in the ODT within the FRaNZ chamber. To implement the

ddQGM, these atoms must be transported to the SiSi chamber. An efficient transport is crucial to ensure a

high initial phase-space density in the SiSi chamber, so that a cold, dense atom cloud can be loaded to

the optical lattices. The design and implementation of transport setup are covered in detail in the next

section.

However, achieving a single-site resolved lattice system involves many additional steps. After transporta-

tion to the SiSi chamber, the atoms are loaded into an ODT. From there they are transferred into a single

lobe of a vertical lattice, which establishes the vertical confinement of the atoms. Next, the horizontal

optical lattice has to be implemented and loaded. Finally, the atoms are imaged via fluorescence imaging

through the objective and imaging setup, carefully aligned to avoid loss of resolution due to aberrations.

This is a very schematic presentation of the intricate optical engineering tasks that have to be left to the

next generation of PhD students.

5.2 Transport to the Single-Site Chamber

There are many different methods to transport an atomic cloud of neutral atoms. One common technique

is magnetic transport, used on microchips [348, 349], using time-varying currents [350, 351] or employing

magnetic coils on a translation stage [352, 353]. In this experiment we choose an optical transport scheme,

where the focus of a single-beam trap is moved by an air-bearing translation stage, employed also in

other quantum gas setups [354, 355]. Alternative methods, such as optical conveyor belts [356, 357] require

large power for the optical confinement, or focus tunable lenses [358] and Moire lenses [359] are suited

better for low power applications. There are also combinations of these techniques [360]. We opted for

the air-bearing translation stage, due to its proven stability and useability for all ranges of laser power.

However, this method is limited by the weak axial confinement – typically around ωax ≈ 10Hz [354, 355] –

along the transport direction. This imposes constraints on the maximum acceleration of the beam, as it

acts like a force along the movement direction, reducing the effective trap depth. Consequently, typical

transport durations areTtp = 1 − 2 s.

The main constraints for the optical transport setup are given by the distance of the centres of the FRaNZ
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Figure 5.2: Optical setup of the 532 nm distribution and the transport. The 532 nm beam is generated by an IPG laser

system and distributed to the transport setup, as well as future additional setups for a dimple trap and an accordion

lattice. The light is sent to the transport setup via a polarisation-maintaining, photonic crystal fiber. There the beam

is brought to a diameter of d = 10mm by a 10x beam expander before being sent through a telscope made of two

lenses with f = 500mm. An air-bearing translation stage changes the length of the telescope to move the focus of

the beam from the FRaNZ to the SiSi chamber. The beam is focused by a ffoc = 500mm lens and passes through a

dichroic mirror, where it is superimposes on the scanODT beam.

and SiSi chamber lF−S = 40.8 cm, the viewport diameter D = 27.5mm1 of the FRaNZ chamber, as well as

its distance from the center of the chamber lv−F = 20.4 cm and the maximum powers of P ≈ 5W that we

can provide with either λ = 1064 nm or λ = 532 nm. It follows, that the maximum numerical aperture

for this system at the center of the SiSi chamber is NATP = 0.022 and therefore the minimum waist is

w 1064
0,min = 23 µm andw 532

0,min = 11.5 µm. This waist sets the theoretical possible aspect ratio between the

radial and the axial confinement to ωax/ωr ≈ 0.01.

The real part of the polarizability for Dysprosium in the two beams, which is responsible for the trap

depth, for both wavelengths are roughly Re(α532) ≈ 400 a.u.2 and Re(α1064) ≈ 116 a.u. [75]3. From

these parameters we can calculate the trap frequencies for the maximum power and minimum waist and

get ω1064
ax = 16.3Hz and ω532

ax = 89.3Hz. Considering, that the experimental setup could also introduce

aberrations, we choose λ = 532 nm. This provides a broader range of achievable trap frequencies and

greater flexibility regarding the waist of the beam.

The laser beam is generated by an IPG Laser System4 and distributed using polarizing beam splitter

1To get 99% of the power through this viewport the beam cannot be larger than Dbeam ≈ 18mm at the viewport.
2Taken from simulations performed by Maxence Lepers. Note that a recent measurement of the polarisability shows a large

discrepancy to the calculated value, which is still not understood [361]
3As for the other parts for the thesis, we are only considering dysprosium. But the transport also has to be able to transport

Erbium. The polarizability for λ = 1064 nm and λ = 532 nm are very similar to the values given for Dysprosium, even slightly

larger [362]
4IPG GLR-532-50-SF
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cubes5 (PBS) and λ/2-waveplates6, shown as 532 nm distribution setup in Fig. 5.2. The other paths are

eventually used for an additional ODT and an accordion lattice. The transport beam is guided through an

acousto-optic modulator7 (AOM). The AOM is used for the power regulation and the intensity of the beam

is stabilized through a feedback loop, measuring the beam power at a photodiode8 (PD) in the Transport

setup. Additionally PDs monitor the coupling efficiency into the polarization maintaining photonic crystal

fiber9 and are connected to a security circuit, protecting it from damage if the efficency drops. The AOM is

coupled such that ≈ 75% of the light are coupled into the −1 order and the 0th order is directed into a

beam dump. The light is then coupled to the fiber with an aspheric f = 18mm, achieving an coupling

efficiency of up to 75%.

The light is directed to the optical transport setup. There are two ways of moving the focus with an

mechanical translation stage: Change the position of the last focusing lens, or keep the last lens stationary

and change the divergence or convergence of the beam hitting it. We choose the latter design which

allows us to use a focusing lens of ffoc = 500mm in front of the chamber and a collimated beam of waist

w = 5mm to focus the beam down tow = 17 µm in the chamber. It also allows the stage10 to be placed

at a larger distance from the FRaNZ chamber to reduce the effects of magnetic fields created by the stage

on the atoms. To change the divergence of the beam, we set up a telescope of two f = 500mm lenses,

with a retroreflector11 mounted between them on a low-vibration air-bearing stage. Moving the stage by

a distance lstage changes the distance between the lenses by l tele = 2 lstage which translates 1:1 to the

distance the focus moves. To ensure, that the waist of the beam does not change during the transport, the

last lens of the telescope and the focussing lens are spaced exactly 2f = 1000mm. The retroreflector

ensures, that even small vibrations orthogonal to the stage movement are not transferred to the beam.

To get the beam to the right size to achieve a waist ofw = 17 µm we need a collimated beam of beam

sizew = 5mm in front of the telescope. For this we use an aspherical outcoupling lens for the fibre of

f = 18mm and then a 10x beam expander12. The beam then passes through the focusing lens and is

overlapped with the scanODT beam by passing through a two inch dichroic mirror13. We measure the waist

of the final beam from the part of the beam reflected off the back of the mirror to bew = 18(2) µm. But

the dichroic mirror has a thickness of 5mm, and we have to focus the beam through it, so we cannot

avoid astigmatism induced by it. Therefore we expect a slightly larger waist in the chamber, and a larger

measured Rayleigh length than expected from the waist.

Once the transport beam and the scanODT beam overlap, the atoms can be loaded to the transport beam.

For the initial characterisation of the transport beam we run the sequence as usual and after loading the

MOT to the scanODT we ramp up the power of the transport beam before ramping down the power of

the scanODT beam and handing over the atoms. The axial trap frequencies are in the kHz range, so we

employ parametric heating measurements to characterise them. We modulate the trap power at different

5LensOptics PBC-532-HP
6LensOptics W2Z18-532
7G&H I-M110-2C10B6-3-GH26
8Built by the electronics workshop of IQOQI Innsbruck
9NKT LMA-PM-15

10Aerotech ABL 1500 with the Driver Soloist ML
11Newport UBBR2.5-1
12Thorlabs BE10-532
13Thorlabs DMSP650L
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Figure 5.3: Radial and axial trap frequencies of the transport. The radial trap frequencies are measured in parametric

heating measurements by modulating the power of the transport beam at different frequencies. The resulting

atom loss is fitted with a Gaussian function and the centre frequency is plotted against the beam power ( ). The

error is estimated by the sigma width of the Gaussian. The experimental data points are fitted by (2.9), resulting in

w0 = 19.7(3) µm. For the axial trap frequencies, the sloshing mode is measured for different powers and fitting

the data points gives zR = 1.544mm.

frequencies and measure the atom loss. The loss features appear at multiples of the trap frequency and can

be fitted with a Gaussian function. We measure the frequencies for different powers of the transport beam

and estimate the uncertainty of the frequencies from the width of the Gaussian σ . The axial frequencies

are measured by exciting the sloshing mode in the trap and measuring the displacement of the cloud in

the y-direction over time. The results can be seen in Fig. 5.3 and from fitting the measured frequencies

to Eq. (2.9) we find a waist w = 19.7(3) µm and a Rayleigh length zR = 1.5(3) mm. The discrepancy

between the waists measured inside the chamber and from the backreflection of the dichroic mirror can

have multiple reasons. As discussed before, we expect the beam to be astigmatic due to the dichroic

mirror, which increases the effective waist. Also to extract the waist of the beam from the trap frequencies,

the polarizability at the used wavelength has to be known well. However, recent measurements show a

large discrepancy to the calculated value, which still has to be investigated [361].

After characterization, we improve the initial conditions before transporting the atoms to the SiSi chamber.

In particular, we aim to load as many atoms as possible. We find that we can assist the loading from the

MOT to the ODT by additionally applying the transport beam. Fig. 5.4 shows the increase in efficiency by

about 50% of the loading when the focus is displaced 10mm along the axial direction from the centre of

the MOT. The increased efficiency is due to the fact that the transport beam is larger 10 mm away from the

focus and captures a spatially larger part of the MOT cloud as can be seen in Fig. 5.4 a.

For transport, we hand off the atoms by moving the focus of the transport beam to the atom cloud

and ramping down the scanODT power. To characterize the transport efficiency, we install a horizontal

absorption imaging setup for the Sisi chamber with λ = 421 nm light. The magnification of the system

is M = 1.976(6) and the light is sent to a CMOS camera14 with a pixel size of 2.74 × 2.74 µm. Using

TOF measurements, we have verified the magnification and have calibrated the pixel size and the atom

14Balluff BVS CA-GX2-0162AG-110120-001
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Figure 5.4: Transport beam assisted MOT to ODT loading. a) Schematic of the loading process from the MOT to the

scanODT. The atomic cloud from the MOT is larger than the trap volume of the scanODT. This is assisted by the

Transport beam where the focus position is shifted, trapping a larger volume of the MOT. b) The number of atoms

trapped in the ODT after holding for thold = 200ms for different focus positions of the transport. The atom number

is plotted for transport beam powers P = 5W ( ), P = 2W ( ) and no transport beam ( ) and the dashed line

gives the average atom number when the transport beam is off. A strong decay in atom number can be observed at

focus positions up to 5 mm from the centre. At larger distances the atom number increases rapidly exceeding that

without the transport beam, with a maximum at 10 mm displacement and an increase in atom number of 54%.

number counting.

To understand possible loss mechanisms and the limits of the transport sequence we perform a numerical

simulation of it. The acceleration profile of the stage is shown in Fig. 5.5 a. Atoms are lost from the trap

during transport, because the acceleration reduces the effective trap frequency (shown in Fig. 5.5 b) and

leads to plain evaporation. The atom loss is calculated using the model introduced in Sec. 2.2.3. During

the transport the effective trap depth changes continuously and the atom number and temperature are

calculated iteratively for different transport durations. The initial values such as atom number, temperature

and one-body loss lifetime are measured in the experiment by holding the atoms in the transport beam

for different powers for up to 5 s. The truncation parameter is set to η = 8 but changing this parameter

does not significantly change the simulation result. The simulation iteratively calculates the density in the

trap and from this the average collision time τcoll =
1

nvaσ
exp(−η) with the average velocity of the atoms

va =
√

16kBT
πm and the scattering cross section σ = 8πa2S +

32π
45 a

2
dd

. While add = 130.8 a0 is fixed for the

dysprosium atoms, the s-wave scattering length is assumed to be aS = 100 a0. The collision time gives

the time interval of atom loss. The transport efficiency Ntp/N0 comparing the atom number after the

transportNtp with the atom numberN0 held in the trap for the same time without transporting in Fig. 5.5 c.

It can be seen that for long transport durations dtr > 2, the atom number after transport in traps with

P > 1.5W approaches a transport efficiency of about 80% which agrees with the measured efficiencies.

For low power P < 1.5W the spilling effects lead to large atom losses even for transport durations

> 4 s. For these powers, the simulation greatly underestimates the atom number measured in experiment.

In addition, the minimal transport durationsT ∗
tp, at which not all atoms are lost during transport, are

expected to be lower than the actual measured minimal transport durations. These differences could

indicate thatUeff shown in Fig. 5.5 b does not accurately describe the potential depth in the experiment
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during the transport. Ueff might not be well approximated due to the astigmatism of the transport beam.

Still, for large powers, we see efficiencies comparable to transport setups in other groups [354, 355].

However, the final atom number suffers from a low one-body lifetime of τ = 2 − 3 s, which decreases

further as the power of the transport beam is increased. The short lifetime may be due to scattering of

the trap light, but further investigation should help to significantly increase the lifetime and, therefore,

the final atom number in the SiSi chamber. Simulating the system for atoms at lower temperatures at

these trap powers also promises the possibility of moving the cloud faster. Additional optical cooling

schemes could achieve this. However, a colder cloud of atoms also leads to higher densities and therefore

three-body losses could lead to additional loss. In this case, aS and L3 have to be measured during the

transport, to accurately predict atom losses due to three-body collisions. The model also assumes that

the cloud is in equilibrium, instantaneously following the movement of the trap, without being excited. In

reality, the cloud starts to slosh in the trap, leading to additional atom loss and heating.

At the time of writing this thesis, the atom number in the SiSi chamber was N = 1 × 106, which can be

improved, as the simulation shows. This concludes the first step towards the dipolar, double species

Quantum Gas Microscope and the last step of this work.
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Figure 5.5: Numerical simulation of the 164Dy atom number during the transport sequence. a) The acceleration

profile of the translation stage is shown for different transport durations tTP = 1 s (–), tTP = 2 s (- -), tTP = 3 s

(···) and tTP = 4 s (-·-). b) Shows the corresponding effective trap depths during transport. (c) Transport efficiency

Ntp/N0 for different transport beam powers P . The transport efficiency compares the atom number Ntp after

transport for a time Ttp to the atom number N0 after holding for Ttp in the static transport trap. Experimental

data is plotted as squares and the corresponding simulation is shown as solid line. The initial atom number N0,

temperatureT0 and lifetime used for the simulation are extracted from the experimental data for the static transport

trap. Other parameters used are the beam waistwr = 19.7 µm, the Rayleigh length zR = 3mm η = 8, aS = 100 a0
and add = 130.8 a0
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Conclusion

Jetzt fühlt’s sich wieder so an, als fängt es grade an

Ob ich noch was adden kann, ey, ich weiß es nicht

Ob es sich nochmal lohnt, alles sich wiederholt

Nochma’ von hier bis zum Mond, mh, entscheidet sich

Trettmann
War das schon alles (Your Love is King 3 - 2024)

The main subject of my Ph.D. thesis is to report our work on creating and studying quantised vortices in

both unmodulated dipolar condensates and supersolid phases. To the latter aim, we had first to create a

2D-SS and then rotate the state with the means of the newly developed technique of magnetostirring.

All the work presented was in close collaboration with theorists and our experimental result has shown

remarkable agreement with their simulations. Let me conclude this thesis by briefly summarising the

results.

Only a few years after the first realisations of BECs in ultracold quantum gases, quantized vortices could

already be generated in such systems. These vortices are the hallmark of the superfluid dynamics of

quantum systems and have become an intensely studied research topic.

However, until the work presented in this thesis, vortices had not yet been observed in BECs with significant

dipolar interactions. Theoretical studies have suggested that the DDI has profound effects on the structure

of individual vortices[363] as well as on the structure of the vortex lattice[239].

In the work presented, we show the that the nucleation mechanism of vortices is universal in terms of the

underlying interactions and that the DDI imposes a stripe structure to the vortex lattice. We developed the

magnetostirring technique to impart angular momentum to the dBEC, exploiting the anisotropic nature

of the DDI. We have seen that the nucleation of vortices is triggered by dynamic instabilities just as in

non-dipolar gases. On the other hand, theoretical studies show that for large tilts of the magnetic field,

the attractive part of the DDI can lead to a stabilisation of the dBEC not allowing vortices to enter to the

centre[232]. The striped structure of the vortex lattice is demonstrated by a Fourier analysis of the density

distribution which shows that the stripe structure is imposed by the direction of the tilted magnetic field.

The first observation of the supersolid state in quantum gases of magnetic atoms sparked a whole new

subfield in the study of ultracold quantum gases[120, 121, 122]. The work presented in this thesis has been

committed to the long road of experimentally probing superfluidity in the supersolid state. To this end
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we have looked at the rotational dynamics of the supersolid state. The door to this line of research was

opened by the first realization of a two-dimensional supersolid array.

Our attempt to quantitatively measure the superfluid fraction, as proposed by Leggett has been unsuc-

cessful due to the complex mode structure of 2D supersolids, which we cannot resolve in our current

experiment. Our results extend the earlier work of the group in Pisa[131], sparking a discussion on the

experimental feasibility of scissor mode measurements to extract the superfluid fraction[274, 364]. Al-

though our measurements cannot quantify the superfluid fraction, they have given us great insight into

the complex crystal dynamics of 2D supersolid arrays.

The knowledge gained from the vortex project in the dBEC allows us to successfully nucleate vortices

in the supersolid state for the first time, a hallmark signature of superfluidity. We observe a distinct

threshold behaviour of the vortex nucleation process compared to the resonance behaviour in dBECs.

Vortices are nucleated at much lower rotation due to the complex excitation spectrum of the 2D supersolid

array, where not only the quadrupole mode but also the crystal modes assist the nucleation.

The work presented in this thesis demonstrates the profound effects of long-range anisotropic DDI on

phenomena such as quantised vortices. We also provide definitive evidence for the superfluid nature of

supersolids in dipolar quantum gases, finally answering the over 50 year old question: Can a solid be

’superfluid’[81]?

This concludes the research topics of this thesis. But of course there are still many unanswered questions

left, new questions that have arisen and further directions to explore.

6.1 Outlook

I will therefore conclude this thesis by mentioning a few selected topics that may be explored within the

Erbium-Dysprosium experiment in the near future.

The "solid" character of the supersolid: The part that is defined as solid in the supersolid state is the

crystal structure observable in-situ, which is reminiscent of the crystal structure of some solids. But

it is also interesting to characterise the supersolid macroscopically, e.g. by probing its stiffness, which

would complete the paradoxical picture of this state. There is already theoretical work studying the shear

modulus of a supersolid[126, 127]. Other properties, such as energy or heat transport, or studying the study

of the speed of sound, could also provide a better understanding of the solid nature of the supersolid

and have implications for solid-state or other systems.

Simulation of glitches in neutron stars: The use of ultracold quantum gas experiments as simulators for

other strongly correlated systems is one of the driving motivations for studying such systems. Our work

on creating vortices in supersolids has inspired collaborations between the ultracold gas and neutron

star communities[365]. Simulations suggest that experimentally accessible supersolids may be a suitable

test bed for studying some phenomena related to neutron stars, such as the glitch mechanism[295]. So

far, this work is limited to theoretical studies but by further improving the experimental system such a

simulation platform could be realised experimentally.

Dipolar Quantum Gas Microscope: In part 5 I have already discussed the first technical steps towards

a dipolar double species quantum gas microscope. Quantum gas microscopy is an intensive field of
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experimental development and existing systems have already provided insights into many important

questions about strongly correlated systems, applicable to e.g. solid-state systems[301]. Populating such

a QGM with atoms with significant permanent long-range interactions opens the door to even more exotic

many-body states[321] and will allow models such as the t-J model to be tested and thus help in the

development of new materials[366]. The first implementation of such a QGM already shows promising

results and new phases of matter[324].

Mixtures of Erbium and Dysprosium: The work presented in this thesis has been exclusively about single

species experiments. However, it has already been shown that this experiment is capable of producing

heteronuclear Bose-Bose, Fermi-Fermi and Bose-Fermi mixtures[133]. Theoretical studies show that

balanced mixtures of two dipolar gases exhibit a complex ground state phase diagram, ranging from

miscible and immiscible phases to mixed supersolid-isolated domain phases[267]. These phases can be

explored experimentally by tuning the inter- and intraspecies scattering lengths.

In addition, highly unbalanced mixtures promise rich polaronic physics influenced by the DDI[367].

My work on the Erbium-Dysprosium experiment started in early 2020. The first observations of the

supersolid in magnetic atoms were only about a year old, and the world was soon about to hold its breath

for a while. Despite the unfavourable circumstances, we had very productive years with the experiment.

It was very inspiring to be part of such a young subfield of cold quantum gases and to see it evolve so

rapidly in these few years. Looking back, I feel very privileged to work with such a great team, to have a

profound impact on the research in this field, and to have discussed our results with many people around

the world. Of course, without the many collaborations along the way the works presented in this thesis

would not have been possible. Therefore I would like to thank Laurianne Chomaz (Heidelberg), Luis Santos

(Hannover), Giacomo Lamporesi (Trento) and Russell Bisset (Innsbruck) for the indispensable input, as
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[69] Victor Galitski, Gediminas Juzeliūnas, and Ian B. Spielman. Artificial gauge fields with ultracold

atoms. Physics Today, 72:38–44, 1 2019. (cited on page 3).

[70] Lincoln D Carr, David DeMille, Roman V Krems, and Jun Ye. Cold and ultracold molecules: Science,

technology and applications. New J. Phys., 11(5):055049, 2009. (cited on pages 3, 116).

[71] Sarang Gopalakrishnan, Benjamin L Lev, and Paul M Goldbart. Emergent crystallinity and frustration

with Bose–Einstein condensates in multimode cavities. Nature Physics, 5(11):845–850, oct 2009.

(cited on page 3).

[72] Thomas F. Gallagher and Pierre Pillet. Dipole–Dipole Interactions of Rydberg Atoms, pages 161–218.

2008. (cited on page 3).

[73] Axel Griesmaier, Jörg Werner, Sven Hensler, Jürgen Stuhler, and Tilman Pfau. Bose-Einstein Conden-

sation of Chromium. Phys. Rev. Lett., 94(16):160401, Apr 2005. (cited on page 3).

[74] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino. Bose-Einstein Condensa-

tion of Erbium. Phys. Rev. Lett., 108:210401, May 2012. (cited on page 3).

[75] Mingwu Lu, Nathaniel Q. Burdick, Seo Ho Youn, and Benjamin L. Lev. Strongly Dipolar Bose-Einstein

Condensate of Dysprosium. Phys. Rev. Lett., 107:190401, Oct 2011. (cited on pages 3, 119).

[76] K. Aikawa, S. Baier, A. Frisch, M. Mark, C. Ravensbergen, and F. Ferlaino. Observation of Fermi surface

deformation in a dipolar quantum gas. Science, 345(6203):1484–1487, 2014. (cited on page 3).

[77] T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister, A. Griesmaier, T. Pfau, H. Saito, Y. Kawaguchi, and

M. Ueda. d-Wave Collapse and Explosion of a Dipolar Bose-Einstein Condensate. Phys. Rev. Lett.,

101(8):080401, 2008. (cited on pages 3, 10).

[78] D. Petter, G. Natale, R. M. W. van Bijnen, A. Patscheider, M. J. Mark, L. Chomaz, and F. Ferlaino. Probing

the Roton Excitation Spectrum of a Stable Dipolar Bose Gas. Phys. Rev. Lett., 122:183401, May 2019.

(cited on pages 3, 9).

[79] AF Andreev and IM Lifshitz. Quantum Theory of Defects in Crystals. J. Exp. Theo. Phys., 56:2057, 1969.

(cited on pages 3, 13, 62, 94, 113).

133



BIBLIOGRAPHY

[80] GV Chester. Speculations on Bose-Einstein condensation and quantum crystals. Physical Review A,

2(1):256, Jul 1970. (cited on pages 3, 13, 62, 113).

[81] Anthony J Leggett. Can a solid be" superfluid"? Physical Review Letters, 25(22):1543, Nov 1970. (cited

on pages 3, 13, 13, 62, 62, 76, 76, 76, 113, 126).

[82] Adrian Cho. Reprise of First Experiment Casts Doubt on Supersolid Helium. Science, 336:661–661, 5

2012. (cited on page 4).

[83] Jun-Ru Li, Jeongwon Lee, Wujie Huang, Sean Burchesky, Boris Shteynas, Furkan Çağrı Top, Alan O

Jamison, and Wolfgang Ketterle. A stripe phase with supersolid properties in spin–orbit-coupled

Bose–Einstein condensates. Nature, 543(7643):91–94, 03 2017. (cited on page 4).

[84] Thomas M. Bersano, Junpeng Hou, Sean Mossman, Vandna Gokhroo, Xi-Wang Luo, Kuei Sun, Chuanwei

Zhang, and Peter Engels. Experimental realization of a long-lived striped Bose-Einstein condensate

induced by momentum-space hopping. Phys. Rev. A, 99:051602, May 2019. (cited on page 4).

[85] Julian Léonard, Andrea Morales, Philip Zupancic, Tilman Esslinger, and Tobias Donner. Supersolid

formation in a quantum gas breaking a continuous translational symmetry. Nature, 543(7643):87–90,

03 2017. (cited on page 4).

[86] Julian Léonard, Andrea Morales, Philip Zupancic, Tobias Donner, and Tilman Esslinger. Monitoring

and manipulating Higgs and Goldstone modes in a supersolid quantum gas. Science, 358:1415–1418,

12 2017. (cited on page 4).

[87] J L Roberts, N R Claussen, S L Cornish, E A Donley, Eric A Cornell, and C E Wieman. Controlled Collapse

of a Bose-Einstein Condensate. Phys. Rev. Lett., 86(19):4211–4214, may 2001. (cited on pages 4, 10).

[88] Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. Feshbach resonances in ultracold gases.

Rev. Mod. Phys., 82:1225–1286, Apr 2010. (cited on pages 4, 5, 5, 10, 30, 30, 158, 158, 158, 158).

[89] L. D. Landau and E. M. Lifshitz. Quantum Mechanics, vol. 3 (Course of theoretical physics). Butterworth-

Heinemann, Oxford, 1977. (cited on page 5).

[90] Jean Dalibard. Collisional dynamics of ultra-cold atomic gases. In Proceedings of the International

School of Physics-Enrico Fermi, volume 321, page 1, 1999. (cited on pages 5, 25).

[91] Lauriane Chomaz, Igor Ferrier-Barbut, Francesca Ferlaino, Bruno Laburthe-Tolra, Benjamin L Lev,

and Tilman Pfau. Dipolar physics: a review of experiments with magnetic quantum gases. Reports

on Progress in Physics, 86(2):026401, feb 2023. (cited on pages 5, 5, 6, 7, 9, 11, 14, 36, 64, 113, 117).

[92] K Aikawa, A Frisch, M Mark, S Baier, R Grimm, J L Bohn, D S Jin, G M Bruun, and F Ferlaino. Anisotropic

Relaxation Dynamics in a Dipolar Fermi Gas Driven Out of Equilibrium. Phys. Rev. Lett., 113(26):26320,

dec 2014. (cited on page 6).

[93] T Lahaye, C Menotti, L Santos, M Lewenstein, and T Pfau. The physics of dipolar bosonic quantum

gases. Reports on Progress in Physics, 72(12):126401, 2009. (cited on page 7, 7).

134



BIBLIOGRAPHY

[94] Oliver Penrose and Lars Onsager. Bose-Einstein Condensation and Liquid Helium. Phys. Rev., 104:576,

Nov 1956. (cited on pages 7, 13).

[95] Sandro Stringari and Lev Pitaevskii. Bose-Einstein condensation and superfluidity. Oxford Science

Publications, Oxford, 2016. (cited on pages 7, 8, 8, 9, 34, 36, 36, 76, 77, 79).

[96] Eugene P Gross. Structure of a quantized vortex in boson systems. Il Nuovo Cimento (1955-1965),

20(3):454–477, 1961. (cited on page 7).

[97] LP Pitaevskii. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP, 13(2):451–454, 1961. (cited on

page 7).

[98] A M Martin, N G Marchant, D H J O’Dell, and N G Parker. Vortices and vortex lattices in quantum

ferrofluids. Journal of Physics: Condensed Matter, 29(10):103004, feb 2017. (cited on pages 8, 8, 36,

37, 60).

[99] Duncan H. J. O’Dell, Stefano Giovanazzi, and Claudia Eberlein. Exact Hydrodynamics of a Trapped

Dipolar Bose-Einstein Condensate. Phys. Rev. Lett., 92:250401, Jun 2004. (cited on pages 8, 29, 43).

[100] Claudia Eberlein, Stefano Giovanazzi, and Duncan H. J. O’Dell. Exact solution of the Thomas-Fermi

equation for a trapped Bose-Einstein condensate with dipole-dipole interactions. Phys. Rev. A,

71(3):033618, Mar 2005. (cited on pages 8, 29).

[101] Jürgen Stuhler, Axel Griesmaier, Tobias Koch, Marco Fattori, and Tilman Pfau. Magnetostriction in a

degenerate quantum gas. Journal of Magnetism and Magnetic Materials, 316(2):429–432, sep 2007.

(cited on pages 8, 29).

[102] R. M. W. van Bijnen, N. G. Parker, S. J. J. M. F. Kokkelmans, A. M. Martin, and D. H. J. O’Dell. Collective

excitation frequencies and stationary states of trapped dipolar Bose-Einstein condensates in the

Thomas-Fermi regime. Phys. Rev. A, 82:033612, Sep 2010. (cited on page 8).

[103] L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein. Bose-Einstein Condensation in Trapped

Dipolar Gases. Phys. Rev. Lett., 85:1791–1794, Aug 2000. (cited on page 9).

[104] L. Chomaz, R. M. W. van Bijnen, D. Petter, G. Faraoni, S. Baier, J. H. Becher, M. J. Mark, F. Wächtler,

L. Santos, and F. Ferlaino. Observation of roton mode population in a dipolar quantum gas. Nature

Physics, 14(5):442–446, 2018. (cited on pages 9, 10).

[105] L Santos, GV Shlyapnikov, and M Lewenstein. Roton-maxon spectrum and stability of trapped

dipolar Bose-Einstein condensates. Physical Review Letters, 90(25):250403, Jun 2003. (cited on page

9).

[106] L. Landau. Theory of the superfluidity of Helium II. Phys. Rev., 60:356–358, Aug 1941. (cited on pages

9, 33).

[107] R. N. Bisset and P. B. Blakie. Crystallization of a dilute atomic dipolar condensate. Phys. Rev. A,

92:061603, Dec 2015. (cited on page 10).

135



BIBLIOGRAPHY

[108] Holger Kadau, Matthias Schmitt, Matthias Wenzel, Clarissa Wink, Thomas Maier, Igor Ferrier-Barbut,

and Tilman Pfau. Observing the Rosensweig instability of a quantum ferrofluid. Nature, 530(7589):194–

197, 02 2016. (cited on pages 10, 27).

[109] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino. Quantum-Fluctuation-

Driven Crossover from a Dilute Bose-Einstein Condensate to a Macrodroplet in a Dipolar Quantum

Fluid. Phys. Rev. X, 6(4):041039, Nov 2016. (cited on pages 10, 11, 158).

[110] Tsin D Lee, Kerson Huang, and Chen N Yang. Eigenvalues and eigenfunctions of a Bose system of

hard spheres and its low-temperature properties. Physical Review, 106(6):1135, Jun 1957. (cited on

page 10).

[111] T. D. Lee, Kerson Huang, and C. N. Yang. Eigenvalues and Eigenfunctions of a Bose System of Hard

Spheres and Its Low-Temperature Properties. Phys. Rev., 106:1135–1145, Jun 1957. (cited on page 10).

[112] Ralf Schützhold, Michael Uhlmann, Yan Xu, and Uwe Fischer. Mean-field expansion in Bose-Einstein

condensates with finite-range interactions. Int. J. Mod. Phys. B, 20(24):3555–3565, 2006. (cited on

page 10).

[113] Aristeu R. P. Lima and Axel Pelster. Quantum fluctuations in dipolar Bose gases. Phys. Rev. A,

84(4):041604, Oct 2011. (cited on page 10).

[114] A. R. P. Lima and A. Pelster. Beyond mean-field low-lying excitations of dipolar Bose gases. Phys.

Rev. A, 86(6):063609, Dec 2012. (cited on page 10).

[115] Axel Griesmaier, Jürgen Stuhler, Tobias Koch, Marco Fattori, Tilman Pfau, and Stefano Giovanazzi. Com-

paring Contact and Dipolar Interactions in a Bose-Einstein Condensate. Phys. Rev. Lett., 97(25):25040,

dec 2006. (cited on page 10).

[116] D. Baillie and P. B. Blakie. Droplet Crystal Ground States of a Dipolar Bose Gas. Phys. Rev. Lett.,

121:195301, Nov 2018. (cited on page 11).

[117] Matthias Schmitt, Matthias Wenzel, Fabian Böttcher, Igor Ferrier-Barbut, and Tilman Pfau. Self-bound

droplets of a dilute magnetic quantum liquid. Nature, 539(7628):259–262, 11 2016. (cited on page 11).

[118] J. Hertkorn, J.-N. Schmidt, M. Guo, F. Böttcher, K. S. H. Ng, S. D. Graham, P. Uerlings, T. Langen,

M. Zwierlein, and T. Pfau. Pattern formation in quantum ferrofluids: From supersolids to superglasses.

Phys. Rev. Research, 3:033125, Aug 2021. (cited on pages 11, 64).

[119] R. N. Bisset, R. M. Wilson, D. Baillie, and P. B. Blakie. Ground-state phase diagram of a dipolar

condensate with quantum fluctuations. Phys. Rev. A, 94(3):033619, Sep 2016. (cited on page 11).

[120] Fabian Böttcher, Jan-Niklas Schmidt, Matthias Wenzel, Jens Hertkorn, Mingyang Guo, Tim Langen,

and Tilman Pfau. Transient Supersolid Properties in an Array of Dipolar Quantum Droplets. Phys.

Rev. X, 9:011051, Mar 2019. (cited on pages 11, 62, 63, 125).

136



BIBLIOGRAPHY

[121] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C. Gabbanini, R. N. Bisset, L. Santos, and G. Modugno.

Observation of a Dipolar Quantum Gas with Metastable Supersolid Properties. Phys. Rev. Lett.,

122:130405, Apr 2019. (cited on pages 11, 62, 63, 125).

[122] L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C. Politi, G. Durastante, R. M. W. van Bijnen,

A. Patscheider, M. Sohmen, M. J. Mark, and F. Ferlaino. Long-Lived and Transient Supersolid Behaviors

in Dipolar Quantum Gases. Phys. Rev. X, 9:021012, Apr 2019. (cited on pages 11, 62, 63, 125, 158).

[123] Maximilian Sohmen, Claudia Politi, Lauritz Klaus, Lauriane Chomaz, Manfred J. Mark, Matthew A.

Norcia, and Francesca Ferlaino. Birth, Life, and Death of a Dipolar Supersolid. Phys. Rev. Lett.,

126:233401, Jun 2021. (cited on pages 11, 64, 65, 94).

[124] P. Ilzhöfer, M. Sohmen, G. Durastante, C. Politi, A. Trautmann, G. Natale, G. Morpurgo, T. Giamarchi,

L. Chomaz, M. J. Mark, and F. Ferlaino. Phase coherence in out-of-equilibrium supersolid states of

ultracold dipolar atoms. Nature Physics, 17(3):356–361, 2021. (cited on pages 12, 113).

[125] G Natale, RMW van Bijnen, A Patscheider, D Petter, MJ Mark, L Chomaz, and F Ferlaino. Excitation

spectrum of a trapped dipolar supersolid and its experimental evidence. Physical review letters,

123(5):050402, Aug 2019. (cited on pages 11, 13).

[126] E. Poli, D. Baillie, F. Ferlaino, and P. B. Blakie. Excitations of a two-dimensional supersolid. Physical

Review A, 110:053301, 11 2024. (cited on pages 12, 64, 94, 113, 114, 126).

[127] Pramodh Senarath Yapa and Thomas Bland. Supersonic shear waves in dipolar supersolids. 10 2024.

(cited on pages 12, 113, 126).

[128] E. M. Lifshitz and L. P. Pitaevskii. Statistical Physics, Part 2, vol. 9 (Course of theoretical physics).

Pergamon Press, Oxford, 1980. (cited on page 12).

[129] Mingyang Guo, Fabian Böttcher, Jens Hertkorn, Jan-Niklas Schmidt, Matthias Wenzel, Hans Peter

Büchler, Tim Langen, and Tilman Pfau. The low-energy Goldstone mode in a trapped dipolar

supersolid. Nature, 564:386, 2019. (cited on pages 13, 62, 64, 96, 113).

[130] L Tanzi, SM Roccuzzo, E Lucioni, F Famà, A Fioretti, C Gabbanini, G Modugno, A Recati, and S Stringari.

Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature,

574(7778):382–385, October 2019. (cited on pages 13, 96).

[131] L Tanzi, JG Maloberti, G Biagioni, A Fioretti, C Gabbanini, and G Modugno. Evidence of superfluidity

in a dipolar supersolid from nonclassical rotational inertia. Science, 371(6534):1162–1165, 2021. (cited

on pages 13, 62, 76, 76, 78, 78, 78, 80, 126).

[132] G. Biagioni, N. Antolini, B. Donelli, L. Pezzè, A. Smerzi, M. Fattori, A. Fioretti, C. Gabbanini, M. Inguscio,

L. Tanzi, and G. Modugno. Measurement of the superfluid fraction of a supersolid by Josephson

effect. Nature, 629:773–777, 5 2024. (cited on pages 13, 81, 113).

137



BIBLIOGRAPHY

[133] A. Trautmann, P. Ilzhöfer, G. Durastante, C. Politi, M. Sohmen, M. J. Mark, and F. Ferlaino. Dipolar

Quantum Mixtures of Erbium and Dysprosium Atoms. Phys. Rev. Lett., 121:213601, Nov 2018. (cited on

pages 14, 127).

[134] Albert Frisch. Dipolar quantum gases of Erbium. PhD thesis, Ph. D. thesis, University of Inssbruck,

2014. (cited on pages 15, 158).

[135] W. M. Haynes, D. R. Lide, and T. J. Bruno. Abundance of elements in the earth’s crust and in the sea.

In CRC Handbook of Chemistry and Physics, pages 14–17. CRC Press, 97th edition, 2016-2017. (cited

on page 15).

[136] S. Sugimoto. Current status and recent topics of rare-earth permanent magnets. Journal of Physics

D: Applied Physics, 44(6):064001, feb 2011. (cited on page 15).

[137] Philipp Ilzhöfer. Creation of Dipolar Quantum Mixtures of Erbium and Dysprosium. PhD thesis,

Universität Innsbruck, 2020. (cited on pages 15, 18, 18, 19, 19, 19, 20, 28, 31, 32).

[138] Seo Ho Youn, Mingwu Lu, Ushnish Ray, and Benjamin L. Lev. Dysprosium magneto-optical traps.

Phys. Rev. A, 82:043425, Oct 2010. (cited on pages 15, 17).

[139] Nathaniel Q Burdick, Yijun Tang, and Benjamin L Lev. Long-Lived Spin-Orbit-Coupled Degenerate

Dipolar Fermi Gas. Phys. Rev. X, 6(3):031022, aug 2016. (cited on page 15).

[140] Thomas Chalopin, Tanish Satoor, Alexandre Evrard, Vasiliy Makhalov, Jean Dalibard, Raphael Lopes,

and Sylvain Nascimbene. Probing chiral edge dynamics and bulk topology of a synthetic Hall system.

Nature Physics, 16(10):1017–1021, 2020. (cited on page 15).

[141] Christopher J. Foot, editor. Atomic Physics. Oxford University Press Inc., New York, 2005. (cited on

pages 15, 25, 26).

[142] J. G. Conway and B. G. Wybourne. Low-Lying Energy Levels of Lanthanide Atoms and Intermediate

Coupling. Phys. Rev., 130:2325–2332, Jun 1963. (cited on page 16).

[143] W. C. Martin, R. Zalubas, and L. Hagan. Atomic energy levels - the rare earth elements (the spectra

of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolin-

ium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium). Technical report,

NATIONAL STANDARD REFERENCE DATA SYSTEM, United States, 1978. PB–282067. (cited on page 16).

[144] Mingwu Lu, Seo Ho Youn, and Benjamin L. Lev. Spectroscopy of a narrow-line laser-cooling transition

in atomic dysprosium. Phys. Rev. A, 83:012510, 2011. (cited on page 17).

[145] Mingwu Lu, Seo Ho Youn, and Benjamin L Lev. Trapping Ultracold Dysprosium: A Highly Magnetic

Gas for Dipolar Physics. Phys. Rev. Lett., 104(6):063001–4, feb 2010. (cited on page 17).

[146] P. Ilzhöfer, G. Durastante, A. Patscheider, A. Trautmann, M. J. Mark, and F. Ferlaino. Two-species

five-beam magneto-optical trap for erbium and dysprosium. Phys. Rev. A, 97:023633, Feb 2018. (cited

on pages 17, 20).

138



BIBLIOGRAPHY

[147] Alexander Kramida, Yuri Ralchenko, Joseph Reader, and NIST ASD Team. NIST Atomic Spectra

Database, 2023. (cited on page 17).

[148] Yann Allain. Build you own Quantum Computer @ Home - 99% of discount - Hacker Style !, 2019.

(cited on page 18).

[149] Gianmaria Durastante. Creation of Erbium-Dysprosium Dipolar Quantum Mixtures and Their Inter-

species Feshbach Resonances. PhD thesis, Univeristät Innsbruck, 2020. (cited on page 18).

[150] Maximilian Sohmen. Supersolidity in Dipolar Quantum Gases in and out of Equilibrium. PhD thesis,

Universität Innsbruck, 2021. (cited on pages 18, 27, 27, 27, 28, 28, 117, 118).

[151] Claudia Politi. Many-body quantum phases of dipolar gases. PhD thesis, Universität Innsbruck,

2022. (cited on pages 18, 22, 22).

[152] Johannes Schindler. Characterization of an Erbium Atomic Beam. Master thesis, Universität Innsbruck,

2011. (cited on page 19).

[153] Benedict Franz Hochreiter. Optimisation of a spin-flip Zeeman slower and laser locking to a broad

spectral line. Master thesis, Universität Innsbruck, 2020. (cited on page 19).

[154] H. J. Metcalf and P. van der Straten. Laser cooling and trapping of atoms. Journal of the Optical

Society of America B, 20(5):887, 2003. (cited on pages 19, 19, 20).

[155] R. Maruyama, R. H. Wynar, M. V. Romalis, A. Andalkar, M. D. Swallows, C. E. Pearson, and E. N. Fortson.

Investigation of sub-Doppler cooling in an ytterbium magneto-optical trap. Physical Review A,

68(1):011403, jul 2003. (cited on page 20).

[156] Akio Kawasaki, Boris Braverman, Qinqin Yu, and Vladan Vuletic. Two-color magneto-optical trap

with small magnetic field for ytterbium. Journal of Physics B: Atomic, Molecular and Optical Physics,

48(15):155302, aug 2015. (cited on page 20).

[157] Hidetoshi Katori, Tetsuya Ido, Yoshitomo Isoya, and Makoto Kuwata-Gonokami. Magneto-optical

trapping and cooling of strontium atoms down to the photon recoil temperature. Phys. Rev. Lett.,

82:1116–1119, 1999. (cited on page 20).

[158] S. Snigirev, A. J. Park, A. Heinz, I. Bloch, and S. Blatt. Fast and dense magneto-optical traps for

strontium. Physical Review A, 99(6):063421, jun 2019. (cited on page 20).

[159] W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling. Heating by optical absorption and the

performance of interferometric gravitational-wave detectors. Phys. Rev. A, 44:7022–7036, Dec 1991.

(cited on page 22).

[160] K B Davis, M O. Mewes, and W Ketterle. An analytical model for evaporative cooling of atoms. Applied

Physics B Laser and Optics, 60(2-3):155–159, jul 1995. (cited on pages 23, 24).

139



BIBLIOGRAPHY

[161] A. Patscheider, L. Chomaz, G. Natale, D. Petter, M. J. Mark, S. Baier, B. Yang, R. R. W. Wang, J. L. Bohn,

and F. Ferlaino. Determination of the scattering length of erbium atoms. Phys. Rev. A, 105:063307,

Jun 2022. (cited on pages 24, 30, 158, 158).

[162] Rudolf Grimm, Matthias Weidemüller, and Yurii B. Ovchinnikov. Optical Dipole Traps for Neutral

Atoms. Adv. At. Mol. Opt. Phys., 42:95–170, 2000. (cited on page 24).

[163] D. E. Pritchard. Trapping and Cooling Neutral Atoms. In D. C. Lorents, W. E. Meyerhof, and J. R. Peterson,

editors, Electronic and atomic collisions : invited papers of the XIV International Conference on the

Physics of Electronic and Atomic Collisions. Elsevier, Palo Alto, 1985. (cited on page 25).

[164] V. B. Makhalov, K. A. Martiyanov, and A. V. Turlapov. Primary vacuometer based on an ultracold gas

in a shallow optical dipole trap. Metrologia, 53(6):1287–1294, dec 2016. (cited on page 25).

[165] F. Claude, L. Lafforgue, J. J. A. Houwman, M. J. Mark, and F. Ferlaino. Optical manipulation of spin

states in ultracold magnetic atoms via an inner-shell Hz transition. Physical Review Research,

6:L042016, 10 2024. (cited on page 25).

[166] F. Ferlaino, S. Knoop, M. Mark, M. Berninger, H. Schöbel, H.-C. Nägerl, and R. Grimm. Collisions

between tunable halo dimers: Exploring an elementary four-body process with identical bosons.

Phys. Rev. Lett., 101(2):023201, 2008. (cited on page 25).

[167] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Atom-Photon Interactions, Basic Processes and

Applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004. (cited on page 26).

[168] Klaus Hueck, Niclas Luick, Lennart Sobirey, Jonas Siegl, Thomas Lompe, Henning Moritz, Logan W.

Clark, and Cheng Chin. Calibrating high intensity absorption imaging of ultracold atoms. Optics

Express, 25(8):8670, apr 2017. (cited on page 26).

[169] C. C. Bradley, C. A. Sackett, and R. G. Hulet. Bose-Einstein condensation of lithium: Observation of

limited condensate number. Phys. Rev. Lett., 78:985–989, Feb 1997. (cited on page 27, 27).

[170] Steven Chu. Cold atoms and quantum control. Nature, 416(6877):206–210, mar 2002. (cited on page

29).

[171] Eddy Timmermans, Paolo Tommasini, Mahir Hussein, and Arthur Kerman. Feshbach resonances in

atomic Bose–Einstein condensates. Physics Reports, 315(1):199–230, 1999. (cited on page 30).

[172] C. J. Pethick and H. Smith. Bose-Einstein condensation in dilute gases. Cambridge University Press,

2002. (cited on pages 30, 37, 37).

[173] Gianmaria Durastante, Claudia Politi, Maximilian Sohmen, Philipp Ilzhöfer, Manfred J. Mark,

Matthew A. Norcia, and Francesca Ferlaino. Feshbach resonances in an erbium-dysprosium dipolar

mixture. Phys. Rev. A, 102:033330, Sep 2020. (cited on pages 30, 158).

[174] C. Chin, V. Vuletić, A. J. Kerman, and S. Chu. High resolution Feshbach spectroscopy of cesium. Phys.

Rev. Lett., 85:271, 2000. (cited on page 30).

140



BIBLIOGRAPHY

[175] P. J. Leo, C. J. Williams, and P. S. Julienne. Collision properties of ultracold 133Cs atoms. Phys. Rev.

Lett., 85:2721–2724, 2000. (cited on page 30).

[176] Yijun Tang, Andrew Sykes, Nathaniel Q. Burdick, John L. Bohn, and Benjamin L. Lev. s-wave scattering

lengths of the strongly dipolar bosons 162Dy and 164Dy. Phys. Rev. A, 92:022703, Aug 2015. (cited on

pages 30, 158).

[177] S. Baier, M. J. Mark, D. Petter, K. Aikawa, L. Chomaz, Z. Cai, M. Baranov, P. Zoller, and F. Ferlaino.

Extended Bose-Hubbard models with ultracold magnetic atoms. Science, 352(6282):201–205, 2016.

(cited on pages 30, 117).

[178] A De Troyer, A Van Itterbeek, and G.J Van Den Berg. Measurements on the viscosity of liquid helium

by means of the oscillating disc method. Physica, 17(1):50–62, 1951. (cited on page 33).

[179] A. C. Hollis-Hallett. Experiments with oscillating disk systems in liquid helium II. Proceedings of the

Royal Society of London. Series A. Mathematical and Physical Sciences, 210(1102):404–426, jan 1952.

(cited on page 33).

[180] R.P. Feynman. Chapter II Application of Quantum Mechanics to Liquid Helium. volume 1 of Progress

in Low Temperature Physics, pages 17–53. Elsevier, 1955. (cited on pages 33, 35).

[181] L. Onsager. Statistical hydrodynamics. Il Nuovo Cimento, 6(S2):279–287, mar 1949. (cited on pages 33,

34, 35).

[182] Edgar Hall and William Frank Vinen. The rotation of liquid helium II I. Experiments on the propagation

of second sound in uniformly rotating helium II. Proceedings of the Royal Society of London. Series

A. Mathematical and Physical Sciences, 238(1213):204–214, dec 1956. (cited on page 33).

[183] W.F. Vinen. Vortex lines in liquid helium II. Physica, 24:S13–S17, sep 1958. (cited on pages 33, 60).

[184] William Frank Vinen and David Shoenberg. The detection of single quanta of circulation in liquid

helium II. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,

260(1301):218–236, 1961. (cited on page 33).

[185] G. W. Rayfield and F. Reif. Quantized Vortex Rings in Superfluid Helium. Phys. Rev., 136:A1194–A1208,

Nov 1964. (cited on page 33).

[186] R. Doll and M. Näbauer. Experimental Proof of Magnetic Flux Quantization in a Superconducting

Ring. Physical Review Letters, 7(2):51–52, jul 1961. (cited on page 33).

[187] Bascom S. Deaver and William M. Fairbank. Experimental evidence for quantized flux in supercon-

ducting cyclinders. Physical Review Letters, 7(2):43–46, 1961. (cited on page 33).

[188] W. A. Little and R. D. Parks. Observation of Quantum Periodicity in the Transition Temperature of a

Superconducting Cylinder. Physical Review Letters, 9(1):9–12, jul 1962. (cited on page 33).

141



BIBLIOGRAPHY

[189] B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell. Vortex Precession in Bose-Einstein

Condensates: Observations with Filled and Empty Cores. Physical Review Letters, 85:2857–2860, 10

2000. (cited on page 33, 33).

[190] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. Vortex formation in a stirred Bose-Einstein

condensate. Phys. Rev. Lett., 84:806–809, Jan 2000. (cited on pages 33, 38, 38, 40).

[191] Subhasis Sinha and Yvan Castin. Dynamic Instability of a Rotating Bose-Einstein Condensate.

Physical Review Letters, 87(19):190402, oct 2001. (cited on pages 33, 38).

[192] A. Recati, F. Zambelli, and S. Stringari. Overcritical Rotation of a Trapped Bose-Einstein Condensate.

Physical Review Letters, 86(3):377–380, jan 2001. (cited on pages 33, 38).

[193] K. W. Madison, F. Chevy, V. Bretin, and J. Dalibard. Stationary states of a rotating Bose-Einstein

condensate: Routes to vortex nucleation. Phys. Rev. Lett., 86:4443–4446, May 2001. (cited on pages

33, 38, 38, 96).

[194] C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu, and W. Ketterle. Vortex Nucleation in a Stirred

Bose-Einstein Condensate. Physical Review Letters, 87(21):210402, nov 2001. (cited on pages 33, 40,

42).

[195] P. Rosenbusch, V. Bretin, and J. Dalibard. Dynamics of a Single Vortex Line in a Bose-Einstein

Condensate. Physical Review Letters, 89, 2002. (cited on page 33).

[196] P. Engels, I. Coddington, P. C. Haljan, and E. A. Cornell. Nonequilibrium Effects of Anisotropic

Compression Applied to Vortex Lattices in Bose-Einstein Condensates. Physical Review Letters,

89:1–4, 2002. (cited on pages 33, 38).

[197] V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. A. Cornell. Rapidly Rotating Bose-

Einstein Condensates in and near the Lowest Landau Level. Phys. Rev. Lett., 92:040404, Jan 2004.

(cited on pages 33, 42).

[198] Vincent Bretin, Sabine Stock, Yannick Seurin, and Jean Dalibard. Fast Rotation of a Bose-Einstein

Condensate. Physical Review Letters, 92:050403, 2 2004. (cited on pages 33, 42).

[199] V. Bretin, P. Rosenbusch, F. Chevy, G. V. Shlyapnikov, and J. Dalibard. Quadrupole Oscillation of a

Single-Vortex Bose-Einstein Condensate: Evidence for Kelvin Modes. Phys. Rev. Lett., 90:100403,

2003. (cited on pages 33, 44, 60).

[200] Richard J Fletcher, Airlia Shaffer, Cedric C Wilson, Parth B Patel, Zhenjie Yan, Valentin Crépel, Biswa-

roop Mukherjee, and Martin W Zwierlein. Geometric squeezing into the lowest Landau level. Science,

372(6548):1318–1322, 2021. (cited on page 33).

[201] Biswaroop Mukherjee, Airlia Shaffer, Parth B Patel, Zhenjie Yan, Cedric C Wilson, Valentin Crépel,

Richard J Fletcher, and Martin Zwierlein. Crystallization of bosonic quantum Hall states in a rotating

quantum gas. Nature, 601(7891):58–62, 2022. (cited on page 33).

142



BIBLIOGRAPHY

[202] Nir Navon, Alexander L. Gaunt, Robert P. Smith, and Zoran Hadzibabic. Emergence of a turbulent

cascade in a quantum gas. Nature, 539(7627):72–75, nov 2016. (cited on pages 33, 61).

[203] G. Del Pace, K. Xhani, A. Muzi Falconi, M. Fedrizzi, N. Grani, D. Hernandez Rajkov, M. Inguscio, F. Scazza,

W. J. Kwon, and G. Roati. Imprinting Persistent Currents in Tunable Fermionic Rings. Physical Review

X, 12:041037, 10 2022. (cited on pages 33, 38, 38).

[204] Guillaume Gauthier, Matthew T Reeves, Xiaoquan Yu, Ashton S Bradley, Mark A Baker, Thomas A

Bell, Halina Rubinsztein-Dunlop, Matthew J Davis, and Tyler W Neely. Giant vortex clusters in a

two-dimensional quantum fluid. Science, 364:1264–1267, 2019. (cited on pages 34, 38).

[205] Shaun P Johnstone, Andrew J Groszek, Philip T Starkey, Christopher J Billington, Tapio P Simula, and

Kristian Helmerson. Evolution of large-scale flow from turbulence in a two-dimensional superfluid.

Science, 364:1267–1271, 2019. (cited on page 34).

[206] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle. Vortices and superflu-

idity in a strongly interacting Fermi gas. Nature (London), 435(7045):1047–1051, 2005. (cited on pages

34, 35, 96).

[207] Lauritz Klaus, Thomas Bland, Elena Poli, Claudia Politi, Giacomo Lamporesi, Eva Casotti, Russell N.

Bisset, Manfred J. Mark, and Francesca Ferlaino. Observation of vortices and vortex stripes in a

dipolar condensate. Nature Physics, 18(12):1453–1458, 2022. (cited on pages 34, 37).

[208] Scott Beattie, Stuart Moulder, Richard J. Fletcher, and Zoran Hadzibabic. Persistent Currents in

Spinor Condensates. Physical Review Letters, 110(2):025301, jan 2013. (cited on pages 35, 38, 38).

[209] B. C. Mulkerin, D H J O’Dell, A. M. Martin, and N. G. Parker. Vortices in the two-dimensional dipolar

Bose gas. Journal of Physics: Conference Series, 497(1):012025, apr 2014. (cited on pages 36, 43, 60).

[210] D. H. J. O’Dell and C. Eberlein. Vortex in a trapped Bose-Einstein condensate with dipole-dipole

interactions. Phys. Rev. A, 75:013604, Jan 2007. (cited on page 37).

[211] Angela C. White, Brian P. Anderson, and Vanderlei S. Bagnato. Vortices and turbulence in trapped

atomic condensates. Proceedings of the National Academy of Sciences, 111:4719–4726, 3 2014. (cited

on page 37).

[212] Anatoly A. Svidzinsky and Alexander L. Fetter. Stability of a Vortex in a Trapped Bose-Einstein

Condensate. Physical Review Letters, 84:5919–5923, 6 2000. (cited on page 37).

[213] Lord Kelvin. On vortex atoms. Proceedings of the Royal Society of Edinburgh, 4:94–105, 1867. (cited

on page 37).

[214] F. Dalfovo and S. Stringari. Shape deformations and angular-momentum transfer in trapped Bose-

Einstein condensates. Phys. Rev. A, 63:011601, Dec 2000. (cited on page 38).

[215] P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell. Driving Bose-Einstein-Condensate Vorticity

with a Rotating Normal Cloud. Phys. Rev. Lett., 87:210403, Nov 2001. (cited on pages 38, 113).

143



BIBLIOGRAPHY

[216] T. W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis, and B. P. Anderson. Observation of Vortex Dipoles

in an Oblate Bose-Einstein Condensate. Physical Review Letters, 104:160401, 4 2010. (cited on page

38).

[217] T. W. Neely, A. S. Bradley, E. C. Samson, S. J. Rooney, E. M. Wright, K. J. H. Law, R. Carretero-González,

P. G. Kevrekidis, M. J. Davis, and B. P. Anderson. Characteristics of Two-Dimensional Quantum

Turbulence in a Compressible Superfluid. Physical Review Letters, 111:235301, 12 2013. (cited on page

38).

[218] Woo Jin Kwon, Geol Moon, Jae yoon Choi, Sang Won Seo, and Yong il Shin. Relaxation of superfluid

turbulence in highly oblate Bose-Einstein condensates. Physical Review A, 90:063627, 12 2014. (cited

on page 38).

[219] E. C. Samson, K. E. Wilson, Z. L. Newman, and B. P. Anderson. Deterministic creation, pinning, and

manipulation of quantized vortices in a Bose-Einstein condensate. Physical Review A, 93:023603, 2

2016. (cited on page 38, 38).

[220] W. J. Kwon, G. Del Pace, K. Xhani, L. Galantucci, A. Muzi Falconi, M. Inguscio, F. Scazza, and G. Roati.

Sound emission and annihilations in a programmable quantum vortex collider. Nature, 600:64–69,

12 2021. (cited on page 38).

[221] Avinash Kumar, Romain Dubessy, Thomas Badr, Camilla De Rossi, Mathieu de Goër de Herve, Laurent

Longchambon, and Hélène Perrin. Producing superfluid circulation states using phase imprinting.

Physical Review A, 97:043615, 4 2018. (cited on page 38).

[222] J. Denschlag, J.E. Simsarian, D. L. Feder, C. W. Clark, L. A. Collins, J. Cubizolles, L. Deng, E. W. Hagley,

W. P. Helmerson, K. Reinhardt, S. L. Rolston, B. I. Schneider, and W. D. Phillips. Generating solitons

by phase engineering of a Bose-Einstein condensate. Science, 287:97–101, 2000. (cited on page 38).

[223] Chad N. Weiler, Tyler W. Neely, David R. Scherer, Ashton S. Bradley, Matthew J. Davis, and Brian P.

Anderson. Spontaneous vortices in the formation of Bose-Einstein condensates. Nature, 455:948–951,

10 2008. (cited on page 38).

[224] Giacomo Lamporesi, Simone Donadello, Simone Serafini, Franco Dalfovo, and Gabriele Ferrari.

Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate. Nature Physics,

9:656–660, 2013. (cited on page 38).

[225] L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbène, J. Dalibard, and

J. Beugnon. Quench-induced supercurrents in an annular bose gas. Physical Review Letters, 113, 9

2014. (cited on page 38).

[226] L. Chomaz, L. Corman, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbène, J. Beugnon, and

J. Dalibard. Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional

Bose gas. Nat. Commun., 6:6162, 2015. (cited on page 38).

144



BIBLIOGRAPHY

[227] S. Donadello, S. Serafini, T. Bienaimé, F. Dalfovo, G. Lamporesi, and G. Ferrari. Creation and counting

of defects in a temperature-quenched Bose-Einstein condensate. Physical Review A, 94, 8 2016.

(cited on page 38).

[228] Junhong Goo, Younghoon Lim, and Y. Shin. Defect Saturation in a Rapidly Quenched Bose Gas.

Physical Review Letters, 127, 9 2021. (cited on page 38).

[229] J. P. Joule. On the effects of magnetism upon the dimensions of iron and steel bars. The London,

Edinburgh and Dublin philosophical magazine and journal of science, 30:22, 1847. (cited on page 39).

[230] NB Ekreem, AG Olabi, T Prescott, A Rafferty, and MSJ Hashmi. An overview of magnetostriction,

its use and methods to measure these properties. Journal of Materials Processing Technology,

191(1-3):96–101, 2007. (cited on page 39).

[231] Wolfgang Petrich, Michael H. Anderson, Jason R. Ensher, and Eric A. Cornell. Stable, Tightly Confining

Magnetic Trap for Evaporative Cooling of Neutral Atoms. Physical Review Letters, 74:3352–3355, 4

1995. (cited on page 39).

[232] Thomas Bland, Giacomo Lamporesi, Manfred J Mark, and Francesca Ferlaino. Vortices in dipolar

Bose-Einstein condensates. arXiv preprint arXiv:2303.13263, 2023. (cited on pages 39, 39, 40, 61, 95,

125).

[233] J. R. Abo-Shaeer, C. Raman, and W. Ketterle. Formation and Decay of Vortex Lattices in Bose-Einstein

Condensates at Finite Temperatures. Physical Review Letters, 88(7):070409, feb 2002. (cited on pages

41, 43, 44, 60).

[234] Alexei A. Abrikosov. On the Magnetic Properties of Superconductors of the Second Group. J. Exptl.

Theoret. Phys., (32):1442–1452, jun 1957. (cited on page 42).

[235] Daniel Cribier, B Jacrot, L Madhav Rao, and B Farnoux. Mise en evidence par diffraction de neutrons

d’une structure periodique du champ magnetique dans le niobium supraconducteur. Physics letters,

9(2):106–107, 1964. (cited on page 42).

[236] U. Essmann and H. Träuble. The direct observation of individual flux lines in type II superconductors.

Physics Letters A, 24(10):526–527, 1967. (cited on page 42).

[237] V. K. Tkachenko. On vortex lattices. Soviet Physics JETP, 22:1282–1286, 1966. (cited on pages 42, 60).

[238] NR Cooper, EH Rezayi, and SH Simon. Vortex lattices in rotating atomic Bose gases with dipolar

interactions. Phys. Rev. Lett., 95(20):200402, 2005. (cited on pages 43, 60).

[239] Jian Zhang and Hui Zhai. Vortex Lattices in Planar Bose-Einstein Condensates with Dipolar Interac-

tions. Phys. Rev. Lett., 95:200403, Nov 2005. (cited on pages 43, 60, 125).

[240] Yongyong Cai, Yongjun Yuan, Matthias Rosenkranz, Han Pu, and Weizhu Bao. Vortex patterns and

the critical rotational frequency in rotating dipolar Bose-Einstein condensates. Physical Review A,

98(2):023610, aug 2018. (cited on page 43).

145



BIBLIOGRAPHY

[241] N. G. Parker and D. H. J. O’Dell. Thomas-Fermi versus one- and two-dimensional regimes of a trapped

dipolar Bose-Einstein condensate. Physical Review A, 78:041601, 10 2008. (cited on page 43).

[242] Yongyong Cai, Matthias Rosenkranz, Zhen Lei, and Weizhu Bao. Mean-field regime of trapped dipolar

Bose-Einstein condensates in one and two dimensions. Physical Review A, 82:043623, 10 2010. (cited

on page 43).

[243] Emil Lundh, J.-P. Martikainen, and Kalle-Antti Suominen. Vortex nucleation in Bose-Einstein conden-

sates in time-dependent traps. Physical Review A, 67:063604, 6 2003. (cited on page 43).

[244] L.D. Landau and E.M. Lifshitz. Fluid Mechanics: Volume 6. Number Bd. 6. Butterworth-Heinemann, 2

edition, jan 1987. (cited on page 43).

[245] Sydney Goldstein. Fluid Mechanics in the First Half of this Century. Annual Review of Fluid Mechanics,

1(1):1–29, jan 1969. (cited on page 60).

[246] S. Yi and H. Pu. Vortex structures in dipolar condensates. Phys. Rev. A, 73:061602, Jun 2006. (cited

on page 60).

[247] Christopher Ticknor, Ryan M. Wilson, and John L. Bohn. Anisotropic Superfluidity in a Dipolar Bose

Gas. Phys. Rev. Lett., 106:065301, Feb 2011. (cited on page 60).

[248] B. C. Mulkerin, R. M. W. van Bijnen, D. H. J. O’Dell, A. M. Martin, and N. G. Parker. Anisotropic and

Long-Range Vortex Interactions in Two-Dimensional Dipolar Bose Gases. Phys. Rev. Lett., 111:170402,

Oct 2013. (cited on page 60).

[249] I. Coddington, P. Engels, V. Schweikhard, and E. A. Cornell. Observation of Tkachenko Oscillations in

Rapidly Rotating Bose-Einstein Condensates. Physical Review Letters, 91:100402, 9 2003. (cited on

page 60).

[250] M. Cozzini, L. P. Pitaevskii, and S. Stringari. Tkachenko Oscillations and the Compressibility of a

Rotating Bose-Einstein Condensate. Physical Review Letters, 92:220401, 6 2004. (cited on page 60).

[251] C. F. Barenghi, R. J. Donnelly, and W. F. Vinen. Friction on quantized vortices in helium II. A review.

Journal of Low Temperature Physics, 52:189–247, 8 1983. (cited on page 60).

[252] Yuan Tang, Wei Guo, Hiromichi Kobayashi, Satoshi Yui, Makoto Tsubota, and Toshiaki Kanai. Imaging

quantized vortex rings in superfluid helium to evaluate quantum dissipation. Nature Communica-

tions, 14(1):2941, may 2023. (cited on page 60).

[253] T. Bland, G. W. Stagg, L. Galantucci, A. W. Baggaley, and N. G. Parker. Quantum Ferrofluid Turbulence.

Physical Review Letters, 121(17):174501, oct 2018. (cited on page 61).

[254] Alexander L. Fetter. Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys., 81:647–691, May

2009. (cited on pages 61, 94).

146



BIBLIOGRAPHY

[255] Yifei He, Ziting Chen, Haoting Zhen, Mingchen Huang, Mithilesh K Parit, and Gyu-Boong Jo. Exploring

the Berezinskii-Kosterlitz-Thouless Transition in a Two-dimensional Dipolar Bose Gas. 2:1–14, mar

2024. (cited on page 61).

[256] P. W. Anderson. More Is Different. Science, 177(4047):393–396, 1972. (cited on page 62).

[257] Eugene P. Gross. Classical theory of boson wave fields. Annals of Physics, 4(1):57–74, may 1958. (cited

on pages 62, 113).

[258] Bertram M. Schwarzschild. The original evidence of supersolidity in helium-4 is explained away.

Physics Today, 65:19–21, 12 2012. (cited on page 62).

[259] Matthew A Norcia, Elena Poli, Claudia Politi, Lauritz Klaus, Thomas Bland, Manfred J Mark, Luis

Santos, Russell N Bisset, and Francesca Ferlaino. Can angular oscillations probe superfluidity in

dipolar supersolids? arXiv:2111.07768, 2021. (cited on page 62).

[260] Eva Casotti, Elena Poli, Lauritz Klaus, Andrea Litvinov, Clemens Ulm, Claudia Politi, Manfred J. Mark,

Thomas Bland, and Francesca Ferlaino. Observation of vortices in a dipolar supersolid. Nature,

635:327–331, 11 2024. (cited on page 62).

[261] Matthew A. Norcia, Claudia Politi, Lauritz Klaus, Elena Poli, Maximilian Sohmen, Manfred J. Mark,

Russell N. Bisset, Luis Santos, and Francesca Ferlaino. Two-dimensional supersolidity in a dipolar

quantum gas. Nature, 596(7872):357–361, Aug 2021. (cited on page 62).

[262] G. Birkl, S. Kassner, and H. Walther. Multiple-shell structures of laser-cooled 24Mg+ ions in a

quadrupole storage ring. Nature, 357:310–313, 5 1992. (cited on page 64).

[263] M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland. Ionic crystals in a linear

Paul trap. Physical Review A, 45:6493–6501, 5 1992. (cited on page 64).

[264] Shmuel Fishman, Gabriele De Chiara, Tommaso Calarco, and Giovanna Morigi. Structural phase

transitions in low-dimensional ion crystals. Phys. Rev. B, 77:064111, Feb 2008. (cited on page 64).

[265] Efrat Shimshoni, Giovanna Morigi, and Shmuel Fishman. Quantum Zigzag Transition in Ion Chains.

Phys. Rev. Lett., 106:010401, Jan 2011. (cited on page 64).

[266] E. Poli, T. Bland, C. Politi, L. Klaus, M. A. Norcia, F. Ferlaino, R. N. Bisset, and L. Santos. Maintaining

supersolidity in one and two dimensions. Phys. Rev. A, 104:063307, Dec 2021. (cited on page 64, 64).

[267] T. Bland, E. Poli, L. A. Peña Ardila, L. Santos, F. Ferlaino, and R. N. Bisset. Alternating-domain

supersolids in binary dipolar condensates. Phys. Rev. A, 106:053322, Nov 2022. (cited on pages 64,

127).

[268] J-N Schmidt, Jens Hertkorn, Mingyang Guo, Fabian Böttcher, Matthias Schmidt, Kevin SH Ng, Sean D

Graham, Tim Langen, Martin Zwierlein, and Tilman Pfau. Roton Excitations in an Oblate Dipolar

Quantum Gas. Physical Review Letters, 126(19):193002, May 2021. (cited on page 64).

147



BIBLIOGRAPHY

[269] T. Bland, E. Poli, C. Politi, L. Klaus, M. A. Norcia, F. Ferlaino, L. Santos, and R. N. Bisset. Two-Dimensional

Supersolid Formation in Dipolar Condensates. Phys. Rev. Lett., 128:195302, May 2022. (cited on pages

64, 64, 65).

[270] PB Blakie, D Baillie, L Chomaz, and F Ferlaino. Supersolidity in an elongated dipolar condensate.

Physical Review Research, 2(4):043318, Dec 2020. (cited on page 64).

[271] Giulio Biagioni, Nicolò Antolini, Aitor Alaña, Michele Modugno, Andrea Fioretti, Carlo Gabbanini,

Luca Tanzi, and Giovanni Modugno. Dimensional Crossover in the Superfluid-Supersolid Quantum

Phase Transition. Physical Review X, 12:021019, 4 2022. (cited on page 64).

[272] Alexander D. Cronin, Jörg Schmiedmayer, and David E. Pritchard. Optics and interferometry with

atoms and molecules. Reviews of Modern Physics, 81:1051–1129, 7 2009. (cited on page 65).

[273] A.J Leggett. On the Superfluid Fraction of an Arbitrary Many-Body System at T=0. J. Stat. Phys., 93:927,

1998. (cited on page 76).

[274] S. M. Roccuzzo, A. Recati, and S. Stringari. Moment of inertia and dynamical rotational response of a

supersolid dipolar gas. Physical Review A, 105:023316, 2 2022. (cited on pages 76, 76, 81, 126).

[275] SM Roccuzzo, A Gallemí, A Recati, and S Stringari. Rotating a supersolid dipolar gas. Physical review

letters, 124(4):045702, Jan 2020. (cited on pages 77, 77, 78, 95).

[276] D. Guéry-Odelin and S. Stringari. Scissors Mode and Superfluidity of a Trapped Bose-Einstein

Condensed Gas. Phys. Rev. Lett., 83:4452–4455, 1999. (cited on page 78).

[277] P. B. Wigley, P. J. Everitt, K. S. Hardman, M. R. Hush, C. H. Wei, M. A. Sooriyabandara, P. Manju, J. D.

Close, N. P. Robins, and C. C. N. Kuhn. Non-destructive shadowgraph imaging of ultra-cold atoms.

Optics Letters, 41(20):4795, oct 2016. (cited on pages 81, 114).

[278] Graham D Bruce, James Mayoh, Giuseppe Smirne, Lara Torralbo-Campo, and Donatella Cassettari.

A smooth, holographically generated ring trap for the investigation of superfluidity in ultracold

atoms. Physica Scripta, T143:014008, 2 2011. (cited on page 81).

[279] V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J.

Foot. Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator. Physical

Review A, 73:031402, 3 2006. (cited on page 81).

[280] Marija Šindik, Tomasz Zawiślak, Alessio Recati, and Sandro Stringari. Sound, Superfluidity, and Layer

Compressibility in a Ring Dipolar Supersolid. Physical Review Letters, 132:146001, 4 2024. (cited on

page 81).

[281] Francesco Ancilotto, Manuel Barranco, Martí Pi, and Luciano Reatto. Vortex properties in the

extended supersolid phase of dipolar Bose-Einstein condensates. Physical Review A, 103(3):033314,

Mar 2021. (cited on pages 94, 94, 95).

[282] Shigeyuki Ishida, Akira Iyo, Hiraku Ogino, Hiroshi Eisaki, Nao Takeshita, Kenji Kawashima, Keiichi

Yanagisawa, Yuuga Kobayashi, Koji Kimoto, Hideki Abe, Motoharu Imai, Jun ichi Shimoyama, and

148



BIBLIOGRAPHY

Michael Eisterer. Unique defect structure and advantageous vortex pinning properties in supercon-

ducting CaKF e4As4. npj Quantum Materials, 4:27, 6 2019. (cited on page 94).

[283] Elena Poli, Thomas Bland, Samuel J. M. White, Manfred J. Mark, Francesca Ferlaino, Silvia Trabucco,

and Massimo Mannarelli. Glitches in Rotating Supersolids. Physical Review Letters, 131:223401, 11

2023. (cited on pages 94, 114).

[284] Marija Šindik, Alessio Recati, Santo Maria Roccuzzo, Luis Santos, and Sandro Stringari. Creation and

robustness of quantized vortices in a dipolar supersolid when crossing the superfluid-to-supersolid

transition. Physical Review A, 106:L061303, 12 2022. (cited on page 96, 96).

[285] A Gallemí, SM Roccuzzo, S Stringari, and A Recati. Quantized vortices in dipolar supersolid Bose-

Einstein-condensed gases. Physical Review A, 102(2):023322, Aug 2020. (cited on page 96).

[286] T. Macrì, F. Maucher, F. Cinti, and T. Pohl. Elementary excitations of ultracold soft-core bosons across

the superfluid-supersolid phase transition. Phys. Rev. A, 87:061602(R), Jun 2013. (cited on page 96).

[287] F. Wächtler and L. Santos. Ground-state properties and elementary excitations of quantum droplets

in dipolar Bose-Einstein condensates. Phys. Rev. A, 94(4):043618, Oct 2016. (cited on page 113).

[288] Teruo Matsushita. Flux Pinning in Superconductors, volume 198. Springer International Publishing,

3 edition, 2022. (cited on page 113).

[289] D. Dew-Hughes. Flux pinning mechanisms in type II superconductors. The Philosophical Magazine:

A Journal of Theoretical Experimental and Applied Physics, 30(2):293–305, 1974. (cited on page 113).

[290] Leticia Tarruell and Laurent Sanchez-Palencia. Quantum simulation of the Hubbard model with

ultracold fermions in optical lattices. Comptes Rendus. Physique, 19:365–393, 9 2018. (cited on page

113).

[291] Julian Léonard, Sooshin Kim, Joyce Kwan, Perrin Segura, Fabian Grusdt, Cécile Repellin, Nathan

Goldman, and Markus Greiner. Realization of a fractional quantum Hall state with ultracold atoms.

Nature, 619:495–499, 7 2023. (cited on page 113).

[292] J. M. Lattimer and M. Prakash. The Physics of Neutron Stars. Science, 304:536–542, 4 2004. (cited on

page 113).

[293] J. M. Lattimer and M. Prakash. Neutron Star Structure and the Equation of State. The Astrophysical

Journal, 550:426–442, 3 2001. (cited on page 113).

[294] Malvin Ruderman, Tianhua Zhu, and Kaiyou Chen. Neutron Star Magnetic Field Evolution, Crust

Movement, and Glitches. The Astrophysical Journal, 492:267–280, 1 1998. (cited on page 113).

[295] J. R. Fuentes, C. M. Espinoza, A. Reisenegger, B. Shaw, B. W. Stappers, and A. G. Lyne. The glitch

activity of neutron stars. Astronomy & Astrophysics, 608:A131, 12 2017. (cited on pages 113, 126).

[296] Rainer Blatt and Christian F Roos. Quantum simulations with trapped ions. Nature Physics, 8(4):27,

2012. (cited on page 115).

149



BIBLIOGRAPHY

[297] I. Pogorelov, T. Feldker, Ch. D. Marciniak, L. Postler, G. Jacob, O. Krieglsteiner, V. Podlesnic, M. Meth,

V. Negnevitsky, M. Stadler, B. Höfer, C. Wächter, K. Lakhmanskiy, R. Blatt, P. Schindler, and T. Monz.

Compact Ion-Trap Quantum Computing Demonstrator. PRX Quantum, 2:020343, 6 2021. (cited on

page 115).

[298] Jwo-Sy Chen, Erik Nielsen, Matthew Ebert, Volkan Inlek, Kenneth Wright, Vandiver Chaplin, Andrii

Maksymov, Eduardo Páez, Amrit Poudel, Peter Maunz, and John Gamble. Benchmarking a trapped-ion

quantum computer with 30 qubits. Quantum, 8:1516, 11 2024. (cited on page 115).

[299] H.C. Nägerl, Ch. Roos, H. Rohde, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt. Addressing

and Cooling of Single Ions in Paul Traps. Fortschritte der Physik, 48:623–636, 5 2000. (cited on page

115).

[300] N. M. Linke, D. T. C. Allcock, D. J. Szwer, C. J. Ballance, T. P. Harty, H. A. Janacek, D. N. Stacey, A. M.

Steane, and D. M. Lucas. Background-free detection of trapped ions. Applied Physics B, 107:1175–1180,

6 2012. (cited on page 115).

[301] Christian Gross and Waseem S. Bakr. Quantum gas microscopy for single atom and spin detection.

Nature Physics, 17:1316–1323, 12 2021. (cited on pages 115, 127).

[302] Richard P. Feynman. Quantum mechanical computers. Foundations of Physics, 16:507–531, 6 1986.

(cited on page 115).

[303] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S. Folling, L. Pollet, and M. Greiner. Probing

the Superfluid-to-Mott Insulator Transition at the Single-Atom Level. Science, 329(5991):547–550,

2010. (cited on page 116).

[304] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and Kuhr S. Single-atom-resolved

fluorescence imaging of an atomic Mott insulator. Nature, 467:68, 2010. (cited on page 116).

[305] Philipp M. Preiss, Ruichao Ma, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Philip Zupancic, Yoav

Lahini, Rajibul Islam, and Markus Greiner. Strongly correlated quantum walks in optical lattices.

Science, 347:1229–1233, 3 2015. (cited on page 116).

[306] Rajibul Islam, Ruichao Ma, Philipp M. Preiss, M. Eric Tai, Alexander Lukin, Matthew Rispoli, and Markus

Greiner. Measuring entanglement entropy in a quantum many-body system. Nature, 528:77–83, 12

2015. (cited on page 116).

[307] Adam M. Kaufman, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko, Philipp M. Preiss,

and Markus Greiner. Quantum thermalization through entanglement in an isolated many-body

system. Science, 353(6301):794–800, 2016. (cited on page 116).

[308] Alexander Lukin, Matthew Rispoli, Robert Schittko, M. Eric Tai, Adam M. Kaufman, Soonwon

Choi, Vedika Khemani, Julian Léonard, and Markus Greiner. Probing entanglement in a many-

body–localized system. Science, 364:256–260, 4 2019. (cited on page 116).

150



BIBLIOGRAPHY

[309] Matthew Rispoli, Alexander Lukin, Robert Schittko, Sooshin Kim, M. Eric Tai, Julian Léonard, and

Markus Greiner. Quantum critical behaviour at the many-body localization transition. Nature,

573:385–389, 9 2019. (cited on page 116).

[310] Julian F. Wienand, Simon Karch, Alexander Impertro, Christian Schweizer, Ewan McCulloch, Romain

Vasseur, Sarang Gopalakrishnan, Monika Aidelsburger, and Immanuel Bloch. Emergence of fluctuat-

ing hydrodynamics in chaotic quantum systems. Nature Physics, 20:1732–1737, 11 2024. (cited on

page 116).

[311] Takeshi Fukuhara, Adrian Kantian, Manuel Endres, Marc Cheneau, Peter Schauß, Sebastian Hild,

David Bellem, Ulrich Schollwöck, Thierry Giamarchi, Christian Gross, Immanuel Bloch, and Stefan

Kuhr. Quantum dynamics of a mobile spin impurity. Nature Physics, 9:235–241, 4 2013. (cited on page

116).

[312] An Luo, Yong-Guang Zheng, Wei-Yong Zhang, Ming-Gen He, Ying-Chao Shen, Zi-Hang Zhu, Zhen-Sheng

Yuan, and Jian-Wei Pan. Microscopic Study on Superexchange Dynamics of Composite Spin-1 Bosons.

Physical Review Letters, 133:043401, 7 2024. (cited on page 116).

[313] Daniel Greif, Maxwell F. Parsons, Anton Mazurenko, Christie S. Chiu, Sebastian Blatt, Florian Huber,

Geoffrey Ji, and Markus Greiner. Site-resolved imaging of a fermionic Mott insulator. Science,

351:953–957, 2 2016. (cited on page 116).

[314] Lawrence W. Cheuk, Matthew A. Nichols, Katherine R. Lawrence, Melih Okan, Hao Zhang, and Martin W.

Zwierlein. Observation of 2D Fermionic Mott Insulators of K40 with Single-Site Resolution. Physical

Review Letters, 116:235301, 6 2016. (cited on page 116).

[315] Takeshi Fukuhara, Peter Schauß, Manuel Endres, Sebastian Hild, Marc Cheneau, Immanuel Bloch,

and Christian Gross. Microscopic observation of magnon bound states and their dynamics. Nature,

502(7469):7, 2013. (cited on page 116).

[316] Joannis Koepsell, Jayadev Vijayan, Pimonpan Sompet, Fabian Grusdt, Timon A. Hilker, Eugene Demler,

Guillaume Salomon, Immanuel Bloch, and Christian Gross. Imaging magnetic polarons in the doped

Fermi–Hubbard model. Nature, 572:358–362, 8 2019. (cited on page 116).

[317] Lawrence W. Cheuk, Matthew A. Nichols, Katherine R. Lawrence, Melih Okan, Hao Zhang, Ehsan

Khatami, Nandini Trivedi, Thereza Paiva, Marcos Rigol, and Martin W. Zwierlein. Observation of

spatial charge and spin correlations in the 2D Fermi-Hubbard model. Science, 353(6305):1260–1264,

2016. (cited on page 116).

[318] Maxwell F. Parsons, Anton Mazurenko, Christie S. Chiu, Geoffrey Ji, Daniel Greif, and Markus Greiner.

Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model. Science,

353(6305):1253–1256, 2016. (cited on page 116).

[319] Martin Boll, Timon A. Hilker, Guillaume Salomon, Ahmed Omran, Jacopo Nespolo, Lode Pollet,

Immanuel Bloch, and Christian Gross. Spin- and density-resolved microscopy of antiferromagnetic

correlations in Fermi-Hubbard chains. Science, 353(6305):1257–1260, 2016. (cited on page 116).

151



BIBLIOGRAPHY

[320] Peter T. Brown, Debayan Mitra, Elmer Guardado-Sanchez, Peter Schauß, Stanimir S. Kondov, Ehsan

Khatami, Thereza Paiva, Nandini Trivedi, David A. Huse, and Waseem S. Bakr. Spin-imbalance in a 2D

Fermi-Hubbard system. Science, 357:1385–1388, 9 2017. (cited on page 116).

[321] C Trefzger, C Menotti, B Capogrosso-Sansone, and M Lewenstein. Ultracold dipolar gases in optical

lattices. Journal of Physics B: Atomic, Molecular and Optical Physics, 44(19):193001, 2011. (cited on

pages 116, 127).

[322] Jason S. Rosenberg, Lysander Christakis, Elmer Guardado-Sanchez, Zoe Z. Yan, and Waseem S.

Bakr. Observation of the Hanbury Brown–Twiss effect with ultracold molecules. Nature Physics,

18:1062–1066, 9 2022. (cited on pages 116, 116, 117).

[323] Lysander Christakis, Jason S. Rosenberg, Ravin Raj, Sungjae Chi, Alan Morningstar, David A. Huse,

Zoe Z. Yan, and Waseem S. Bakr. Probing site-resolved correlations in a spin system of ultracold

molecules. Nature, 614:64–69, 2 2023. (cited on page 116).

[324] Lin Su, Alexander Douglas, Michal Szurek, Robin Groth, S. Furkan Ozturk, Aaron Krahn, Anne H.

Hébert, Gregory A. Phelps, Sepehr Ebadi, Susannah Dickerson, Francesca Ferlaino, Ognjen Marković,

and Markus Greiner. Dipolar quantum solids emerging in a Hubbard quantum simulator. Nature,

622:724–729, 10 2023. (cited on pages 116, 117, 127).

[325] J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl.

An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat.

Phys., 6:26, 2010. (cited on page 116).

[326] M. A. Baranov, M. Dalmonte, G. Pupillo, and P. Zoller. Condensed Matter Theory of Dipolar Quantum

Gases. Chemical Reviews, 112(9):5012–5061, Sep 2012. PMID: 22877362. (cited on page 117).

[327] Omjyoti Dutta, Mariusz Gajda, Philipp Hauke, Maciej Lewenstein, Dirk-Sören Lühmann, Boris A

Malomed, Tomasz Sowiński, and Jakub Zakrzewski. Non-standard Hubbard models in optical lattices:

a review. Reports on Progress in Physics, 78(6):066001, 2015. (cited on page 117).

[328] B. Capogrosso-Sansone, C. Trefzger, M. Lewenstein, P. Zoller, and G. Pupillo. Quantum phases of cold

polar molecules in 2D optical lattices. Phys. Rev. Lett., 104(12):125301, Mar 2010. (cited on page 117).

[329] G. G. Batrouni, R. T. Scalettar, V. G. Rousseau, and B. Grémaud. Competing Supersolid and Haldane

Insulator Phases in the Extended One-Dimensional Bosonic Hubbard Model. Physical Review Letters,

110:265303, 6 2013. (cited on page 117).

[330] Luca Barbiero, Arianna Montorsi, and Marco Roncaglia. How hidden orders generate gaps in one-

dimensional fermionic systems. Physical Review B, 88:035109, 7 2013. (cited on page 117).

[331] Bo Yan, Steven A. Moses, Bryce Gadway, Jacob P. Covey, Kaden R. A. Hazzard, Ana Maria Rey, Deborah S.

Jin, and Jun Ye. Observation of dipolar spin-exchange interactions with lattice-confined polar

molecules. Nature, 501:521–525, 2013. (cited on page 117).

152



BIBLIOGRAPHY

[332] Chen Cheng, Bin-Bin Mao, Fu-Zhou Chen, and Hong-Gang Luo. Phase diagram of the one-dimensional

t-J model with long-range dipolar interactions. EPL (Europhysics Letters), 110:37002, 5 2015. (cited

on page 117).

[333] Masao Ogata and Hidetoshi Fukuyama. The t–J model for the oxide high-Tc superconductors. Reports

on Progress in Physics, 71:036501, 3 2008. (cited on page 117).

[334] Sarang Gopalakrishnan, Benjamin L. Lev, and Paul M. Goldbart. Frustration and Glassiness in Spin

Models with Cavity-Mediated Interactions. Physical Review Letters, 107:277201, 12 2011. (cited on

page 117).

[335] Alexey V. Gorshkov, Salvatore R. Manmana, Gang Chen, Eugene Demler, Mikhail D. Lukin, and Ana Maria

Rey. Quantum magnetism with polar alkali-metal dimers. Phys. Rev. A, 84:033619, Sep 2011. (cited

on page 117).

[336] Jonathan Simon, Waseem S. Bakr, Ruichao Ma, M. Eric Tai, Philipp M. Preiss, and Markus Greiner.

Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature, 472:307–312, 4

2011. (cited on page 117).

[337] R. Islam, C. Senko, W. C. Campbell, S. Korenblit, J. Smith, A. Lee, E. E. Edwards, C.-C. J. Wang, J. K.

Freericks, and C. Monroe. Emergence and Frustration of Magnetism with Variable-Range Interactions

in a Quantum Simulator. Science, 340:583–587, 5 2013. (cited on page 117).

[338] N. Y. Yao, M. P. Zaletel, D. M. Stamper-Kurn, and A. Vishwanath. A quantum dipolar spin liquid. Nature

Physics, 14:405–410, 4 2018. (cited on page 117).

[339] Ahmet Keleş, Erhai Zhao, and W. Vincent Liu. Scrambling dynamics and many-body chaos in a

random dipolar spin model. Physical Review A, 99:053620, 5 2019. (cited on page 117).

[340] Steven A Moses, Jacob P Covey, Matthew T Miecnikowski, Bo Yan, Bryce Gadway, Jun Ye, and Deborah S

Jin. Creation of a low-entropy quantum gas of polar molecules in an optical lattice. Science,

350(6261):659–662, nov 2015. (cited on page 117).

[341] Andrzej Syrwid, Emil Blomquist, and Egor Babaev. Dissipationless Vector Drag—Superfluid Spin Hall

Effect. Physical Review Letters, 127:100403, 8 2021. (cited on page 117).

[342] Pochung Chen and Min-Fong Yang. Quantum phase transitions in a two-species hard-core boson

Hubbard model in two dimensions. Physical Review B, 82:180510, 11 2010. (cited on page 117).

[343] Yongqiang Li, Liang He, and Walter Hofstetter. Anisotropic pair superfluidity of trapped two-

component Bose gases in an optical lattice. New Journal of Physics, 15:093028, 9 2013. (cited on

page 117).

[344] Rukmani Bai, Deepak Gaur, Hrushikesh Sable, Soumik Bandyopadhyay, K. Suthar, and D. Angom. Seg-

regated quantum phases of dipolar bosonic mixtures in two-dimensional optical lattices. Physical

Review A, 102:043309, 10 2020. (cited on page 117).

153



BIBLIOGRAPHY

[345] Thomas Bilitewski, G. A. Domínguez-Castro, David Wellnitz, Ana Maria Rey, and Luis Santos. Tunable

momentum pair creation of spin excitations in dipolar bilayers. Physical Review A, 108:013313, 7

2023. (cited on page 117).

[346] Shraddha Anand, Conor E. Bradley, Ryan White, Vikram Ramesh, Kevin Singh, and Hannes Bernien. A

dual-species Rydberg array. Nature Physics, 20:1744–1750, 11 2024. (cited on page 117).

[347] Maximilian Sohmen, Manfred J. Mark, Markus Greiner, and Francesca Ferlaino. A ship-in-a-bottle

quantum gas microscope setup for magnetic mixtures. SciPost Physics, 15:182, 11 2023. (cited on

page 117).

[348] W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel. Bose–Einstein condensation on a microelec-

tronic chip. Nature, 413:498–501, 10 2001. (cited on page 118).

[349] W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch. Magnetic Conveyor Belt for Transporting and

Merging Trapped Atom Clouds. Physical Review Letters, 86:608–611, 1 2001. (cited on page 118).

[350] Markus Greiner, Immanuel Bloch, Theodor W. Hänsch, and Tilman Esslinger. Magnetic transport of

trapped cold atoms over a large distance. Physical Review A, 63:031401, 2 2001. (cited on page 118).

[351] Stefan Minniberger, Fritz Diorico, Stefan Haslinger, Christoph Hufnagel, Christian Novotny, Nils

Lippok, Johannes Majer, Christian Koller, Stephan Schneider, and Jörg Schmiedmayer. Magnetic

conveyor belt transport of ultracold atoms to a superconducting atomchip. Applied Physics B,

116:1017–1021, 9 2014. (cited on page 118).

[352] H J Lewandowski, D M Harber, D L Whitaker, and E A Cornell. Simplified System for Creating a

Bose-Einstein Condensate. Journal of Low Temperature Physics, 132, 2003. (cited on page 118).

[353] S. Händel, A. L. Marchant, T. P. Wiles, S. A. Hopkins, and S. L. Cornish. Magnetic transport apparatus

for the production of ultracold atomic gases in the vicinity of a dielectric surface. Review of Scientific

Instruments, 83, 1 2012. (cited on page 118).

[354] M. Miranda, A. Nakamoto, Y. Okuyama, A. Noguchi, M. Ueda, and M. Kozuma. All-optical transport

and compression of ytterbium atoms into the surface of a solid immersion lens. Physical Review A,

86:063615, 12 2012. (cited on pages 118, 118, 123).

[355] Matthias Wenzel. A dysprosium quantum gas in highly controllable optical traps. PhD thesis, 3 2015.

(cited on pages 118, 118, 123).

[356] Till Klostermann, Cesar R. Cabrera, Hendrik von Raven, Julian F. Wienand, Christian Schweizer,

Immanuel Bloch, and Monika Aidelsburger. Fast long-distance transport of cold cesium atoms.

Physical Review A, 105:043319, 4 2022. (cited on page 118).

[357] Alex J. Matthies, Jonathan M. Mortlock, Lewis A. McArd, Adarsh P. Raghuram, Andrew D. Innes, Philip D.

Gregory, Sarah L. Bromley, and Simon L. Cornish. Long-distance optical-conveyor-belt transport of

ultracold Cs133 and Rb87 atoms. Physical Review A, 109:023321, 2 2024. (cited on page 118).

154



BIBLIOGRAPHY

[358] Julian Léonard, Moonjoo Lee, Andrea Morales, Thomas M Karg, Tilman Esslinger, and Tobias Donner.

Optical transport and manipulation of an ultracold atomic cloud using focus-tunable lenses. New

Journal of Physics, 16:093028, 9 2014. (cited on page 118).

[359] G. Unnikrishnan, C. Beulenkamp, D. Zhang, K. P. Zamarski, M. Landini, and H.-C. Nägerl. Long distance

optical transport of ultracold atoms: A compact setup using a Moiré lens. Review of Scientific

Instruments, 92, 6 2021. (cited on page 118).

[360] Yicheng Bao, Scarlett S Yu, Loïc Anderegg, Sean Burchesky, Derick Gonzalez-Acevedo, Eunmi Chae,

Wolfgang Ketterle, Kang-Kuen Ni, and John M Doyle. Fast optical transport of ultracold molecules

over long distances. New Journal of Physics, 24:093028, 9 2022. (cited on page 118).

[361] Damien Bloch, Britton Hofer, Sam R. Cohen, Maxence Lepers, Antoine Browaeys, and Igor Ferrier-

Barbut. Anisotropic polarizability of Dy at 532 nm on the intercombination transition. Physical

Review A, 110:033103, 9 2024. (cited on pages 119, 121).

[362] Claudia Politi. Optical dipole trap for an erbium and dysprosium mixture. Master’s thesis, 2017.

(cited on page 119).

[363] M. Abad, M. Guilleumas, R. Mayol, M. Pi, and D. M. Jezek. Vortices in Bose-Einstein condensates with

dominant dipolar interactions. Physical Review A - Atomic, Molecular, and Optical Physics, 79, 6

2009. (cited on page 125).

[364] Alessio Recati and Sandro Stringari. Supersolidity in ultracold dipolar gases. Nature Reviews Physics,

5:735–743, 10 2023. (cited on page 126).

[365] Thomas Bland, Francesca Ferlaino, Massimo Mannarelli, Elena Poli, and Silvia Trabucco. Exploring

Pulsar Glitches with Dipolar Supersolids. Few-Body Systems, 65:81, 8 2024. (cited on page 126).

[366] Annette N. Carroll, Henrik Hirzler, Calder Miller, David Wellnitz, Sean R. Muleady, Junyu Lin, Krzysztof P.

Zamarski, Reuben R. W. Wang, John L. Bohn, Ana Maria Rey, and Jun Ye. Observation of Generalized

t-J Spin Dynamics with Tunable Dipolar Interactions. 4 2024. (cited on page 127).

[367] Ben Kain and Hong Y. Ling. Polarons in a dipolar condensate. Phys. Rev. A, 89:023612, Feb 2014.

(cited on page 127).

[368] P. O. Fedichev, M. W. Reynolds, and G. V. Shlyapnikov. Three-Body recombination of ultracold atoms

to a weakly bound s level. Phys. Rev. Lett., 77:2921–2924, 1996. (cited on page 158).

[369] Tino Weber, Jens Herbig, Michael Mark, Hanns-Christoph Nägerl, and Rudolf Grimm. Three-body

recombination at large scattering lengths in an ultracold atomic gas. Phys. Rev. Lett., 91, 2003. (cited

on page 158).

[370] E. Braaten and H.-W. Hammer. Universality in few-body systems with large scattering length. Phys.

Rep., 428:259–390, 2006. (cited on page 158).

155



BIBLIOGRAPHY

[371] Milan Krstajić, Péter Juhász, Jiří Kučera, Lucas R. Hofer, Gavin Lamb, Anna L. Marchant, and Robert P.

Smith. Characterization of three-body loss in {166}E r and optimized production of large Bose-

Einstein condensates. Physical Review A, 108:063301, 12 2023. (cited on page 158).

[372] T. Maier, H. Kadau, M. Schmitt, M. Wenzel, I. Ferrier-Barbut, T. Pfau, A. Frisch, S. Baier, K. Aikawa,

L. Chomaz, M. J. Mark, F. Ferlaino, C. Makrides, E. Tiesinga, A. Petrov, and S. Kotochigova. Emergence

of Chaotic Scattering in Ultracold Er and Dy. Phys. Rev. X, 5:041029, Nov 2015. (cited on page 158).

[373] Y. Tang, A. G. Sykes, N. Q. Burdick, J. M. DiSciacca, D. S. Petrov, and B. L. Lev. Anisotropic Expansion of

a Thermal Dipolar Bose Gas. Phys. Rev. Lett., 117:155301, Oct 2016. (cited on page 158).

[374] E. Lucioni, L. Tanzi, A. Fregosi, J. Catani, S. Gozzini, M. Inguscio, A. Fioretti, C. Gabbanini, and G. Mod-

ugno. Dysprosium dipolar Bose-Einstein condensate with broad Feshbach resonances. Phys. Rev. A,

97:060701, Jun 2018. (cited on page 158).

[375] Fabian Böttcher, Matthias Wenzel, Jan-Niklas Schmidt, Mingyang Guo, Tim Langen, Igor Ferrier-

Barbut, Tilman Pfau, Raúl Bombín, Joan Sánchez-Baena, Jordi Boronat, and Ferran Mazzanti. Dilute

dipolar quantum droplets beyond the extended Gross-Pitaevskii equation. Phys. Rev. Research,

1:033088, Nov 2019. (cited on page 158).

[376] S. Baier, D. Petter, J. H. Becher, A. Patscheider, G. Natale, L. Chomaz, M. J. Mark, and F. Ferlaino.

Realization of a Strongly Interacting Fermi Gas of Dipolar Atoms. Phys. Rev. Lett., 121:093602, Aug

2018. (cited on page 158).

[377] C. Politi, A. Trautmann, P. Ilzhöfer, G. Durastante, M. J. Mark, M. Modugno, and F. Ferlaino. Interspecies

interactions in an ultracold dipolar mixture. Phys. Rev. A, 105:023304, Feb 2022. (cited on page 158).

156



Appendix

157



AppendixA
Feshbach resonances for 164Dy and 162Dy

As discussed in Sec. 2.2.5 the exact value of the magnetic field is important to know the interaction length

between the atoms as. In addition to a constant background abg, as varies in the vicinity of Feshbach

resonances (FBR)[88] where it actually goes through a pole. FBRs are typically detected as loss resonances

in the atom number as three-body recombination scales with ∝ a4s [368, 369, 370].

In this process, two atoms form a bound state and collide with a third particle, inducing a relaxation into

a more deeply bound molecule. The binding energy gets released as kinetic energy large enough so that

all three atoms are ejected from the trap. The corresponding loss rate can be written as [88]

¤N3B (t ) = −
∫
V
L3n

3(r, t )d 3r (A.1)

where L3 is the three-body loss coefficient, which has to be measured and depends on the temperature

of the sample [371] and on the few-body details of the collision [88]. This loss is seen in spectroscopy as

shown in Fig. 2.9 and A.1-A.4. Here we evaporate the atoms to a temperature of T ≈ 400 nK (Fig. A.1-A.3)

or T ≈ 2µK (Fig. A.4) before ramping/quenching1 the magnetic field to the final value B and holding the

cloud at this field for thold = 300ms.

By fitting a Gaussian to the peaks, the central position and the width of the loss feature can be defined.

Combining this data with coupled channel calculations, this can give a very accurate determination of

the scattering length for a given magnetic field [88], but in our case, the complex scattering properties of

lanthanides do not allow an accurate coupled-channel modelling to calculate as [134, 372, 173]. For example,

the scattering length of dysprosium around 5 G has been experimentally studied by different groups with

significant differences of as(B) [176, 373, 374, 375]. Other techniques to determine the scattering length

are cross thermalisation measurements [161], lattice modulation spectroscopy [109, 376, 161] or the study

of interactions between mixtures [377]. In the context of this thesis we approximate the scattering length

at the magnetic fields used in the included papers by experimentally measuring the in-situ ground state

of the degenerate gas and compare it to eGPE simulations with the same parameters as trap frequencies

and atom number and the only free parameter being the scattering length, which allows precisions of

∆a0 < ±2 a0 since the supersolid phase is usually very narrow as can be seen, for example, in [122].

1The quenching time of the magnetic field is limited by the inductance of the coils and is on the order of ≈ 10 µs for the coils

used in the experiment.
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Figure A.1: Atom-loss spectroscopy of 164Dy between B = 18.1 − 18.5 G. For the spectroscopy the atoms are

evaporated at Bevap = 19.5 G down toT ≈ 400 nK before the magnetic field is quenched to the final value B and

held for thold = 300ms. The different colours indicate if the corresponding ground state after condensation is

modulated ( ) or not condensed/assigned ( ). The atom number is averaged over 3-4 repetitions and normalised to

the maximum average atom number measured in the range B = 16.5 − 23.5 G. The error bars show the standard

error. (Top/Bottom) Single shot images showing the corresponding ground state at this field. Here, the atoms are

evaporated to condensation at the final magnetic field B and held for thold = 100ms to ensure, that the quantum

gas is in its ground state. Images are shown for B = [18.10, 18.16, 18.24, 18.30, 18.34, 18.40, 18.44, 18.50] G.
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Figure A.2: Atom-loss spectroscopy of 164Dy between B = 19.1 − 19.5 G. For the spectroscopy the atoms are

evaporated at Bevap = 19.5G down toT ≈ 400 nK before the magnetic field is quenched to the final value B and

held for thold = 300ms. The different colours indicate if the corresponding ground state after condensation is

modulated ( ) or not condensed/assigned ( ). The atom number is averaged over 3-4 repetitions and normalised to

the maximum average atom number measured in the range B = 16.5 − 23.5 G. The error bars show the standard

error. (Top/Bottom) Single shot images showing the corresponding ground state at this field. Here, the atoms are

evaporated to condensation at the final magnetic field B and held for thold = 100ms to ensure, that the quantum

gas is in its ground state. Images are shown for B = [19.10, 19.14, 19.24, 19.28, 19.30, 19.36, 19.42, 19.50] G.
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Figure A.3: Atom-loss spectroscopy of 164Dy between B = 23.0 − 23.4 G. For the spectroscopy the atoms are

evaporated at Bevap = 19.5 G down toT ≈ 400 nK before the magnetic field is quenched to the final value B and

held for thold = 300ms. The different colours indicate if the corresponding ground state after condensation is

modulated ( ) or not condensed/assigned ( ). The atom number is averaged over 3-4 repetitions and normalised to

the maximum average atom number measured in the range B = 16.5 − 23.5 G. The error bars show the standard

error. (Top/Bottom) Single shot images showing the corresponding ground state at this field. Here, the atoms are

evaporated to condensation at the final magnetic field B and held for thold = 100ms to ensure, that the quantum

gas is in its ground state. Images are shown for B = [23.00, 23.08, 23.14, 23.20, 23.26, 23.32, 23.36, 23.40] G.
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Figure A.4: Atom-loss spectroscopy of 162Dy between B = 4.9 − 5.5 G. For the spectroscopy the atoms are

evaporated at Bevap = 2.48 G down toT ≈ 2 µK before the magnetic field is ramped to the final value B over a

ramptime t ramp = 10ms and held for thold = 300ms. The different colours indicate if the corresponding ground

state after condensation is modulated ( ) or not condensed/assigned ( ). The atom number is averaged over

3-4 repetitions and normalised to the maximum average atom number. The error bars show the standard error.

(Top) Single shot images showing the corresponding ground state at this field. Here, the atoms are evaporated to

condensation at B = 5 G and ramped to the final magnetic field B for t ramp = 1ms and held for thold = 100ms to

ensure, that the quantum gas is in its ground state. Images are shown for B = [5.20, 5.32, 5.34, 5.40] G.
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AppendixB
Magnetic Field calibration

As discussed in Sec. 2.2.5, our experiments depend heavily on accurate knowledge of our magnetic fields.

The most precise probe we have for calibrating the magnetic field are our atoms. We use two different

methods to calibrate the coils: Radio-frequency (RF) spectroscopy and Atom-loss spectroscopy around

Feshbach resonances.

Atom-Loss spectroscopy has already been described in Sec. A. We can take advantage of the fact that

we have a large spectrum of many very narrow resonances of ∆B < 100mG, and by knowing the exact

positions of these Feshbach resonances we can calibrate our magnetic field coils.

The RF spectroscopy method does not require prior knowledge of the Feshbach resonance spectrum,

but instead exploits the fact that due to the Zeeman effect an external magnetic field shifts the different

spin statesm J of the atoms. The energy shift of the different states is linear for typical magnetic fields

of the experiment. For the energy difference of successive spin states ∆m J = 1 the energy can be

calculated as ∆E = gJ∆m JµBB with gJ = 1.24166(7) as discussed in Ch. 2.1. We can drive the transition

between these states using frequencies in the RF regime and by measuring the resonance frequencies

fRF = 1.738MHzG−1 |B | we can determine the magnetic field.

In detail, we trap our atoms in the ODT and apply a short RF pulse via an RF ring antenna placed under

the vertical magnetic field coils, which is a coil with a single winding, and drive transitions between the

different Zeeman states. We can scan the RF frequency sent to the antenna, and once we are on resonance,

the driving brings atoms into the excited spin state, resulting in the loss of atoms due to spin-relaxation

processes.

An example of such a measurement to calibrate the compensation cage in the y-direction is shown in

Fig. B.1. The signals are shown in Fig. B.1 a for different powers of the RF signal. It can be seen that at high

power, the signal is power broadened, which makes it easier to find the initial signal. By reducing the

power, we get a much narrower signal, and for 30 dB the signal has a width of ∆f ≈ 20 kHz. This allows

us to measure the magnetic field with a precision of ∆B < 20mG. To calibrate the coil, we measure

the resonance frequencies for different currents applied to the coils and fit them with a linear function

|B | = a × I + |B0 | as shown in Fig. B.1.

For the vortex measurements we want to make sure that the magnetic field strength |B | does not vary for

different angles φ, since the final magnetic field is a superposition of each field created by three different

pairs of coils as described in Sec. 2.2.5. Therefore we measure the magnetic field for different angles φ,

check that the magnetic field does not change, and recalibrate the magnetic field coils if necessary. Since
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Figure B.1: Radio-Frequency spectroscopy to calibrate the magnetic field of the compensation cage in y-direction.
a) The atomnumber for different RF frequencies is measured for the RF amplifier attenuated by 10 dB ( ), 20 dB ( )

and 30 dB ( ) and the corresponding Gaussian fits. The signal from the 30 dB measurement is used to determine

the resonance. b) The resonant frequencies for different voltages applied to the coils are plotted. The resonance

frequencies are translated to magnetic fields via B = fRF/1.738MHz G−1. A linear fit is applied giving |B | =
1.146 G/A × I − 0.15 G

some magnetic field values cannot be measured by RF spectroscopy in our experiment, due to crosstalk

between the RF amplifier for the RF signal and the measured coils, we perform atom-loss spectroscopy

around known Feshbach resonances as described in Sec. A. An example is shown in Fig. B.2, where we have

checked the rotation at a magnetic field |B | = 17G − 17.3 G with 164Dy . The white lines show the narrow

resonances, which we are using as references. We can see that the magnetic field |B | remains constant

over the whole rotation in an error region of ∆B < 20mG.
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Figure B.2: Feshbach resonance spectrum between B = 17 − 17.3 G for θ = 30◦ andφ = 0◦ − 360◦ Feshbach loss

spectroscopy is performed for different magnetic fields B and angles φ. The cloud is evaporated at 17 G at θ = 30◦

and at the angle φ. The magnetic field strength is then quenched to the final value B and held for thold = 500ms.

The cloud is imaged horizontally after tTOF = 26ms. The position of the loss features, indicated by the white lines,

do not change for the different φ within the measurement accuracy ∆B = 20mG.

165


	Abstract
	Zusammenfassung
	Publications
	Acknowledgements
	List of Figures
	List of Tables

	From superfluids to supersolids
	Introduction
	Ultracold neutral atoms

	Interactions
	Contact interaction
	Dipole-Dipole interaction

	Quantum degenerate dipolar gases
	Dipolar Bose-Einstein condensate
	Emergence of the Roton minimum
	Beyond mean-field: LHY correction
	Emergence of Supersolids and droplet crystals
	How 'super' is the supersolid


	The Erbium-Dysprosium experiment
	Basic properties
	The experimental apparatus
	Zeeman slower and Magneto-Optical trap
	Optical dipole trap
	Evaporation
	Imaging system
	Magnetic fields – Controlling atomic interactions


	Vortices in dipolar Bose-Einstein condensates
	Quantized Vortices: Rotate the irrotatable
	Basic properties of quantised vortices
	Nucleating the vortices
	Image the vortices
	Dipolar stripe vortex lattice

	P1   Observation of vortices and vortex stripes in a dipolar condensate
	Outlook

	Rotational dynamics in Supersolids
	From 1D- to 2D-supersolids
	Probing the supersolid state

	P2   Two-dimensional supersolidity in a dipolar quantum gas
	Can we measure the superfluid fraction with the scissors mode?
	Relation between scissors mode and moment of inertia
	Complex rotational dynamics

	P3   Can angular oscillations probe superfluidity in dipolar supersolids?
	Vortices in supersolids
	How to observe vortices: Melting the supersolid
	Threshold behaviour for vortex seeding

	P4   Observation of vortices in a dipolar supersolid
	Outlook

	What's next? A dipolar, double species Quantum Gas Microscope (ddQGM)
	The ddQGM blueprint
	Transport to the Single-Site Chamber

	Conclusion
	Outlook

	References
	Appendix
	Feshbach resonances for 164Dy and 162Dy
	Magnetic Field calibration

