Unveiling the superfluid and solid
behaviour in dipolar supersolids

— DISSERTATION —

Elena Poli, MSc.

submitted to the Faculty of Mathematics, Computer Science,
and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy (PhD)

advisor:

Univ.-Prof. Dr. Francesca Ferlaino,
Institute for Experimental Physics, University of Innsbruck

Innsbruck, September 2025






Abstract

Ultracold atomic gases offer a highly controllable platform for studying fundamental
properties of quantum matter. Since the first realization of Bose-Einstein condensa-
tion, the field has progressed rapidly, enabling increasingly sophisticated experiments
aimed at deepening our understanding of quantum matter under controllable conditions.
Among the atomic species brought to quantum degeneracy, highly magnetic atoms such
as chromium, erbium, and dysprosium have opened new directions for research. Their
large magnetic dipole moments introduce long-range and anisotropic dipolar interac-
tions, which, in competition with short-range contact interactions, give rise to a rich
landscape of many-body phenomena. A particularly exciting development is the pos-
sibility to access supersolid phase of matter, which uniquely combine superfluid and
crystalline properties—two properties typically considered mutually exclusive.

This thesis presents a theoretical study of two-dimensional dipolar supersolids, with
a focus on the characterization of their solid and superfluid properties. Using extensive
numerical simulations, we identify the key control parameters that enabled the first
experimental observation of the transition from one-dimensional to two-dimensional
supersolidity. We further study the formation dynamics of the supersolid states and
characterize the excitation spectrum to determine the nature of the gapless modes, each
associated with a spontaneously broken symmetry. Within a hydrodynamic framework,
we extract sound velocities and elastic parameters, including the shear modulus, which
serves as signature of solid behaviour.

The superfluid nature is explored via studies of the system’s rotational dynamics.
We first focus on collective angular oscillations, known as the scissor mode, and assess
whether the frequency of this mode provides information about the superfluid fraction.
We then explore a different regime by implementing full rotations through magnetic field
stirring. This protocol enables the nucleation of quantized vortices, topological defects
manifesting as phase singularities. These are one of the most distinctive manifestation
of superfluid nature. These studies led to the first experimental observations of vortices
in rotating dipolar supersolids.

Finally, the results of this thesis are extended to propose a novel application of dipolar
supersolids as quantum analogues of the inner crust of neutron stars. We develop a
model to simulate glitches, sudden spin-up events usually observed in pulsars, via vortex
unpinning mechanisms. We show how dipolar supersolids provide a unique opportunity
to study both vortex and crystal dynamics during such events, which remain inaccessible
through direct astrophysical observation. This work marks the first concrete application
of supersolids to large scale systems, like neutron stars, and an important step towards
quantum simulations of stellar objects from Earth.






Zusammenfassung

Ultrakalte atomare Gase bieten eine &uflerst kontrollierbare Plattform zur Untersuchung
grundlegender Eigenschaften quantenmechanischer Materie. Seit der ersten Realisierung
der Bose-Einstein-Kondensation hat sich das Forschungsfeld rasant entwickelt und er-
moglicht zunehmend anspruchsvollere Experimente, die darauf abzielen, unser Ver-
stdndnis quantenmechanischer Materie unter kontrollierbaren Bedingungen zu vertiefen.
Unter den atomaren Spezies, die in den Zustand quantenmechanischer Entartung ge-
bracht wurden, haben hochmagnetische Atome wie Chrom, Erbium und Dysprosium
neue Forschungsrichtungen eréffnet. Ihre groflen magnetischen Dipolmomente fithren
zu langreichweitigen und anisotropen Dipol-Dipol-Wechselwirkungen, die im Zusam-
menspiel mit kurzreichweitigen Kontaktwechselwirkungen eine Vielzahl komplexer Viel-
teilchenphénomene hervorrufen. Eine besonders spannende Entwicklung ist der Zugang
zu einer supersoliden Phase der Materie, die auf einzigartige Weise superfluide und
kristalline Eigenschaften vereint—zwei Merkmale, die iiblicherweise als unvereinbar gel-
ten.

Diese Arbeit préasentiert eine theoretische Untersuchung zweidimensionaler dipolarer
Supersolide mit dem Schwerpunkt auf der Charakterisierung ihrer festen und super-
fluiden Eigenschaften. Mithilfe umfangreicher numerischer Simulationen identifizieren
wir die entscheidenden Kontrollparameter, die die erste experimentelle Beobachtung
des Ubergangs von eindimensionaler zu zweidimensionaler Supersoliditit ermoglichten.
Wir untersuchen dariiber hinaus die Formationsdynamik der supersoliden Zustédnde und
charakterisieren das Anregungsspektrum, um die Natur der masselosen Moden zu bes-
timmen, die jeweils mit einer spontan gebrochenen Symmetrie assoziiert sind. Innerhalb
eines hydrodynamischen Modells extrahieren wir Schallgeschwindigkeiten und elastische
Parameter, einschliefflich des Schermoduls, der als Kennzeichen des festen Verhaltens
dient.

Die superfluide Natur wird durch Untersuchungen der Rotationsdynamik des Systems
erforscht. Zunéchst konzentrieren wir uns auf kollektive Winkeloszillationen, bekannt
als “Scissor Mode”, und analysieren, ob die Frequenz dieser Mode Informationen {iber
den Superfluidanteil liefert. Anschliefflend untersuchen wir ein anderes Regime, indem
wir vollstdndige Rotationen durch Riihren mit Magnetfeldern implementieren. Dieses
Protokoll erméglicht die Nukleation quantisierter Wirbel-topologischer Defekte, die sich
als Phasensingularititen manifestieren und eine der deutlichsten Erscheinungsformen
der Superfluiditét darstellen. Diese Studien fithrten zur ersten experimentellen Beobach-
tung von Wirbeln in rotierenden dipolaren Supersoliden.

Abschlielend werden die Ergebnisse dieser Arbeit genutzt, um eine neuartige Anwen-
dung dipolarer Supersolide als Quantenanaloga der inneren Kruste von Neutronenster-
nen vorzuschlagen. Wir entwickeln ein Modell zur Simulation sogenannter “Glitches”
—plétzlicher Spin-up-Ereignisse, wie sie typischerweise bei Pulsaren beobachtet werden—
iiber Mechanismen des Wirbel-Entpinnens. Wir zeigen, wie dipolare Supersolide eine
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einzigartige Moglichkeit bieten, sowohl Wirbel- als auch Kristalldynamik wéhrend solcher
Ereignisse zu untersuchen, die einer direkten astrophysikalischen Beobachtung bislang
unzuganglich sind. Diese Arbeit stellt die erste konkrete Anwendung von Supersoliden
auf grofiskalige Systeme wie Neutronensterne dar und einen wichtigen Schritt hin zu
quantenmechanischen Simulationen stellaren Objekte von der Erde aus.
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Introduction

In our everyday life, we instinctively categorize the objects around us based on their
characteristics. We often consider properties like colour, size, and shape, as well as
textures—whether something is rough or smooth, shiny or dull, hard or soft, flexible or
rigid. We also classify objects by their fundamental nature, for example distinguishing
between solids and fluids. These qualities help us make sense of the world and organize
our perceptions.

However, when we enter the quantum realm, objects follow different rules. The clear
distinctions we use to classify things in the classical world often no longer apply. In-
stead, quantum objects can exhibit a blend of properties that seem contradictory from
a classical perspective. New states of matter originate, like fluids that can flow without
viscosity commonly known as superfluids. But, most importantly, quantum systems can
simultaneously display behaviours typical of different natures, challenging our conven-
tional understanding of how matter behaves.

“Can a solid be superfluid?”

This is the paradoxical question that Leggett proposed to the community in 1970.
The story of this query is anything but linear. Over the last 50 years, this problem has
been investigated, seemingly solved, denied, reversed into “Can a superfluid be solid?”
and eventually resolved thanks to scientific and technological advances in the platform
of ultracold quantum gases. The heritage of this question forms the core of this doctoral
thesis: the study of paradoxical quantum objects with a dual solid-superfluid nature,
namely a supersolid.

Motivation and historical background

Ultracold gases have proven to be ideal platforms to study quantum phenomena [1].
Indeed, cooling a system to extremely low temperatures enables access to the quantum
realm, where particles no longer follow well-defined trajectories. Instead, they lose their
individuality and exhibit wave-like properties, which can overlap and interact. This
overlap brings quantum mechanics to the forefront, enhancing effects like superposition,
interference, and entanglement [2]. What makes ultracold atomic gases particularly
valuable is their high degree of control and tunability. Parameters like temperature,
interaction strength, and dimensionality can be precisely controlled, creating an ideal
setting for probing fundamental phenomena.

Once particles are in the quantum regime, they obey different statistics. Fermions,
characterized by half-integer spins such as protons, neutrons and electrons, obey Fermi-
Dirac statistics and are constrained by Pauli’s exclusion principle. The focus of this
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Figure 1.: First experimental realization of a Bose-Einstein condensate. This 3D plots show
the evolution of atomic density as the cloud is progressively cooled toward the absolute zero
(from left to right). The appearance of a sharp central peak signals the onset of Bose-Einstein
condensation.

thesis will be on bosons, that are particles which follow Bose-Einstein statistics which
allows multiple particles to occupy the same quantum state.

When bosonic particles occupy all the same quantum state at the lowest energy,
i.e. the ground state, they become indistinguishable and collectively behave as a single
coherent quantum entity described by a giant wave function. This phase of matter
is called Bose-Einstein condensate (BEC). Initially predicted in 1925 by Einstein [3],
building on a paper by Bose about the statistical behaviour of light quanta published
the year before [4], it took many years to access experimental observe Bose-Einstein
condensation. The first important step was done in 1938 by London [5], who connected
the phenomenon of Bose-Einstein condensation to the recently observed inviscid liquid
helium [6,7]. The absence of viscosity on a quantum fluid was called superfluidity, a
property that will be deeply investigated in this thesis. Since then, numerous studies
have been conducted to better understand the relationship between condensation and
superfluidity and most of them were tested experimentally on superfluid helium. Landau
developed the first comprehensive theory of superfluidity based on the spectrum of
elementary excitations [8] and a decade after Penrose and Onsager consolidated the
concept that the existence of dissipationless motion is really linked to BEC [9].

Liquid helium provided an excellent platform to test the first theoretical predictions
on Bose-Einstein condensation and superfluidity. However, the strong particle interac-
tions in these systems introduce complexities far beyond Einstein’s ideal-gas paradigm.
Decades later, advancements in atomic physics, particularly techniques like laser cooling
and magneto-optical trapping [10], enabled experimental studies on dilute atomic gases
of neutral atoms. Remarkably, alkali atoms emerged as ideal candidates for laser-based
cooling methods due to their optical transitions aligning with available laser frequencies
and their advantageous internal energy-level structures, which enable efficient cooling
to ultralow temperatures. Once trapped, their temperature can be further reduced
using evaporative cooling techniques [11]. This groundbreaking approach led to the
first observation of Bose-Einstein condensation in 1995. Nobel laureates Cornell and
Wieman achieved this milestone in Boulder with 87Rb atoms [12], while Ketterle ac-
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complished it with 23Na atoms at MIT [13]; see Fig.1. In the same years, the first
evidence of the occurrence of Bose Einstein condensation in vapours of “Li was also
reported [14,15]. Nowadays, Bose-Einstein condensation has been achieved in a variety
of atomic species [16-28].

Among the species that have undergone Bose-Einstein condensation, highly magnetic
atoms with a permanent large magnetic moment such as chromium, erbium, dyspro-
sium, and more recently thulium and europium, have given rise to richer physics due to
the long-range and anisotropic dipolar interaction. Indeed, the competition between the
short-range contact interaction and the long-range contact interaction opens the possi-
bility to access to the supersolid phase of matter, where a crystalline structure coexist
with superfluid properties [29].

Thesis overview

At the start of my work in the Theory Group in Francesca Ferlaino’s team, dipolar
supersolids made of gases of strongly magnetic elements had just been realized in 62Dy
BECs by Giovanni Modugno’s group in Pisa [30], Tilman Pfau’s group in Stuttgart [31]
and in '%Er and %*Dy BECs by my group in Innsbruck [32]. The observed supersolid
state manifested as a one-dimensional crystalline structure composed of a few crystal
sites. This discovery prompted a plethora of fundamental questions: How scalable is
this system? What is the optimal geometry to reveal the coexisting superfluid and solid
nature? What is the most unambiguous evidence of these properties? Finally, is there
any potential practical application for such a system?

It is exactly with these open questions that I started my PhD in the Theory Group of
Univ. Prof. Dr. Francesca Ferlaino. In collaboration with the experimental team of the
Er-Dy laboratory, we extended supersolidity to two-dimensional crystalline structures.
During my PhD, I contributed to the theoretical characterization of two-dimensional
dipolar supersolids, with a particular focus on the study of the excitation spectrum
and the rotational dynamics. These studies reveal the paradoxical nature of this state,
highlighting the simultaneous solid and superfluid behaviour, and the possible applica-
tion as analogue of neutron stars interior dynamics. This work resulted in a total of 10
publications, among which 8 constitute the core of this thesis.

The thesis is divided into different chapters, structured as follows.

Chapter 1 provides an introduction into the theory of dipolar quantum gases, from
the point of view offered by numerical simulations. This chapter starts with a short
summary of the modelling techniques for the contact and dipolar interactions. We
present a full description of the Gross-Pitaevskii equation and the different numerical
techniques to solve it in various scenarios. We then introduce the Bogoliubov-de Gennes
formalism for the study of the excitation spectrum. This knowledge set the basis for
the study of the ground state phase diagram of a dipolar BEC, where supersolidity
emerges.

Chapter 2 introduces dipolar supersolids. After a brief overview of the historical
background and their fundamental properties, we focus on the structural transition from
one-dimensional to two-dimensional supersolids. We characterize the main properties
of these systems, as the control parameter to maintain supersolidity across different
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geometries and the best dynamical protocol to form these systems. These theoretical
insights are complemented by the achievement of the first experimental observation of
2D supersolids.

Chapter 3 explores the solid properties of 2D supersolids. Through the numerical
study of the excitation spectrum and the elastic parameters, we extract information
about the speeds of sound of a 2D supersolid. One of the elastic parameters is the shear
modulus, which is unique to systems with solid nature. We present these results for
both soft-core and dipolar supersolids, using the former as a simplified model to validate
the theoretical framework.

Chapter 4 investigates the superfluid properties of 2D dipolar supersolids. We first
study the rotational behaviour of the system undergoing small oscillations around the
trap axis and then the vortex nucleation through a continuous magnetic field stirring.
The theoretical analysis are enriched by the first experimental observation of vortices
in 2D supersolids.

Chapter 5 introduces an application of rotating 2D dipolar supersolids, which is the
possibility to simulate glitches events, in analogy of neutron star’s glitches. Exploiting
the structural analogy between the inner crust of neutron stars and supersolids, we
develop a model to simulate the sudden spin-up events caused by vortex unpinning in
neutron stars.

Finally, the Conclusions summarize the main findings of this thesis and offer a brief
outlook on potential future research directions. Additionally, Appendix A provides
an in-depth discussion of the concept of the superfluid fraction, while Appendix B
includes supplementary publications not part of the thesis’s core content but to which
the author made significant contributions.

List of publications

The following list contains the 8 publications forming the main core of this thesis. While
not presented in chronological order, they correspond to the thematic progression of the
chapters.

¢ Two-dimensional supersolidity in a dipolar quantum gas.
M. A. Norcia*, C. Politi*, L. Klaus, E. Poli, M. Sohmen, M. J. Mark, R. Bisset,
L. Santos, and F. Ferlaino.
Nature, 596, 357-361 (2021)
*These authors contributed equally to this work.

¢ Maintaining supersolidity in one and two dimensions.
E. Poli, T. Bland, C. Politi, L. Klaus, M. A. Norcia, F. Ferlaino, R. N. Bisset,
and L. Santos.
Phys. Rev. A 104, 063307 (2021)

e« Two-Dimensional Supersolid Formation in Dipolar Condensates.
T. Bland, E. Poli, C. Politi, L. Klaus, M. A. Norcia, F. Ferlaino, L. Santos, and
R. N. Bisset.
Phys. Rev. Lett. 128, 195302 (2022)

o Excitations of a two-dimensional supersolid
E. Poli, D. Baillie, F. Ferlaino and P. B. Blakie.
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Phys. Rev. A, 110, 053301 (2024)

e« Can Angular Oscillations Probe Superfluidity in Dipolar Supersolids?
M. A. Norcia, E. Poli, C. Politi, L. Klaus, T. Bland, M. J. Mark, L. Santos, R.
N. Bisset, and F. Ferlaino.

Phys. Rev. Lett. 129, 040403 (2022)

¢ Observation of vortices and vortex stripes in a dipolar condensate
L. Klaus*, T. Bland*, E. Poli, C. Politi, G. Lamporesi, E. Casotti, R. N. Bisset,
M. J. Mark, and F. Ferlaino.
Nature Physics, 18, 1453-14580 (2022)
*These authors contributed equally to this work.

e Observation of vortices in a dipolar supersolid
E. Casotti*, E. Poli*, L. Klaus, A. Litvinov, C. Ulm, C. Politi, M. J. Mark, T.
Bland and F. Ferlaino.
Nature, 635, 327-331 (2024)
*These authors contributed equally to this work.

e Glitches in Rotating Supersolids
E. Poli, T. Bland, S. J. M. White, M. J. Mark, F. Ferlaino, S. Trabucco, and M.
Mannarelli.
Phys. Rev. Lett., 131, 223401 (2023)

Additional publications

In addition to the main publications, I also contributed to other two projects within
the course of the PhD. These publications are presented in the Appendix B and listed
below:

e Alternating-domain supersolids in binary dipolar condensates.
T. Bland, E. Poli, L. A. Pena Ardila, L. Santos, F. Ferlaino, and R. N. Bisset.
Phys. Rev. A 106, 053322 (2022)

e Synchronization in rotating supersolids.
E. Poli*, A. Litvinov*, E. Casotti, C. Ulm, L. Klaus, M. J. Mark, G. Lamporesi,
T. Bland and F. Ferlaino.

arXiv:2412.11976 (2024)
*These authors contributed equally to this work.






Chapter

Simulating dipolar quantum
gases

Research on Bose-Einstein condensation holds significant importance in physics, provid-
ing a highly controllable quantum environment in laboratory experiments. This chapter
introduces the fundamental properties of dipolar BECs and the necessary theoretical
framework to understand the emergence of the supersolid phase. We first explore the key
properties of BECs with dipolar interactions and introduce the theoretical tools used to
describe them. The well-established Gross-Pitaevskii framework serves as the founda-
tion for numerical simulations of dipolar quantum gases. To capture the physics in the
strongly dipolar regime, like the supersolid phase, we incorporate a beyond-mean-field
description that account for quantum fluctuations. We provide a detailed discussion on
the numerical methods employed to solve the Gross-Pitaevskii equation in various sce-
narios. Additionally, we introduce the Bogoliubov-de Gennes formalism for computing
the excitation spectrum, illustrating characteristic spectra for dipolar BECs in different
geometries. Finally, by combining all these ingredients, we present the ground state
phase diagram of a dipolar gas focusing on the emergence of the supersolid phase.

N.B. Throughout the chapter, numerical details on the simulations presented in
this thesis are provided in separate grey-shaded boxes.

1.1. Modelling interactions

Bose-Einstein condensates are extremely dilute systems, with densities several orders
of magnitude lower than those of conventional matter. For instance, liquid water has
a number density of approximately n ~ 10?2 atoms/cm?, whereas a BEC typically has
n ~ 103 — 10'% atoms/cm®. This extreme diluteness has consequences in the descrip-
tion of the interaction between particles. In this regime, the range of the interatomic
forces, R, is much smaller than the average inter-particle distance, d ~ 1 /nl/ 3. such
that R < d [33]. As a result, interactions involving three or more particles can be
effectively neglected. The key idea is that the probability of three particles simultane-
ously coming close enough to interact is dramatically lower than that for two particles.
In denser systems, like the aforementioned liquid water, this is no longer true. Three-
body and, more generally, many-body interactions become significant and complicate
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Figure 1.1.: Periodic table with highlighted the contact-interacting atoms (teal) and dipolar
atoms (orange) that have been Bose-condensed [12-28].

the theoretical description [34].

The nature of two-body interactions in ultracold gases depends on the electronic
properties of the atomic species, see Fig.,1.1. Atomic species highlighted in teal interact
predominantly through a short-range contact interaction. In contrast, atomic species
highlighted in orange possess a large magnetic moment and exhibit both short-range
contact interactions and long-range anisotropic dipolar interactions. In the following,
we present the details on the modelling of these two type of interactions. Understanding
their interplay is crucial for exploring novel quantum phases.

1.1.1. Contact interaction

One contribution of the two-body interaction between neutral particles in a BEC is
described by an isotropic, short-range van der Waals potential Viqw o< 1/r%, which
decreases rapidly with distance. This interaction originates from instantaneous fluctu-
ations in the charge distribution of the atoms, leading to interacting transient dipole
moments; for more details, see Ref. [35]. In general, a collision event is described by the
travelling wave functions of the two atoms, obtained from the solution of the Schrodinger
equation [36]. In the low-energy regime, the typical momentum of the interacting par-
ticle satisfies & < 27/R. In this regime, scattering theory reveals that the detailed
form of the interaction potential is not critical, provided that the interaction correctly
accounts for the behaviour of particles before and after collisions [37]. The low-energy
properties of an isotropic interatomic potential decaying as 1/r"™ with n > 3 can be
fully approximated, at the level of the Born approximation, by a pseudo-potential of

the form
Arhag

Ur—r1')=gé(r—-r')= S(r—r'). (1)

where m is the atomic mass, d is a Dirac delta function and r, r’ are the position of
the two interacting atoms. This result is rigorously derived from quantum scattering
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Figure 1.2.: Illustration of a basic model of a Feshbach resonance. (a) Illustration of the
two-channel model: V;4(R) represents the open channel, V.(R) is the closed channel with a
molecular bound state E.. Resonant coupling is realized by tuning E. — 0 through a magnetic
field. (b) Effect of the magnetic field B on ag, normalized to the background scattering length
apg. Adapted from Ref. [38].

theory [37]. The quantity as is the scattering length, which is related to the phase
shift acquired by the wave function of the scattered particle. It can be interpreted as
a measure of how much the potential influences particle scattering'. The sign of as
determines whether the interaction is repulsive (as > 0) or attractive (as < 0).

The sign and the magnitude of as; can be tuned experimentally by means of the
so-called Feshbach resonances [38]. In brief, when we consider a two body scattering
process, we can define open channels and close channels. An open channel represents a
scattering state where two particles can separate after the interaction. A closed channel
supports bound states where the particles interact strongly and form a quasi-stable
composite system. The relative energy of these channels can be altered by an external
magnetic field B. A Feshbach resonance occurs when the energy of the closed channel
bound state becomes comparable to the energy of the scattering states in the open
channel. This process is schematically illustrated in Fig. 1.2(a). The corresponding
behaviour of the scattering length is shown in (b) and it is modelled according the

expression
A
ag = (Ibg (1 — B_BO> . (2)

Here, apy is the background scattering length (i.e.the off-resonant value of ay), A is
the width of the resonance and By is the magnetic field at resonance and as diverges
at resonance. The tunability of the contact interaction strength confers extraordinary
degree of control on ultracold gas systems.

1.1.2. Dipolar interaction

When particles possess a magnetic or electric dipole moment, the interaction potential is
modified [39,40]. In addition to the short-range pseudo-potential described in Eq. (1), it
is necessary to consider the dipole-dipole interaction term proportional to ~ 1/r3. This
dependence comes directly from the 1/73 scaling of the field created by a single dipole.

"When considering as, the subscript s recalls the orbital nomenclature for orbital angular momentum
[ = 0. In fact, in the low-energy regime, the scattered wave function is a spherical wave proportional to
the spherical harmonic Y;—o,m=0, regardless how complicated the actual potential is [36].
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In fact, the interaction energy between two dipoles with magnetic moment p; and p,
is

Vaa = —pp - Ba (3)

where B; = V x A is the magnetic field created by p in the location of p, [41]. The
vector potential A; far from the dipole itself is

Mo p1 X T
A ="— 4
V"4 3 (4)

Notice that |A1| decreases as 1/r%, and when calculating the curl one gets |By| ~ 1/r3.
The analogous result can be obtained from the far-field approximation of a generic
electric dipole [41].

The general form of the dipole-dipole interaction (DDI) potential between two dipoles
with arbitrary orientation is expressed as

Vaa(r) = Caa <(é1 &)r2 —3(& 1) (é2_r)> |

()

A7 7o

where r is the vector pointing from one interacting particle to the other, while é; and
&2 are the unit vectors denoting the orientation of the two dipoles; see Fig. 1.3(a). The
pre-factor Cyy depends on the type of the dipole involved:

« For magnetic dipoles, Cyq = pou?, where pg is the vacuum permeability and p
the magnetic dipole moment.

« For electric dipoles, Cyq = d? /ey where d is the electric dipole moment and ey the
permittivity of free space.

An external magnetic or electric field polarizes the orientation of the dipoles, so
&1 = &2 = (sinf cos p, sin @ sin @, cos 0) (6)

where 6 and ¢ are the polar and azimuthal angle of the field, respectively. When the
polarization direction is the z—axis, Eq. (5) simplifies to

3h2ayy (1 — 3cos? 9)

Vaa(r) = (7)

m r3

where 6 now is defined as the angle between the vector r and the polarization direction
of the dipoles; see Fig. 1.3(b). Notice that the prefactor has been rewritten in terms the
dipolar length agq = popu2,m/12wh?. To compare the characteristic lengths of the two
interactions, it is customary to define the parameter

Qdd
E = — 8
=22 ®
so that €44 < 1 means contact dominated regime, whereas €49 > 1 means dipolar
dominated regime.

Mathematically, an interaction potential is considered long-range when it scales as
1/r™ (with n > 0), provided that the system’s dimensionality D satisfies D > n. In
the case a three-dimensional system with dipolar interaction (n = 3, D = 3), this
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(a) él (b) | (c) Attraction

Repulsion

Figure 1.3.: Schematic illustration of interaction between dipoles. (a) Generic case of two
interacting dipoles without any external magnetic field that gives a polarization direction to the
them, described by Eq.(5). (b) Polarized dipoles, interacting through Eq. (7). (c) Schematic
representation of the repulsive and attractive configuration between two dipoles.

condition is satisfied”. Furthermore, dipolar interaction is also anisotropic due to its
dependence on the angle 6. Similar to classical magnets, two dipoles repel if they sit
side-by-side (f = 7/2 — Vgq > 0), they will attract if they arrange in the head-to-
tail configuration (6 = 0 — Viq < 0); see Fig. 1.3(c). As a consequence of that, two
dipoles in will always have the tendency to arrange head-to-tail, leading to crucial effects
on the stability of the dipolar gas. Interestingly, the dipolar interaction is zero when
0 = arccos(1/v/3) ~ 54.7°.

The anisotropy and long-range character of the dipolar interaction is reflected also in
momentum space. The Fourier transform of the dipolar interaction in Eq. (7) Vaq(k) is
analytical

Vdd(k) = % (3 COS2 ap — 1) 5 (9)

with ap being the angle between the vector k and the polarization direction of the
dipoles [44]. This form of the DDI in momentum space will be particularly useful
for the numerical study of dipolar BECs, see Sec.1.2. Furthermore, the momentum
dependence of the interaction in Fourier space is one of the key ingredients for exploring
the supersolid phase of matter, see Sec. 1.6 and Chapter 2.

In the following, we briefly discuss the case of electric dipolar systems before exclu-
sively focusing on magnetic dipolar systems for the rest of this thesis.

Electric dipoles

Atoms and molecules in their rotational ground states lack permanent electric dipole
moments due to rotational symmetry. However, in some systems the application of an
external electric field £ can perturb the energy levels, resulting in an induced electric
dipole moment [42].

Rydberg atoms provide an example. These states, with degenerate levels of opposite
parity, can acquire electric dipole moments even in the presence of weak electric fields.

2The reason comes from a thermodynamic point of view. Short-range interactions lead to an energy that
is thermodynamically extensive, i.e. when the integral |’ OOO U(r)dPr. This happens only if U(r) ~ 1/r"
with n > D. Long-range interactions are defined for the complementary case, when the interaction
energy is not extensive, thus n > D [42]. However, although not mathematically defined as long-range,
in the context of many-body physics the dipolar interaction might lead to qualitatively new behaviours
also at lower dimensions D < 3 [43].



14 1. Simulating dipolar quantum gases

’ Atomic species ‘ Magnetic moment p

Rb 1 UB
Tm 4up
Cr 6 up
Er 7 UB
Fu TUB
Dy 10 UB

Table 1.1.: Magnetic moments in units of Bohr magneton pp for different atomic species.
Values are taken from Refs. [25-28,62].

The magnitude of the induced dipole moment scales as n?, where n is the principal
quantum number of the Rydberg state [45]. By associating a Rydberg atom with a
ground state atom one can form a Rydberg molecule, which exhibit permanent dipole
moments [46]. These systems have become a hub of experimental and theoretical re-
search, enabling advances in understanding strongly correlated dipolar gases, lattice
spin models, and applications in quantum computing [47-53].

Another promising direction involves heteronuclear molecules, which exhibit strong
dipole moments that arises when two rotational states are mixed by an external electric
field [54]. However, cooling and trapping these systems is challenging, due to molecular
losses during collisions [55]. These losses can be mitigated with techniques like collisional
shielding, which prevents molecule-molecule complexes by engineering their dipolar in-
teractions. A significant milestone has been reached in 2020, with the observation of
the first quantum degenerate Fermi gas of KRb polar molecules [56,57]. In 2024, the
developement of more advanced collisional shielding techniques, including static fields
and rotating microwave fields, led to the creation the first long-lived Bose—Einstein con-
densate with NaCs polar molecules [58]. At the moment, ultracold molecules constitute
a fast-expanding and promising field, especially for exploring novel states of matter and
quantum simulation [55].

Magnetic dipoles

In contrast to electric dipoles, elementary particles can have permanent magnetic dipoles
even at zero external magnetic field due to many unpaired valence electrons. The
key quantity for this effect is the atomic magnetic moment y = —mjgsup, defined
as a function of the magnetic quantum number m;, the Landé g-factor g; and the
Bohr magneton pup. Due to their hydrogen-like electronic configuration, alkali atoms
possess a magnetic moment of the order of y ~ pg. In principle, it is possible to
study dipolar physics but the energy scale associated with the dipolar interaction is
quite small [59-61]. However, dipolar atoms such as Chromium (Cr), Erbium (Er), and
Dysprosium (Dy) possess significantly larger magnetic moments—about an order of
magnitude higher than non-dipolar species. Table 1.1 highlights the magnetic moments
of atoms that have currently achieved quantum degeneracy. From Eq. (7) it is clear that
the magnetic dipole-dipole interaction scales with the square of the magnetic moment.
Therefore, for dipolar atoms this interaction is enhanced by a factor of approximately
~10 to ~100 compared to alkali atoms.
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In this thesis, we focus on BECs made of Dysprosium atoms, which is the most
strongly dipolar natural atomic species in the periodic table. This choice is motivated
by the collaboration with the experimental team of the Er-Dy laboratory, one of the
experimental divisions within Univ. Prof. Dr. Francesca Ferlaino’s research group in
Innsbruck.

1.2. The Gross-Pitaevskii equation

Experiments with ultracold gases usually involve weakly interacting Bose-Einstein con-
densates, where interatomic correlations are small. As discussed in Sec. 1.1.1, the inter-
particle interaction strength, given by the scattering length as, can be tuned via Fesh-
bach resonances. A gas is typically considered weakly interacting when

as < d. (10)

This condition is not always fulfilled: a gas may remain dilute yet lie outside the weakly
interacting regime. An extreme example is the unitary Fermi gas [33]. However, this
topic lies beyond the scope of this thesis.

Working in the weakly interacting regime simplifies the theoretical framework and
enables the effective application of mean-field (MF) theories. In this section, we derive
the Gross-Pitaevskii equation (GPE), which governs the dynamics of the macroscopic
wave function of a Bose-Einstein condensate [33].

In the second quantization formalism, particles in a BEC are described by the many-
body field operator

P(r) = Z@-(r)ai (11)

with a; (dj) being the annihilation (creation) operators of a bosonic particle in the
state ¢;. According to the bosonic statistics, these single particles operators satisfy the
following commutation relations
a.all=6.la.a.l=Tla.al1=o0 12
[a,,a]] ij > [Gi, @] [az7aj] (12)
meaning that particles in the condensate are indistinguishable.

The Hamiltonian of a Bose gas with two-body interactions in terms of the fields
operator W(r) reads

272

H= /dr i (r) l—hzv + Véxt(r)] \I/(r)—i-;/dr/dr’ T ()T (Y V(e —r) () T(r),
m

(13)

where the first term describes the kinetic energy, Ve (r) is an external confining po-

tential and V(r — r’) is the two-body interaction potential between two bosons. The
integrals are performed over all space. The time evolution of the field operator ¥(r) is
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then obtained through the Heisenberg relation

n 20 ), 1] -
0o N

2\ 72
= / dr l—zz +Vext(r)] T(r) + / de’ Ui () V(e — )T (@) P(r).

The assumption that, in a BEC, the majority of particles occupy the same quantum
state, while the contribution of particles outside the condensate is negligible, simplifies
the problem. This simplification is known as Bogoliubov approximation. The first step
involves replacing the condensate operators with a classical field®>. For simplicity, we
associate the single-particle state at i = 0, represented by ¢o(r), with the state to which
all particles in the condensate belong. The condensate field operator \il(r) reduces to

U(r) = go(r)ao + Y ¢i(r)a; = (15)
i#£0
=V Nogo(r) + D ¢i(r)a; = (16)
i#0
= () + 6 (r) (17)

where the Bogoliubov approximation is applied between Eq. (15) and Eq. (16). The final
expression Eq. (17) reports the result in a simplified form.

In this decomposition:
o 9(r) is the classical mean-field condensate wave-function;

. 5@(1‘) is the fluctuation operator including quantum and thermal fluctuations
around the condensate.

Here, we assume the system is at zero temperature, so the thermal component vanishes
entirely. Additionally, given the weakly interacting nature of the condensate, quantum
depletion at zero temperature is expected to be negligible. Therefore, it is reasonable
to neglect the non-condensed atoms and approximate the field operator as a classical
quantity A

U(r) =1(r). (18)
The fluctuation operator 51/3(1') will be revisited in later sections to account for beyond-
mean field corrections and the excitations above the condensate.

By replacing the time dependent field operator \f/(r, t) with the corresponding conden-

sate wave function ¢ (r,t) in Eq. (14), we obtain the so-called Gross-Pitaevskii equation
(GPE)

oY(r,t) B Ve

Ovrt)
’ ot 2m

Vo (r) + /dr'V(r o, O e, (19)

The GPE is a non-linear differential equation that governs the dynamics of the conden-
sate wave function ¢ (r,t). In the following subsections, we provide a detailed explana-
tion of each term in the equation and its significance in the context of dipolar gases.
Additionally, we outline the numerical methods used to solve the equation.

3This approximation can be interpreted as ignoring the non-commutativity of [ao, &g] = 0;;. This is a
good approximation when Ny = <agao> > 1, i.e. when the condition of macroscopic occupation of the
ground state is satisfied.
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Condensate wave function (r, )

This quantity represents the macroscopic wave function that describes the state of the
many-body system. In general, it is a complex quantity characterized by a modulus and
a phase

p(r,t) = [1h(r, )]0 (20)

The modulus is related to the density n of the condensate, |¢(r,t)| = /n(r,t), such
that the wave function is normalized to the total atom number

/dr\w(r,t)lz _ /drn(r,t) _N. (21)

The phase 6(r,t) is related to the global coherence of the condensate and the velocity
field v(r,t) during the time evolution of the system, i.e.

h
t)=—Vo(r,t). 22
v{r,t) = - Vh(r, 1 (22)
Therefore, a stationary solution of the GPE in the laboratory frame has a uniform

phase.

The GPE is non-linear, so an exact analytical solution for i(r,t) is rare and it is
possible only under very specific conditions—for example, in homogeneous infinite sys-
tems or in trapped systems within the Thomas-Fermi approximation (see Sec.1.3.1).
Therefore, we rely on numerical methods to calculate its values at discrete points on a
mesh in either real or momentum space. From now on, it will be implicitly assumed
that ¢(r) is evaluated on a regular Cartesian mesh in real space. Additionally, it is
often advantageous to consider the Fourier transform, +(k), which is discretized on the
corresponding reciprocal mesh in momentum space.

In this thesis, the grids used to discretize the wavefunction and solve the GPE
for finite systems typically consist of either (256 x 256 x 64) or (256 x 256 x 128)
mesh points in the x-y-z directions (Chapters 2, 4, 5). For studies involving the
time expansion of a finite system in the absence of an external trap, the grid size is
usually increased to (768 x 768 x 1024) mesh points (Chapters 2, 4). In contrast,
when dealing with infinite systems (Chapter 3), the wave function is computed for a
single unit cell. This requires a significantly smaller mesh, usually with (21 x 21 x 21)
points.

A
2m

Kinetic energy —

The first contribution to the GPE operator is the kinetic energy. It is computationally
convenient to calculate the Laplace operator V? acting on the condensate wave function
in the momentum space. The Fourier transform of V2 (r) is simply —k?t)(k), where
the tilde means the Fourier transform. The numerical procedure to calculate this term
is:

+ Calculate the Fourier transform of the wave function (k) = [ dri)(r)e’™® ™. This
calculation is performed numerically with high efficiency using the standard Fast
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(a) Cigar-shaped trap (b) Pancake trap

S

Figure 1.4.: Cigar and pancake shaped trap geometries for a dipolar gas, with tight confinement
along the polarization direction of the dipoles (z—axis).

Fourier Transform® (FFT) algorithm, implemented via the FFTW library [63].
e Calculate the kinetic term in the momentum space —kQ@Z(k).

e Calculate the inverse Fourier transform and obtain the kinetic energy term in
position space.

External trapping potential Ve (r)

The majority of the results presented in this thesis assumes an three-dimensional exter-
nal harmonic potential of the form

1
Vext(r) = 3m ( 222 + w§y2 + wsz) , (23)

where w; = 27 f; is the harmonic frequency along the spatial direction i = x, y, 2.

According to the geometry of the trap, the dipolar interaction can be dominantly
attractive or repulsive. For simplicity, let us fix the dipoles polarization along the
z—axis. When the trap confinement along z is weak compared to the confinement in the
x — y plane, the system favours the atoms disposing in the head-to-tail configuration.
In this case, the dipolar interaction is on average attractive. On the contrary, for
tight confinement along z, atoms dispose themselves mostly side-by-side and the dipolar
interaction is dominantly repulsive. The stability of the system across these different
geometries has been studied with a variational method [65].

As will be discussed later in the following sections, for the study of the supersolid
state of matter we consider two relevant trap geometries; see Fig. 1.4. The cigar-shaped
geometry is obtained with an elongated trap (f. < fy, f-), while the pancake geometry
is obtained with a flattened trap (fs, fy < f-). In both configurations, the repulsive
nature of the dipolar interaction is dominant.

4This algorithm has had a transformative impact on numerous computational methods and remains the
most widely employed technique for calculating Fourier transforms across all programming languages.
Actually, it was Gauss who first proposed this technique to calculate the coefficients in a trigonometric
expansion of an asteroid’s orbit. This happened about 160 years before Cooley and Tukey’s paper [63],
but he never published the paper in his lifetime [64].
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In this thesis, most of the results are obtained using a pancake trap (Chap-
ters 2, 4, 5). The absence of confining potential in one or more directions enables
the study of an infinite system (Chapter 3). Additionally, a common experimen-
tal approach involves preparing a finite system in equilibrium and then removing
the trapping potential, allowing it to expand. This technique is frequently used to
investigate the phase coherence of the wave function (Chapters 2, 4).

Two-body interaction potential V(r —r’)

Given a system with atoms polarized along the same direction, the two-body interac-
tion term includes the short-range pseudo-potential and the dipolar term discussed in
Secs. 1.1.1 and 1.1.2, so:

Vir—r1')=gé(r —1') + Vaa(r — 1) . (24)

In the GPE, this quantity appears inside a non-local integral. The presence of a §
function for the contact interaction partially simplifies the expression

[ Ve = 0F = gliw 0P + [ dVaae e 0k, (25)

but evaluating the non-local integral for the dipolar interaction makes the GPE solution
computationally expensive. However, similar to the kinetic term, in the momentum
space the convolution integral becomes a simple multiplication

[ d'Vaale = ) 0 = Vaal)i(i). (26)

Luckily, as discussed in Sec. 1.1.2, the Fourier transform of the dipolar interaction Vyq(k)
is analytical [44].

The numerical procedure to calculate this contribution is analogue to the kinetic term,
but with extra complications due to the long-range character of the interaction. In fact,
when working in the Fourier space we are implicitly imposing boundary condition, that
for a fully trapped systems are clearly unphysical and may introduce fake interactions
between the contiguous alias copies of the original simulation cell. To prevent this
problem, it is customary to use a truncated dipolar interaction. The most common
truncation is a spherical cut-off, so that the dipolar interaction reduces to

Cqq 1—3cos? 6 r<R
VEe(p) = 4 r3 ’ ¢ 27
ad (1) {O, otherwise 27)
in position space and
~ C. cos (R.k) sin (R.k)
Re _ Ldd c c 2
Vi (k) = = [1 SR TR } (3cos? oy, — 1) (28)
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in momentum space [44]. It is important to choose a cut-off radius R, larger than the
system size, so that all the atoms within the system interact with each other even when
they are far apart. Another possibility is a cylindrical truncation

R..7 %71_3%0529, Va2 +y? < Reand|z| < Z,
Vaa ')y =q 7 _ (29)
0, otherwise .
In momentum space it becomes a quasi-analytical expression
~ C.
Vd]zc’zc(k) = %(3 cos® ay, — 1)
+ Cgge Zekr [sim2 oy, cos (Zek,,) — sin ay, cos ay sin (ch:z)] (30)

r?2 — 222

(’r2 + 22)5/2 JO(krr)7

[e'e) Ze
- C’dd/ rdr/ dzcos(k,z)
Te 0
where k, = /k2 + kg and Jy is the zeroth-order Bessel function. The remaining integral

term in Eq. (30) can easily be obtained by using numerical integration at the beginning
of the simulation.

In this thesis, the majority of the results are obtained by applying a spherical
cut-off to the dipolar interaction. The cut-off radius is chosen based on the specific
case, but a typical and reliable choice is R. = L, with the size of the simulation cell
covering [—L, L] in the three directions [66]. The value of L is generally set to be at
least twice the average radial size of the system. For most of the simulations results
shown in this thesis we used L = 20 pym.

Final expression

Summarizing, the dipolar Gross-Pitaevskii equation reads

t
z‘h&’bg;’) = Lapd(r, 1), (31)
where Lgp is the Gross-Pitaevskii (GP) operator
WV 2 / / / 2
Lop = |~ + Vexels) + g0 (e, OF + [dr'Vaa (e =v) [p (0)| . (32)

Rotating frame

We anticipate that it is useful to study the system under the effect of the trap rotation
about the z—axis. In this case, it’s necessary to include a Coriolis-like term in the
Gross-Pitaevskii operator to solve the GPE in the rotating frame:

Laop — Lap — QL. (33)

where L, = Py — YDy is the angular momentum operator about the z—axis and €2
the constant trap rotation frequency [33]. This is obtained by changing the viewpoint
from the laboratory frame to the rotating frame through a coordinate change in the GP
operator, see Table 1.2.
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Viewpoint GPE
L O0Y(r,t YL
m% = | = S Vel 1) + gl 1)+
Laboratory frame Jdr'Vaq (r — ') |y (v, 1 [v(r,t),
with Vexe(r,t) = Vexs (R(E)T)
cosQt —sinQt 0
and R(t) = |sinQt  cosQt 0
0 0 1
oY(r,t h2Vv?
inP0D LV ae) 4 gt O+
Rotating frame ‘ "
Jdr'Vaa (v —v') [ (¢, 8)]* — QL. | ¢(x, )

Table 1.2.: Two equivalent points of view to treat the problem of a dipolar BEC in a rotating
trap about the z—axis with angular frequency €. In the laboratory frame, the confining potential
is time dependent and rotating through the rotation matrix R(t) about the z—axis. After
changing the reference frame to the co-rotating position coordinates r — R~1(t)r, the GP
operator acquires an extra term —QL,. It is possible to switch from one viewpoint to the other
also by applying a unitary transformation to the wave function U = eiL=t/h [67].

1.3. Solving the Gross-Pitaevskii equation

Except for some specific cases, the Gross-Pitaevskii Equation (GPE) does not have an
analytical solution. However, numerical methods provide a powerful tool for studying
both the ground state properties and the dynamics of ultracold dipolar systems. To
describe the different scenarios captured by the GPE, it is useful to re-write Eq. (31)
with an additional complex pre-factor:

OY(r,t)

L OU(r, 1)
o

— (o — i) Lap(r,b). (34)
By switching on and off the real and/or the imaginary part of this complex number, we
can solve the GPE for different purposes. We first analyse the time-independent solution
and explore a specific scenario where analytical solutions are possible. Afterwards, we
provide a detailed description of the numerical tools and algorithms used to solve the
time-dependent GPE.

1.3.1. Time-independent solution

The lowest-energy configuration of the condensate can be found by looking for solutions
of the GPE of the form ) (r, t) = e~**/")(r). This ansatz describes a stationary solution
to the GPE, because the spatial and temporal parts are separated so that the density
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distribution n = [ (r,t)|* = |1 (r)|? is time-independent. When using this ansatz, the
GPE reduces to

pap(r) = Lapip(r) . (35)

The quantity 4 can be interpreted as the chemical potential, which is the energy required
to add or remove a particle from the system. Basically, having u as eigenvalue associated
to the stationary state means fixing the total number of particles of the system.

The time-independent solution of the GPE can be obtained from the minimization
of the energy functional E[¢] = (¢| H |¢), with H defined in Eq.(13). The energy
functional reads

2
mmz/mwvaQLW+umm>wﬂ (36)

+ 4 [l + 5 [ drdfow)PVaae - ) [0)*

For a conserved big number of particles N, we can minimize E[¢] imposing the station-
arity condition and the normalization constraint, i.e.

§(E[Y] —pN) =0. (37)

This yields exactly to Eq. (35) [33].

In this thesis, the ground state solutions of the GPE in absence of rotation are
found by minimizing the energy functional. This approach is used in different con-
texts to study both finite and infinite systems:

o To generate supersolid states for comparison with in-situ experimental results
(Chapters 2 and 4);

o To produce the initial states on top of which elementary excitations are calcu-
lated (Chapters 2 and 3);

o To create the initial states used to study dynamical properties (Chap-
ters 2, 4, 5);

e To calculate ground state solutions and extract elastic parameters for an infi-
nite supersolid system (Chapter 3);

Ground state calculations for trapped systems are performed using a conjugate gra-
dient algorithm [68,69], as this method is significantly fast.
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The convergence criterion is set on Eq. (35)

[1Lapy — pp|l < voullll, (38)

where vy is an arbitrary small tolerance parameter. Typically, setting vo = 10~°
is sufficient to achieve a well converged ground state wave functions. For certain
cases, such as studies of the excitation spectrum (see Section 1.6 and Chapter 2),
more stringent tolerances of 79 = 1071° to 107! have been used to ensure highly
converged ground states.

For the infinite systems treated in Chapter 3, the ground state is determined by
minimizing the energy functional using the backward Euler method [70], with a
convergence criterion of 79 = 3 x 1079,

Thomas-Fermi limit

An analytic solution of the time-independent dipolar GPE can be obtained in the limit
of negligible kinetic energy contribution, called Thomas-Fermi limit [71,72]. This simple
case can be used as a toy-model to understand the effect of dipolar interaction on the
density distribution. For simplicity, let us consider a system with dipoles oriented along
the z-axis and confined in a radially symmetric harmonic trap (w, = wy = w, ). In the
Thomas-Fermi limit, the GPE in Eq. (35) for the ground state configuration reduces
to

Viap(®) + gle)E + [ di'Vaale = ') [o(a')* = . (39)

that admits solutions of the form
r2 52
[ (r)]* = n(r) = no (1 - = - > : (40)

Here, R and Z are the Thomas-Fermi radii in radial and axial direction. The pre-factor
ng is instead the peak density, that is related to the total number of atoms through the
expression N = %noRiZ . Remarkably, this solution is similar to the inverted parabola
wave function in the pure contact interacting BEC [33]. However, the aspect ratio of
the trapped gas does not coincide with the aspect ratio of the harmonic trap

RJ_ Wy
— < —. 41
Z < W ( )

This means that the dipolar gas is always stretched in the direction of the dipoles
polarization. For further details on the analytical expressions for R, and Z we direct
the reader to Ref [72]. The analysis of the shape of the density profile of a trapped
dipolar condensate reveals a very important property called magnetostriction, as the
global tendency for a dipolar system to align along the magnetic field direction. The
intuitive picture behind this phenomenon is that the dipoles prefer to align in the head-
to-tail configuration, because of the energetically favourable attractive nature of the
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dipolar interaction.

In this thesis, the phenomenon of magnetostriction will be revisited in Chapter 4
as a tool to impart rotation to the system through magnetic field rotations.

1.3.2. Imaginary time evolution

The ground state results obtained from energy minimization can also be achieved using
a numerical technique known as imaginary time evolution [73]. This method relies on
the decomposition of the condensate wave function into a superposition of eigenstates:

Z Gn(r)e™ i, (42)

where ¢, (r) is an eigenstate of ¥ (r,t) with energy E,. The eigenstates are ordered such
that E,, < Ep41, with the state at index n = 0 corresponding to the ground state. The
numerical trick involves substituting t — —it, effectively converting the time into an
imaginary quantity. Under this transformation, the wave function becomes

le,it) = Y () (43)

By factoring out the exponential term associated with the ground state energy, we can
rewrite Eq. (43) as

) _ Eqt _ En_Bg)t
Y(r, —it) = e h )+ Y dnlr : (44)
n#0
As t increases, the higher-energy terms in the sum decay exponentially due to their
negative exponents (E, o — Ey > 0). Therefore, the wave function converges to the
ground state over time
Ot
1 —it TTh = . 4
t_}+moo¢(r it) = $o(r) = vo(r) (45)
Egt
Notice that the pre-factor e~ also evolves with time. Therefore, the wave function
must be renormalized at each time step during the imaginary time evolution to ensure
proper normalization. In practice, imaginary time evolution is implemented by solving
Eq. (34) with @« = 0 and v = 1. This technique provides a very robust way to obtain
the ground state wave function of the system.

In this thesis, imaginary time evolution has been employed to study ground state
solutions in the rotating frame (Chapters 4 and 5). In general, the convergence to the
ground state wave function is slower than energy functional minimization. However,
it is much more robust in presence of many metastable states with energies similar
to the ground states. This is the case for rotating systems with many quantized
vortices studied in Chapters 4 and 5. The numerical evolution is performed using
a split-step method that incorporates rotations, known as the alternate direction
implicit-time splitting pseudospectral (ADI-TSSP) method [74].
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1.3.3. Real time evolution

The Gross-Pitaevskii operator can, in general, be time-dependent. This time depen-
dence may arise either from intrinsic dynamics or from the application of a time-
dependent protocol to the ground state. Indeed, one of the most common methods
for probing the properties of a system involves applying an external perturbation and
observing the resulting dynamics. This can be done by performing a real time evolution
of the GPE, by setting a =1 and 7 = 0 in Eq. (34).

In this thesis, real time evolution of the GPE will be implemented to study the
dynamical properties of a dipolar system during;:

o aramp of the scattering length, to access the supersolid state of matter (Chap-
ter 2);

o the time-of-flight expansion to study the phase coherence of the system (Chap-
ters 2 and 4);

o the change of trapping frequencies to excite angular collective modes (Chap-
ter 4);

e a rotation of the dipoles polarization direction to dynamically induce vortex
nucleation in supersolids (Chapter 4);

The algorithm employed to solve the GPE in real time is the same as the imaginary
time evolution, namely the ADI-TSSP method [74].

Time-of-flight expansion

A particularly intriguing real time simulation that will be exploit in this thesis, is
the time-of-flight expansion. This protocol examines the evolution of the condensate
wave function after a sudden removal of the trapping potential. Interestingly, while
the expansion occurs in position space, it gives access to the momentum distribution
of the system. Interacting BECs may initially undergo a non-ballistic expansion, with
interatomic collisions causing an initial redistribution of momentum. However, as time
progresses, the expansion transitions to a ballistic regime, where the density distribution
reflects the system’s momentum distribution. This phenomenon draws an analogy to
Fraunhofer diffraction model in optics, where the far-field distribution corresponds to
the Fourier transform of the initial complex field. Such measurements are widely used
to probe the phase coherence of the system, since the first experimental observation
of a BEC [12,13], and will be used in the next chapters to experimentally detect the
structure and the coherence properties of a dipolar supersolid state.

1.3.4. Complex time evolution

Real time simulations usually capture a wide range of perturbative phenomena in dipo-
lar systems across different phases of matter. However, they sometimes fail reproducing
the experimental timescales. This discrepancy is particularly evident in dynamical pro-
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cesses that rely on instabilities, such as vortex nucleation. In such cases, experimental
imperfections and finite-temperature effects introduce dissipation, which often acts as
a seed for dynamical instabilities. As a result, these phenomena can occur on shorter
timescales than those predicted by zero-temperature GPE simulations.

A simple numerical approach to mimic these effects is to employ a complex time
evolution of the GPE. This method can be interpreted as a hybrid of real time and
imaginary time evolution: at each time step, the system undergoes real time evolution
in response to external perturbations while simultaneously relaxing slightly toward the
stationary state under those conditions through an imaginary time component. This
phenomenological dissipative equation was first proposed by Pitaevskii in the context of
superfluid helium [75], and it was reintroduced into the cold-atom community 40 years
later, especially in the context of vortex nucleation [76-78].

In practice, complex time evolution is implemented by solving Eq. (34) for « = 1 and
v # 0. The value of the dissipation parameter v must be carefully adjusted depending
on the specific case.

In this thesis, complex time evolution of the GPE will be used to investigate the
the vortex dynamics during the glitch mechanism of a rotating dipolar supersolid
(Chapter 5). The algorithm employed is the same as that used for both imaginary
time and real time evolution, namely the ADI-TSSP method [74]. The values of 7
usually range from 1073 to 107!,

There exist more advanced techniques to account for dissipation as well as quantum
and thermal effects [79]. Among these, the finite-temperature Stochastic eGPE (SeGPE)
will be employed in Chapter 2 to simulate an experimental protocol, allowing for a
comparison with the results obtained using the zero-temperature GPE. However, since
the majority of the results in this thesis are derived using the zero-temperature GPE,
these advanced methods will not be discussed in detail. For further information, we
refer the reader to Refs. [79,80].

1.4. Quantum and thermal noise

In GPE simulations, breaking the symmetry of the initial state is often useful, particu-
larly when computing the ground state wave function—if its symmetry differs from the
initial density distribution—or when performing real time simulations under perturba-
tions. To address this problem, quantum and thermal fluctuations can be introduced
into the initial state using the truncated-Wigner prescription [79]. Given the single-
particle basis states ¢, and the complex Gaussian random variables v, satisfying

1

0N _ (en/ksT 1\ 1,1
(lal?) = (/M7 —1) 4 2, (46)
the initial state at time ¢ = 0 is initialized as
Y(r,t =0) =(r) + Z andn(r) . (47)

Here, 1(r) represents either an initial guess or the ground state wave function, depending
on whether the simulation is time-independent or time-dependent. The summation is
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restricted to modes with energy ¢, < 2kgT, where T is the temperature.

1.5. Beyond mean-field correction

The GPE in Eq. (31) is widely used in the literature as it accurately describes the physics
of dipolar BECs. However, within the mean-field framework, the dipolar interaction is
predicted to drive the system into collapse when it dominates, as it favours an attractive
head-to-tail configuration. This theoretical prediction was contradicted by experiment
conducted by Pfau’s group in 2016 [81]. In analogy to classical ferrofluids, the team
observed that a dipolar condensate exhibited a Rosensweig instability following a sud-
den quench of the scattering length, forming high-density peaks of 192Dy atoms called
droplets. Surprisingly, these droplets remained stable for approximately 300 ms, suggest-
ing that a crucial stabilizing mechanism was missing from the mean-field theory. The
authors speculated that quantum fluctuations could play a stabilizing role, in analogy
to the stabilization mechanism studied for quantum droplets in bosonic mixtures [82].
By incorporating dipolar quantum fluctuations into the GPE [83], theoretical models
successfully reproduced the formation and stability of these droplets [65]. Similar re-
sults have been obtained using path-integral Monte Carlo simulations, albeit for small
atom numbers [84].

Quantum fluctuations introduce an energy shift and result into a modified form of the
Gross-Pitaevskii operator. Extending the Hamiltonian in Eq. (13) beyond the mean-field
description requires not only the condensate particle operators ay, &;r) but also quadratic
terms with particle operators at p # 0, i.e. ap, &J{,. This approach leads to the first
beyond mean-field correction of the ground state energy of a BEC. The first calculation
was done by Lee, Huang and Yang (LHY) in 1957 [85,86], then more recently adapted to
the dipolar case [83,87]. Quantum fluctuations of interacting particles result in a small
portion of particles occupying non-zero momentum states, even at zero temperature [83,
88]. This phenomenon is known as quantum depletion of the condensate population [33,
89-91].

For a three dimensional homogeneous dipolar BEC, the LHY beyond mean-field cor-
rection to the energy per unit volume is given by

AE 1

Vv =5 28 — = Vna3Qs (aa) , (48)

2 1
29" 5
where the monotonic auxiliary function Qs (£4q) is defined as

1 9 5/2
Qs (edd) = /0 du (1 — €dd + 3u 5dd) . (49)

Here, n = |1)|? is the constant density of the system, so the energy shift due to quantum
ﬂuctuations scales as o n%/2. Often, in literature this function is simplified to Qs (eqq) ~
1 + €dd [6)]

The extension of this approach to non-homogeneous systems is achieved through the
local density approximation. Under this framework, the energy functional in Eq. (36)
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turns into
) = [ e e) (59 4 Vet 00
9 [l 5 [ arde' 0@ PVaate ~ ) o+ (650)
+22(eaa) [ aro)P
where the coefficient ~(zqq) is
7 (eat) = 7r=g03 Os (caa) (51)

=37

Similarly, the GPE turns into the extended Gross-Pitaevskii equation (eGPE), where
the operator Lgp is modified as

h?v? 2
Lap = | ==+ Virap(r) + gl (e, ) * + /dr'Vdd (r=2') ¢ (v, )" + y(caa) ]| -
(52)
The beyond-mean-field correction introduces an isotropic repulsive term that scales
as o< n%/2 = |)|?, increasing rapidly with density. At typical condensate densities of

~ 10%° atoms/m3, this correction is negligible [65]. However, in strongly interacting
dipolar systems, where mean-field theory predicts collapse, this correction becomes not
only significant but is the primary mechanism responsible for stabilizing the system.

In this thesis, results from numerical simulations are always obtained using the
extended version of the Gross-Pitaevskii equation and the energy functional. Cru-
cially, this beyond-mean field correction is responsible for the stability of the dipolar
supersolid state analysed in the next chapters.

1.6. Excitation spectrum and Bogoliubov-de Gennes equations

The excitation spectrum of a BEC gives information about the energy needed to create
a perturbation around the equilibrium configuration. A simple picture of the meaning
of the excitation spectrum is given by Fig.1.5. A container full of water plays the
role of a BEC. At equilibrium, water is at rest. But, in principle, one can create
a wave perturbation on top of it with a specific wavelength 27 /|k|, where k is the
momentum of the wave. The excitation spectrum collects the information about how
much energy w one should give to the system to excite that precise wave with that
wavelength and momentum. The shape of the spectrum highly depends on the nature of
the system under consideration, since the collective waves are shaped by the interactions
between atoms. In some cases w(k) is a continuous function, in other cases it is discrete.
In general, low-energy excitations are like long, gentle ripples (called sound waves or
phonons). High-energy excitations are more like short, steep waves resembling the
free motion of individual atoms (single-particle-like excitations). In this section, we
show how Bose-Einstein condensates with dipolar interaction enrich this general picture.
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Figure 1.5.: Illustration giving a simple interpretation of the excitation spectrum.

The excitation spectrum of dipolar BECs is a crucial component for understanding the
emergence of the supersolid phase of matter.

In order to calculate the excitation spectrum of a BEC, we use the Bogoliubov-de
Gennes approach. Originally derived by Bogoliubov in 1947 [92], this formalism was
later extended to superconductivity by de Gennes [93]. The key idea is to describe
small fluctuations of the system around the ground state solution #(r) obtained from
Eq. (31). This is equivalent to perturb the wave function in the following way:

() = e L)+ un(r)e " + o) (r)et ] | (53)

Here, u,(r) and v,(r) are the Bogoliubov amplitudes associated to the n-th excitation
mode with energy w,,. The coefficient 7 is a small number. The Bogoliubov amplitudes
are normalized to preserve bosonic commutation relations [94], so that the integral over
the volume

[ e [fua @) = fon(w) ] = 1. (54

By substituting the perturbed wave function into Eq. (31), we can linearize GPE
around the ground state solution, keeping only the linear terms in 7. This linearization
problem can be rewritten in form of the Bogoliubov-de Gennes (BdG) equations, that
consist of two coupled differential equations here reported in the matrix form

Lap[y] + X -X U\ U,
(N ) () ()

The operator X acts on a generic function f(r) so that

Xf(x) = g o)) f(r) + o (r) /dr'Vdd (r—1)y () f (). (56)

Quantum fluctuations can be easily incorporated by adding the LHY term computed
for the ground state wave function to the operators Lgp and X:

Lap — Lap + 7 (caa) [¥]? (57)

A ~ 3
X = Xt Sy (eaa) [0l (58)

Solving the BAG equations provides the excitation modes uy(r) and v, (r), along with
their corresponding energies w,,. The derivation presented above assumes a real ground
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state wave function; however, a modified version of the BAG equations can also be
applied in rotating or translating reference frames [95, 96].

In this thesis, BAG equations are solved using the Matlab routine eigs, which is
a matrix-free iterative implementation of the Arnoldi algorithm [97]. Being matrix-
free means that the BdG operator does not need be constructed in a matrix form
which would be prohibitively memory intensive, but instead is defined as a function
by its action [68]. For finite two-dimensional supersolid systems (Chapter 2), high
resolution grids are necessary for the convergence of the BAG modes. Usually, tests
for convergence have been successful using 3D meshes with at least (300 x 300 x
64) points. Also increasing the size of Krylov subspace (‘SubspaceDimension’
input parameter for eigs) has been found to be crucial for the convergence of the
eigenvalue problem.

1.6.1. Spectrum of a dipolar BEC
Homogeneous case

The solution of the BAG equations for an homogeneous dipolar BEC is analytical and
given by

w(k) = \/W [W +2noU (k) |, (59)

2m | 2m

where ng represents the uniform density of the system and U (k) is the Fourier transform
of the total inter-particle interaction potential in Eq. (24). Using Eq. (9) for the dipolar
interaction and considering that the Fourier transform of the d-function in the contact
interacting term is a constant, the dispersion relation becomes

w(k) = \/W {W +2n0[g + gaa (3 cos? O — 1)]} . (60)

2m 2m

In the low-momentum limit (k — 0), this dispersion relation is linear because the
quadratic terms are negligible:

wk —0) ~ hk\/:;(: [9 + gaa (3cos? 0 — 1)] ~ hkvy, (61)

where the excitations correspond to long-wavelength phonons excitations propagating
at the speed of sound wvs. In the opposite limit, large k excitations asymptotically
approaches the quadratic free particle behaviour

wk — 00) ~ —. (62)

Importantly, the presence of a gapless branch in the dispersion relation (limy_,ow(k) =
0) is related to the spontaneously broken continuous gauge symmetry of the BEC®.
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Figure 1.6.: Excitation spectrum of an infinite planar dipolar BEC for a (a) large scattering
length and for a (b) small scattering length. The upper panels show the momentum dependence
of the total interaction in momentum space. The lower panels show the excitation spectrum
(blue solid line) with the the free-particle quadratic behaviour (dark gray dashed line) expected
at large momenta. Results are obtained from a quasi-2D model in Ref. [98], using the parameters
n=10*"m3 w, /27 = 100 Hz.

Infinite trapped dipolar BEC

The introduction of a trapping potential significantly alters the excitation spectrum.
To gain insights, it’s useful to consider a planar infinite system with dipoles polarized
along the axis of the confinement (z—axis). We assume an harmonic confinement w,,
with characteristic length I, = \/h/mw,. This geometry was first explored by Santos,
Shlyapnikov and Lewestein in 2003 to present the novel features of the dipolar spec-
trum [99]. Similar features, however, also emerge in an infinitely elongated system [100].
Here, for consistency with the rest of the thesis, we consider the flattened geometry.

Under the quasi-2D approximation—where the wave function in the z—direction is
assumed to have a Gaussian profile-this system admits a simple analytical spectrum [98].
For a condensate with areal density nsp, the Bogoliubov spectrum for in-plane modes
takes a form similar to Eq. (59):

h2k? | 2K
wki) = L[ =

5 + 2nU (k l)] . (63)

2m

Here, k| represent the momentum in the direction perpendicular to the confinement and
the 3D density is n = nop/v/2ml,. The Fourier transform of the effective 2D interaction

potential is expressed as

UkL)=g {1 + €qqFL (k\jlg)

(64)

This is also called U(1) symmetry, due to the BEC choosing one value of the phase 6 € [0, 27].
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where the auxiliary function F'| is defined as
F\(z) = 2 — 3y/mze® erfe(z) (65)

and erfc(z) denoting the complementary error function.

Figure 1.6 illustrates the excitation spectrum for two values of the scattering length.
The interplay between the transverse confinement and the anisotropic dipolar interac-
tion yields to a momentum-dependent total interaction, as shown in the upper panels.

For large values of as, U(k, ) decreases but remains positive (left). However, for smaller
values of ag, U(k) changes sign (right). The negative contribution of the effective inter-
action in momentum space leads to the emergence of a minimum at finite momentum
krot, known as roton minimum. Additionally, at intermediate momentum, the spectrum
exhibits a local maximum, referred to as the mazon. This characteristic roton-maxon
structure is also observed in liquid helium [101], but in dipolar Bose-Einstein conden-
sates (BECs), the energy gap of the roton minimum is fully tunable via as;. As a
consequence, it is possible to drive the system into a regime where there is no energy
cost to modulate the density at the roton wavelength ~ 27/k,.;. This simple pictures
hints toward the interpretation of the roton as a precursor of crystallization [102].

Finite trapped dipolar BEC

In the previous section we showed how the dispersion relation w(k ) is a continuous
function of k), when the system has no confinement in the plane perpendicular to the
polarization direction. This means that every excitation mode is a plane wave with
an associated momentum k; and the excited system develops a characteristic density
modulation with wavelength 27 /k) .

When the system is fully trapped in the three directions the momentum k is no
longer a good quantum number. This prevents the association of a Bogoliubov mode
with a single momentum or, equivalently, a single wavelength. To analyse the excitation
spectrum in this scenario, the dynamic structure factor becomes a particularly valuable
tool, offering a clear representation of the spectrum. The dynamic structure factor is

defined as [33]
2

/ defu’ + v 1™ ()| 6w — wn) (66)

S(k,w)zz

and it gives information about the density response of the system when it is perturbed
at specific momentum k and energy w.

In Fig. 1.7 we show four exemplar excitation spectra for three-dimensional dipolar
BECs in the dipolar dominated regime (e4q ~ 1.4) confined in a pancake trap. The
spectrum is computed along the k, direction. However, due to the system’s cylindri-
cal symmetry, the results apply equivalently to any radial direction. The light regions
mark the position of the excitation modes, revealing the characteristic roton minimum
around kl, ~ 1, similarly to Fig. 1.6. The confining potential leads to a discrete ex-
citation spectrum and causes a broadening of each mode along k for a given energy.
Additionally, finite-size effects may even yield multiple peaks in at the same k. To
improve visualization, the modes in Fig.1.7 are also artificially broadened in energy,
mimicking the spectral resolution observed in experimental Bragg scattering measure-
ments [103,104].
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Figure 1.7.: Excitation spectrum of a two-dimensional dipolar BEC with 64Dy atoms for three
values of the scattering length in the dipolar dominated regime. The dynamic structure factor
is normalized to its maximum value. For each scattering length the first 64 lowest energy modes
are shown. Parameters: trap frequencies w = 27 x (33,33,167) Hz, atom number N = 210000,
dipoles polarized along z-axis.

It is useful to consider the moments of the dynamic structure factor m,(k), defined
as the integrals

my(k) = APt / wPS(k,w)dw . (67)

The p = 0 moment is the static structure factor, S(k) = [dwS(k,w) which reflects
the symmetries of the state and of the highest response modes. Instead, the p = 1
moment is particularly useful from the numerical point of view. In fact, reaching the
convergence of the BAG modes can be problematic. One way to ensure the convergence
is to compare the energy of some modes with the expected theoretical value, but this is
not always possible. However, another possibility is to calculate the p = 1 moment of
S(k,w) and check the validity of the f—sum rule [33]
27.2
/wS(k,w) dw = Ll . (68)

2m

This rule is generally applicable regardless of the interaction potential and sets the range
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of k£ within which modes are well converged.

In this thesis, excitation spectra for dipolar gases in the supersolid phase are
presented for both fully trapped system (Chapter 2) and 2D planar infinite systems
(Chapter 3). All the spectra are plotted for a k range for which the f—sum rule is
satisfied and the convergence of the modes has been benchmarked with theoretical
predictions (when possible).

1.6.2. Exemplar collective modes

The excitation spectrum and dynamic structure factor are constructed using the Bo-
goliubov modes u, and v,, which also provide insights into the perturbation profiles.
Figure 1.8 illustrates the shapes of several exemplar modes obtained from solving the
BdG equations for a fully trapped dipolar BEC in a cylindrical trap (upper panel). The
corresponding excitation spectrum is depicted in Fig. 1.7(c).

The density perturbation is visualized by plotting
Aty = (un +vp,) Y] (69)

normalized to its maximum value. Regions in red indicate an increase in density due
to the excitation, while regions in blue signify areas where the density decreases. Effec-
tively, one can visualize the effect of the mode picturing the density of the system mov-
ing from blue to red regions. The modes could be classified according to the symmetry
properties: axially symmetric along y-axis, axially symmetric along x-axis, possessing
both axial symmetries, or antisymmetric about the center. Because the ground state
is confined in a cylindrically symmetric trap (w; = wy = w,), axially symmetric modes
with respect to the to z-axis and y-axis are degenerate.

The lowest-energy mode with y—axial symmetry is the dipole mode, which describes
the axial oscillation of the entire system around the center of mass. Its frequency
always matches the trap frequency in that direction (in this case, w = w, = 33 Hz).
The frequency of this mode is often used as a benchmark to assess the convergence of
the BdAG modes. The first mode symmetric along = and y is the quadrupole mode. It
represents deformations of the system where one axis stretches while the perpendicular
axis contracts, preserving the overall volume. For dipolar systems, the frequency of this
mode depends on many parameters and it is possible to predict the value analytically
in the Thomas-Fermi limit [105]. However, regardless the regime, it is typically close
to the theoretical prediction for contact-interacting BECs w = /2w, (in this case,
w = 43.11Hz ~ 1.3w,) [33]. Other surface modes with increasing angular nodal lines
emerge in all the symmetry manifolds at progressively higher frequencies.

Interestingly, in addition to surface modes, many localized modes also appear at
low energies and are crucial in dipolar gases [106—108]. These modes form the roton
minimum in the excitation spectrum shown in Fig. 1.7(c), so they will be referred to
as roton modes. The corresponding dynamic structure factor is very enhanced, making
them the most favorable modes to be populated in response to external perturbations.
They exhibit different symmetries and angular nodal lines but, in contrast to surface
modes, they are highly localized at the system’s center. By adjusting the scattering
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Figure 1.8.: Exemplar excitation modes calculated from BdG equations. Upper panel shows
the ground state density of the unperturbed state, lower panels show the density perturbation
defined in Eq. (69). For each symmetry manifold, the five lowest energy modes are visualized
through the positive (red) and negative (blue) density variation. Degenerate modes appearing
in more than a symmetry manifold have ben removed and showed only once. Parameters: trap
frequencies w = 27 x (33, 33,167) Hz, atom number N = 210000, as = 93 ap, dipoles polarized
along z-axis.

length, the energy of these modes decreases, eventually leading to the complete softening
of the roton minimum at zero-energy.

The instability of roton modes is the driving mechanism behind the emergence of the
supersolid phase of matter, which will be explored in the next section®.

A this point, the reader may wonder whether these modes called rotons are related to rotations, as the
name suggests. The short answer is: they are not. The name “roton” has been assigned by Landau and
Feynman after arguing that a roton minimum in the excitation spectrum was related to local vorticity,
with the roton being the “ghost of a vanishing vortez ring” [109]. The name remained unchanged since
then, even though further studies showed the absence of connection with local vorticity and, instead,
the relation with crystallization instability. As Noziéres said, the roton can be interpreted more as a
“ghost of a Bragg spot” [102].
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Figure 1.9.: Ground state phase diagram of a dipolar gas composed of 94Dy atoms, as a
function of atom number and scattering length. The system is confined in a cigar-shaped
trap with frequencies w/27 = (229,37,135) Hz. Three regimes are identified: unmodulated
BEC, supersolid, and independent droplets. The order parameter £ quantifies the density links
between the peaks. The color of the density highlights the difference between a supersolid phase,
where droplets share global phase coherence, and independent droplets, where each droplet
exhibits a random phase (indicated by distinct colors). Subplots are adapted from Refs. [32,110].

1.7. Ground state phase diagram of a dipolar gas

The ground state phase diagram of a dipolar Bose-Einstein condensate encompasses
distinct phases, each characterized by unique properties and behaviours. The origin of
the new phases relates to the ability to control the shape of the excitation spectrum,
particularly by adjusting the energy gap at the roton minimum. Notably, when the
roton energy gap is reduced to zero, the system can spontaneously modulate its density
without incurring any energy cost. The wavelength of this density modulation is related
to the roton momentum.

Figure 1.9 presents the ground state phase diagram for a quantum degenerate dipolar
gas, calculated by solving the eGPE. The system, confined in a cigar-shaped trap,
reflects the geometry used in the first experimental observations of this diagram [30-32].
The theory predicts three distinct phases, which can be explored by varying the atom
number and the scattering length a,:

¢ Unmodulated BEC phase: it is the ordinary BEC state, described by a macro-
scopic wave function characterized by a global phase coherence. Because of that,
the system has superfluid properties.

e Supersolid phase: the BEC state spontaneously develops a density modula-
tion, while maintaining the global phase coherence. The global phase coherence
arises from non-negligible density links connecting adjacent peaks. The periodic
structure confers solid properties, while keeping simultaneously superfluid nature.
Usually, these density peaks are called droplets.

e Independent droplet regime: this is a modulated state that can be reached in
the strongly dipolar regime. The droplets that are fully disconnected, so that the
tunnelling of particles between droplets is suppressed. The system has crystalline
properties due to the periodic density modulation but no global phase coherence.
Each droplet maintains its phase coherence and superfluid character only within
itself.
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The order parameter used to identify the modulated phases is £L =1 — C, where

C = Nmax — Mmin (70)
Nmax + Mmin
is the density contrast that measures the strength of the link between the peaks. Here,
Nmax and Ny, are the density maximum and minimum in the central region of the
density distribution.

As will be clear in the next chapter, understanding that a dipolar BEC could support
a ground state density modulation, corresponding to the long-sought supersolid phase,
marked a significant breakthrough [111]. While mean-field theory predicts collapse,
quantum fluctuations stabilize these intriguing phases. The next chapter will provide a
detailed historical overview of this development and elaborate on the key properties of
the supersolid state in comparison to the other phases.






Chapter

Supersolidity in Dipolar
Quantum Gases: from 1D to
2D supersolids

The intuitive image of a superfluid as a system capable of sustaining perfect, friction-
less flow inherently seems incompatible with the with the concept of localization as
emerging in crystalline structures of solid bodies. Yet, in the quantum realm, the co-
existence of these seemingly opposing properties becomes possible. This phenomenon
finds realization in the supersolid phase of matter. The ground state phase diagram of
a dipolar BEC features a supersolid phase, providing a versatile platform where to test
this coexistence of seemingly competing natures.

In this chapter, we first provide a brief historical overview of the supersolid phase.
We then discuss the early hints and the first experimental observations of supersolid
phases in dipolar gases confined within elongated traps. Following this, we examine the
essential ingredients required to induce the structural transition from one-dimensional
to two-dimensional supersolids, addressing both theoretical insights and experimental
advancements. The final sections highlight the publications to which the author of this
thesis has contributed.

2.1. Historical overview

Supersolidity arises in systems that spontaneously break two fundamental symmetries:
the continuous translational symmetry, leading to the formation of a discrete periodic
spatial structure, and the gauge symmetry, which establishes the global phase coherence
characteristic of superfluid systems, such as Bose-Einstein condensates. Tracing the
historical development of this phenomenon reveals the key concepts that continue to
underpin our understanding of supersolid systems today.

The concept of combining BECs with solid-like properties was first introduced by
Penrose and Onsager in 1956 [9]. In their work, however, they concluded that achieving
BEC within a solid at absolute zero temperature was not possible, as the localization of
atoms at fixed lattice sites was deemed incompatible with off-diagonal long-range order.
A few years later, Andreev and Lifshitz revisited this idea, proposing a novel theory
in which BEC could emerge through defects within a crystal lattice [112]. Chester
reached the same conclusion the following year [113]. These defects, such as delocalized
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Figure 2.1.: Original models for supersolidity. (a) Defect supersolid according to Ref. [112]:
lattice containing vacancies (gray circles) that can easily move in different directions throughout
the whole system. The mobility of the vacancies (black arrows) translates into the mobility of
the particles (blue arrows). (b) Particles confined in a rotating annulus according to Ref. [117].

impurities or vacancies, could obey bosonic statistics and condense while remaining
embedded in the crystal. The motion of these impurities could then be translated into
an effective motion of particles within the lattice, enabling the system to simultaneously
exhibit both solid and superfluid properties; see Fig.,2.1(a). However, the first attempts
to observe a superfluid flow in a sample of solid “He under a pressure gradient yielded
no positive results in the observation of any superfluid flow' [115,116].

In 1970, Leggett introduced a key concept for the study of supersolid [117]. He pro-
posed that the defining hallmark of a supersolid state would be a sudden deviation in
the moment of inertia from its classical value, which is calculated based on the mass
distribution. This phenomenon, known as non-classical rotational inertia (NCRI), re-
sults in a diminished response of the system to external rotational forces. The deviation
arises from the superfluid component of the system, which does not participate in the
rotation due to its frictionless nature—a hallmark of superfluidity. Leggett modelled this
behaviour by considering individual particles, which obey bosonic statistics, arranged
periodically in a cylindrical annulus; see Fig.2.1(b).

Considering a small rotation at frequency {2 about the z-axis, Leggett defines the
fraction of non-classical rotational inertia as
I L
=1— lim 2 ,
Irig w—0 Irig w

(1)

fnxorr =1 —

where the supersolid moment of inertia I = (L) /w is reduced with respect to the classical
one I,;; = [ drn(r)r? because of the partial superfluid nature of the system [118]. Here,
(f/> is the expectation value of the angular momentum calculated for the wave function
in equilibrium in the rotating frame.

In the annulus geometry, the fraction of non-classical rotational inertia fycgrr is a
measure of the superfluid fraction fs; = ps/p, which quantifies the fraction of the mass
that does not respond to perturbations due to the superfluid nature (in this case, ro-
tations). Here, p denotes the total average density and p, is the superfluid density.
Importantly, ps does not necessarily correspond to a physical fraction of particles that

1Systems made of solid *He were the most promising candidate to observe this effect because of the large
zero-point motion, which causes its atoms to remain mobile even at absolute zero, potentially creating
vacancies [112,114].
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can be individually identified and localized in space. Rather, it quantifies the system’s
reduced response to external perturbations. In other words, ps is not a count of particles
that are part of a superfluid state, but it reflects an effective mass density that measures
the system’s reduced response due to the superfluid nature. In general, calculating f
is challenging and it requires a careful theoretical analysis that depends a lot on the
geometry of the system, see Appendix A.

Leggett estimates an upper bound for the superfluid fraction of the system at zero-
temperature as

1 [1 g2 do -
e Sy >

where r € [0, L] is the the radial coordinate, 6 € [0, 2] is the angular coordinate and
ng denotes the average density over the entire spatial domain of the system. Notice
that when the system is angularly uniform, f; = 1. Conversely, any angular density
variation along the annulus, which signals the breaking of the translational symmetry,
automatically reduces the upper bound, implying a diminished superfluid response f; <
1.

Following these ideas, the famous experiment by Kim and Chan in the early 2000
claimed evidences of NCRI behaviour in a “He experiment with a torsional pendulum,
thus stating the observation of a supersolid behaviour [119,120]. This work sparked
an intense debate among researchers. The interpretation of the results was soon called
into question, when Day and Beamish observed a temperature-dependent increase in
the shear modulus of solid helium, suggesting that the apparent NCRI signal could
instead be attributed to changes in the material’s elastic properties [121]. In light of
these findings and further investigations, Kim and Chan’s results have been disproven
a decade after [122]. At the time of this thesis, no clear evidence of supersolidity in *He
has been observed®.

The turning point for the experimental evidence of supersolidity was a change of per-
spective: rather than beginning with a system exhibiting solid properties and searching
for the ingredients to induce superfluidity, one could instead start with a superfluid sys-
tem and introduce elements that give rise to solid-like behaviour. Following the same
approach of Gross in 1957 [126], one could start from a superfluid BEC and add some
conditions for which the condensate wave function could spontaneously develop a peri-
odic density modulation, thereby acquiring a solid-like behaviour. In 1994 Pomeau and
Rica demonstrated that such behaviour is achievable when the inter-particle interaction
becomes momentum-dependent in Fourier space, leading to a tunable roton gap in the
excitation spectrum [127]. A very simple model meeting this criterion is a many-body
bosonic system with a soft-core interaction [128-130]. Despite being an excellent toy
model from the theoretical point of view (indeed, it will be used in Chapter 3), the
experimental implementation of such a system is very challenging and no experimental
results have been obtained so far in this type of platform.

A momentum-dependent inter-particle interaction can be obtained in other ways.
In the last decades, supersolid properties have been probed across various experimental

2 Actually, recent studies have highlighted some new connections between helium and supersolidity. In
2021 it was demonstrated that a thin film of “He on a graphite substrate can form a spatially modulated
superfluid [123]. Additionally, indirect measurements have recently suggested the existence of a non-
uniform pair density wave in a superfluid composed of bosonic pairs of *He particles [124,125].
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platforms, particularly in the context of ultracold atoms and photonics platforms. Here,
the high tunability and precise control of the parameters enable detailed exploration of
the different regimes. It is important to stress that the understanding of the physics
behind the experimental results with “He has been fundamental for the research on
supersolidity in other platforms. Below, we review some of the most famous alternative
experimental platforms before focusing exclusively on the dipolar case for the rest of
this thesis.

Cavity mediated supersolids

In ultracold systems, cavity-mediated long-range interactions can be engineered using
external cavities. These interactions are controlled by a pump laser, with the interac-
tion strength adjustable via the laser’s power and detuning. Similar to the dipolar case
discussed in Sec. 1.6.1, momentum-dependent interactions can result in the softening of
a roton-type mode, ultimately leading to a supersolid phase [131-134]. The supersolid
state that emerges is stiff. This means that in the excitation spectrum there are no
low-momentum phonons modes associated to a change of the modulation wavelength.
However, the modes associated to a change in modulation amplitude or phase were ex-
perimentally probed [135]. The realization of non-stiff supersolid is based on multimode
cavity QED [136], which was also recently realized experimentally [137].

Spin-orbit coupled supersolids

Bose-Einstein condensates with spin-orbit coupling are composed of particles whose
internal spin states are linked to their momentum through optical coupling [138]. Due
to the modified interactions between the two dressed atomic spin states, these systems
have been shown to host a supersolid state with a stripe density modulation [139,140].
In a very recent study by the Tarruell group, the investigation of the excitation spectrum
revealed that this stripe phase has a compressible crystal structure [141].

Exciton-polariton supersolids

A very recent work showed that a supersolid phase can be reached also in the context
of a driven-dissipative non-equilibrium exciton-polariton condensates [142]. Here, the
strongly coupled hybrid light-matter excitations in a photonic crystal waveguide, called
exciton-polaritons [143], could occupy all the same coherent quantum state and simul-
taneously show a density modulation due to the inter-polariton interaction. Also here,
the wave vector of the density modulation depends on interaction parameters.

2.2. Dipolar supersolids

All the systems discussed above rely on some form of engineered momentum-dependent
interactions to induce supersolidity. In contrast, dipolar systems naturally possess such
interactions due to their intrinsic long-range and anisotropic character, making the
emergence of supersolid behaviour significantly more robust. As presented in Chapter 1,
the excitation spectrum of a dipolar gas develops a roton minimum. This feature,
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Figure 2.2.: Theoretical investigation of an infinite 1D supersolid: (a) superfluid fraction
fs calculated from the non-classical translational inertia (see Appendix A) and (b) excitation
spectrum along the density modulation direction up to the first Brillouin zone. Adapted from
Ref. [111].

as suggested by Nozieres, can be seen as a soft mode precursor of a crystallization
instability [102].

It is instructive to compare the features of the roton spectrum in helium with the one
in dipolar gases. For helium the roton minimum originates from the strong correlations
and the wavelength is on the order of the inter-particle spacing. Consequently, when
the roton softens [144], it leads to conventional crystallization with approximately one
atom per lattice site. Instead, in dipolar gases the system is very dilute and the roton
comes from the mean-field competing interactions. Additionally, the roton wavelength
is much larger than the inter-particle distance, so the crystallization involves thousands
of atoms for each lattice site.

The observation of the roton modes population in a system of magnetic atoms pro-
vided the first hint that dipolar gases could be a good platform to observe supersolid
properties [107]. The population of roton modes was dynamically seeded in a cigar-
shaped dipolar BEC by quickly quenching the scattering length to a lower value, effec-
tively softening the roton energy gap of the spectrum, and quench it up to the original
value. Then, by letting the system expand, the interference pattern reflected the sys-
tem’s momentum distribution. The results showed that the system populates roton
modes at finite momenta, whose dependence on the geometry of the system and in-
teraction parameters was successfully tested. Notably, the population of these modes
eventually saturated, suggesting that additional mechanisms may become significant
after the initial exponential growth.

Inspired by these results, a theoretical work by Roccuzzo and Ancilotto showed that
when the roton gap softens the system on an infinitely elongated geometry does not
collapse but it spontaneously develop a periodic density modulation made of clusters of
particles connected by a superfluid background [111]. These clusters are dipolar droplets
stabilized by quantum fluctuations containing thousands of atoms. The supersolid na-
ture was theoretically detected through different analysis:

e The system exhibits a finite f,, calculated through the non-classical translational
inertia; see Fig.2.2(a). Notice that an infinite supersolid made of a single chain
of droplets is equivalent to Leggett’s ring geometry

e The excitation spectrum has two gapless branches, each one for a spontaneously
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broken continuous symmetry. There is a density branch including phonon crys-
tal excitations, due to the broken translational symmetry. The phase branch is
associated to phase excitations and it results from the broken gauge symmetry,
similar to an unmodulated BEC. See Fig. 2.2(b).

The stabilization mechanism of dipolar systems via quantum fluctuations was first
hinted at in an earlier experiment by the group of Tilman Pfau, which observed the
emergence of a crystalline structure upon reducing the contact interaction in a dipolar
Bose gas [81]. This finding was later reinforced by other experiments using Dy and Er
atoms, which demonstrated the formation of stable dipolar droplet states [145,146] and
the subsequent theoretical works [65, 147, 148].

Finally, as a consequence of all the experimental efforts and theoretical support, in
2019 three research groups independently observed a dipolar supersolid. This happened
in Pfau’s group in Stuttgart [31], in Modugno’s group in Pisa [30] and in our Ferlaino’s
group in Innsbruck [32]. Two distinct techniques have been employed to reach the
supersolid state, see Fig. 2.3(a). The group in Stuttgart and Pisa initially produced
an unmodulated BEC of 2Dy atoms and then gradually ramped the scattering length
across the BEC-to-supersolid transition [30,31]. The team in Innsbruck, instead, used
two different methods. They achieved a supersolid state with '6Er atoms by using a
similar ramp of the scattering length and also realized a supersolid with 4Dy atoms
by directly evaporating from a thermal cloud [32]. In the second case, the sample was
cooled down while keeping the scattering length fixed at its target value [149]. While the
supersolid states produced from the scattering length ramp had a lifetime of ~ 20 ms,
the supersolid state from evaporative cooling was long-lived with a lifetime > 100 ms.

The periodic density distribution of the supersolid state is observed by imaging in-situ
the system confined in the trap, see Fig. 2.3(b). Instead, the global phase coherence
shared between the droplets is detected by time-of-flight expansions, see Fig. 2.3(c).
The resulting interference pattern is reminiscent of the in-trap density distribution.
Importantly, to claim the global phase coherence the matter-wave interference pattern
must be repeatable over different experimental shots. If it is not, each time every
droplet is having a random phase and the system is in the independent droplet regime,
see Sec. 1.7.

2.3. From 1D to 2D supersolids

The first experimental observations of dipolar supersolids have been obtained by using
an cigar-shaped trap, where few droplets were forming a single row along the axial
direction. This triggered many theoretical and experimental works on the study of the
excitation modes and dynamics of a supersolid in that geometry [103,110,151-155]. In
these studies, the system is always three-dimensional, but since the periodic density
modulation is acquired in one direction, this state is called a 1D supersolid. Then, the
question was whether this system could be scaled to larger sizes and geometries. The
first intuitive step, is to extend supersolidity to a second dimension and search for what
is commonly called a 2D supersolid.

Most of the theoretical works at that time studied 2D supersolid properties in infinite
systems [29, 156-158], and the only experimentally realized 2D dipolar droplet states
lacked global phase coherence [81]. It was not clear what were the key ingredients to
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Figure 2.3.: Supersolid formation and experimental observation. (a) Routes to enter the su-
persolid phase. Route 1 first creates a stable BEC and then tunes the ag, crossing the roton
instability. Route 2 starts with a thermal could at fixed as and directly evaporates in the su-
persolid regime, without crossing the BEC-to-supersolid phase transition. Images are obtained
by plotting density isosurfaces, adapted from Ref. [150]. (b) In-situ density distribution of a
four-droplets supersolid made of 4Dy and (c) interference pattern after 35ms time of flight
expansion. The lower plots show the in plane distribution, the upper plot is the integrated
version along the vertical axis. Figures adapted from Ref. [149].

experimentally observe the structural phase transition from 1D to 2D supersolids. And
it was an open question whether the role of the experimental procedure could affect the
stability of the supersolid. We addressed these questions and the results are contained
in the three publications reported in the next sections [150, 159, 160], whose content is
briefly summarized below.

Experimental observation of 2D supersolids

Through a theory-experiment collaboration with the Er-Dy laboratory in Innsbruck,
we experimentally observe 2D supersolids for the first time. Inspired by the structural
phase transition occurring in ion crystals from linear chains to zig-zag patterns [161], we
observe a similar behaviour of the droplets when increasing the radial aspect ratio of the
trap. Importantly, achieving this regime required an increase in atom number, that was
obtained experimentally by improving the cooling sequence; see the left part of Fig. 2.4.
The experimental findings are strongly supported by theoretical comparisons, including
ground state eGPE simulations and a simplified variational model. Finally, we study
the interference pattern of the 2D supersolid to detect the global phase coherence.
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Figure 2.4.: 1D-to-2D structural supersolid transition in the experiment and in the theory.
On the left, experimental in-situ images of the 1D-to-2D supersolid transition, up to a circular
supersolid. The atom number in the experiment varies from 2.5 x 10* to 6.5 x 10*. On the
right, eGPE ground states simulations crossing a similar structural transition. The first column
shows states with constant p, so supersolidity is maintained. The second column shows states
at constant N = 6.3 x 10*, where supersolidity is lost. Figures adapted from Ref. [150,159,160].
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Control parameter, phase diagram and collective modes

To cross the 1D-to-2D transition, we theoretically demonstrate that the control param-
eter is the average 2D density p, defined as

Q:fofy- (3>

Here, N is the atom number and f,, f, are the in-plane frequencies (with dipoles polar-
ized along z). This parameter provides an intuitive way to explore the transition: by
fixing f, and reducing f,, an higher N is required to maintain the supersolid character.
If instead NV is kept constant, supersolidity is lost across the transition; see the right
part of Fig. 2.4. We extend the phase diagram in Ref. [159] keeping constant the average
2D density and compare the results obtained from the eGPE with those from a varia-
tional model. The variational approach was developed to efficiently explore the energy
landscape of a 2D supersolid, which hosts a multitude of nearly degenerate states differ-
ing slightly in energy and droplet arrangement. In addition, we numerically investigate
the emergence of high-density exotic phases as the control parameter p increases, and
present some exemplar collective modes from the excitation spectrum.

2D supersolid formation

We theoretically investigate the formation of 2D supersolids by comparing two dy-
namical approaches: the interaction quench and the evaporative cooling. The first
approach involves preparing a BEC and then perform an ramp of as into the supersolid
regime. The second approach keeps the interaction strength constant, while evapo-
rating directly into the supersolid regime. While the first approach is simulated with
the zero-temperature eGPE described in Chapter 1, the second protocol includes the
description of atoms in the condensate as well as in a thermal cloud. We developed
a finite-temperature stochastic eGPE (SeGPE) theory to model the full evaporation
into the supersolid and mimic the interaction between the condensate atoms and the
thermal cloud [79]. We quantify the quality of the resulting supersolid by analysing two
ingredients:

e The density excitation through the overlap parameter

Cd _ f drn(r — Io, ¢0, t)n(;g
J drngg ’
that measures the overlap between the current system’s density and the target

ground state density ngg. The optimization parameters rg, ¢g are translations
and rotations that maximize C%.

(4)

e The phase excitations through the parameter

_ 2 [dzdyn(z,y)|0(z,y) - B
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¢ ™ Jdzdyn(z,y)

()

measuring the phase coherence of the 2D supersolid in the x — y plane. Here,
0(x,y) is the phase of the wave function in the z = 0 plane and /3 is an optimization
parameter that maximizes CP. This integrals are all performed in the minimal
coherent region that encompasses the droplets in the x — y plane.
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We find that evaporative cooling is a more robust method, that minimize possible
excitations that could disrupt the system’s global phase coherence. Using this method,
we experimentally realize the first 2D supersolid in a circular trap; see Fig. 2.4.

Finally, a special remark on the results presented in the next sections: the experimen-
tal achievement of 2D supersolids and the theoretical characterization of these systems
unlocked very important possibilities. In fact, they are an excellent platform to study
and disentangle the effects of the coexisting solid and superfluid natures. Having a 2D
system allows the study of transverse modes due to non-zero shear modulus, a property
unique to solids (Chapter 3). A 2D supersolid is also an excellent platform to study
rotations, whose behaviour is deeply affected by the superfluid nature (Chapter 4).
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Supersolidity — a quantum-mechanical phenomenon characterized by the presence of both su-
perfluidity and crystalline order — was initially envisioned in the context of bulk solid helium, as
a possible answer to the question of whether a solid could have superfluid properties [1-5]. While
supersolidity has not been observed in solid helium (despite much effort)[6], ultracold atomic gases
have provided a fundamentally new approach, recently enabling the observation and study of super-
solids with dipolar atoms [7—16]. However, unlike the proposed phenomena in helium, these gaseous
systems have so far only shown supersolidity along a single direction. By crossing a structural phase
transition similar to those occurring in ionic chains [17-20], quantum wires [21, 22], and theoreti-
cally in chains of individual dipolar particles [23, 24], we demonstrate the extension of supersolid
properties into two dimensions, providing an important step closer to the bulk situation envisioned
in helium. This opens the possibility of studying rich excitation properties [25-28], including vortex

formation [29-31], as well as ground-state phases with varied geometrical structure [7, 32] in a highly

flexible and controllable system.

Ultracold atoms have recently offered a fundamentally
new direction for the creation of supersolids — rather
than looking for superfluid properties in a solid system
like “He, ultracold atoms allow one to induce a crys-
talline structure in a gaseous superfluid, a system which
provides far greater opportunity for control and obser-
vation. This new perspective has enabled supersolid
properties to be observed in systems with spin-orbit cou-
pling [33] or long-range cavity-mediated interactions [34],
though in these cases the crystalline structure is exter-
nally imposed, yielding an incompressible state. In con-
trast, dipolar quantum gases of highly magnetic atoms
can spontaneously form crystalline structure due to in-
trinsic interactions [11-13], allowing for a supersolid with
both crystalline and superfluid excitations [14-16]. In
these demonstrations, supersolid properties have only
been observed along a single dimension, as a linear chain
of phase-coherent “droplets”, i.e. regions of high density
connected by low-density bridges of condensed atoms,
confined within an elongated optical trap.

The extension of supersolidity into two dimensions is a
key step towards creating an ultracold gas supersolid that
is closer to the states envisioned in solid helium. Com-
pared to previous studies of incoherent two-dimensional
dipolar droplet crystals [8, 35], we work with both a sub-

stantially higher atom number N and relatively strong re-
pulsive contact interactions between atoms. This leads to
the formation of large numbers of loosely bound droplets,
enabling us to establish phase coherence in two dimen-
sions. In our system, the repulsive dipolar interactions
between droplets facilitate a structural transition from
a linear to a two-dimensional array, analogous to the
Coulomb-interaction-mediated structural phase transi-
tions observed with ions [17-20]. Unlike ions however,
our droplets are compressible and result from the spon-
taneous formation of a density wave, allowing for dynam-
ical variation in both droplet number and size. Further,
the exchange of particles between droplets enables the
spontaneous synchronization of the internal phase of each
droplet across the system, and the associated superfluid
excitations [14-16].

Dipolar quantum gases exhibit a rich set of ground-
and excited-state phenomena due to the competition
between many energetic contributions. These include
mean-field interactions of both contact and dipolar na-
ture, quantum fluctuations, and external confinement,
parameterized by potentially anisotropic trapping fre-
quencies f;, .. Such systems can be described with
great accuracy by using an extended Gross—Pitaevskii
equation (eGPE) [36-39]. Even a fine variation of the
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FIG. 1. Calculated phases of dipolar droplet array. a.
In-trap ground-state density profiles calculated using eGPE
for atom numbers N € [3.3,4.4,5.8] x 10* in the droplets
and trap aspect ratios oy = fz/fy € [0.33,0.35,0.39] (left
to right). The scattering length a = 88 aop, where ag is the
Bohr radius. Green dots depict the droplet positions obtained
from the variational model, assuming the same N and droplet
number Np as the eGPE. Stars connect to experimentally
observed density profiles in Fig.2b. b. Phase diagram, ob-
tained from our variational model, as a function of N and «;
for f, = 33Hz, f. = 167 Hz. Linear (two-dimensional) phases
with Np droplets are labelled as 1Dy, (2Dnp,).

strength of these energetic contributions can lead to dra-
matic qualitative changes in the state of the system, for
example enabling a transition from a uniform conden-
sate to a supersolid, or in our present case, from a linear
supersolid to a two-dimensional one.

Fig. 1a shows ground-state density profiles calculated
across this transition using the eGPE at zero temper-
ature. These profiles feature arrays of high-density

droplets, immersed in a low-density coherent “halo” that
establishes phase-coherence across the system. As the
trap becomes more round, the initially linear chain of
droplets acquires greater transverse structure, eventually
forming a zig-zag state consisting of two offset linear ar-
rays.

Although the eGPE has remarkable predictive power,
full simulations in three dimensions are numerically
intensive, making a global survey of the array properties
as a function of our experimental parameters difficult.
To overcome this limitation, we employ a variational
ansatz that captures the key behavior of the system, and
allows us to disentangle the competing energetic contri-
butions. In this approach, we describe an array of Np
droplets by the wavefunction 9 (r) = Z;V=D1 1, (r), where
the j—th droplet is assumed to be of the form: ;(r)

1 (le=psl " 1 (lz=2\ "7 .

VNG exp (=5 (152) " exn (<5 (524) 7). e
terpolating between a Gaussian and a flat-top profile
characteristic of quantum droplets [40]. For a given total
number of atoms N and droplet number Np, energy
minimization provides the atom number N; in each
droplet, as well as their widths o) ;, exponents r,.) ;,
and positions p; = (z;,y;). Repeating this energy
minimization as a function of Np gives the optimal
number of droplets. This model provides a good quali-
tative description of the overall phase diagram (Fig. 1b),
revealing that the interplay between intra-droplet
physics and inter-droplet interaction results in a rich
landscape of structural transitions as a function of the
atom number and the trap aspect ratio oy = f5/ fy.

Several trends are immediately visible from the phase
diagram. Larger N and higher a; generally produce
states with larger numbers of droplets. Further, as with
ions, a large number of droplets favors a 2D configuration,
while tighter transverse confinement (small «;) favors 1D
[17-20]. A transition from 1D to 2D is thus expected
when moving towards larger N or to higher a;. In stark
contrast to the case of ions, the number of droplets typi-
cally increases across the 1D to 2D transition, implying a
first-order nature, while only narrow regions in the phase
diagram may allow for a 1D-to-2D transition at constant
droplet number.

The variational results are in excellent agreement with
our eGPE numerics, in terms of predicting the qualitative
structure of droplet array patterns, as shown in Fig. la.
Slight discrepancies exist between the two theories re-
garding the predicted droplet positions and the location
of the 1D-to-2D transition. This is likely because of the
presence of the halo in the eGPE simulation (and pre-
sumably in the experiment), visible in Fig. la, which is
not accounted for in the variational model. This halo ap-
pears to accumulate at the ends of the trap, pushing the
droplets toward the trap center and likely increasing the
effective trap aspect ratio experienced by the droplets.

To explore the 1D to 2D transition experimentally, we
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FIG. 2. Linear to zig-zag transition in an anisotropic trap. a. We confine and condense dipolar '**Dy atoms within

an anisotropic optical dipole trap (ODT) formed by the intersection of two laser beams. By tuning the aspect ratio of the

trap in the z-y plane (o), perpendicular to an applied magnetic field B, we induce a transition between linear and zig-zag

configurations of droplets. b. Single-trial images of the in-trap density profile of atoms at different o, showing structural

transition from linear to zig-zag states, as well as an increase in droplet number for higher «;. Stars indicate values a; and N

corresponding to the eGPE calculations of Fig. la. ¢. Atomic aspect ratio a, versus trap aspect ratio a:. g is the ratio of

minor to major axes of a two-dimensional Gaussian fit to the imaged in-trap density profile (inset). For the supersolid droplet

array (black markers) we see an abrupt change in «, at the critical trap aspect ratio aj, extracted from the fit (gray line, see

methods). The shape of the transition agrees well with eGPE prediction (green diamonds, see methods). For an unmodulated

condensate (white markers), no abrupt change is evident. d. Distribution of droplet number versus oy, showing a distinct

increase in droplet number at the transition of linear to zig-zag configurations.

use a condensate of highly magnetic 4Dy atoms con-
fined within an anisotropic optical dipole trap with in-
dependently tunable trap frequencies f; , .. The trap,
shown in Fig.2a, is shaped like a surf-board with the
tight axis along gravity and along a uniform magnetic
field that orients the atomic dipoles and allows tuning
of the contact interaction strength. Typically, we per-
form evaporation directly into our state of interest at
our desired final interaction strength, as demonstrated
in Refs. [13, 41]. A combination of in-trap and time-of-
flight (TOF) imaging provides us with complementary
probes of the density profile of our atomic states, and
the phase coherence across the system.

We begin by studying the transition from one to two
dimensions by changing the strength of transverse con-
finement provided by the trap. Our optical setup allows
us to tune f, from roughly 75 to 120 Hz, while leaving
fz, f» nearly constant at 33(2), 167(1) Hz, and thus to
vary the trap aspect ratio oy in the plane perpendicu-
lar to the applied magnetic field and our imaging axis.

For small a4, the atoms are tightly squeezed transversely,
and form a linear-chain supersolid (as seen in in-trap im-
ages of Fig.2b). As we increase a; above a critical value
af = 0.34(2), we observe a structural phase transition
to a two-dimensional (2D) state with two side-by-side
droplets in the center of the chain. By further increasing
ay, the 2D structure extends to two offset lines of droplets
in a zig-zag configuration. The observed patterns match
well with the ground-state predictions from the eGPE
calculations when we globally fix the scattering length to
88@0.

We obtain higher atom numbers in the more oblate
traps (higher ay), giving N = 6.5(5) x 10* at oy = 0.44
and N = 2.5(4) x 10* at oy = 0.28. This further facil-
itates the crossing of the 1D to 2D transition, by favor-
ing states with larger numbers of droplets in the broader
traps. In the zig-zag regime, two-dimensional modula-
tion is clearly visible for durations beyond one second.
Further, the droplet configuration patterns are fairly re-
peatable, with clear structure visible in averaged images
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as shown in the inset of Fig. 2¢, which is an average of 23
trials taken over roughly two hours.

The transition from 1D to 2D is immediately visible
when plotting the atomic aspect ratio a, versus ay, as
shown in Fig.2c. We find that «, undergoes a rapid
change at af, as the single linear chain develops two-
dimensional structure. For comparison, we plot o, mea-
sured for an unmodulated BEC, formed at a different
magnetic field, which does not feature the sharp kink
present for the supersolid state.

In Fig. 2d, we show the number of droplets present for
different a;. In the 1D regime, we typically see between
five and six droplets. This number abruptly jumps up by
approximately one droplet for 2D states near the tran-
sition point, and then increases up to an average value
of eight droplets as «a; is further increased. The change
in droplet number indicates that the transition that we
observe is not of simple structural nature, but is also

accompanied by a reconfiguration of atoms within the
droplets, as expected from theory (see Fig.1).

The measurements of in-trap density presented above
inform us about the structural nature of the transition,
but not about phase coherence, which is the key distin-
guishing feature between an incoherent droplet crystal
and a supersolid. Previous observations of 2D droplet
arrays [35] were performed in traps where the ground
state is a single droplet [8], and the observed droplet
crystal was likely a metastable state lacking inter-droplet
phase coherence. In contrast, we expect from our theo-
retical calculations that the 2D array is the ground state
of our surfboard-shaped trap (for a; > «f), facilitating
the formation of a phase-coherent, and therefore super-
solid state for our experimental parameters.

We experimentally demonstrate the supersolid nature
of our 2D modulated state using a matter-wave interfer-
ence measurement, as previously used in linear supersolid



chains [11-13], (Fig. 3a). In this measurement, an array
of uniformly spaced droplets creates an interference pat-
tern with spatial period proportional to the inverse of the
in-trap droplet spacing. The relative internal phase of the
droplets determines both the contrast and spatial phase
of the interference pattern [42]. When averaging over
many interference patterns, obtained on separate runs
of the experiment, clear periodic modulation persists for
phase-coherent droplets, but averages out if the relative
droplet phases vary between experimental trials. Thus,
the presence of periodic modulation in an average TOF
image provides a clear signature of supersolidity in our
system, as it indicates both periodic density modulation
and phase coherence.

Figure 3a shows an example of such an averaged inter-
ference pattern for a linear chain. Uniaxial modulation
is clearly present along the direction of the chain, indi-
cating a high degree of phase coherence. For comparison,
we also show the expected interference pattern calculated
for a linear array of four droplets from free-expansion cal-
culations, showing similar structure.

For conditions where in-trap imaging shows a 2D zig-
zag structure, the averaged interference pattern exhibits
clear hexagonal symmetry (Fig.3b). This is consistent
with our expectation, and is indicative of the triangular
structure of the underlying state. To confirm that the
observed modulation is not present without phase coher-
ence, we repeat the measurement of Fig.3b at a mag-
netic field corresponding to independent droplets, and
also compute averaged interference pattern for a zig-zag
state with the phases of the individual droplets random-
ized between simulated trials (Fig. 3c). In both cases, the
averaged image does not show clear periodic modulation.

By exploiting the transition between linear and zig-
zag states, we have accessed a regime where the super-
solid properties of periodic density modulation and phase
coherence exist along two separate dimensions. Future
work will focus on further understanding the spectrum
of collective excitations in the full two-dimensional sys-
tem [26-28, 43], where both the crystalline structure and
the exchange of particles between droplets will play an
important role. Further investigations may elucidate in
more detail the nature of the phase transitions and ex-
pected configurations in a wider range of trap aspect ra-
tios, as well as the role that defects play in the 2D system,
either as phase-slips in the zig-zag patterns [44, 45], or as
vortices trapped between droplets of the array [29-31].

We thank the Innsbruck Erbium team and Blair Blakie
for discussions. We acknowledge R. M. W. van Bijnen for
developing the code for our eGPE ground-state simula-
tions.

Author Contributions: M.A.N, C.P., LK., M.S.,
M.J.M and F.F. contributed experimental work. E.P
and R.B. performed eGPE calculations. L.S. contributed
variational model. All authors contributed to interpreta-
tion of results and preparation of manuscript.

Funding: The experimental team is financially sup-
ported through an ERC Consolidator Grant (RARE,
No. 681432), an NFRI grant (MIRARE, No. OAW0600)
of the Austrian Academy of Science, the QuantERA
grant MAQS by the Austrian Science Fund FWF
NoI4391-N. L.S and F.F. acknowledge the DFG/FWF
via FOR 2247/PI12790. M.S. acknowledges support by
the Austrian Science Fund FWF within the DK-ALM
(No. W1259-N27). L.S. thanks the funding by the
Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy
— EXC-2123 QuantumFrontiers — 390837967. M.A.N. has
received funding as an ESQ Postdoctoral Fellow from
the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Sktodowska-Curie grant
agreement No. 801110 and the Austrian Federal Min-
istry of Education, Science and Research (BMBWF).
M.J.M. acknowledges support through an ESQ Discov-
ery Grant by the Austrian Academy of Sciences. We also
acknowledge the Innsbruck Laser Core Facility, financed
by the Austrian Federal Ministry of Science, Research
and Economy. Part of the computational results pre-
sented have been achieved using the HPC infrastructure
LEO of the University of Innsbruck.

* M. A. N. and C. P. contributed equally to this work.
should be

t Correspondence addressed to
Francesca.FerlainoQuibk.ac.at

[1] E. P. Gross, Unified theory of interacting bosons, Phys.
Rev. 106, 161 (1957).

[2] E. P. Gross, Classical theory of boson wave fields, Annals
of Physics 4, 57 (1958).

[3] A. F. Andreev and I. M. Lifshitz, Quantum theory of
defects in crystals, Sov. Phys. JETP 29, 1107 (1969).

[4] G. V. Chester, Speculations on Bose-Einstein condensa-~
tion and quantum crystals, Phys. Rev. A 2, 256 (1970).

[5] A. J. Leggett, Can a solid be “Superfluid”?, Phys. Rev.
Lett. 25, 1543 (1970).

[6] M. H.-W. Chan, R. Hallock, and L. Reatto, Overview on
solid 4 he and the issue of supersolidity, Journal of Low
Temperature Physics 172, 317 (2013).

[7] Z.-K. Lu, Y. Li, D. S. Petrov, and G. V. Shlyapnikov, Sta-
ble dilute supersolid of two-dimensional dipolar bosons,
Phys. Rev. Lett. 115, 075303 (2015).

[8] D. Baillie and P. B. Blakie, Droplet crystal ground states

of a dipolar bose gas, Phys. Rev. Lett. 121, 195301



(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(2018).

S. M. Roccuzzo and F. Ancilotto, Supersolid behavior
of a dipolar bose-einstein condensate confined in a tube,
Phys. Rev. A 99, 041601 (2019).

M. Boninsegni and N. V. Prokof’ev, Colloquium: Super-
solids: What and where are they?, Rev. Mod. Phys. 84,
759 (2012).

L. Tanzi, E. Lucioni, F. Fama, J. Catani, A. Fioretti,
C. Gabbanini, R. N. Bisset, L. Santos, and G. Modugno,
Observation of a dipolar quantum gas with metastable
supersolid properties, Phys. Rev. Lett. 122, 130405
(2019).

F. Bottcher, J.-N. Schmidt, M. Wenzel, J. Hertkorn,
M. Guo, T. Langen, and T. Pfau, Transient supersolid
properties in an array of dipolar quantum droplets, Phys.
Rev. X 9, 011051 (2019).

L. Chomaz, D. Petter, P. Ilzhofer, G. Natale, A. Traut-
mann, C. Politi, G. Durastante, R. M. W. van Bijnen,
A. Patscheider, M. Sohmen, M. J. Mark, and F. Ferlaino,
Long-lived and transient supersolid behaviors in dipolar
quantum gases, Phys. Rev. X 9, 021012 (2019).

M. Guo, F. Bottcher, J. Hertkorn, J.-N. Schmidt,
M. Wenzel, H. P. Biichler, T. Langen, and T. Pfau, The
low-energy goldstone mode in a trapped dipolar super-
solid, Nature 574, 386 (2019).

G. Natale, R. M. W. van Bijnen, A. Patscheider, D. Pet-
ter, M. J. Mark, L. Chomaz, and F. Ferlaino, Excitation
spectrum of a trapped dipolar supersolid and its experi-
mental evidence, Phys. Rev. Lett. 123, 050402 (2019).
L. Tanzi, S. Roccuzzo, E. Lucioni, F. Fama, A. Fioretti,
C. Gabbanini, G. Modugno, A. Recati, and S. Stringari,
Supersolid symmetry breaking from compressional oscil-
lations in a dipolar quantum gas, Nature 574, 382 (2019).
G. Birkl, S. Kassner, and H. Walther, Multiple-shell
structures of laser-cooled 24 mg+ ions in a quadrupole
storage ring, Nature 357, 310 (1992).

M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M.
Itano, and D. J. Wineland, Ionic crystals in a linear paul
trap, Phys. Rev. A 45, 6493 (1992).

S. Fishman, G. De Chiara, T. Calarco, and G. Morigi,
Structural phase transitions in low-dimensional ion crys-
tals, Phys. Rev. B 77, 064111 (2008).

E. Shimshoni, G. Morigi, and S. Fishman, Quantum

(21]

(22]

23]

24]

[25]

[26]

27]

(28]

29]

(30]

31]

32]

33]

zigzag transition in ion chains, Phys. Rev. Lett. 106,
010401 (2011).

W. K. Hew, K. J. Thomas, M. Pepper, 1. Farrer, D. An-
derson, G. A. C. Jones, and D. A. Ritchie, Incipient for-
mation of an electron lattice in a weakly confined quan-
tum wire, Phys. Rev. Lett. 102, 056804 (2009).

A. C. Mehta, C. J. Umrigar, J. S. Meyer, and H. U.
Baranger, Zigzag phase transition in quantum wires,
Phys. Rev. Lett. 110, 246802 (2013).

G. E. Astrakharchik, G. Morigi, G. De Chiara, and
J. Boronat, Ground state of low-dimensional dipolar
gases: Linear and zigzag chains, Phys. Rev. A 78, 063622
(2008).

J. Ruhman, E. G. Dalla Torre, S. D. Huber, and E. Alt-
man, Nonlocal order in elongated dipolar gases, Phys.
Rev. B 85, 125121 (2012).

L. Santos, G. V. Shlyapnikov, and M. Lewenstein, Roton-
maxon spectrum and stability of trapped dipolar bose-
einstein condensates, Phys. Rev. Lett. 90, 250403 (2003).
S. Ronen, D. C. E. Bortolotti, and J. L. Bohn, Radial
and angular rotons in trapped dipolar gases, Phys. Rev.
Lett. 98, 030406 (2007).

R. M. Wilson, S. Ronen, J. L. Bohn, and H. Pu, Mani-
festations of the roton mode in dipolar bose-einstein con-
densates, Phys. Rev. Lett. 100, 245302 (2008).

R. N. Bisset, D. Baillie, and P. B. Blakie, Roton excita-
tions in a trapped dipolar bose-einstein condensate, Phys.
Rev. A 88, 043606 (2013).

A. Gallemi, S. M. Roccuzzo, S. Stringari, and A. Recati,
Quantized vortices in dipolar supersolid bose-einstein-
condensed gases, Phys. Rev. A 102, 023322 (2020).

S. M. Roccuzzo, A. Gallemi, A. Recati, and S. Stringari,
Rotating a supersolid dipolar gas, Phys. Rev. Lett. 124,
045702 (2020).

F. Ancilotto, M. Barranco, M. Pi, and L. Reatto,
Vortex properties in the extended supersolid phase
of dipolar bose-einstein condensates, arXiv preprint
arXiv:2012.15157 (2020).

Y.-C. Zhang, F. Maucher, and T. Pohl, Supersolidity
around a critical point in dipolar bose-einstein conden-
sates, Phys. Rev. Lett. 123, 015301 (2019).

J.-R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas,
F. C. Top, A. O. Jamison, and W. Ketterle, A stripe



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

phase with supersolid properties in spin—orbit-coupled
Bose—Einstein condensates, Nature 543, 91 (2017).

J. Léonard, A. Morales, P. Zupancic, T. Esslinger, and
T. Donner, Supersolid formation in a quantum gas break-
ing a continuous translational symmetry, Nature 543, 87
(2017).

H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier,
I. Ferrier-Barbut, and T. Pfau, Observing the rosensweig
instability of a quantum ferrofluid, Nature 530, 194
(2016).

I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and
T. Pfau, Observation of quantum droplets in a strongly
dipolar bose gas, Phys. Rev. Lett. 116, 215301 (2016).
L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wéchtler,
L. Santos, and F. Ferlaino, Quantum-fluctuation-driven
crossover from a dilute bose-einstein condensate to a
macrodroplet in a dipolar quantum fluid, Phys. Rev. X
6, 041039 (2016).

F. Wéchtler and L. Santos, Quantum filaments in dipo-
lar bose-einstein condensates, Phys. Rev. A 93, 061603
(2016).

R. N. Bisset, R. M. Wilson, D. Baillie, and P. B. Blakie,
Ground-state phase diagram of a dipolar condensate with
quantum fluctuations, Phys. Rev. A 94, 033619 (2016).
L. Lavoine and T. Bourdel, 1d to 3d beyond-mean-
field dimensional crossover in mixture quantum droplets
(2020), arXiv:2011.12394 [cond-mat.quant-gas].

M. Sohmen, C. Politi, L. Klaus, L. Chomaz, M. J. Mark,
M. A. Norcia, and F. Ferlaino, Birth, life, and death
of a dipolar supersolid, arXiv preprint arXiv:2101.06975
(2021).

Z. Hadzibabic, S. Stock, B. Battelier, V. Bretin, and
J. Dalibard, Interference of an array of independent
Bose-Einstein condensates, Phys. Rev. Lett. 93, 180403
(2004).

J.-N. Schmidt, J. Hertkorn, M. Guo, F. Boéttcher,
M. Schmidt, K. S. Ng, S. D. Graham, T. Langen,
M. Zwierlein, and T. Pfau, Roton excitations in an oblate
dipolar quantum gas, arXiv preprint arXiv:2102.01461
(2021).

K. Pyka, J. Keller, H. Partner, R. Nigmatullin, T. Burg-
ermeister, D. Meier, K. Kuhlmann, A. Retzker, M. B.
Plenio, W. Zurek, et al., Topological defect formation and

[45]

[46]

spontaneous symmetry breaking in ion coulomb crystals,
Nature communications 4, 1 (2013).

S. Ulm, J. RoBinagel, G. Jacob, C. Degiinther,
S. Dawkins, U. Poschinger, R. Nigmatullin, A. Retzker,
M. Plenio, F. Schmidt-Kaler, et al., Observation of the
kibble—zurek scaling law for defect formation in ion crys-
tals, Nature communications 4, 1 (2013).

A. Trautmann, P. Ilzhoéfer, G. Durastante, C. Politi,
M. Sohmen, M. J. Mark, and F. Ferlaino, Dipolar quan-
tum mixtures of erbium and dysprosium atoms, Phys.

Rev. Lett. 121, 213601 (2018).



Methods

Experimental apparatus and protocols: Our ex-
perimental apparatus has been described in detail in
Ref. [46]. Here, we evaporatively prepare up to N =
6.5(5) x 10* condensed '*Dy atoms in a crossed opti-
cal dipole trap formed at the intersection of two beams
derived from the same 1064 nm laser, although detuned
in frequency to avoid interference. One beam (the static
ODT) has an approximately 60 pm waist. The second
(the scanning ODT) has an 18 um waist, whose position
can be rapidly scanned horizontally at 250kHz to cre-
ate a variably anisotropic time-averaged potential. By
tuning the power in each beam, and the scanning range
of the scanning ODT, we gain independent control of the
trap frequencies in all three directions. The two trapping
beams propagate in a plane perpendicular to gravity, and
cross at a 45° angle, which leads to the rotation of the
zig-zag state at high o, visible in Fig. 2b.

We apply a uniform magnetic field oriented along grav-
ity and perpendicular to the intersecting dipole traps,
with which we can tune the strength of contact interac-
tions between atoms. This allows us to create unmod-
ulated Bose-Einstein condensates, supersolid states, or
states consisting of independent droplets at fields of B =
23.2G, 17.92 G, and 17.78 G, respectively.

Details of our imaging setup are provided in Ref. [41].

In-trap and TOF images are performed along the vertical
direction (along B and gravity), using standard phase-
contrast and absorption techniques, respectively. The
resolution of our in-trap images is approximately one mi-
cron. We use a 36 ms TOF duration for imaging interfer-
ence patterns.
Atom number: We extract the condensed atom number
N from absorption imaging performed along a horizontal
direction in a separate set of experimental trials under
otherwise identical experimental conditions. This allows
for a larger field of view, and better fitting of thermal
atoms. N is determined by subtracting the fitted thermal
component from the total absorption signal.

For comparison between experiment and theory, and
between the variational and eGPE theory methods, we
associate N with the number of atoms in the droplets,
and not in the diffuse halo that surrounds the droplets.
From simulation of TOF expansion, we find that the halo

is repelled at early expansion times, and is likely indis-
tinguishable from the thermal cloud in our TOF mea-
surements. While it is possible that some of the halo is
counted in N, we neglect this possibility and assume that
N includes only atoms within droplets.

Scattering length: The positions of phase boundaries
between different droplet configurations are quite sensi-
tive to the scattering length a, which is not known with
high precision in our range of magnetic fields. For all
theory, we use a value of a = 88 ag, where ag is the Bohr
radius, as this value provides good agreement between
experiment and theory for the 1D-to-2D transition point.
Extracting critical aspect ratio: The critical aspect
ratio oy is extracted from fit to the function a, = oy for
ap < of, ag = \Jai +blay —aj)? for oy > of, where
of, agp, and b are fit parameters. The error bars reported
in Fig. 2¢ represent the standard error on the mean, and
are smaller than the markers on most points.
Interference patterns: The predicted interference pat-
terns of Fig. 3 are calculated by assuming free expansion
of Gaussian droplets. In reality, the droplets are prob-
ably not Gaussian, and interactions during TOF expan-
sion may modify the interference pattern. However, the
droplet shape primarily effects the envelope of the inter-
ference pattern, which is not our primary interest here,
and from eGPE simulations, we expect the effects of in-
teractions to be minor, provided that the droplets be-
come unbound in a time short compared to the TOF,
which we verify by both looking at shorter TOFs and
comparing the fringe spacing observed in TOF with that
expected from the in-trap droplet spacing. The positions
and size of the droplets are tuned to provide illustrative
interference patterns.

Droplet number: We extract the droplet number from
our in-trap images using a peak-finding algorithm ap-
plied to smoothed images. The algorithm finds the local
maxima above a threshold, which is chosen to be 40%
of the overall peak value. Each in-trap density distribu-
tion is classified as linear array or 2D zig-zag based on
the atomic aspect ratio. Finally, the counts with a given
droplet number are normalized by the total number of
trials to get the probability shown in Fig.2d. Fluctua-
tions in the number of atoms in a given trial can push
droplets above or below the threshold value, contributing
to the spread in extracted droplet number for a given ay.
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We theoretically investigate supersolidity in three-dimensional dipolar Bose-Einstein condensates. We focus
on the role of trap geometry in determining the dimensionality of the resulting droplet arrays, which range
from one-dimensional to zigzag, through to two-dimensional supersolids in circular traps. Supersolidity is well
established in one-dimensional arrays, and may be just as favorable in two-dimensional arrays provided that one
appropriately scales the atom number to the trap volume. We develop a tractable variational model—which we
benchmark against full numerical simulations—and use it to study droplet crystals and their excitations. We also
outline how exotic ring and stripe states may be created with experimentally feasible parameters. Our work paves
the way for future studies of two-dimensional dipolar supersolids in realistic settings.

DOI: 10.1103/PhysRevA.104.063307

I. INTRODUCTION especially important for the highly magnetic Er and Dy atoms.
With this knowledge in hand, the first dipolar supersolids were

A supersolid concurrently exhibits both superfluidity and . . - .
! ) created by crossing the roton instability from the BEC regime
crystalline order1—6]. Although predicted over half a century to the dro}pl)let arraygregimdp—lz] or dir)éctly by evaporati\?e
ago, supersolidity was only recently realized in experiments; !

a feat made possible by the flexibility and high degree ofCOOIIng into the supersolid phast]. The supersolid ground-

| afforded b Whil i tate region exists close to this phase transition, where the
control afforded by quantum gas systems. While supersoligh.,,|ets overlap enough for the superfluid to globally conduct
properties were observed in experiments with cavity-mediate

! ) . . ) roughout the crystal.
interactions f] and spin-orbit coupling,9], those platforms While almost all dipolar supersolids have been experimen-

produce rigid lattices that are impervious to the usual exyq)ly realized as one-dimensional (1D) droplet arrays (see, for
citations expected of crystals. In contrast, supersolids withyample, Refs10-15)), two recent experiments have created
deformable crystals have now been realized in dipolar Boseyo-dimensional (2D) supersolid29,30], thus opening an
Einstein condensated(-12], in which genuine crystal and exciting frontier. An early theoretical study in 2D predicted
superfluid excitations have been observesHL5]. a rich phase diagram determined by competing metastable
Dipolar Bose-Einstein condensates (BECs) can be obcrystal configurations31]. More recent works in 2D have
tained from highly magnetic atoms such as chromid®,[  predicted supersolid edge phas&§]] intriguing manifesta-
dysprosium 17], and erbium 18]. It was already predicted tions of quantum vortices and persistent currer3-B6],
in 2003 that dipolar BECs could undergo a roton insta-honeycomb supersolids3]], as well as ring and stripe
bility [19—where the unstable excitations occur at finite phases38,39].
momenta—as observed in cigar-shaped Er BEGZ[] and, Associated with this rich physics, dipolar supersolids have
more recently, in a pancake-shaped Dy BR@[However, it  a large number of control parameters and their effects on the
was also expected from theory that the ensuing periodic demground-state phase diagram interplay in a complicated way.
sity modulations would undergo a runaway collapse, and th&urthermore, the supersolid regime typically lies only within
regions of high local density would invoke three-body lossesa small range of parameters, located between the ordinary
that rapidly destroy the underlying BEC. Indeed, a similarunmodulated BEC and a crystal of isolated droplets. It is
process was observed with the implosion of entire chromiuntherefore paramount to develop strategies for maintaining su-
BECs, driven by the attractive head-to-tail dipolar interactiongpersolidity while exploring phase space. From a theoretical
[22]. From the perspective of supersolidity, the missing ingre-perspective, it is also necessary to develop tractable and accu-
dient was a mechanism to stabilize against such implosiongate descriptions to supplement the computationally intensive
and the answer came from the experimental discovery o@GPE.
dipolar droplets in Dy23,24] and Er 5] BECs. Intriguingly, In this work, we study supersolidity in three-dimensional
the stabilization mechanism is well described by including(3D) dipolar BECs. We systematically explore 1D and 2D
the leading-order effects of quantum fluctuations, resulting irfiroplet arrays, identifying the crucial role that tleer-
a theory now known as the extended Gross-Pitaevskii equagde 2D densityplays to maintain supersolidity for various

tion (eGPE) p5-28]. These beyond-mean-field effects are trap geometries and atom numbers. We implement an eGPE
formalism—and develop a tractable variational model—to

examine the phase diagram from linear supersolids in elon-
“Corresponding author: thomas.bland@uibk.ac.at gated traps to 2D supersolids in circular traps, passing through
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zigzag and multirow elliptical phases along the way. We find I11. TWO-DIMENSIONAL SUPERSOLIDITY
that 2D supersolids may be just as favorable as their 1D
counterparts, provided that one fixes the average 2D density.
Through increasing the average 2D density, we show how to In dipolar gases, the strong interplay between the confine-
observe the exotic ring and stripe phas2&39] with realistic ~ ment geometry and the long-range and anisotropic dipole-
experimental parameters. Finally, we extend our variationatlipole interactions means that the ground-state phase diagram
model to study 2D crystal excitations and benchmark thids complex and the relevant parameter space to consider is
against full numerical calculations. huge. This may conceal the identification of the most im-
The paper is structured as follows. In Skcwe outline our  portant control parameters. For example, it was demonstrated
system and the eGPE, while Sét.introduces the concept of in Refs. [L0-12,31,39,42] that varying as and f, dramati-
the average 2D density and uses it to theoretically build a 1Deally affects the supersolid ground state, with supersolidity
2D supersolid phase diagram. We also introduce our droplegasily being lost. In what follows, we identify an important
crystal variational model. Sectid examines increasing the control parameter for moving between or within the various
average 2D density to access the exotic ring and stripe phasesipersolid regimes, as well as maintaining supersolidity while
In Sec.V, we present some exemplary 2D crystal excitationsprogressing from 1D to 2D droplet arrays.

A. Average 2D density

before concluding with Sed/l. Dipolar supersolids require tight confinement along the
direction of dipole polarization, and the precise choicef of
Il. FORMALISM determines the narrow range af over which supersolidity

occurs. For this reason, we take bdilandas to be fixed in the
We consider 3D dipolar BECs under harmonic confine-following argument. We propose that tagerage 2D density

ment and we use the eGPE, given B{28] acts as an important control parameter. This can be thought
Ryv2 1 of as amaverageover the droplet and interdroplet regions, and
'ﬁa‘p(x’t) S v - 2,2 22 252 only the2D densityis considered becauseis fixed. A simple
I + m(a)XX T wyy + w; ) > : )
ot 2m 2 yet powerful estimate for how the average 2D density scales is
3 , oo furnished by the Thomas-Fermi approximation, where kinetic
+ / d™'U (x = x)W(X', 1)] energy is neglected, and thandy radii of a BEC scale-1/ f,
and~1/fy, respectively, giving a BEC area scaling/ fx fy.
+ yQF|\If(x,t)|3] (X, ), (1)  The key point is then to realize that the average 2D density
scales approximately with the parametes= N f,fy. In the

next section, we explore the consequences of varyversus

wherem is the mass and; = 2x f; are the harmonic trap keeping it fixed

frequencies. The wave functiob is normalized to the total
atom numbeN = [ d3x|¥|%. For dilute gases, two-body in-

teractions are well described by the pseudopotential, B. From 1D to 2D
4 Rtas 3h%agy 1 — 3cof6 In order to illustrate the utility of the average 2D density—
ur) = m 8(r) + m r3 ’ () characterized by—the first two columns of Fidl explore the

1D-2D transition for two different phase-space trajectories:
first by allowinge to vary and second by fixing. For both, we

consider fixed interactions while moving from a cigar-shaped
li'rap (top row) to a pancake-shaped trap (bottom row). The

h i d Biling.. W key difference between the trajectories is that column 1 has
with magnetic momenty, and vacuum permeabiliio. We 5 %iyoq atom number—and henge decreases as the trap

take the dipoles to be polarized aloagand® is the angle loosens—while column 2 instead fixes with N increasing
between the polarization axis and the vector pointing from one

of the interacting particles to the other. We always considep0 compensate for the widening of the trap. Crucially, the
; . ion ofp in the fir lumn | | f th r-
164Dy, such thabgg = 130.8ag, Wherea is the Bohr radius. eduction ofg in the first column leads to a loss of the supe

The final term in {) is the dipolar Lee-Huang-Yang correction solid phase, replaced by an unmodulated BEC, while figing

ising f tum fluctuationddl. having th Hiciont allows us to loosen the trap while remaining in the supersolid
arising from quantum fluctuationé(l, having the coefficien regime, eventually resulting in a large, 19-droplet supersolid

2872 - for the circular trap [Fjgl(j)]. We have theor.etically yerified
am \/ERG{QS(edd)}v (3)  in other work that this large 2D supersolid state is robust
against thermal fluctuation8(Q).

with the first term describing the short-range interactions gov
erned by theswave scattering lengths. The second term
represents the anisotropic and long-range dipole-dipole inte
actions, characterized by dipole length = .ou2m/127 h2,

YQF =

where Os(edd) = [ du(L — e + 3u%e44)®? is the auxil-

iary function, and the relative dipole strength is given by o

£dd = aqd/as. Note that Qs can be calculated analytically C. Droplet variational theory

(Appendix A), but this is just a monotonically increasing  Although direct simulations of the eGPE have a remarkable
function that is of the order of unity for the regimes that predictive power, they are numerically intensive and hinder
we consider here. Ground-state and metastable solutions af thorough overview. We develop a variational model that
Eq. (1) are calculated by minimizing the energy functional permits a much simpler determination of the available droplet
corresponding to the eGPE using a conjugate-gradients tecphases, while presenting an excellent qualitative, and largely
nique @1]. quantitative, agreement with our eGPE calculations.
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gies in the system using well-known properties of the Gamma
function.

Our general strategy is to first numerically minimize the
single-droplet problem for a range of possible parameters
to build interpolation functions for the variational widths
o,.2(N') and exponents, ,(\). These functions are then used
to solve the many-droplet problem.

For a single dropletAnsatze(4) and 6) can be used to
minimize the eGPE energy functional,

Esa(N) = Exin + Etrap + Esr + Edd + Eqf, (6)

where these quantities are the kinetic, trap, short-range in-
teraction, dipole-dipole interaction, and quantum fluctuation
contributions, respectively. The evaluation of these terms is
detailed in AppendiA.

Now consider a droplet array witNp droplets, withN;
atoms in thejth droplet. Within the variational model, the
energy of the droplet array is then given by

Np Np
E= Z [Esd(Nj) + g(wfxf + a))%yjz)Nj:I + Z Z Ejj/,
j=1 i=1j>]

(7
FIG. 1. Opening up the trap from 1D to 2D fé#*Dy atoms

with as = 88a, andagq = 130.8ap. In each panel, we fixf(, f,) = where Ejj is the interdroplet interaction, detailed in
(33,167) Hz and decreask € {110, 84.6, 60, 40, 33} Hz, fromtop ~ Appendix B. By solving the single- then multidroplet
to bottom, showing the integrated column density. Column 1: eGPEproblems separately, we effectively reduce the num-
result with constaniN = 6.3 x 10*. Column 2: eGPE with con- per of variational parameters fromNg —1 to 3\p —1
stant average 2D density, increasiNgto fix ¢ = N f, f, with N € ({Upj 2 r[J') 2N, X, ¥} = {Nj, %, yj}), where the—1 arises
{6.3,8.19, 11.55,17.325 21} x 10*. Column 3: same as column 2, frorﬁ fixiﬁg the total atom numbeN = 3 N;.
but the variational model. The atom number in the variational model It is worth noting that important eariy work employed a
is chosen to match the droplet atom number of the eGPE (seje tex%urely Gaussian variational model (i.e, = r, = 2) to ex-
We always take the dipoles to be polarized by magnetic field plore crystal and supersolid configurat%t‘.iﬂ][ Our model
alongz. goes a step further by allowing for the possibility of droplets

with flat-top density profiles, which partially acts to shield

Inspired by recent work with nondipolar droplet3], we  interdroplet repulsion in the supersolid regime where the

assume the following\nsatzor a dipolar droplet: droplets are tightly packed together.
Example solutions of our variation&lnsatzare shown in
W(x) = VNo(p)y (2), (4)  Fig. 1 (column 3), displaying excellent agreement with the

corresponding eGPE results (column 2). It should be noted
with A/ the number of particles ang = /x2+y2. We that for the eGPE solutions, a sizable number of atoms exist
again consider dipoles polarized along thexis, and the outside the droplets in an outer ring, which we term the “halo.”
droplets are cylindrically symmetric, which we have con-To make direct comparisons between the variational and
firmed as a good approximation by comparing with full eGPEEGPE methods, we estimate the total number of atoms in the
calculations. The radial and axial functions take the formdroplets alone from the eGPE and use this to set the total atom

respectively, number for the corresponding variational calculation. For ref-
erence, the variational to eGPE atom number ratio varies from
_ ry _1(L ) Nvar = 0.84Nggpefor the linear chain [Figsl(f) and1(k)] to
¢(p) = me w Nvar = 0.58Negpefor the circular crystal [Figsl(j) and1(o)].
re (5) Small deviations in the droplet positions occur between the
r, () models due to repulsion between the droplets and the halo in
V@)= \ me A the eGPE, whereas the halo is absent in the variational model.

In general, the halo leads to a slight compression of the crystal.
with I'(x) being the Gamma function. The widths ; and  Additionally, because the halo density is nonuniform around
the exponents, , are variational parameters. Note that thisthe perimeter of the droplet array (in some cases forming
function permits the interpolation between a Gaussiaa )  nearly-droplet-like regions of higher density), its presence can
and a flat-top ( > 1) profile in a natural way. Furthermore, also qualitatively modify the structure and the symmetry of
this Ansatzallows for a simple evaluation of the various ener- the droplet array in certain situations [cf. Fidg¢h) and1(m)].
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Np Following the solutions from bottom left to top right in
70 —1D 22 ‘ 2D ‘ 19 Fig. 2, there are two distinct jumps in the average transver-
A ) o sal spread Ay = 1/Np ZJ-ND lyj —yI, for they position of
60 | 11 the jth droplety;, and meary positiony), marked as white

10 dashed lines in Fig2. These signify the transition from linear

g 50| 9 [Fig. 2 (A)] to zigzag [Fig.2 (O)] configurations, and then
= 8 2D solutions with three [Fig2 (O)] or more [Fig. 2 (x)]
5 7 rows of droplets. The first three of these highlighted solutions
Fg 40 6 contain the same number of droplets for a fixed atom number,
= 5 until & ~ 1, where the ground-state configuration consists of
30l 12 droplets. Intriguingly, these jumps iy are also usually
g 4 ; ; ;
3 associated with a change in the ground-state droplet number. It
= 20 | 3 is interesting to note that in the 1D regime, the regions of con-
2 stantNp slope downwards to the left. This can be understood
1 by considering a horizontal trajectory, for which bdthande
10 ‘ ‘ ‘ ‘ ‘ are constant. As we move left along this trajectory, increasing
0.2 0.4 0.6 0.8 1 .
] fy can no longer force the droplets closer together—since the
‘ Aspect ratio, a; array is already 1D—while the decreasifigprovides more
= f) 5 space for longer droplet arrays, with lardéy.
g7 0
=4 e IV. INCREASING AVERAGE 2D DENSITY
_92 o
-10 0 10 5 o0 s 5 o0 5 Previous theoretical works have found exotic two-

@ (jm) x (pm) 2 (um) dimensional supersolid states with either large atom numbers
(~10°) or tight trapping €1 kHz) [37-39]. Notably, hon-

FIG. 2. Crystal phase diagram ff#Dy atoms from 1D (left) to eycomb ground states have been predic&d \ith crystal
circular trap regime (right) usingnsatze4) and ©). Color indicates  grrays ofholesrather than droplets. Such states are appealing
ground-state droplet number vs total atom numbeand aspect q,a 19 their predicted strong superfluid conductance across the
ratioo; = fy/f,. A constant average 2D density (controlled by fixing crystal, without relying on low-density connections between

e =N1d,) is used throughout, which means the trap tightens fromdroplets. Also predicted are intriguing stripe and ring states

v/ ffy = 43 Hz (top) toy/fufy = 114 Hz (bottom). White lines sep- [38], as well as labyrinthine instabilitieg¢] familiar in clas-
arate the 1D, zigzag (ZZ), and 2D regions. Example configurations .
sical ferrofluids §14].

z)nrdﬂxef N =54 x 10" are shown below. Parametefs= 167 Hz Using the eGPE, we investigate the feasibility of creating

as = 883y remain constant. . . ! . .
these exotic supersolids by increasing the average 2D density

through tightening the radial trap frequencies, without relying

on pushing the parameters to unrealistically large values. Fig-

ures 3(a)-3(f) show how the solution changes by increasing

) o fx = fy € {30, 50, 80, 90, 100, 150, Hz, respectively, while

Here, with the variational model, we seek to explore theholding fixed N = 1.4 x 10P, and hencep increases. This
full phase diagram of droplet crystal configurations whiletrajectory through phase space takes us from an unmodulated
maintaining a fixed average 2D density, which we control byBEC [Fig. 3(a)] to a hexagonal supersolid [Fi§(b)], a stripe
keepingQ constant. F|gUrQ shows the droplet Configurations superso“d [F|g3(d)], through to a ring state [F|g3(e)]’ and,
of the ground state as a function of the trap aspect ratiginally, a macrodroplet [Fig3(f)]. Interestingly, while the
o = fy/fyand atom number. Singeis held fixed throughout, peak density of the BEC phase is abot & 10?° m~3, for all
the bottom of the phase diagram correspondfNte- 10°  groplet and supersolid phases it is roughly constartia x
and \/fxfy = 114 Hz, while the top reacheN =7 x 10" 10?1 m~3, suggesting that the atom losses from inelastic three-
and,/fyfy = 43 Hz. Traversing right on the phase diagrambody collisions—and hence also the lifetimes—of these exotic
equates to increasinfy and decreasindy, hence moving to  states may be comparable to that for the current generation of
more circular configurations. supersolid experiments.

Several trends are apparent from this phase diagram.
LargerN corresponds to ground states with a larger number of
droplets. If the configuration is linear (left in Fig), then the
droplet number increases incrementally one droplet at a time; Following the recent experimental observation of a seven-
however, for largey; ~ 1 (right in Fig.2), there are occasional droplet hexagon supersoli®(], we further investigate the
jumps of two or more droplets—within the resolution of our excitations of this state in a circular trap using the eGPE [see
phase diagram—corresponding to preferential triangular conFig. 4(al) and variational model [see Fig(b1).
figurations of the lattice in 2D. For example, we find that for ~ We find excitations in the Bogoliubov—de Gennes (BdG)
a; = 1, the ground state jumps frodMy = 8 to theNp = 12 framework, which consists of a linearization of the eGPE
state shown in Fig2 (x), with only a very narrow range & around the stationary solution, with perturbations of
corresponding to a 10-droplet configuration in between.  the form 8y = ue'¢/N 4 y*d<t/h [45]. To visualize the

D. Crystal phase diagram

V. EXCITATIONS OF A 2D SUPERSOLID
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FIG. 3. Increasing the average 2D density. The radial trap

frequency is increased from (a)—(f), respectively, Bs= f, €

{30, 50, 80, 90, 100, 150, Hz, while N = 1.4 x 10° is held fixed.

Density isosurfaces are shown at the 5%, 0.1%, and 0.01% of the

maximum density level. Shadow shows the 2D integrated density.

Other parameters’, = 167 Hz andh; = 88a,. FIG. 4. Crystal excitations. (al),(b1l) Seven-droplet crystal state
and corresponding excitations from the (a2)—(a5) eGPE-BdG cal-
culations and (b2)—(b5) variational model. Arrows indicate relative

excitations, ~we plot the density perturbation droplet motion (see main text). Parameteas:= 90ao, fxyz =

Ay = (u+ v*)yo| for several exemplary excitations in (5283 5283 167) Hz, N = 9.5 x 10*. (c) Exemplary excitations

Figs. 4(a2)—-4(ab) (arbitrary normalization). The arrows forthe 19-droplet state from the variational model shown in E{g).

represent the droplet displacement vectors (with arbitrary

global scaling), calculated from the shift in density peaks

caused by adding a small amount of excitation to themodel. These deviations point to a measurable role played by

ground-state wave function. These results are compared witlhe superfluid connection between the droplets, and the effect

the corresponding excitations calculated with the variationabf the surrounding halo, which are not accounted for by the
model [Figs.4(b2)-4(b5), with droplet displacement vectors variational model. Such comparisons between models provide
obtained through linearizing perturbations to the dropletan excellent platform to distinguish contributions from the
positions (see AppendixC). Since these modes exist crystal and the superfluid surrounding and connecting the
in the variational model—which does not account fordroplets.

superfluid flow between droplets—we can classify them as The computational cost of obtaining modes from BdG

predominantly crystalline in nature. linearization is high, requiring the diagonalization of large

Due to rotational symmetry, there is a zero-energy ro-dense matrices consisting of the total number of position space
tational mode [Figs4(a2) and 4(b2), which is unique to grid points squared; in our case;10° x 10°. We achieve
circular trap supersolids. As expected, there are two degenhis using an eigensolver based on the implicitly restarted
erate Kohn modes at the radial trap frequency, one of which i&rnoldi method. We also find that the linearization is slower
shown in Figs4(a3)and4(b3). Also plotted are quadrupole when there is no appreciable superfluid connection between
excitations [Figs.4(a4) and 4(b4), as well as an example the droplets, making excitations in the isolated droplet regime
surface crystal mode [Fig4(a5)and4(b5), whichis a unique difficult to obtain. However, in this regime, the variational
feature of 2D supersolids highlighting the rich tapestry of ex-model agrees well with the BdG calculations, and the former

citations. In the last two examples, the mode energy obtainednly requires the diagonalization of &2 x 2Np matrix [i.e.,

in the BAG framework and the variational models differs.the total number ofx;, y;) pairs]. This allows us to explore

The energies are/h = 54 Hz [Fig.4(a4) andE/h = 72 Hz  excitations of larger crystals.

[Fig. 4(a5) from the BdG calculations ané&/h = 65 Hz In Figs.4(c1)—4(c3)we show excitations of the 19-droplet

[Fig. 4(b4) andE/h = 69 Hz [Fig.4(b5) from the variational  crystal [Fig. 1(0)] using the variational model, a state that
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would require months of computational time to obtain exci-tiers, Grant No. 390837967. M.A.N. has received funding
tations within the eGPE-BdG framework. This configurationas an ESQ Postdoctoral Fellow from the European Union’s
consists of two concentric hexagons with a single droplet irHorizon 2020 research and innovation programme under the
the middle, where the inner hexagon consists of six dropletMarie Sklodowska-Curie Grant Agreement No. 801110 and
and the outer hexagon has 12. In Fgc1), we highlight an  the Austrian Federal Ministry of Education, Science and Re-
interesting mode in which the two outer hexagons countersearch (BMBWF). We also acknowledge the Innsbruck Laser
rotate. We also find a quadrupole mode [Hgc2)] and, in  Core Facility, financed by the Austrian Federal Ministry of
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APPENDIX A: SINGLE-DROPLET VARIATIONAL MODEL

VI. CONCLUSIONS Here we detail the individual contributions to the single-
We have investigated the scope and feasibility of 2D superdroplet energy functional fok/” atoms,
solidity in harmonically trapped dipolar Bose gases, identify- Esd(NV) = Buin + Bvap+ Esr + Eaa + Egr. (A1)

ing the crucial role of the average 2D density in maintaining )
both the crystal structure and global superfluidity while vary-These terms are given by

ing the dimensionality and size of the droplet array. By devel- R2
oping a variational multidroplet model, we explored the phase Buin = ~om / d® w*VAy,
diagram of crystal configurations for a wide range of atom
?humbers_ gnd aspect ratios for a flxed_2D density, identifying Etrap = m f d3x w* Zwizxiij’
e transition from one- to two-dimensional droplet arrays. 2 i
We theoretically explored how increasing the average 2D 1
density may provide a route for creating exotic stripe and Eg = = / d3x wrgw|?w, (A2)
ring supersolids under experimentally realistic conditions. We 2
also extended our variational model to explore crystal excita- Oedd d3k [3k? s
tions, verified by direct comparison to the BdG analysis. This Eda = > 27 ) <W - 1) IA(k)I%,
method allows for the investigation of crystal modes in large
2D supersolids, where exact diagonalization of the eGPE is Eqt = EVQF/ d3x | S,
demanding. 5

~ Future work will further explore the potential of the varia- ¢orresponding to the kinetic, trap, short-range interaction,
tional model. Implementing a system of Hamilton equationsgipole-dipole interaction, and quantum fluctuation con-
would allow for dynamics of the droplet arrays, and fur- trihutions, respectively. Here, the short-range interaction

ther open up the study of excitations in two-dimensionalgoefficient is g= 4rh?as/m, and the quantum fluctua-
supersolid crystals. While we have revealed how to vary an

A .. . 3
important triplet of coupled parameters, i.M, and the two  ton coefficient isyor = %29@95(8%)1 where Qs(¢qq) =
trapping frequencies perpendicular to the direction of dipoIeRe[/’Oldu(l — £qd + 3UPeq¢)®?], and the density in Fourier
polarization,f, andfy, enabling the exploration of supersolids space isi(k) = [ d3 e **|w(x)|2. The integralQs(eqq) can
of various shapes and sizes, future studies will seek an ea$ evaluated as
determination for how best to vary other control parameters,

5/2
such as the coupling between the interaction strengths and the Qs (g4q) = ReM [(8 +26¢ +332)V/1+ €
remaining trap frequencys. 48
+153In 1+vite , (A3)
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given by Egs. A4) into the energy contributions given by replacef,y — 110 Hz to simulate the effect of interdroplet
Egs. @A2) gives the following results. The kinetic energy of interactions on a given droplet’s shape; then, to get the energy,

the droplet is of the form we use thefy y of the actual trap.
" 2 " For all minimization procedures related to variational
Euin - n " " rzfk(rs) (A5) calculations, we use the sequential quadratic programming
N 2mo24r(2/ry) - 2mo2 20'(1/r;)’ algorithm implemented in theaTLAB functionfmincon
with f (r;) = (r; — )I'(1 — 1/r;) — 2I'(2 — 1/r,). The trap
energy is APPENDIX B: INTERDROPLET INTERACTION ENERGY
Evap M, , 5 apzr(4/rp) m , 022r(3/rz) Le’; us con_sider two d.rqplets witN; and N, atoms, re-
N —(wx wy)[m] sz[m}- spectively, which are sufficiently separated, such that we can
r z (A6) neglect any overlapping. The center of mass of the droplets is
placed at j_1 > = (Xj, y;, 0), i.e., we permit displacements on
Short-range interactions lead to an energy contribution, thexy plane, but assume that= 0. As for the single-droplet
E g\’ ol dipolar energy, the interdroplet dipole-dipole interaction is

= , A7 best calculated in momentum space,
N = 8roZo, 2T i,y O P

3 2
whereas quantum fluctuations result in the Lee-Huang-Yang g, — gédleNz/ Ak 3& — 1|A%(k)fa(k) (B1)
correction: ()3 k2 ! ’

2 1 . .
Eqt  64Qs(eqa) (2\ 7 72 where we can approximate the Fourier transform of the den-
N T 15/7 \5 gnov/ noa®, (A8) sity profile of the droplets as
whereng = Nl is the central density. ij (k) o @0 N/ 4gketaN)* /g, ( cospry sing) (B

AxT(2/r,)T(1/r7)020,

The dipolar energy is best evaluated in momentum spac
The Ansatzdensity in Fourier space can be decomposed
(k) = Ay (ky)Fiz(kz), with

ael'he phasep is accumulated due to the central position of
the droplets being different from the origin and plays no
role in the energy calculation. We can then evaluate the

A ) — Mo °°d " 3 (k interaction energyE;, as a function of the distance, =
A, (k,) = r@/r,) /O p e Jo(ky0,p). V(X1 — X2)2 + (y1 — y2)? between the droplets:
S (A9) s
i = y2* GedaN1N +/2
fi(ke) T(1/ry) /o dze* cosfeoz2). Eio(rie) = =5~
P z
whereJ, is the first Bessel function of the first kind. 1 > 5 5 5
Interestingly, these functions can be very closely approx- « / qudit2u — A G[Zrlz(l—u )]7

imated by Gaussiana,(k,) ~ e~ ()&) and (k) ~ o (1-A%uE+ A2 %
g (o)’ where o, (p) and a,(z) are functions found (B3)

through numerical fitting to Eqs.AQ) prior to variational
minimization. The dipole-dipole interaction can then be easil

expressed as JT X X X X
i graV1(0,/6) 600 =3¢ *{io(g) + 3[1(5) ~1o(5)]} @
N - 2(27T)3/2£/2)ZZ ’ (Alo)

ywhere 22, =0, ,(N1)? + €, ,(N2)?, A = £,/¢,,, and

with 1,(x) the modified Bessel function. The interaction en-
whereel%’z = 4oepﬁz(rp,z)o—§,z, and ergy B3) i_s at_tractive at short distances, a spurious effect up
to the radial size of a droplet. In order to prevent the droplets

arctang/«?2 — 1 “nili "ain thisi i i i
fk) = — 22 11— 32 K ) . (AL1) from piling up”ain th|§ inner region, we instead approximate
k2—1 /2 — 1 the interdroplet potential as
Our approach is to first minimize the single-droplet en- Vo(Nj, Nj )N;N;/
ergy (A1) for a suitable range of atom numbers. Thus, in Ejjr(rjjr) = [ri; =+ ro(Nj. N )P’ (BS)

preparation for solving the multidroplet problem, we gen-
erate interpolating functionBsq(\), o, .(N), andr,,(N),  for any two dropletg andj’, whereV, andrg are determined
furnishing a library of single-droplet solutions for a given trap by fitting to Eq. 83). This term is the last contribution to
and interaction parameters. Eq. (7) and is utilized in the phase diagram given in Fig.
Employing this two-step method reduces the numbemBy considering a range of particle number pairs between
of variational parameters from seven per droplet to thregiroplets, we determine the interpolating functidgén, N”)
({cr,i,z, r},,z, Nj, Xj, ¥j} — {Nj,Xj,y;}). Note that the final andro(, N”) prior to solving the full many-droplet problem.
populations of the droplets are constrained by the total atorilote that the shifty, which results from the extension of the
numberN = ). N;. The effect of interdroplet repulsion is droplet, is relevant because typical interdroplet distances are
not accounted %or in calculating the shape of the droplets. Weomparable to the size of the droplets.
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APPENDIX C: EXCITATIONSOF THE VARIATIONAL with
MODEL _3
Expanding around the equilibrium positioR$ = (X;, Y;). Piy = 2Rjj (Rjj +ro,jj)* (C4)
ri = Rj +¢j, the energy of the array becomes, up to sec- 3 6
ond order in the displacemerf = (ey;j, €y;j), Of the form Vi = + = , (C5)
E = Eo + E®@ (the first-order contribution cancels because ZRJSJ'(RI'J" +rogi)* R (R +ro)°
we move frgm an energy minimum), witk the ground-state and the separation matrice§j = x; — Xy, Yij = Y; — Vi,
energy, an andRjj: = |rj —ryl.
. AR I R We can writte E@=&T.M.®, with &=
E =Z€j | A € —ZBJJ” “€jr |, (C1)  (ex1, €y1s - - Exmpéynn)- Now, we can diagonalizeM to
=1 I'#] obtain the eigenvalues.,, which provide the excitation

frequencies of the droplet arra®, = /2x,. Note that this
is an expansion around the equilibrium positions only, and
Bii = Vo(N;, N; )JW(’B” + i X Vii’xji’ij’2> not a perturbation of the individual droplet shape or atom
u L I\ v Xy Y” Bii +vii'Yjj number, so other shape excitations, such as droplet breathing
(C2) modes, will not be captured by this method. Some example

where

. mN, excitations are shown in Figd(b2)-4(b5)and 4(c1)—-4(c3)
A= —2 + B (C3)  where the arrow indicates the vector betwégnandr for
I'#] each droplej.
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Dipolar condensates have recently been coaxed to form the long-sought supersolid phase. While one-
dimensional supersolids may be prepared by triggering a roton instability, we find that such a procedure
in two dimensions (2D) leads to a loss of both global phase coherence and crystalline order. Unlike in 1D,
the 2D roton modes have little in common with the supersolid configuration. We develop a finite-
temperature stochastic Gross-Pitaevskii theory that includes beyond-mean-field effects to explore the
formation process in 2D and find that evaporative cooling directly into the supersolid phase—hence
bypassing the first-order roton instability—can produce a robust supersolid in a circular trap.
Importantly, the resulting supersolid is stable at the final nonzero temperature. We then experimentally
produce a 2D supersolid in a near-circular trap through such an evaporative procedure. Our work
provides insight into the process of supersolid formation in 2D and defines a realistic path to the
formation of large two-dimensional supersolid arrays.

DOI: 10.1103/PhysRevLett.128.195302

The supersolid phase was predicted to simultaneously
exhibit crystalline order and superfluidity [1-6]. While it
remains elusive in helium, recent developments in ultracold
quantum gases have finally made supersolidity a reality,
providing an excellent platform for the control and obser-
vation of these states. Important early advances were made
in systems with spin-orbit coupling [7,8] and cavity-
mediated interactions [9], where supersolid properties were
observed in rigid crystal configurations. Bose-Einstein
condensates (BECs) with dipole-dipole interactions have
now been observed in a supersolid state with deformable
crystals [10-13], with their lattices genuinely arising from
the atom-atom interactions [14—16].

In the first dipolar supersolid experiments, translational
symmetry was broken only along one axis, giving rise to a
one-dimensional (1D) density wave, commonly referred to
as a 1D droplet array [10—12]. A more recent experiment
has created the first states with two-dimensional (2D)
supersolidity in elongated traps of variable aspect ratio
[13]. This opens the door to study vortices and persistent
currents [17-20], as well as exotic ground state phases
predicted for large atom numbers [21-24].

It is still an open question whether 2D arrays provide as
favorable conditions for supersolidity as 1D arrays do. In
1D, following an interaction quench from an unmodulated
to modulated BEC, the density pattern induced by a roton
instability [14,25-28] can smoothly connect with the final
supersolid array [10-12]. This transition, hence, has a
weakly first-order character or is even continuous [29,30],
and such quenches through the transition cause only small
excitations of the resulting supersolid [10—12]. While it has

0031-9007/22/128(19)/195302(7)

195302-1

been predicted that a similar procedure may lead to
coherence between three droplets in a triangular configu-
ration [31], earlier work with nondipolar superfluids
suggests that such symmetry-breaking quenches may be
unfavorable for supersolid formation in 2D and 3D [32,33].

An alternative method exists to experimentally produce
dipolar supersolids. Instead of quenching the interactions
to trigger a roton instability, it is possible to cool a
thermal sample directly into the supersolid state using
evaporative cooling techniques [12,34]. Crucially, this is
the only known method for producing 2D supersolids to
date [13]. While a dynamic interaction quench may be
described by the extended Gross-Pitaevskii equation
(eGPE) [35-38], we are not aware of any available theory
to model the required evaporation process. From a theo-
retical perspective, much remains unknown about evapo-
rative supersolid formation. Is it a general feature that the
droplets form before global phase coherence develops, as
reported in Ref. [34]? Under what conditions do defects
persist? Such answers will be paramount in the quest for
ever-larger 2D supersolids, as well as for the observation of
vortices embedded within them.

In this Letter, we explore the formation of large 2D
supersolids in circular-shaped traps. We develop a finite-
temperature Stochastic eGPE (SeGPE) theory to model the
entire evaporative cooling process. Importantly, our theory
includes the beyond-mean-field quantum fluctuations
responsible for stabilizing the individual droplets.

We compare the evaporative cooling formation dynamics
with those resulting from an interaction quench, finding
striking differences between the two protocols. Following

© 2022 American Physical Society
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(a) Crystal preparation from interaction quench, evolved with the eGPE, for N ~ 2.1 x 10 Dy atoms [quench (i)]. Isosurfaces

are at 5% max density, with color indicating phase. Insets: z column densities normalized to max value from the entire simulation.
(b) Dynamic structure factor for an unmodulated BEC (a; = 92a,) in energy-momentum space, normalized to peak value. The lowest-
energy roton modes are indicated, and the ground state with an m = 2 roton mode added is shown, revealing the localized nature of the
rotons. Parameters are otherwise the same as in (a). (c) Crystal preparation from temperature quench (evaporative cooling) evolved with
the SeGPE [quench (ii)]. The temperature decreases as the chemical potential and condensate number rise, with scattering length fixed at

a, = 88ay. For all subplots f,, . = (33,33,167) Hz, and I, = \/h/mw,.

an interaction quench, the 2D crystal grows nonlinearly
with the droplets developing sequentially, producing con-
figurations that are unrelated to any roton mode combina-
tion of the original unmodulated BEC. The resulting crystal
is substantially excited and lacks global phase coherence.
Alternatively, by directly cooling into the supersolid
regime, our SeGPE theory predicts the formation of large
2D supersolids in circular traps, with global phase coher-
ence that remains robust at finite temperature. To bench-
mark our theory—as well as to test the direct cooling
protocol for pancake-shaped trapping geometries—we
perform experiments and observe a 7-droplet hexagonal
supersolid in a near-circular trap.

Formalism.—We are interested in ultracold, dipolar
Bose gases harmonically confined in 3D with trapping
frequencies w,,.=2xf,,.. Two-body contact inter-
actions and the long-ranged, anisotropic dipole-dipole
interactions are well described by a pseudopotential,
U(r) = (4nh’a,/m)d(r) + (3h%agq/m)[(1 — 3cos?0) /73],
with a, being the s-wave scattering length and aygq =
uouz,m/12xh? the dipole length, with magnetic moment
M, and @ is the angle between the polarization axis (z axis)
and the vector joining two particles. The ratio €4q = aqq/a;
(for a;, > 0) is convenient to keep in mind, since for €44 < 1
the ground state will be an unmodulated BEC, whereas
for the dipole-dominated regime €44 > 1 the unmodulated
BEC may become unstable [39]. Here, we always consider
104Dy, with a4q = 131a,. The eGPE has been described
elsewhere [35-38], and its details have been deferred to
Supplemental Material [40].

We phenomenologically introduce a finite-temperature
simple growth SeGPE theory [55]. This describes the
“classical” field, W(r,t), of all highly populated
modes up to an energy cutoff. The dynamics are governed
by [56]

Here, £ is the eGPE operator defined in Ref. [40],
and y describes the coupling of the classical field modes
to the high-lying modes. We find that y = 7.5 x 1073
gives good agreement to the condensate number growth
rate of a recent experiment under comparable conditions
[34] (see also Ref. [40]). The dynamical noise term 7,
subject to noise correlations given by (i*(r, t)n(r', 1)) =
2hykgTS(t — ¢')5(r — 1), means that each simulation run
is unique. Finally, P is a projector which constrains the
dynamics of the system up to energy cutoff €., (¢) = 2u—
consistent with previous treatments [57,58]—where we use
the final u after evaporative cooling.

Supersolid formation simulations.—With these two the-
ories in hand, we perform two kinds of dynamic quench
simulations in a pancake-shaped trap, where in both
cases the ground state for the final parameters would be
a 19-droplet supersolid:

(i) An interaction quench from an unmodulated BEC to
the supersolid regime using the eGPE [Fig. 1(a)]. Noise is
first added to the BEC ground state [59], and this is evolved
for a 20 ms equilibration time before the interaction
strength is linearly ramped over the next 30 ms from
a, = 95a, to a; = 88ay—crossing the roton phase tran-
sition to the supersolid regime—and then held constant
again for the remainder of the simulation.

(i) A temperature quench from a thermal cloud to the
supersolid phase using the SeGPE [Fig. 1(c)]. Each simu-
lation begins with a 200 ms equilibration time at fixed
high temperature 7 = 150 nK to generate a thermal cloud.
To simulate the evaporative cooling process, the chemical
potential and temperature are then linearly ramped
over 100 ms, from (u,T)= (—12.64hw,, 150 nK) to
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(12.64hw,, 30 nK), mimicking the growing condensate
number observed in experiments [60,61], while the scatter-
ing length is always held fixed at a; = 88ay.

Focusing first on the interaction quench, the density
isosurfaces in Fig. 1(a) represent snapshots at various times
for a single simulation run, revealing intriguing formation
dynamics. Initial droplets are seeded through unstable roton
modes, but staggered droplet formation reveals a process
of nonlinear crystal growth, as highlighted by the column
densities shown as insets in Fig. 1(a). In Fig. 1(a2), two
central droplets have already attained their final peak
density, while a secondary ring of droplets is only just
beginning to form. Then, in Fig. 1(a3), eight droplets
have fully matured, and the process continues radially
outward until a 19-droplet crystal is approximately
attained. Similar droplet formation dynamics have been
predicted in optical media [62].

The colors on the density isosurfaces in Fig. 1(a)
represent the wave function phase. The color scale is
recentered in each subplot, and an ideal phase coherent
solution would have a uniform color everywhere.
Importantly, the crystal growth process disrupts the global
phase coherence, as evidenced by the various colors in
Fig. 1(a4), leaving an excited crystal in which some outer
droplets dissolve and reemerge from the halo. Note that the
situation does not qualitatively change for reduced initial
noise or gentler interaction ramps, suggesting that the
strong excitations result from a first-order character of
the roton instability in 2D.

We explain the interaction quench dynamics by
calculating the elementary excitations of the unmodulated
BEC close to the roton instability, i.e., for a; = 92a,,.
These results are displayed in Fig. 1(b) as the dynamic
structure factor S(k,®), which predicts the system
response to perturbations of momentum #k and energy
hw [28,63-65] (also see Ref. [40]). A roton minimum can
be seen at k[, ~ 1.1, and we plot the lowest roton modes
corresponding to m = 0, 1, 2, with m being the angular
quantum number in the z direction [66]. On the top right is
the density obtained by adding an m = 2 roton mode to the
BEC wave function, revealing how rotons are confined to
high-density regions [67,68]. This reveals a qualitative
difference between the 1D and 2D situations, since, from a
simple geometric standpoint, in 2D the high-density region
inherently encompasses a smaller proportion of the total
atom number. Thus, the roton-induced droplet number is
only a small fraction of the final droplet number, meaning
the droplets appear sequentially for 2D.

Another qualitative difference between 1D and 2D is a
kind of frustration. First, note that our target supersolid
ground state for the final quench parameters is a 19-droplet
crystal, with a central droplet [see the inset of Fig. 2(b)].
Only an m = 0 roton mode [see Fig. 1(b)] could directly
trigger the formation of a central droplet, but then only
concentric rings could form further out. Thus, unlike for
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FIG. 2. Supersolid quality. (a) Global phase coherence C? over
time for interaction quenches [quench (i)] into linear chain (blue)
and pancake crystal (red) and temperature quenches [quench (ii)]
into the pancake crystal (black). Diamonds link to example
frames in Figs. 1(a) and 1(c). Each curve is averaged over 3-5
runs with an error band marking one standard deviation. Time
t =0 corresponds to when the crystals first fully mature.
(b) Density overlap C? between the time-dependent and ground

state densities. Parameters are the same as Fig. 1, but for linear
chain f,, . = (33,110,167) Hz and N = 82 x 10°.

1D, no single roton mode can smoothly connect the
unmodulated BEC to the 2D supersolid ground state.

Next, we analyze the finite-temperature quench results.
Figure 1(c) shows snapshots of the condensate growth,
demonstrating that both the crystal structure and the
global phase coherence—evidenced by the uniform color
in Fig. 1(c4)—develop soon after the quench. Note that
timescales will be quantified shortly. It is also an important
result in itself that we predict such a large 2D supersolid
to be stable against thermal fluctuations (recall that
Tfinar = 30 nK). As they form, each droplet individually
has a uniform phase that may be different from that of its
neighbors, sometimes creating vortex pairs between drop-
lets of different phase. In this scenario, the droplets do
not form as a result of a roton instability, and the partial
phase coherence continues to improve after the crystal
has formed, consistent with earlier observations [34].
Occasionally, long-lived isolated vortices remain near the
center of the supersolid. Simulation videos are provided in
Supplemental Material [40].

Supersolid quality.—We seek to quantify the resulting
supersolid quality for both quench protocols. We start
by analyzing the phase excitations, taking the phase
coherence CP with a similar measure presented in
Ref. [10]. A value of C” = 1(0) implies global phase
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coherence (incoherence) [69]. In Fig. 2(a), we plot this
quantity for interaction quenches into the pancake super-
solid regime (red) and linear supersolid regime (blue) and
temperature quenches into the pancake supersolid (black).
The time ¢ = 0 indicates when the droplet number has
approximately stabilized and the crystal has first matured
[70]. For the linear chain, the system remains coherent
(high C? = 0.8), indicating a stable supersolid. However,
quenching into the pancake geometry is qualitatively
different, with strong incoherence (C? =~ 0.3) soon after
crystal formation, recovering a high value at around 150 ms
after the crystal forms. During evaporative cooling, the
global phase coherence is predicted by the high value of
CP ~ 0.8 around 50 ms after the crystal forms, with
qualitatively similar values to the interaction quench
simulations for the linear supersolid case.

We quantify the quality of the supersolid crystal by
measuring the density overlap C¢ between the ground state
target solution and the time-dependent wave function [71].
We find the maximal value of C¢ after applying translations
and rotations to the state, noting that perfect overlap would
give C¢ = 1. In Fig. 2(b), this quantity is presented for the
two geometries, with the ground state solutions shown as
insets. For the linear chain, once the droplets have formed,
the density overlap rapidly attains C? > 0.9 and remains
there, consistent with the interaction quenched state being
close to the ground state supersolid. However, the pancake
case shows weak overlap after the droplets are formed,
which only recovers slowly—after around 300 ms—to
values comparable with the linear chain. Primarily, this is
due to the sensitivity of droplet positions of C¢ and
indicates that there are many excited supersolid modes
present after the droplets form [40]. Direct evaporative
cooling for the pancake case, however, shows that after the
droplets have formed they rapidly settle into the expected
crystal pattern (C? ~ 0.95).

Finally, it is important to note that for the pancake
interaction quench, while the phase coherence is restored
by around 7 = 150 ms after the droplets are formed, the
crystal remains highly excited until around 300 ms. On
these timescales, three-body losses become significant, and
it is unlikely that a large supersolid would be observed. In
contrast, direct evaporative cooling may lead to a robust
supersolid within around 50 ms of the crystal first appear-
ing, a timescale that we find to be weakly dependent on the
value of y [40].

Experimental observation.—While experiments have
evaporatively cooled directly into the supersolid phase
for linear and elongated 2D configurations [12,13,34],
this could prove an optimal method in circular traps for
avoiding the excitations associated with crossing the
roton instability. We confirm this by producing a 7-droplet
hexagon supersolid in a near-circular trap, as shown in
Fig. 3. The experimental apparatus and procedure is similar
to that described previously [13], but new modifications in

FIG. 3. Experimental realization of a 7-droplet hexagon state.
(a) Exemplary in situ image of the density profile. (b) Image after
36 ms time-of-flight (TOF) expansion, averaged over 68 trials of
the experiment. Hexagonal modulation structure is clearly present
in the averaged image. Note the rotation of the hexagon between
in situ and TOF images. (c),(d) Corresponding simulations for
the same trap, and with a, = 90a, and ~4.4 x 10* atoms within
the droplets.

the optical dipole trap setup have enabled us to tune
between anisotropic and round traps. The current optical
trap consists of three 1064 nm wavelength trapping beams,
each propagating in the plane perpendicular to gravity. Two
of the beams, which cross perpendicularly, have approx-
imately 60 ym waists and define the horizontal trapping
frequencies. The third, crossing at a roughly 45° angle from
the others, has a waist of approximately 18 ym and is
rapidly scanned to create a time-averaged light sheet that
defines the vertical confinement.

In a harmonic trap with frequencies f,, . = [47(1),
43(1),133(5)] Hz, we observe in trap a 7-droplet state
consisting of a hexagon with a central droplet, with a
condensate atom number of N ~4 x 10* [Fig. 3(a)]. To
confirm that this state is phase coherent, we release the
atoms from the trap and image the interference pattern after
36 ms time of flight [Fig. 3(b)]. The presence of clear
modulation in the interference pattern averaged over
68 runs of the experiment indicates a well-defined and
reproducible relative phase between the droplets and is
consistent with our expectations for a phase-coherent state
undergoing expansion [Fig. 3(d)], obtained through 3D
dynamic simulations starting from the eGPE ground state
[Fig. 3(c)]. Even rounder traps are possible, but the slight
anisotropy orients the state, helping to observe the repro-
ducible interference pattern.

Summary.—We have theoretically explored the forma-
tion of large 2D supersolids using both an interaction
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quench from an unmodulated BEC and a temperature
quench from a thermal cloud. For the latter, we developed
a finite-temperature stochastic Gross-Pitaevskii theory that
can simulate evaporative cooling directly into the super-
solid regime. Our simulations predict that a temperature
quench provides a robust path for creating 2D supersolids
in circular traps, and we confirm this experimentally by
using this method to create a reproducible hexagonal
7-droplet supersolid.

In contrast, the interaction quench results in highly
excited crystals that lack global phase coherence in the
period following their formation. Interestingly, droplets
appear sequentially rather than simultaneously, with the
final crystal structure being unrelated to the roton modes
that seeded the instability. This is in contrast to the situation
for 1D arrays, where an interaction quench through a roton
instability can smoothly connect an unmodulated BEC to
the supersolid ground state.

Our finite-temperature theory is broadly applicable
for future studies on topics such as formation dynamics,
supersolid vortices, improved quench protocols to produce
large 2D supersolids, and thermal resilience, as well as
dipolar droplets in general.
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FORMALISM

We utilize dynamic and ground state calculations of
the extended Gross-Pitaevskii equation (eGPE), given by
ilpy = L[], where the eGPE operator is [1-4]

h?v?
L) = -

+ /dgx/ U(x —x)|p(x', 1)]* + vqr|v(x, 1),

1
+ Zm (w2a® + w§y2 + w22?) (S1)

m is the mass and w, . = 27f,, . are the external
trapping frequencies. Two-body contact interactions and
the long-ranged, anisotropic dipole-dipole interactions
are described by the pseudo-potential

A h2 2 1— 2
_ wh asé(r) n 3h*aqa 3205 0 ’ ($2)
m m r

Ulr)

respectively, with 6 being the angle between the polar-
ization axis (z axis) and the vector joining two parti-
cles. This is characterized by s-wave scattering length
as and dipole length agqq = po,ufnm/l27rh2, with mag-
netic moment p,,. To find the ground state we em-
ploy a conjugate-gradients technique minimizing the cor-
responding energy functional [5]. The last term appear-
ing in Eq. (S1) represents quantum fluctuations in the
form of a dipolar Lee-Huang-Yang correction [6], yqr =

2
%\/wag Re{Q5(caq)}, where Qs(eqq) = fol du (1 —
£aa + 3u®e4q)®/? is the auxiliary function, which can be
solved analytically, and €4q = aqa/as.

Primarily, we use the eGPE to simulate the formation
dynamics of a supersolid through an interaction quench
of the scattering length, constructing an initial state by
adding non-interacting noise to an unmodulated BEC
ground state (far from the roton instability). Thus, our
initial state is ¥(r,0) = ¥o(r) + 3., @by, (r), where ¢,
are the single-particle states, a,, is a complex Gaussian
random variable with (|a,[?) = (ec»/k5T —1)~1 4+ 1 with
temperature 1" and the sum is restricted to modes with
€, < 2kgT. On average, this adds about 1000 atoms
when 7' = 30nK.

CHOICE OF v FOR STOCHASTIC EXTENDED
GPE THEORY (EQ. 1 OF MAIN TEXT)

Stochastic Gross-Pitaevskii equations have been
benchmarked against numerous Bose gas experiments in
various geometries [7-13], including Bose-Bose mixtures
[14]. These comparisons to experimental data include di-
rect modeling of the evaporative cooling process [7, 8]. In
these works, « is approximated by fitting the condensate
atom number growth rate to experimental observations.
However, there is also an approximate analytic solution
appropriate for near-equilibrium solutions that depends
on the chemical potential, energy cut-off, temperature,
and interaction strength [15]. One comparison found =y
extracted from condensate growth data is an order of
magnitude larger than the analytic approximation [8].
The choice of v does not affect the equilibrium proper-
ties of the system [16] (due to the fluctuation-dissipation
theorem [17, 18]), however it affects many observables
during equilibration.

To the best of our knowledge there does not exist any
analytic prediction for v for the dipolar system [18]. We
approximate v based on direct experiment-theory com-
parisons with the condensate growth rate in Ref. [19].
For that case we have the relevant experimental data
available. There, the supersolid formation was studied
in detail for a dysprosium supersolid in a cigar-shaped
geometry, and a value of v = 0.0075 was found to give
quantitatively similar growth behavior as observed exper-
imentally. Here, for a qualitatively similar regime [20] we
initially assume the same value.

In Fig. S1 we investigate the v dependency on the
evaporative cooling protocol presented in the main text,
namely a 4Dy gas in a pancake trap with (fs, fy, f») =
(33,33,167)Hz and a, = 88ay. Further details are given
in the main text. We consider both half and double the
initial value, i.e. v = (0.00375,0.0075,0.015). Interest-
ingly, several observables are sensitive to the choice of ~.
This includes: atom number versus time, onset time of
global phase coherence versus onset time of crystal struc-
ture, and the number of free vortices trapped within the
crystal. For our simulations we calculate the phase co-
herence CP and density overlap C¢. Despite the c-field
atom number increasing faster with larger v, the growth
of phase coherence does not appear as clearly dependent
on . This is possibly due to the number of vortices gen-
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FIG. S1. Effect of varying . Five simulations are shown
with the same color for each . (a) Energy per particle versus
time. The average final value is independent of v, as expected.
Inset shows the same data over a longer time range, where
t = 0 corresponds to the beginning of the 100ms temperature
quench. (b) Phase coherence for all data. Curves with a lower
opacity correspond to simulations with isolated vortices. (c)
Density overlap with the ground state 19 droplet supersolid.
In all plots the dashed vertical line indicates t = 0 in Fig. 2
of the main text.

erated through the quench, which have been shown to
appear more readily with increasing -, although there is
also evidence they are damped quicker too [7]. Curves
for simulations with a long-lived single vortex are shown
with a lower opacity in Fig. S1(b), as this greatly influ-
ences CP, and these simulations are not included in the
averages shown in the main paper. It is also worth not-
ing that we do not see free vortices after the interaction

quenches. Even in the presence of a free vortex the fi-
nal state can still be considered as a coherent supersolid,
with C?% ~ 1, however C? < 1. Future improvements to
this measure could involve finding the vortex centre and
multiplying the phase by the opposite circulation. This
is not easy however due to the nonlinear azimuthal phase
profile of a vortex in a supersolid [21, 22].

The effect of varying = is most obvious in the overlap
between the simulation density and ground state den-
sity, C? [Fig. S1(c)]. Larger v forces the c-field atom
number, and hence density, to rapidly increase, forcing
the fast production of droplets. We believe that compar-
ing a spectrum of observables such as these will provide
important benchmarks to fine tune the simulations, and
that this will also provide an important test in the future
for the development of analytic theories that can predict
~. As supersolid production in 2D becomes more routine,
direct comparison between the condensate atom number
and droplet number growth rates in particular will be-
come crucial in determining the appropriate choice of ~.

It is worth noting that even if the supersolid forma-
tion time was a few 100ms longer than the data pre-
sented here, the whole process would still be faster than
evaporatively cooling into the BEC state, quenching the
interactions and then waiting for the phase coherence to
reappear. In this latter scenario, significant three-body
losses play a negative role. Previous works in 1D have
maximized phase coherence by increasing the final ag,
and hence increasing the superfluid connection between
droplets [23], and decreasing the droplet peak density.
However, the droplet number is strongly dependent on ag,
and we find that such a strategy significantly decreases
the number of droplets.

THE ROLE OF ENERGY DURING SUPERSOLID
FORMATION

It is instructive to investigate the role of energy during
the formation of 2D droplet arrays, via both interaction
quenches and the temperature quenches. In Fig. S2 (a),
we show the energy versus time for the five interaction
quench simulations considered in Fig. 1(a) of the main
text. We have also marked the energy of the ground state
before the interaction quench (ESEC), and the energy of
the ground state following the interaction quench (ES3),
with the superscript indicating that the ground state is
initially in the BEC phase, then later in the supersolid
phase. An estimate for the energy added by crossing the
phase transition can be evaluated as [E(tfna) — F&%] —
[E(tinitial) - EEC] ~ 0.35Aw,;. Note that E(tinitial) -
Eggc does not equal zero due to the random noise added
to the initial state.

It is interesting at this point to compare the final ener-
gies of the eGPE simulations in Fig. S2 (a) with the final
energies of the c-field simulations following the evapo-
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For both subplots fz,. = (33,33,167) Hz.

rative cooling quench, which are shown in Fig. S2 (b),
which differ by more than 30Aw,. From such a compari-
son we can deduce that the important factor for disrupt-
ing supersolid formation following an interacting quench
is not so much the total energy injected into the system
by crossing the first-order phase transition [in Fig. S2
(a)] but, rather, which modes become excited. This large
disparity in energy, however, tells us that at much longer
time scales than shown here, the eGPE states may set-
tle down to a better quality supersolid than the SeGPE
[see e.g. Fig. 2 of the main text], but this could be on
the order of seconds, much larger than the supersolid life
time.

From our dynamic structure factor calculations shown
in Fig. S3 (which will be discussed shortly), one can see
that the out-of-phase Goldstone modes (the low-energy
modes at finite momentum that show up as red ovals)
are particularly vulnerable to excitation by the inter-
action quench. Note that although this figure is for

the 7-droplet supersolid rather than the 19-droplet one,
such low-energy Goldstone modes are a general feature of
dipolar supersolids [24, 25]. Since these modes inherently
cause both phase and crystal excitations, they directly
act to disrupt the supersolid. Furthermore, we also see
some vortex pairs after the interaction quench, and these
also play a role. Interestingly, even in the interaction-
quench simulations, a supersolid is obtained in the long-
time limit (although too long to be useful for current ex-
periments due to lifetime limitations), even though the
total energy is conserved, thanks to a damping of these
phase and crystal excitations.

SUPERSOLID EXCITATIONS

We investigate the 7-droplet hexagon supersolid, the
same configuration as shown in Fig. 3 of the main text,
using the extended Gross-Pitaevskii equation (eGPE), fo-
cusing here on its excitations. We perform a Bogoliubov-
de Gennes linearization and present results in the form
of the dynamic structure factor,

2

Sies) = 30 | [ xlute) + 47 00l *oulo)| o~
l (53)

Here, g is the ground state wavefunction normalized
to unity, i.e. [d®x|¢o(x)> = 1, and {w(x),v(x)} are
the quasiparticle excitations with energy w; [26, 27]. The
dynamic structure factor along two orthogonal directions
is displayed in Fig. S3. Note, the asymmetry along &, and
ky is due to the triangular configuration of the crystal,
which can be seen clearly in Fig. S4(b).

To explore the role of dimensionality, Fig. S4 compares
the static structure factor, S(k) = [ dw S(k,w), for both
linear and 7-droplet hexagon supersolids. These results
are converged within the dashed ellipses, set by ensur-
ing that the f-sum rule, [dwwS(k,w) = h%k?/2m, is
satisfied, and should be ignored outside. Convergence
is limited by the number of BAG modes, for which we
use 512 modes for both cases. In order to make a fair
comparison between a 1D and 2D supersolids we choose
to approximately match the average 2D trap density by
fixing o = N f. f, [28]. As previously reported, the struc-
ture factor for the linear case [Fig. S4(a)] has peaks corre-
sponding to the average inter-droplet spacing (2.67um),
kzl. ~ 1.43, and subsequent peaks at integer multiples of
this [24]. We find that the dominant contributing modes
to the structure factor peaks are low energy out-of-phase
Goldstone modes [24, 25, 29], where the superfluid cur-
rent and crystal oscillate out-of-phase with one another.
Note that for possible comparison with experiments our
spectrum in Fig. S4 was energy broadened with a Gaus-
sian of width ¢ = 0.008 fiw,, note that Fig. 1(b) of the
main text was similarly broadened by o = 0.004 hw, .
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FIG. S4. Static structure factors for (a) linear and (b) 7-
droplet hexagon supersolids. Convergence is achieved within
the dashed ellipses (see text). Dotted lines in (b) corre-
spond to the trajectories shown in Fig. S3, integrated over
energy. Parameters for linear chain: as = 90ao, fzy,. =
(52.83,130,167) Hz, N = 4 x 10*. For 2D crystal: as = 90ao,
foy. = (52.83,52.83,167) Hz, N = 9.5 x 10*.

For the 2D supersolid, Fig. S4(b) displays peaks sit-
uated at k,l. ~ 1.43 every 60° azimuthally, where
k, =
ture of the ground state, however this value does not
directly reflect the inter-droplet spacing (3.05um, which
would correspond to k,l, ~ 1.25), but rather the spacing
of lattice planes between droplets. Crucially, the six inner
momentum peaks are rotated compared to the droplet
crystal, analogous to what we observed experimentally
in the TOF images. Similar to the 1D chain, we find
that the out-of-phase Goldstone modes—a manifestation
of superfluidity—contribute to the majority of the peak
signal.

\/ k2 + k2. These peaks reflect the hexagonal struc-
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Figure 2.5.: Elementary excitations from Bogoliubov-de Gennes equations for a 2D supersolid.
Upper panel shows the ground state density of the unperturbed state, lower panels show the
density perturbation defined in Eq. (69). For each symmetry manifold, the five lowest energy
modes are visualized through the positive (red) and negative (blue) density variation. Parame-
ters: trap frequencies w = 27 x (52.8,52.8, 167) Hz, atom number N = 95000, a; = 90 ag, dipoles
polarized along z-axis.

The study of the elementary excitations for a 2D supersolid through BdG equations
presented in Secs. 2.5 and 2.6 (Refs. [150, 160]) required a lot of effort. As discussed
in Chapter 1, the convergence of BAG modes is highly sensitive to the resolution of the
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(a) w = 8.1 Hz (b) w = 52.8 Hz

Figure 2.6.: (a) (Quasi) Goldstone mode vs. (b) dipole mode in a 2D dipolar supersolid. The
density variations are plotted with a very saturated colormap to highlight the motion of the
superfluid halo. The arrows are centred in correspondence of the density peaks. Parameters:
trap frequencies w = 27 x (52.8,52.8,167) Hz, atom number N = 95000, as; = 90 ag, dipoles
polarized along z-axis.

ground state. This challenge is further amplified in states with 2D periodic density
modulations, where even slight asymmetries can hinder the convergence of the modes.
In the following, we provide additional details on the modes obtained from the BdG
spectrum.

Figure 2.5 shows some exemplar modes obtained from the solution of the BdG equa-
tions for a 2D supersolid made of 7 droplets. Modes are visualized through the density
perturbation defined in Eq. (69) and they are divided according to their symmetry man-
ifold. The corresponding dynamic structure factor is shown in Ref. [150] in Sec.2.6.
The lowest-energy mode symmetric with respect to = and y is a quadrupole mode
(w = 28.65Hz), which describes the motion of droplets stretching the system in one
direction while squeezing in the other. The fourth and fifth mode of the same row
(w = 54.18 Hz, w = 59.90 Hz) have a similar quadrupolar character, while the second
and third mode resemble a breathing mode (w = 33.85 Hz, w = 52.49 Hz).

In the next two symmetry manifolds, modes are either symmetric with respect to
r—axis or y—axis. In this case, modes belonging to these two groups are not degenerate
because the ground state distribution is not isotropic. In both manifolds, the dipole
mode appear at the frequency of the radial harmonic trap (w = 52.8 Hz) but more at-
tention should be given to the two lowest energy modes (w = 8.15Hz, w = 7.98 Hz).
They seem to have many similarities to the dipole mode, since all the droplets are mov-
ing in the same direction. But there is a fundamental difference: the motion of the
droplets is created by the superfluid background moving in the opposite direction. The
difference is subtle but visible from the very saturated density perturbation in Fig. 2.6:
the peaks of the superfluid background are growing or decreasing and not moving in the
same direction of the droplets. This is highlighted by the white arrows in Fig.2.6(a)
and (b), indicating the motion of the density peaks (either droplets or peaks in the
superfluid background). The vector field notation ® and ® is used to indicate growing
and decreasing density peaks, respectively. Therefore, the mode pictured in Fig.2.6(a)
describes an out-of-phase oscillation of the crystal structure and the superfluid back-
ground and can be classified as the finite-size version of a Goldstone mode, well defined
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in an infinite system. This mode has been observed in a 1D supersolid [151]. The energy
of this mode is very low and it responds quite easily to external perturbations, since the
dynamic structure factor is very enhanced in correspondence of this mode.

Finally, it is worth focusing on the zero-energy mode in the antisymmetric manifold:
this is a rotational mode that shows that any other angular orientation of the droplet
crystal would be energetically equivalent to the one obtained from the simulation. This
happens because the trap is cylindrically symmetric. In contrast, for a supersolid con-
fined in an asymmetric trap this mode has finite energy [162].






Chapter

Exploring solid properties:
elastic parameters and shear
modulus

The excitation spectrum of a system reveals valuable insights into its fundamental na-
ture. For a supersolid, this spectrum is of particular interest because it contains the
key features of both solid and superfluid phases. In this chapter, we investigate the
elastic parameters of a 2D supersolid, focusing on their role in shaping the low-energy
spectrum. For simplicity, we consider an infinite system where these parameters are
well-defined.

The elastic parameters are derived using a hydrodynamic approach based on La-
grangian formalism. To illustrate their properties and demonstrate the broad applica-
bility of the hydrodynamic theory to 2D supersolids, we present results for two distinct
systems. The first system is a 2D soft-core model [163,164]. The second system consists
of an infinite dipolar Bose-Einstein condensate, confined in the z—direction (the direc-
tion of the dipole polarization) and free in the perpendicular plane. In both cases, the
elastic parameters govern the speeds of sound for longitudinal, transverse, and phase
modes. A particularly unique parameter is the shear modulus, which is exclusive to sys-
tems with a 2D crystalline structure. This modulus plays a central role in characterizing
the transverse density branch of the excitation spectrum.

This project has been developed during a research stay at the University of Otago in
New Zealand, within the group led by Prof. P. B. Blakie, thanks to the funding provided
by DK-ALM doctoral school in Innsbruck.

3.1. Soft-core models

We start introducing the soft-core models for 2D supersolids. A many-body system
made of bosonic atoms interacting via a soft-core potential is one of the easiest model
to produce a supersolid [128,129]. The phase transition from an unmodulated phase
to a state where atoms are clustered in a periodic structure is very well known also in
other fields, for example in the context of colloids and macromolecules [165].

Soft-core interactions include every potential that is finite in the limit » — 0, prevent-
ing particles from experiencing infinite repulsion when they approach each other. The

89
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Figure 3.1.: Soft-core model. (a) Illustration of a simple soft core potential described in
Eq. (1) and (b) plot of the behaviour of U(k) for a 2D uniform BEC interacting with a soft-core
potential.

easiest form of this potential is
U(r) = UpO(asc — Ir[), (1)

shown in Fig. 3.1(a). Here, Uy is the potential strength, as. is the soft-core radius and ©
is the Heaviside function. Within this model, two particles interact only if their distance
is smaller than ags.. More complex expressions for soft-core potentials have been used

in literature, like a Van der Waals tail U(r) = ﬁ [128] or dipolar-like behaviour
Ur) = 1—1-% [129,130], but qualitatively the physics is the same as the one predicted
by Eq. (1).

Let us consider a purely 2D infinite system described by the wave function . The
energy functional has a very simple form

E= /er p(r)* (—QH;V2 + ;/dgxlU (r—1') |y (r')|2> P(r). (2)

By rescaling the lengths with the soft-core radius & = r/as. and the energies by the unit
hwy = h? /mag., one gets a dimensionless energy functional

E = /de-w(f-)* (—;VQ + g/dzf’(a (|t —#|-1) | (f’)|2) W(F), (3)

written as a function of a single dimensionless interaction parameter

mma.Upn - mna2.Ug (@)
h?  hwy
Changing a physical quantity related to this system means varying this parameter A.

Similar to what has been shown in Chapter 1 for a dipolar system, the dispersion relation
for an infinite system (in dimensionless units) is

w(k) = W; [';2 4 2Aé(k)] , (5)

™

A:

where O(k) is the Fourier transform of the soft-core interaction potential. For a two-
dimensional Heaviside function, the Fourier transform is

O(k) = ). ©




3.1. Soft-core models 91

y/ Qsc

4L

-6

o+

-5 0
x/ag.

Figure 3.2.: Exemplar density distribution of an infinite 2D supersolid with soft-core potential.
The lattice unit cell and the lattice vectors a;, as are zoomed on the right.

where J; is the Bessel function of the first kind and first order [166].

Notably, ©(k) gets negative at finite momentum, see Fig.3.1(b), and the negative
contribution in Eq. (5) can be tuned with the value of A. This gives rise to a roton min-
imum in the excitation spectrum. The softening of this roton minimum leads to a phase
transition from unmodulated BEC to supersolid at A, = 39.49. This feature occurs
even when the system is purely 1D and 3D, for different critical values A, [130, 167].
The transition to the supersolid phase occurs by increasing A, which is proportional to
the density. This mechanism can be interpreted in the following way: when increasing
the density, for the atoms at some point it becomes energetically favourable to pile up
periodically because of the finite energy cost for overlapping.

The phase diagram is obtained by calculating the ground state in a single unit cell,
with periodic boundary conditions. Among possible lattice configurations, the triangu-
lar lattice is known to minimize the energy more effectively than alternatives, like the
square or stripe lattices [168]. Thus, the corresponding lattice vectors generating the
unit cell are

&

1
a; =ax ag = 5(1?{ + Tay (7)

where a is the lattice constant, see Fig.3.2. The value of a is optimized during the
energy minimization process. The emergence of a 2D density modulation for A >
A, is characterized by a finite density contrast C' and a finite superfluid fraction fs,
see Fig.3.3(a). The abrupt jumps for both order parameters C' and f; underscore
the first-order nature of the phase transition. A similar behaviour is observed during
the transition from a uniform BEC to a supersolid phase in a dipolar system that is
harmonically confined along the polarization axis (z-axis) and infinitely extended in
the perpendicular xy—plane, see Fig.3.3(b). Although the dipolar system is fully 3D,
the density modulation occurs in two dimensions within the infinite plane, effectively
rendering it comparable to the soft-core model.
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Figure 3.3.: Uniform BEC to supersolid phase transition of (a) a soft-core system and (b) a
dipolar system. The order parameters are the superfluid fraction f; (black) and the density
contrast C' (red). Dashed lines mark the region in which the uniform BEC phase is metastable,
with the supersolid phase being the ground state configuration. Adapted from Ref. [169].

3.2. Hydrodynamic approach and Lagrangian formalism

We are interested in the low-energy (long-wavelength) dynamics of a bulk supersolid
with a 2D density modulation. These dynamics are inherently universal, governed by
the Nambu—Goldstone bosons that emerge from the spontaneous symmetry breaking:
two associated with the broken translational symmetry in the infinite plane, and one
arising from the broken gauge symmetry [170]. Thus, from this hydrodynamic approach
we expect three speeds of sound:

e The long-wavelength longitudinal density mode, called first sound c;.
e The long-wavelength phase modes, identified as second sound cs.
e The long-wavelength transverse density modes, referred to as transverse sound c;.

The expression of the Lagrangian for a supersolid state has been derived in many
works using different techniques [170-174]. In the following, we base our calculations
on the results obtained by Yoo and Dorsey [174]. We are interested in the Lagrangian
density Lgg, from which one can extract the Euler-Lagrange equations and the speed
of sounds. The long-wavelength excitations of the ground state can be described using
three fields: the change of the average coarse-grained density dn, the superfluid phase
field ¢ and the displacement field w;. The last field deforms the planar coordinates
¥, = x; + u;, where the indices i,j = {z,y} denote the coordinates in the plane where
the density modulation occurs.

By assuming small perturbations of the three fields from the equilibrium condition, one
can expand the Lagrangian density up to the quadratic order, obtaining the quadratic
Lagrangian density:"

IFor consistency with the notation used throughout the rest of this thesis, the density is denoted by
n, and related coefficients are labelled accordingly. However, in the associated publication presented
in Sec. 3.5, the density is instead denoted by p, along with the corresponding elastic coefficients. The
author apologizes for any potential confusion this discrepancy may cause.
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h2

Eggad = — honodip — n% (8@)2 — Qe ONO;U;
1 5 1 h 2
_ = - . 7H. 8
2ann(6n) + 5 M <8tu1 m@qb) (8)
1
- icijklaiujakul .

Here, the time and space derivatives of the fields are denoted as 9; = 9/0t and 9; =
0/0x;, respectively. The other parameters appearing in Eq. (8) are the elastic coefficients
of the system or quantities directly related to them.

3.3. Elastic parameters

The elastic parameters play an important role in the quadratic Lagrangian density and,
therefore, in the low-energy dynamics of the supersolid. In the following, we provide a
list of all these parameters and how to estimate them from ground states calculations.

Superfluid fraction

The first elastic parameter that plays a role in the Lagrangian density in Eq. (8) is the
superfluid fraction fs, already presented in Chapter 2. In this context, the superfluid
fraction is a measure of how much the ground state energy density £ changes with the
superfluid velocity [166,168]. For a 2D supersolid, it is a tensorial quantity that can be

calculated as
1 0%
f sij —

mn dviv;’

9)

see Appendix A for further details. This quantity is isotropic for a supersolid with
triangular structure, fs;; = fs0;;, thus, it can be treated as a scalar quantity fs [175].
The average superfluid density is defined as

ng = nfs (10)
where n is the total average density, and the average normal density
np,=n—ns=(1— fn. (11)

They both appear in the quadratic Lagrangian density in Eq. (8).

Compressibility

The parameter «u,, in Eq.(8) measures the variation of the energy density £ as a
response to an average density change

%€
Its inverse is proportional to the isothermal compressibility of the system
1
k= (13)

nZayy,
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The coefficient «,,,, is determined by numerically evaluating the second derivative of the
energy density with respect to the average density

9*¢  E(n+én) —2E(n) — E(n — dn)

= = 14
Gnn 0%n 2n (14)

Here, n represents the average density of the ground state solution, whereas £(n + dn)
is obtained by minimizing the energy functional for a state with an average density
(n+0n).

Elastic tensor

The fourth-rank tensor Cjj; in Eq. (8) is the elastic tensor that describes the stress-
strain relation in a linear elastic material [176]. The stress refers to the pressure applied
to the system and the strain is a measure of the deformation that results from the
applied stress. Intuitively, Cjjx; can be seen as a generalization of the elastic constant
appearing in the Hook law for a 3D system in the continuum. The elastic tensor is
calculated as

%€

Cijii = 7——F—
" 8ui]~8ukl

(15)

where u;; = % (8iuj + ﬁjui) is the strain tensor. When considering a linear displacement
field u = (u;, u;) so that u(x) = Ax, with the matrix A real and symmetric, the strain
tensor becomes

1 1
uij = 5 (Ouj + Ojui) = 5 (Aji + Aji) = Ay = Aji- (16)

Since it is symmetric, we just need to consider three cases: gy, Uyy, Ugy. For simplicity
of notation, we use I = {zx,yy,xy}. Let us define three possible small deformations of
the form:

. 40 _ |04 0| 4o_|0 0 3 |0 64
AD ;A _[O O],A _loaA A® =1 (17)

so that they can be applied to the lattice vectors of the system as
al! —a;, + ADa, (18)

Finally, the elastic tensor is calculated through the formula for the discrete second
derivative

0%E
Crr = Oourouy -
g(agll])’aélj)) . g(agl—J)’aél—J)) . g(ag—IJ)7aé—IJ)) + €(a§_I_J),a§_I_J))
- 46 A2 ’
(19)
where agili‘]) = a; + AFDa, + AF)a; denotes the double perturbed lattice vector.

FEach term at the numerator is obtained by calculating the ground state energy in a
perturbed unit cell.
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For isotropic systems, as the 2D triangular supersolid, the elastic tensor can be written
in a simple matrix form

A2 A0
Crj= A A+2ii 0 (20)
0 0 7
that, recovering the initial index notation, corresponds to
Cijit = N30k + f(Sikdj + Sadj) - (21)

The quantities \, fi are called Lamé coefficients or elastic moduli and they are directly
related to the Young’s modulus and to the Poisson’s ratio”.

Density-strain coupling

The last parameter that appears in the Lagrangian is the density-strain coefficient a;,,,,
that describes the energy variation due to both changes in the average density and the
deformation of the unit cell

%€
Qpy = . 22
" QuiiOn (22)
It is obtained by calculating the mixed partial derivative
Vo
e 8u18n (23)
E(n + on, ay) , aél)) —&(n + on, aYI), aéfl)) —&(n — on, agl) , aéI)) + E(n — on, aY”, aéfn)

46Aon

As the previous cases, the terms at the numerator are obtained by calculating the
ground state energy in a perturbed unit cell and with a perturbed average density.

3.4. Shear modulus

The off-diagonal tensor element i is of particular interest because it represents the shear
modulus of the system. Physically, the shear modulus describes the ability of a material
to resist deformation under shear stress, distinguishing solid-like behaviour from that of
fluids. In purely fluid systems, the shear modulus is strictly zero, reflecting the inability
of fluids to sustain shear stresses or propagate shear waves. Conversely, a finite shear
modulus is a hallmark of solid systems, where rigidity emerges as a defining property.

In the context of supersolids, the solid-like nature of the system is conventionally
inferred from its periodic density distribution. However, this structural property alone is
not sufficient to fully characterize the fundamental elastic behaviour typically associated
with solids. Key elastic properties such as rigidity, stress-strain relationships, or the
propagation of shear waves remain largely unexplored experimentally for supersolids.

In our work, presented in the following section, we take a foundational step in explor-
ing the elastic properties of dipolar supersolids by explicitly verifying the presence of a

2The Young’s modulus measures the compressive stiffness of the system, whereas the Poisson’s ratio
measures the deformation of the system as a ratio between the transverse and the axial strain [176]
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BdG excitation spectrum
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Figure 3.4.: Excitation spectrum of an infinite soft-core supersolid with hydrodynamic pre-
dictions of the three speeds of sound. On the right, three exemplar modes are highlighted,
belonging to the (a) second sound branch (phase mode), (b) transverse branch (shear mode)
and (c) first sound branch (longitudinal mode). The grey background lines intersect at the
position of the density maxima of the unperturbed density distribution. Subplots on the right
are adapted from Ref. [169].

finite shear modulus [169]. By solving the three Euler-Lagrange equations associated to

the fields, namely
35n~ (aam) =2 (s3m) =

oL oL oL
5.~ (500) =¥ (a@-ui)) B

we obtain the equations of motion. Assuming a solution of the form én, ¢, u; ~ e
we obtain three linear dispersion relations w = ck with the three speeds of sound

mes :% (a+ Vva?— 4b) ,

i(k-r—wt)
)

1
2 _ " (q— 2 _
me; =g (a a 4b) , (25)
me? S
Ny,

The auxiliary quantities a and b are
A+ 2/
a =NQpp — 20y + + 20 )
. & (26)
p—"s lon (A4 27— a2,)]

n
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defined as a function of the elastic parameters obtained from ground state calculations.
For both soft-core and dipolar supersolids we found an excellent agreement between the
hydrodynamic results and the low-energy spectrum of excitations calculated by solving
the BdG equations. In Fig. 3.4 is shown an example for the soft-core system, with three
corresponding exemplar modes showing (a) a phase wave, (b) a shear wave and (c) a
longitudinal wave.

Recent theoretical works have started to study more in detail the effects of propagating
shear waves in a dipolar supersolid. For example, in Ref. [177] is has been highlighted the
anomalous dispersion of shear waves travelling faster than the speeds of sound, whereas
in Ref. [178] it has been shown how a shear instability inducing phase transitions between
supersolid states with different lattice structures. However, an extension of the concept
of the shear modulus for finite size systems is still missing and it could be subject for
future research directions.
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We present a theoretical study of the excitations of the two-dimensional supersolid state of a Bose-Einstein
condensate with either dipole-dipole interactions or soft-core interactions. This supersolid state has three gapless
excitation branches arising from the spontaneously broken continuous symmetries. Two of these branches are
related to longitudinal sound waves, similar to those in one-dimensional supersolids. The third branch is a
transverse wave arising from the nonzero shear modulus of the two-dimensional crystal. We present the results
of numerical calculations for the excitations and dynamic structure factor characterizing the density fluctuations
and study their behavior across the discontinuous superfluid to supersolid transition. We show that the speeds
of sound are described by a hydrodynamic theory that incorporates generalized elastic parameters, including the
shear modulus. Furthermore, we establish that dipolar and soft-core supersolids manifest distinct characteristics,
falling into the bulk-incompressible and rigid-lattice limits, respectively.

DOI: 10.1103/PhysRevA.110.053301

I. INTRODUCTION characterizing the stiffness of the crystal to transverse (i.e.,
hear) deformations. This also manifests as a new gapless

. . ranch of transverse excitations, where the motion of the
translational symmetries are broken. Here we refer @»-a

; ! . : rystal is perpendicular to the direction of wave propagation.
dimensional sulpersol_ld as being a system that §p0nt_aneou%5 is in contrast to the other two gapless branches, which
develops aD-dimensional crystal structure while still ex- '

hibiting superfluidity. For this system it is expected that the®'© longitudinal

) . To illustrate the properties & = 2 supersolids we present
broken symmetries will lead toY+ 1.) I\_lambu-Goldstone results for two systems. These systems differ in the relative
modes that manifest as gapless excitation brancHed e

; : X . : importance of elastic and compressibility effects and exhibit
experimental production of supersolid states in atomic gas

e ) .
[2-6] has generated interest in their properties, including the@fferent behaviors for first and second sounds across the tran-

excitation spectra. Th® — 1 case [-13 has two gapless sition. The first system is a dipolar Bose-Einstein condensate
excitation bEanchés of Io_n itudinal character Whi%hpare re-(BEC) In a planar trap, where the atoms are confined along

! 9 ' .~ the direction in which dipoles are polarized and free in the
ferred to as first and second soudd. D = 2 supersolid

. X ; rpendicular plane. Th n tem is a two-dimensional
was recently produced using a dipolar Bose gas in an oblat erpendicular plane. The second system is a two-dimensiona

shaped trapping potential§,17]. This system has a rich 2D) BEC of atoms interacting with a finite-range soft-core

phase diagram with different ground-state crystal patterns SeliEr;teraction. The excitations of both systems can be obtained
arated by first-order transitiond§-22] and is an interesting y numerically solving the Bogoliubov—de Gennes (BdG)

system for considering the interplay of crystalline order Withequations. While the excitation spectrum for the 2D soft-core
vzrtices p3-26] 9 play y system was studied previousl729], we present results

Here we study the excitation spectrum oba= 2 super- for 2D dipolar excitations in the thermodynamic regime. The

solid. We consider the case of a zero-temperature gas in thtgermodynamic limit has an advantage over finite (harmoni-
' P 9 cally trapped) system studies (e.g., s26,30]) because the

thermodynamic limit, which admits a well-defined band Struc"n-plane quasimomentum is a good quantum number, leading

;l:]rs\;vatlrI](;vt\ng%ugrf dmxzf:igithee?re g?g\'/?j:sm;d?esgigg%tggéri ?_o well-defined excitation bands that allow clear interpretation
. ydrodyna yPp prect Tof their properties (e.g., speeds of sound). For both systems
tion of the excitations in terms of a set of underlying elastic

. o we develop a hydrodynamic model involving five elastic pa-
parameters. Supersolids with> 1 exhibit a shear modulus, rameters that we determine from ground-state calculations.

We show that the hydrodynamic model provides an accurate
description of the speeds of sound determined by numerical
IThese associated excitation branches are also commonly referr@@lculation of the BdG excitations and provides insight into
to as density and phase branches. The second sound is associatbé origin of the different behaviors of the two systems across
with a reduced superfluidity (i.e., normal component) arising fromthe transition and deep into the crystal regime. While the two
the spontaneously broken translational symmetry ($2&4,15]). systems studied are not directly comparable (e.g., the dipolar

A supersolid is a state of matter in which phase anti

2469-9926/2024/110(5)/053301(10) 053301-1 ©2024 American Physical Society
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BEC is a three-dimensional system, while the soft-core BEC
is 2D), by studying both we reveal the general applicability of
hydrodynamic theory to 2D supersolids.

The outline of this paper is as follows. In Sdt.and
AppendixesA andB we describe the two systems we study
in this work and their transition to a supersolid state with
a triangular crystalline structure. We present results for the
excitations and dynamic structure factors determined by nu-
merical solutions of the BdG equations in SBE. In Sec.lV
we outline the hydrodynamic theory for tBe= 2 supersolid.

We discuss how the relevant elastic parameters that appear in
this theory can be determined from ground-state calculations.
The hydrodynamic predictions for the speeds of sound are
compared to those obtained with the BdG calculations. We
then discuss the key parameters distinguishing the behavior of
the dipolar and soft-core systems and identify the two relevant
limits of the hydrodynamic results to describe these systems.
Finally, we conclude in Sed&/.

Il. SUPERSOLID SYSTEMS

Here we introduce the two systems examined in this work.
Both systems are described by Hamiltonians that are trans-
lationally invariant in thexy plane. The ground-state phase
diagram depends on the average atomic areal depsiyd
various microscopic parameters (e.g., interactions), with 2D
crystalline ground states occurring in appropriate parameter
regimes.

The first system we introduce is a dipolar BEC of highly
magnetic atoms under axial harmonic confinement with an-
gular frequencyw,, but with the atoms free to move in
the xy plane. The atoms interact by a short-range contact
interaction withs-wave scattering lengtlas and the long-
range dipole-dipole interaction, characterized by the dipole
lengthagq. In this system quantum fluctuation effects become . . )
important in the dipole-dominant regimey = aqq/as > 1, FI_G. 1. (a) Thg superfluid fraptlofg and dens_lty contrast across
with the fluctuations able to stabilize the condensate fronthe first-order uniform superfluid to supersolid phase transition.
mechanical collapse3]-33]. This system is well described (P)~(d) Ground-state density (left) and excitation spectra along the
by an extended mean-field theory, with details given in Ap_three symmetry dl_rectlons of the Brillouin zone [rlght;_ see inset in
pendix . Here we conside a BEC oDy atoms i (07 8 1% 46Ot g o e vauesal, Deraty o
wz/2r = 72.4Hz andagg = 13083 to be comparable tothe "y "¢ o0 14 11 x 14 un®. The heat map imag;e shows the
phase diagrams produced for this system in R&&2p]. The )

. ined h I d itwhich dynamic-structure-factor frequency broadenedpy= 10-2w,. The
system Is constrained to have mean areal densitywhic excitation spectra are shown as white lines, with dashed lines being

Serveés as a thermod)gnamic paramfter._g/\le choose to pres%{j axial modes which do not contribute to the structure factor. Re-
results forp = 0.04/aj; ~ 8.3 x 104 m~2, which is well g s for'®Dy atoms with an average areal densityoof 0.04/a7,

below the critical point density of ~ 0-_098/a§d andis com-  and axial confinement ab,/2z = 72.4 Hz. The superfluid fraction
parable to the densities used in experimeh€.[Under these s discussed in SetV A .

conditions the nature of the ground state depends on the value

of ag, which is controlled in experiments using Feshbach res-

onances. For our choice of density the ground state is uniforrwhere gmax and omin are the maximum and minimum of the
for eqq < 1.31 (i.e.,as > 99.7ap) and is a triangular crystal areal density(x, y) of the ground state. The density contrast
for egq > 1.31. We show examples of these states in Big. as afunction oéyq is shown in Fig1(a), revealing the discon-
As ¢€qq increases, the overlap between unit cells decreasetinuous character of the transition. In these results we have
and at each lattice site a filament-shaped droplet (elongatezktended the uniform superfluid state beyond the transition
in the dipole directiorz) forms. It is useful to characterize the point where it is a metastable state. However gt~ 1.32
strength of the modulation of the density in theplane by  (as =~ 99.0ap), a roton excitation softens, and the uniform state

the density contrast, defined as is dynamically unstable.
. The second system is a 2D BEC of atoms that interact via
C = gmax™ Cmin (1)  the soft-core potential of strengthy and ranges.. This sys-
Omax + Omin tem has been extensively studied as a supersolid model (e.g.,
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transition from unmodulated to modulates states also occurs
discontinuously as\ changes, with the unmodulated states
remaining metastable until the roton completely softens at
A = 46.30.

For both systems, we find the ground state by minimizing
the energy density, i.e., the energy per unit area. It is con-
venient to write it as£(p; Vv, &, &), being a function ofp,
the superfluid velocity, and{a;, a;}, which are the direct
lattice vectors of the crystalThe ground state for the average
density p is obtained by minimizing the energy density for
v = 0 with respect to the lattice constahadditional details
are given in Appendixe8 andB.

I11. EXCITATION RESULTS

The excitation spectrum can be determined by linearizing
around the ground state(x) with a time-dependent ansatz of
the form

Wix, ) = ﬁ[w(x) + > {Cogg(x)e "
vq

vt (x)éwqut}], @)

where p is the ground-state chemical poteniig), are the
expansion amplitudes, andand q are the band index and
planar quasimomentum of the excitation, respectively. Here
{u,q(X), vug(x)} are the quasiparticle amplitudes, with respec-
tive energieshw,q, and they are determined by solving the
BdG equations (see Appendixand Refs. 2841]).
In Figs. 1 and 2 we show the results for the excitation
spectra for the dipolar and soft-core models, respectively.
These results are shown along the symmetry directions of the
first Brillouin zone. For both sets of results the case shown
in Figs.1(b)and2(b)is close to the phase transition, whereas
Figs.1(c), 1(d), 2(c), and2(d) are for states with higher values
FIG. 2. (a) The superfluid fraction and density contrast acros®f the density contrast. The excitations are shown as solid
the first-order uniform superfluid to supersolid phase transitionWhite lines on top of the dynamic structure fact(q, w),
(b)—(d) Ground-state density (left) and excitation spectra along thavhich is obtained as
three symmetry directions of the Brillouin zone (right) for a 2D ) 2
soft-core system at three values &f The ground-state densities S, w) = Z ‘/dx (U:q - qu)equw 8w —wyg). (3)
are shown in a box of sizead x 4as.. The excitation spectra are v
shown as white lines, on top of a heat map image showing therhe dynamic structure factor reveals the density fluctuations

dynamic-structure-factor frequency broadenedsipy= 0.3500. The  a5g0ciated with the excitations; notalsig, ») vanishes for
three symmetry directions of the Brillouin zone are the same as th%xcitations that do not affect the density.

ones depicted in the inset of Fig(d). The three green diamonds
mark the positions of the modes plotted in F&jin an equivalent
symmetry direction.

In all results we see that the gapless excitation bands
emerge from thel’ point and that they all have a linear
dependence on the excitation wave vector reéafor the
dipolar case shown in Figd(b) and1(c), the lowest branch
see P7-29,34-38]). Schemes have been proposed to realizgclose tol) is a transverse excitation of the crystal, which
soft-core interactions in ultracold-atom experimer@8,40], has no weight in the dynamic structure factofhe next
but there has been limited reported experimental activity in
the regime relevant to supersolidity thus far. We consider the ™
system in a regime well described by mean-field theory, with 2we are interested in stationary superfluids but introoutcedefine
further details given in Appendi&. The phase diagram for the the superfluid fraction.
2D soft-core model depends on the single dimensionless pa-3The ground-state configuration for both models is a triangular
rameterA = mw patUo/R?. The melting valueAm = 39.49  |attice: thus, we can taks, = aX anday = 1ak + Lay, with lattice
separates uniform superfluid states (for< An) from tri-  constana.
angular crystal states. We show examples of these states irfNote that at lowq the first and second sound branches have small
Fig. 2, and the behavior of the density contrast as a functiorweight due to the density fluctuations being suppressed, but for the
of A is shown in Fig2(a). Similar to the dipolar system, the transverse excitation branch the weight vanishes & all
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) \ w w w w — IV. HYDRODYNAMIC DESCRIPTION

The features of the linear part of the excitation spectrum of
a 2D supersolid, i.e., the low-energy region for small momenta
(g <« /a), are well captured by a hydrodynamic description
L \ - ] [14,42). This approach is based on long-wavelength per-
2[(b)” ‘ ‘ ‘ ‘ ‘ s turbations of the ground state, obtained by applying small
variations to the three fields associated with conserved quan-
1o tities and broken symmetries: the change in average density
8p, the displacement fieldi— , that deforms the planar co-
-0.5 ordinates as; — X = X + u;, and the superfluid phase field
- ¢. Before we write the Lagrangian density for a 2D supersolid
to obtain the three speeds of sound, it is useful to extract the
elastic parameters of the system. Later, they will appear as
coefficients of the Lagrangian.

Y/ s
>
=

Y/ ase

Y/ s
o
|
|
|
|
|
|
|
|
|
1

A. Elastic parameters

x/as The first parameter is the superfluid fraction determined
o by the energetic response of the ground state to changes in
FIG. 3. Effect of excitations from the lowest three gapless bandgpe superfluid velocity (see Ref3§4344]). In general the

on the sqpersoli_d density profile. The ch_a_nge in densi[_tw? (di- superfluid fraction is a tensor given by

vided by its maximum value) from the addition of an excitation in the

(a) second sound, (b) transverse, and (c) first sound bands. The lines 1 9%

intersect at the locations of the density peaks of the ground state. sij = mp v, (4)
Results for 2D soft-core mode usingg= (0.4, 0)/asc andA = 425

[see Fig2(c)]. where the indices, j = {X, y} denote the planar coordinates.

For the triangular ground state this tensor is isotropic, i.e.,
fsij = fsdij, and we can simply refer to the superfluid frac-
tion as a scalar valuds. As a consequence, the average

. . superfluid densityos = fsp and the average normal density
branch is the second sound or phase mode, which has a WesE: (1— fo)p are also isotropic quantities.

density contribution. These two lowest branches have similar Th

speeds of sound (i.e., slope ndd), and aseqq increases, nergy density on the areal density and lattice vectors. The

e
the second sound speed decreases and becomes slower t e ; L
the transverse speed of sound [see Eigl)]. The third gap- 322?123 derivative of with respect to the average densitys

e other elastic parameters involve the dependence of the

longitudinal density wave. This excitation branch rises much _ %€

Gy . app — _27 (5)
more steeply than the other two, exhibiting a much higher ap
sound speed. It is instructive to compare _these results to tIF\ﬁhich relates to the isothermal compressibility at constant
spectra along the three symmetry directions calculated f°§train'
the 2D soft-core supersolid (also studied in R&g]]. As ' 1
shown in Fig.2, the order of the three branches is preserved R= ) (6)
while varying A, with the gapless transverse branch always P2y,
sandwiched in between the second sound mode and the firghe g|astic tensor associated with the crystalline structure is
sound mode. In Fig3, we show three exemplar modes thatgiven by
have the same quasimomentumbut belong to the three
different gapless energy bands. To highlight the character of Cig = %€
each mode, we plot the change in densiity) |2 = V2| + M= B aug”
CuqUug (X) — Ciquiq (X)I? — [¥|%, obtained by subtracting the L _ _ o
ground-state density from the perturbed density, normalizeWhereuij = 3(du; + 9;u;) is the strain tensor arising from
by A to the same value as the ground state. Here we obseryge displacement field. We obtain this tensor by evaluating
that the second sound branch [FR(a)] keeps the location how the groundjstate energy density changeg with the_ lattice
of the density maxima fixed, but density changes along th¥ector deformations;, _; ,; = (dij + Uij)a,,j (using the Ein-
direction of propagation by atom tunneling between sites. Thétein summation convention). We haV(_e v_erlfled that thg elastic
transverse sound branch [Fg(b)] causes a shearing of the tensor for the triangular ground state is isotropi6][ having
lattice sites (i.e., transversal motion). The first sound brancfhe form
[I_:lg. 3(c)] (_exh|b|ts_long|tud|nal d|splacemer_1t Qf the lattice Gijw = Xisijakl + (i)t + 88k, (8)
sites, consistent with a classical crystal excitation. Note that, .
to help with the visualization, the quasimomentgnof the ~ where {4, [i} are the Lamé parameters. We denotg =
selected modes is chosen alongttexis, which is equivalent 1 + 2f1, which is the diagonal element of the elastic tensor
to thel'-K symmetry direction in Fig2. (i.e.,Coux = Cyyyy), also known as the longitudinal Brwave

()
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modulus. We also have special interest in the shear mofiulus — . ; : . ' '
which is given by off-diagonal tensor elements, suclgs,. ) (a) i“":: eeeeee /J—*"""“
Finally, we consider the density-strain coupling parametei I T e
given by the mixed partial derivative 3 L g Forees oo e s
32%€ g
Uy = ——, 9
P au;idp ( ) é Ly
Q
which describes the coupling between changes in averac ‘
density and the unit-cell area. °[ ilsomd transverse |
Vo —0-0-0—0—0-0—0—0—o-
0 1 1 L 1 1 1 L 1
B. Hydrodynamic theory Py ‘ I d ‘ ‘ ‘ ' ‘
N iR ER R
We now give the quadratic Lagrangian density for the fieIdSE il (b) ‘ | e—— 3
ép,u, and s¢ and solve the Euler-Lagrange equations to— =0 a3 = L= mc2 /h
extract the speeds of sound. The quadratic Lagrangian densi £ ' pa Tk
for a supersolid, introduced by Yoo and Dorséy][ reads ) o
CG —L L
h2 - Q) ph
quad __ o (o 4\2 " S)
Lis = —hspd¢ p2m(a.¢) a,u8 poiu; 2 102f A
e A
1 , 1 Ao \? < F mmmmmmmmommoT pu/h
— = — L — 1073 I 1 1 1 I 1 1 1
2“””(8'0) + 2m’0”<8tu' m8,¢> 13 131 132 133 134 135 136 137
1 €dd
- Ecijkl iU ALy . (10)
) ) FIG. 4. Elastic properties and speeds of sound for a planar dipo-
From the solution of the Euler-Lagrange equations (see Aptar BEC at the first-order transition to a supersolid. (a) Speeds of
pendixD), one gets the three speeds of sound: sound. We show the speed of first sound in the uniform (light red) and
1 supersolid (dark red) phases and the speeds of transverse and second
2 2
mec; = E(aA + vy —4ba), (11)  sounds in the supersolid phase (as labeled in the inset). Results from
the BdG analysis are shown as lines, and the hydrodynamic predic-
mc% = E(aA — /a?A — 4bA), (12) tions using the elastic parameters from the ground-state calculations
2 . are shown as markers. (b) The elastic parameters characterizing
2_ M (13) the dependence of the ground-state energy on lattice and density
mG = on changes. The characteristic energi&s (17) (light green) andnc?

(16) (gray) are also shown for reference. In all plots the uniform

where we have defined to supersolid transition point is indicated by the white to light blue

Quu

an = poy, — 200,y + —, (14) shaded area in the background. The uniform results are continued
On below the transition (where it is metastable) until it becomes dy-
bs = &(%pauu — aﬁu) . (15 namically unstable when the roton softensgats 99a,). Insets in
n (a) and (b) show the behavior near the transition in detail. The other

The quantitiescs, ¢, andc, represent the first, second, and Parameters are the same as in fig.
transverse speeds of sound, respectively, and they are fully de-
termined by the elastic coefficients and density of the system.

C. Hydrodynamic results droplet crystal, and the superfluidity will vanish, although this
In Figs. 4 and5 we consider the properties of the dipo- is beyond the theories we use here (g&)[

lar and soft-core systems across the superfluid to supersolid The elastic parameters extracted from the ground-state so-
phase transition. The speeds of sound extracted from linedmtions are presented in Fig&(b) and5(b), with fs appearing
fits to theq — 0 behavior of BdG energies calculated for in Figs. 1(a) and 2(a) From these parameters we can eval-
the gapless branches are shown in F§f®) and5(a) The uate the hydrodynamic predictions for the speeds of sound
uniform superfluid state has only a single gapless branch: thieom Egs. (1)—(13). These results are plotted as symbols in
first soundc;. In the transition to a supersolid there is almostFigs. 4(a) and 5(a) and reveal excellent agreement with the
no change irt; for the dipolar case, while a significant upward BdG results. Itis interesting to consider the role of the density-
jump in ¢, occurs for the soft-core case. We also note that irstrain terme,,, as our results show this term is relatively
the dipolar systeng, is higher relative to the other speeds of small, and it is neglected in some treatmenda 15]. For the
sound than in the soft-core system. The second sound spedipolar results, dropping this term shifts the hydrodynamic
C, is always much lower than the first sound. Except close tgrediction forc, down by about % and thec; prediction
the transition in the soft-core systeca generally decreases as up by 04%. Including the density-strain term gives results in
we go deeper into the crystalline phase. This reductioty in  better agreement with the BdG results, but both sets of results
is a sign of the reduced superfluidity. Indeed, sufficiently farare almost indiscernible from the BdG results on the scales of
into the crystalline phase we expect a transition to an isolatedur figures.

053301-5



POLI, BAILLIE, FERLAINO, AND BLAKIE PHYSICAL REVIEW A 110, 053301 (2024)

10 - (a) first sound P! (a) ci —+ fnc%
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FIG. 5. Elastic properties and speeds of sound for a 2D soft-cort 0 . ‘ ‘ .

BEC at the first-order transition to a supersolid. (a) Speeds of soun 50 5 60

and (b) elastic parameters. The color code and the quantities aic
tne Same as |nhF|g4.. The unlforml resulyls.are continued be]ovxlll FIG. 6. Comparison of first and second speeds of sound to lim-
the transition (where it is metastable) until it becomes dynamically . resuits for the (a) dipolar and (b) soft-core results. Colored
unstable when the roton softens (at= 46.30). solid and dotted lines are the BdG results for the speeds of sound,
with the same colors as used in Figga) and 5(a). Black dotted
o ) and dashed lines indicate the rigid-lattice and bulk-incompressibility
D. Limiting behavior limiting results forc, andc,.
To gain a deeper understanding of the behavior of these
systems it is useful to introduce the characteristic spegds

andc, [47), defined as 1. Bulk-incompressible limit

We take the bulk-incompressible limit to be whgn« c,,

me? — OppQuy — aﬁu 1 16 which is relevant to the dipolar supersolid. Within this regime
i« = P oy - p_K’ (16) ¢ is unaffected, but; andc, become
2 _ Quu
ey = on (17) cp — /2 + fuC3, (18)
The first speed is associated with the system compressibility C — /Ts%, (19)

k [14,47], and the second is associated with the lattice elastic

properties. In the uniform superfluid, with a single gaplesswhere f, = 1 — fs is the normal fraction. These two limits
excitation branch that dominates the lopgdensity response approximately describe the first and second sound velocities
of the systemg, describes the first sourtdn the supersolid in the dipolar model, as shown in Fig(a).

phase neither of these characteristic speeds corresponds to any

of t_he speeds of §ound, but they are usgfu! for defining two 2. Rigid-lattice limit

regimes of behavior. For reference, we indicate these quan- o o
tities compared to the other elastic parameters in Figs) The rigid-lattice limit occurs when, > c.. As noted be-
and5(b). We observe that, > ¢, in the dipolar supersolid, fOI_’e,_thIS_IS the_reg|m_e appropriate for the soft-core supersolid.
whereasc, « ¢, in the soft-core case. This emphasizes theWithin this regimec; is unaffected, but, andc; become
contrasting importance of compressibility and lattice elasticity

in the properties of the two supersolids. C1 — /3 + fnc2, (20)
co — /fsCe. (21)

These two limits approximately describe the first and sec-
ond sound velocities in the soft-core 2D model, as shown in
SHereay, anda,, are both zero, and EqL{) reduces ta,. Fig. 6(b).
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The extreme case, — oo can be realized with a BEC APPENDIX A: PLANAR DIPOLAR BEC
loaded into an optical lattice Here the lattice sites cannot
move (cf. Refs.48,49]), and the system has a single gapless
band corresponding to the second sound.

Here we discuss the details of our model of a planar dipolar
BEC of magnetic atoms. The atoms are free move inxthe
plane, and the planar kinetic energy is given by

(—iAV . +mv)?

V. OUTLOOK AND CONCLUSIONS T = 5
m

(A1)

In this paper we contrasted the excitation spectria ef 2
supersolids arising in two different systems. We focused o
the three gapless excitation branches and their associat
speeds of sound. Our work demonstrates that hydrodynam
theory provides an accurate prediction of the speeds of sound R 92 1 2,2
based only on a set of generalized elastic parameters that are H, = T 2maz + Em“’z ’ (A2)
determined from ground-state calculations. We found that the . . L
dipolar system is dominated by its compressibility & c,), with w, being the angular frequency. The magnetic dipole

whereas the soft-core system is in the rigid-lattice regimdnoMents of the atoms are taken to be polarized aloby
(c. < cu). As a result, the first sound speed of the dipo-a bias field, and the interactions are described by the potential
K u/- 1

lar system is significantly larger than the other speeds of A ah? 3agqP? z2

sound, and there is barely any jump in the first sound speed u(r) = m 8(r)+ mr3 <1 - 3r_2>’

at the superfluid to supersolid transition. A recent proposal

suggested a method for measuring the long-wavelength esvhere r =x —x’ is the relative separation between the

citation frequencies and longitudinal speeds of sound in @articles. Hereas is the s-wave scattering lengthagq =

one-dimensional supersolid using a periodic optical potenMuou2/127 R is the dipole length, ang.y, is the atomic

tial [15]. This method can be directly extended to the 2Dmagnetic moment. The ratieyy = agq/as characterizes the

supersolid. relative strength of the dipole-dipole tewave interactions,
Our results will provide a basis for better understanding theand when this parameter is sufficiently large, the ground state

equilibrium and dynamical properties of higher-dimensionalundergoes a transition to a crystalline state with spatial mod-

supersolids, which are being explored in experiments withulation in thexy plane.

dipolar gases. We also calculated the excitations and com- The Gross-Pitaevskii equation (GPE) energy functional for

pared them to the hydrodynamic theory for a higher-densityhis system is

dipolar BEC fp = 0.08/a3,) and found results that are qual- N 5 5

itatively similar to those presented here, except thais E =/ dxy* (T + H. + 3P + Evorlv P) v, (A4)

slightly larger. An interesting remaining question is to ex- ue

tend our analysis to even higher densities, where the dipolarhere we have introduced the effective potential

supersolid transitions to a stripe state or a hexagonal state.

An interesting aspect of the stripe state is that its superfluid ®(x) = fdx’U (x — x| (x))? (A5)

fraction and elastic tensor will become anisotropic. Such high

densities will be difficult to reach in experiments with mag- and the effects of quantum fluctuations are described by the

netic gases, but these parts of the phase diagram might ; - _ lomRe, [a&

accessible to polar molecules gases, which have strong dipol?ag—rm with thelcoeffluemyQF —oam as\/:%(edd)’ where

dipole interactions§0,51]. This presents a rich playground 9s(X) = Re{fy du[l + x(3u® — 1)]*?} [54]. Because the sys-

for studying superfluidity in the presence of crystalline order.tem is infinite in thexy plane, we restrict the spatial extent
Note added. Recently, we became aware of Re&Z], of the wave function to the unit cell (uc) defined by the

which also considers the elastic properties of soft-corglirect lattice vectordas, a,} and impose periodic boundary
supersolids. conditions. To accurately calculate(x) in the unit cell we

employ thez-cutoff truncated interaction potential introduced
in Ref. [b5).
ACKNOWLEDGMENTS The average density condition enforces the following nor-
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tions and comparisons with P. Senarath Yapa and T. BlandvhereA = |a; x &/ is the area of the unit cell. The ground
E.P. acknowledges support from the Austrian Science Fungtate is determined for a specified valuecofindv = 0 by
(FWF) within the DK-ALM (Grant No. W1259-N27). minimizing the energy density

S(p, ap, dp, V) = E/A (A7)

l){vhere V. is the 2D gradient and we have allowed for a
gaperfluid velocity (cf. [8,53]). In the z direction the single-
,%article Hamiltonian includes harmonic confinement,

(A3)

with respect to the unit-cell parametefa;, ap}. For the
5This is an artificial supersolid because translational invariance igpurpose of computing the elastic parameters, we are also
not spontaneously broken. interested in small changes in the parametersa;, ap, v}
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(i.e., to make finite-difference derivatives) from the ground-
state values. In this case the energy density is minimized with L=To+H;+ P+ yQFw?’ (dipolar), (C2)

respect toy, but with the other parameters specified. andy. is the chemical potential.

The quasiparticle modes can be determined by linearizing
APPENDIX B: THE 2D SOFT-CORE CONDENSATE the tlme—dep_ende_nt evolutlorﬁllf = LW, with an expansion
of the form given in Eq.2). This leads to the BdG equations
The 2D soft-core model is for a BEC of atoms in the

xy plane interacting with a potential of the forth(r) = (ﬁ X —n —X )(Uvq> = Rw,q (Uvq>’
Uof(asc — |r]), whereag is the soft-core radiud)y is the X —(L4+X—pn))\vig Uug
potential strength, and is the Heaviside step function. The (C3)

mean-field energy functional for this system is similar to thatwhereu andu,q have the Bloch forn,q(x) = i (X)&o
=g vq vq — lvq ’

:‘?ué?ﬁagl)p:s!?r case, but without arydirection or quantum with f,q(x) being periodic in the unit cell, and is defined so

that
E 2/ dx y*(T, + ds0)y, (B1) Xf :w/dx’usc(x—x’)f(x/)x/f(x’) (softcore), (C4)
3 .
where Xf = w/dx/u (x—x/)f(x’)w(x/)—kéyqusf (dipolar).

(C5)
Bsc(X) = / dX Uk — X)W ()2 (B2)
APPENDIX D: EULER LAGRANGE EQUATIONS

In this system it is convenient to adagt as the unit of length ) )
and hwg = A2/ma2, as the unit of energy and to define the From Eqg. (0) we obtain the Euler-Lagrange equations to

dimensionless interaction parameter as describe the evolution of the hydrodynamic fields,
. hotg = —0pp80 — tpudili, (D1)
_ mrpagUo
A=—"p (B3) M(@3p — prdti) = —Fis?e, (D2)
The normalization condition, definition of the energy density, pn(MAZU; — Rdig) = ,pudidp + Cijia djiur. (D3)

and procedure to obtain ground states are then the same
described for the dipolar case.

It is worth noting that as discussed by Maetial. [29],
for any finite value ofA the mean-field description of the 2D
soft-core system will be valid for a sufficiently high density

@® can further decompose= u; + u; in to transverseu;
with V - u; = 0) and longitudinal, with V x u; = 0) parts.
Using this decomposition and E@)( the last Euler-Lagrange
equation can be written as

There have also been comparisons validating the mean-field  on(MdZu — A% Vo) = a,, Vép + awV2ur, (D4)
2D soft-core model against quantum Monte Carlo results in ) -
Ref. 28] (also see37)). PnMI Uy = LV U. (D5)

The normal-mode solutions of these equations are of the

form X = X,é@*-«) whereX = {8p, ¢, u, u} and X, is

the excitation amplitude (also se&4{47]). Three nontrivial
The Bogoliubov—de Gennes (BdG) framework describessolutions can be found with dispersion relations of the form

the quasiparticle excitations about a stationary soluti¢x).” o = cq, yielding the speeds of sound given in Eqsl)((13).

This solution satisfies the time-independent GRPE = u,

where

APPENDI X C: BOGOLIUBOV-DE GENNES EQUATIONS

"Here we consider solutions fer= 0 wherey can be taken to be
L =To+ &g (soft core), (C1) real.
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Chapter

Exploring superfluid properties:
rotation and quantized vortices

The study of the behaviour of a system under rotation provides a way to unambigu-
ously detect its superfluid nature. Unlike classical fluids, which respond to rotation in
a continuous manner, superfluids exhibit counter-intuitive effects, such as irrotational
flows, non-classical rotational inertia, quantized vortices and critical velocity thresholds
for vortex formation. These effects have been studied in many different platforms, rang-
ing from helium [179], bosonic and fermionic condensates [180-182], exciton-polariton
condensates [183] to solid state superconductors [184].

Two-dimensional supersolids offer a new platform where non-trivial superfluid be-
haviours coexist with a solid response. In this chapter, we first introduce the differences
between rotating solids and superfluids. We then investigate the rotational properties
of supersolids in two distinct regimes. The first corresponds to the linear regime, where
the system linearly responds to rotations without the appearance of phase singularities.
In this regime, we explore whether information about the superfluid fraction can be
extracted from the frequency of the scissor mode. The second regime involves higher
rotation frequencies and the system develops quantized vortices, topological defects that
manifest as phase singularities. Finally, we report the first experimental observation of
vortices in dipolar supersolids.

4.1. How to rotate a dipolar system?

To investigate rotational dynamics in BECs, it is essential to efficiently impart angular
momentum to the system. There are many established methods to achieve this, for ex-
ample by stirring with laser beams [180,181], phase imprinting [185-187] or transferring
orbital angular momentum from light [188]. In this section, we present two techniques
employed to access and control different dynamical regimes in a dipolar BEC. Specifi-
cally, we define the linear response regime as the range of small rotation frequencies that
induce only linear responses in the system and do not lead to the formation of phase
singularities. In contrast, the vortex regime regime refers to conditions under which the
system accommodates angular momentum through the emergence of singularities in the
form of quantized vortices. In both regimes, the rotation frequencies are kept below the
radial trapping frequency to avoid inducing anti-trapping effects.

The first technique commonly employed to rotate a BEC is to confine it in an elliptical
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112 4. Exploring superfluid properties: rotation and quantized vortices

trap and dynamically rotate the trap axis at a chosen frequency, 2 [180,181,189]. This
process can be modelled using the GPE by introducing a time-dependent potential or,
equivalently, by solving the equation in the rotating frame (see Sec. 1.2). This approach
has been used in the past both to excite small angular oscillations in BECs [190] and
also to continuously stir the trap and nucleate vortices [180, 181, 189]. In this chapter,
we employ this method to create a sudden rotation of the trap and study the angular
oscillations of a supersolid investigate in the linear response regime; see Sec. 4.3.1 and
the related publication in Sec. 4.4.

For the study of vortex nucleation we use a different approach genuinely provided by
the anisotropic nature of the dipolar interaction. In fact, as discussed in Chapter 1,
the magnetostriction effect provides a natural mechanism for deforming the atomic
cloud and impart angular momentum into the system [191]. When dipolar atoms are
polarized by an external magnetic field, the dipolar interaction elongates the cloud
along the polarization direction, favouring head-to-tail configurations that minimize
the interaction energy. Starting from a dipolar BEC or a supersolid confined in a
cylindrically symmetric trap, tilting the magnetic field away from the z—axis breaks
the cylindrical symmetry, aligning the cloud or the droplets along the field direction.
By continuously rotating the magnetic field at frequency {2, a process that we refer to
as magnetostirring, the system rotates [191-193]. In this chapter, we use this approach
to study the BEC and supersolid’s rotational response in the vortex regime. In both
phases, we theoretically study and experimentally observe the nucleation of topological
phase defects known as quantized vortices; see Secs. 4.5 and 4.5.2 as well as the related
publications in Secs. 4.6 and 4.7.

4.2. Solid and superfluid flow

When considering a classical rigid object from everyday life (e.g., a spinning disk or a
classical liquid), its rotation is continuous. This means that the system will respond to
rotations at any value of the angular velocity €2 and its response will be proportional to
it. The velocity field of the object is purely tangential, with no radial components, and
depends only on the distance from the axis of rotation. Specifically, the velocity field is
given by

v = Qréy (1)

where r = /22 + y? is the distance from the rotation axis, that we assume to be the
z—axis, and &y is the unit vector in the azimuthal direction. The angular momentum L,
acquired by the system linearly depends on the moment of inertia I,;, and the angular
velocity €2,

L, =1,Q. (2)

In a rigid body, the moment of inertia I, is constant' and it comes from the spatial
density distribution

Iig = (@* 4+ 9%) = [ dv (@ 4+ y*)n(r) (3)

In general, the moment of inertia is a tensor that encodes resistance to rotation about each axis of
the three dimensional space [194]. Here, we focus on rotation about the z—axis and the corresponding
z—component of the angular momentum, L.. We also assume the rigid body is non-deformable, so its
mass distribution does not change with time.
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______ Classical fluid o Superfluid
Q 0 < Q. Q> Q.

/_> L L

Figure 4.1.: Intuitive illustration of the rotational behaviour of a classical and superfluid fluid
in equilibrium in a rotating bucket. A classical fluid normally rotates together with the bucket.
A superfluid stays at rest when the bucket rotates slower than the critical frequency €., whereas
it develops quantized vortices when rotating faster than the threshold value.

We will refer to this type of rotational flow, which is continuous and with L, oc €2,
as solid or rigid behaviour [195]. Notably, this kind of flow is not limited to solid
materials. Classical viscous fluids in equilibrium, such as water rotating inside a bucket,
also exhibit solid-body-like rotation after transient effects (like surface sloshing or shear)
have dissipated. In such a steady state, the velocity field of the liquid mimics that of a
rotating solid object, even though the material is not rigid [195]; see the left-hand side
of Fig.4.1.

A superfluid behaves differently. One of its most striking features is the absence of
viscosity, i.e.it flows without friction. As a result, it does not exhibit a continuous
response to an externally imposed rotation like a normal fluid does. To gain some intu-
ition on the superfluid behaviour, we consider again the picture of a rotating cylindrical
bucket. At low angular velocities €2, it would remain completely at rest, showing no
response to the rotation of the container. This lack of rotational response at low €2
arises from the absence of internal friction to transmit angular momentum. At higher
velocity frequencies, for values of the frequency larger than a critical value . (which
varies depending on the system), the superfluid would respond to the external rotation
by developing some topological defects called quantized vortices. These vortices are tiny
tornado-like structures where the superfluid circulates around a core of zero density, and
each carries a single quantum of angular momentum; see the right-hand side of Fig. 4.1.
The number of vortices increases with the rotation frequency, so that the superfluid
acquires angular momentum in quantized steps, rather than responding smoothly as a
classical fluid would do.

The rotating bucket picture is very helpful to gain some intuition about the difference
between classical and superfluid rotational response. However, this picture assumes
perfect cylindrical symmetry of the rotating bucket and a purely superfluid system.
In different situations, where the system has an explicitly (e.g., asymmetric trap) or
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spontaneously broken cylindrical symmetry (e. g., supersolid system), the study of the
rotational response requires a more detailed description, as will be discussed in the
next sections. In Sec.4.3 we focus on the linear behaviour of the superfluid at small
rotational frequencies, before the onset of vortex nucleation, while vortex nucleation
will be discussed separately in Sec. 4.5.

4.3. Linear response regime: irrotational flow

The behaviour of a superfluid system under small rotation arises from quantum me-
chanical phase coherence across the entire system, which make the fluid irrotational.
As seen in Chapter 1, the condensate wave function can be written according to the
Madelung transformation

P(r,t) = n(r,t)eie(r’t) ) (4)

Therefore, the following relation for the wave function

O 0 (0 d . B h .
Gl =v (go)+ (507) 0=V g @Ve-vver)| . )
can be reformulated in form of the continuity equation:
gn+v-(nv)—0 (6)
ot o

Here, v is the velocity field

h * — * J
(VY Ve T -

2ma n n

written as a function of the probability current J. When using Eq. (4) into Eq. (7), one

obtains

h

namely the velocity is given by the gradient of the phase of the wave function. From
vector calculus, an important consequence is that the velocity field of a superfluid is
always irrotational

VXV:EVXVHZO, 9)
m

as long as 6 contains no singularity. This is true in the limit of linear regime.

In the following, we describe the main properties of the velocity field for a BEC and
a supersolid state in different geometries. A vanishing velocity field means that the
system does not respond to rotation, resembling the scenario shown in Fig.4.1. In
contrast, when the velocity field is non-zero, the system exhibits a linear response to
slow rotations, resulting in a non-zero angular momentum (L,) and non-zero moment
of inertia I. Notably, even though I is finite, it generally remains below the classical
rigid-body value I,;4 [71].

In Fig.4.2 we calculate the velocity field v of the equilibrium configuration in the
rotating-frame obtained from eGPE simulations. We identify the following cases:
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Figure 4.2.: Irrotational velocity fields. (a) The velocity field is zero everywhere because the
system is cylindrically symmetric (I = 0). (b) The cylindrical symmetry is broken using an
asymmetric trap. The system responds to a small rotation with an irrotational flow ~ Vzy
(I # 0). (c) The system is confined in a cylindrically symmetric trap but it spontaneously
breaks the translational symmetry through the supersolid density modulation (I # 0). The
irrotational flow creates a local counterflow between the droplets and the superfluid background.
(d) The system is confined in an asymmetric trap and it spontaneously breaks the translational
symmetry (I # 0). The velocity field combines the ~ Vzy character with counterflow features.
Parameters: N = 50000, 2 = 0.5Hz (a)-(b) as = 100ag, w/27 = (50,50,95) Hz and (c)-(d)
as = 95ag, w/2m = (50,60, 95) Hz.

e« Unmodulated BEC in a cylindrically symmetric trap. The only solution
of the GPE satisfying the irrotationality condition is v = 0, i.e. this solution
is identical to the non rotating case [196]. The velocity field is zero everywhere
and the superfluid does not respond at all to any small rotation. This is the case
intuitively described in Fig. 4.1.

¢ Unmodulated BEC in a asymmetric trap. The solution has an elliptical
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density profile which rotates about the z—axis. The velocity field of the stationary
solution has the form [197,198]

v x V(zy). (10)

Since v # 0, the system responds to small rotations through this irrotational field.

e Supersolid in a cylindrically symmetric trap. The stationary state is a ro-
tating supersolid with a non-zero velocity field, which does not have an analytical
solution. The irrotational field is characterized by a counterflow between droplets
(following the direction of the trap rotation) and the interstitial superfluid back-
ground (that opposes to the trap rotation) [199].

e Supersolid in a asymmetric trap. This case combines the previous two, so
the solution of the eGPE is an elliptical rotating supersolid. The non-zero velocity
field mixes features of the BEC in asymmetric trap v o« V(zy) with the droplet
and inter-droplet counterflow of the supersolid.

In summary, in the linear response regime one needs to break the cylindrical symmetry
to impart a rotation to a superfluid system. This can be done either by explicit sym-
metry breaking, by imposing an asymmetric trap in the Hamiltonian of the system, or
by spontaneous symmetry breaking, crossing the BEC-to-supersolid phase transition.
The solid nature of the supersolid, i.e. the density modulation, yields to a non-zero
irrotational response even in the cylindrically symmetric trap.

It is important to stress that, in all these cases, the irrotational velocity field distorts
the density distribution in a way to mimic rotation. An external observer in the labora-
tory frame would see the system rotating at the fixed 2. However, the underlying flow
responsible for this behaviour-such as the one reported in Fig.4.2(b)-(d)-is fundamen-
tally different from the one that leads to the classical rigid-body behaviour described

by Eq. (1).

4.3.1. Scissor mode

The presence of a superfluid irrotational flow can affect the frequency of the excitation
modes. Here, we consider the scissors mode, a collective excitation which describes an
angular oscillation of the system with respect to the trap axis. This type of excitation
has been predicted to be sensitive to the system’s superfluid nature [200], since its
frequency is dictated by the value of the moment of inertia I < I,;4, where I,;, is
the rigid moment of inertia given in Eq.(15). This mode has been widely employed
to infer the superfluidity in several systems, from deformed nuclei [201] to trapped
BEC [190,202], Fermi gases [203] and dipolar quantum droplets [204]. In the experiment
it can be excited by a sudden small rotation about the z—axis of the asymmetric trap,
see Fig.4.3(a). The trap is anisotropic, characterized by an ellipticity

_wi-w
=1, (11)
Wy + wy

The frequency of the scissors mode can be estimated using a sum-rule approach [33],
assuming that the rotational perturbation excites only a single mode. The operator
responsible for the scissor perturbation is L,. According to the linear response theory,
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the energy of the mode with smallest energy excited by an operator is obtained as the
ratio of the energy weighted moments [205]. In this case, the frequency of the scissor

mode is
Wscissor = e = fdw WS(Lf,W) y (12)
m_i [ dww™1S(L,,w)

where S (IAJZ,w) is the dynamic structure factor relative to the angular momentum op-
erator

A

S(Lz,w) =3 [(n|L:]0)|*6(w — wy) - (13)

Notice that when more than a single mode is excited by the perturbation, Eq. (12)
becomes an upper bound.

When the Hamiltonian of the system commutes with L. (and this is the case for a
dipolar system with dipoles polarized along z) [33,155,199], one obtains

2 2 2 __ 42
Wscissor = \/(wy wa:)[<m Y > . (14)

In practice, the frequency of this mode depends on the geometry of the system (terms
at the numerator) and its moment of inertia (at the denominator). The measure of a
deviation of the moment of inertia from the rigid-body value would be a consequence
of the superfluid nature of the system.

We studied the frequency of the scissor mode for a 2D dipolar supersolid state. It is
useful to extract the two limiting values of the scissor frequency, one obtained assuming
a solid-body rotation and the other assuming a fully superfluid rotation. In the first
case, the moment of inertia is I,;4. For the second case, it can be estimated from a
variational model [198] as

Iop = 31y (15)
where the quantity § is
(2% — y?)
B=T5—5- (16)
(2% +y?)

By using Eqgs. (15) and (16) into Eq. (14), we find the two limiting cases

wgégssor = (Wg - OJ%),B
17
g @) {4
Wscissor — ﬁ

Behaving partially as a solid and partially as a superfluid, one would expect that the
frequency of the scissor mode for a supersolid would lie in between these two estimates.
However, we found that the behaviour is much more complicated. This work is contained
in Ref. [206], which we report in Sec. 4.4.

Due to the geometric dependence, the study of the scissor mode in 1D supersolids
confined in elongated traps could prevent an accurate distinction between rigid and
superfluid behaviour—an important aspect that in the early studies has not been consid-
ered [155,199]. In fact, when the geometric factor is 5 ~ 1 the rigid-body and superfluid

. . T . . rig ~ , 5
scissor mode frequencies become nearly indistinguishable, i.e., W, ..or = Wonissor 1200].
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Figure 4.3.: Frequency response of a 2D supersolid perturbed with a scissor oscillation. (a)
Sketch of the protocol to excite the scissor mode. (b) Fourier spectrum of an oscillating 2D
supersolid with multi-frequency response. (c¢) Density perturbation of the excited modes from
BdG spectrum. (d) Frequency variation of the selected modes as a function of as. Parameters:
N = 45000, trap w/2r = (52.7,65,122) Hz, (a)-(c) as = 92 ap.

In contrast, the realization of 2D supersolids with variable aspect ratios provides an
opportunity for a more detailed investigation of these angular oscillations [205,206]. In
our study, we focus on 2D supersolids confined in a harmonic trap with an aspect ratio
of wy/wy ~ 2. A key advantage of 2D supersolids is also that scissor mode oscillations
involve motion of atoms along the inter-droplet density connections, that establish the
global phase coherence and the superfluidity.

When exciting the scissor mode in a 2D supersolid, we observe a multi-mode response,
manifesting as multiple peaks in the Fourier spectrum in Fig. 4.3(b). The highest peak
is the higher frequency one, related to a quadrupole mode that describes in phase oscil-
lations of the crystal with the superfluid background (c). Unfortunately, its frequency is
nearly independent on the scattering length and it is always very close with the one for a
fully superfluid system w?éssor (d). The middle peak correspond to another quadrupole
mode, but with out-of-phase scissor oscillation between the crystal and superfluid back-
ground. The lowest frequency peak is a low-frequency rotational mode similar to the
one analysed in Sec. 2.7. Importantly, the low frequency modes seems to be more sensi-
tive to the superfluid fraction. This is shown in Fig. 4.3(d), where the frequency of the

excited modes is plotted for different scattering lengths.

The lower frequency modes cannot easily be probed in the actual experiment, due to
e.g. a limited lifetime of the supersolid state. As a result, only the higher-frequency
oscillations have been detectable so far [206]. Suppressing the excitation of higher-
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frequency modes with large amplitudes would require a modified experimental proto-
col [205]. Given the aforementioned limitations, alternative observables provide a more
reliable means of directly probing the superfluid nature of the supersolid. For this rea-
son, we investigated a different rotation regime where quantized vortices are nucleated,
see Sec. 4.5.






4.4. Publication: Can angular oscillations probe superfluidity in dipolar supersolidsl21

4.4. Publication: Can angular oscillations probe superfluidity
in dipolar supersolids?

Phys. Rev. Lett. 129, 040403 (2022)f
submitted 17 November 2021; published 22 July 2022;
DOI: https://doi.org/10.1103 /PhysRevLett.129.040403

M. A. Norcia!, E. Poli2, C. Politi®?, L. Klaus™2,T. Bland"2, M. J. Mark"?2,
L. Santos?, R. N. Bisset? and F. Ferlaino!»?
L Institut fiir Quantenoptik und Quanteninformation, Osterreichische Akademie der
Wissenschaften, 6020 Innsbruck, Austria
L Institut fiir Experimentalphysik, Universitit Innsbruck, 6020 Innsbruck, Austria
3 Institut fiir Theoretische Physik, Leibniz, Universitit Hannover, Hanover, Germany

1 The author of the present thesis performed the numerical simulations together with T.B., L.S.
and R. N. Bisset and contributed in writing the manuscript.



https://doi.org/10.1103/PhysRevLett.129.040403




PHYSICAL REVIEW LETTERS 129, 040403 (2022)

Can Angular Oscillations Probe Superfluidity in Dipolar Supersolids?

Matthew A. Norcia ,l Elena Poli ,2 Claudia Politi,l’2 Lauritz Klaus ,1’2 Thomas Bland ,1’2 Manfred J. Mark ,1’2

Luis Santos ,3 Russell N. Bisset,2 and Francesca Ferlaino”

2,5

lInslil‘utﬁ'ir Quantenoptik und Quanteninformation, Osterreichische Akademie der Wissenschaften, Innsbruck 6020, Austria
*Institut fiir Experimentalphysik, Universitdit Innsbruck, Innsbruck 6020, Austria
3Institut fiir Theoretische Physik, Leibniz Universitit Hannover, 30167 Hannover, Germany

® (Received 17 November 2021; revised 3 March 2022; accepted 6 June 2022; published 22 July 2022)

Angular oscillations can provide a useful probe of the superfluid properties of a system. Such
measurements have recently been applied to dipolar supersolids, which exhibit both density modulation
and phase coherence, and for which robust probes of superfluidity are particularly interesting. So far, these
investigations have been confined to linear droplet arrays, which feature relatively simple excitation
spectra, but limited sensitivity to the effects of superfluidity. Here, we explore angular oscillations in
systems with 2D structure which, in principle, have greater sensitivity to superfluidity. In both experiment
and simulation, we find that the interplay of superfluid and crystalline excitations leads to a frequency of
angular oscillations that remains nearly unchanged even when the superfluidity of the system is altered
dramatically. This indicates that angular oscillation measurements do not always provide a robust
experimental probe of superfluidity with typical experimental protocols.

DOI: 10.1103/PhysRevLett.129.040403

Some of the most distinctive manifestations of super-
fluidity in ultracold quantum gases relate to their behavior
under rotation. These include the presence of quantized
vortices [1-3] and persistent currents in ring traps [4], as
well as shape-preserving angular oscillations associated
with a “scissors” mode [5]. Measurements of the scissors
mode frequency have long been used to illuminate the
superfluid properties of a variety of systems [6—11]. With
the recent advent of dipolar supersolids [12—18]—states
that possess both the global phase coherence of a superfluid
and the spatial density modulation of a solid—the scissors
mode provides a tempting way to quantify changes in
superfluidity across the superfluid-supersolid transition
[19,20]. Angular oscillations have also been used to search
for superfluid properties in solid helium [21]. In this case,
however, a change in oscillation frequency initially attrib-
uted to superfluidity was eventually traced, instead, to other
reasons [22]. In this Letter, we study more deeply the
connection between angular oscillations and superfluidity
in dipolar supersolids to determine the extent to which such
experiments can inform our understanding of superfluidity
in these systems.

The goal of these angular oscillation measurements is to
infer the flow patterns allowed for a given fluid. A super-
fluid is constrained by the single-valued nature of its wave
function to irrotational flow (IF), while a nonsuperfluid
system faces no such constraint and, in certain situations,
may be expected to undergo rigid-body rotation (RBR).
Prototypical velocity fields for angular oscillations under
IF (¥  Vxy) and RBR (¥  r) are depicted in Figs. 1(a)
and 1(b), respectively. The velocity field associated with
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angular rotation is related to the moment of inertia of the

system and, thus, the frequency of angular oscillations.
The ability to distinguish between RBR and IF (and,

thus, in principle, between a classical and superfluid

—~
o
~

6 (degrees)

=5 T T T T T
0 10 20 30 40 50 60 70

hold time (ms)

FIG. 1. Characteristic velocity profiles for irrotational flow (a)
and rigid-body rotation (b). A wide atomic state (light turquoise
oval) samples a region of space where the two differ significantly,
while a highly elongated state (dark turquoise oval) samples a
region where the two patterns are nearly indistinguishable. (c) We
excite oscillations in the angle @ of our atomic gas by rapidly
rotating the anisotropic trap (dashed oval), then returning it to its
original orientation and observing the subsequent dynamics.
(d) Typical example of experimental angular oscillation for the
zigzag modulated state shown on the right (image averaged over
nine iterations). In this case, the errors from the fit to the state angle
are smaller than the markers. The red line is a damped sinusoidal fit
used to extract the angular oscillation frequency f .

© 2022 American Physical Society
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system) depends critically on the geometry of the system,
and is sensitive only to the character of the flow pattern
where the atomic density is appreciable. As illustrated in
Figs. 1(a) and 1(b), highly elongated states sample only the
region along the weak axis of the trap (near x = 0) where IF
and RBR are identical for small rotations (dark turquoise
regions), while rounder states (light turquoise regions)
sample regions of space where the flow patterns differ
significantly and, thus, are far more sensitive to the
irrotational constraint. Recent works have focused on
systems that form a short linear chain of about two
“droplets” [23] in the supersolid regime [19,20].

In this Letter, we study angular oscillations in systems
with linear and two-dimensional modulation to disentangle
the effect of three important contributions: (i) a narrowing
of the aspect ratio of the gas (geometrical change), (ii) a
reduction in the population of the low-density superfluid
“halo” that occupies the outer regions of the trap, and (iii) a
reduction in the density of the interdroplet connection that
enables the exchange of atoms between droplets, which is
key to the superfluid nature of supersolid systems. We find
that, in linear systems, contributions (i) and (ii) dominate
the change in oscillation frequency associated with the
onset of modulation, while (iii) has a negligible effect.

In dipolar condensates with two-dimensional structure,
which have been a focus of recent work [24-28], the effects
of geometry and superfluidity may be disentangled, and
one may expect to observe a direct link between a change of
the superfluid fraction and a modification of the angular
oscillation frequency. However, we find that the physics at
play is much more complex. Indeed, not only does the
oscillation frequency fail to approach its rigid-body value
for states with a vanishing superfluid connection, but it
remains very close to the value predicted for a superfluid
state. We extensively investigate the system behavior as a
function of geometry and interaction parameters, revealing
a unique multimode response of the dipolar supersolid.

Experimentally, we use a dipolar quantum gas of Dy
atoms (up to approximately 5 x 10* condensed atoms),
confined within an optical dipole trap (ODT) of tunable
geometry, formed at the intersection of three laser beams
[25,27,29]. The trap geometry and particle number at the
end of the evaporative cooling sequence determine the
character of the modulated ground state, which can form
linear, zigzag, or triangular lattice configurations [28]. By
varying the applied magnetic field in the vicinity of
Feshbach resonances near 18-23 G, we can access scatter-
ing lengths that correspond to either unmodulated BECs or
modulated states. In past works, we have demonstrated that
modulated states created at the corresponding field have
global phase coherence [25,27]. In this Letter, we expect
the same to be true, but refer to these experimental states
simply as modulated, as we do not repeat the characteri-
zation for every trap condition used. We excite angular
oscillations by using the well-established protocol of

(a) 2.5 1
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FIG. 2. Normalized oscillation frequencies f,,. from experi-
ment (a) and simulation (b). Blue points represent unmodulated
BECs, red points represent modulated states (expt.) and super-
solid states (sim.), and green points represent independent droplet
arrays. Solid lines are predictions for irrotational flow f;,. Dashed
lines are predictions for rigid body rotation f,. The trap frequ-
encies used in the simulation, from left to right, are (f,. f,) =
[(43,53), (40,57), (37,62), (32,70), (26,87)] Hz. f. =122 Hz
for all cases. A similar range is used in the experiment.

applying a sudden small rotation of the trap, by varying
the relative powers in the ODT beams for 6 ms before
returning them to their original values [Fig. 1(c)]. Using our
high-resolution imaging [30], we observe the in-trap
density profile at a variable time from the excitation, and
extract the angle of the major and minor axes using a
two-dimensional Gaussian fit to the state [31].

A typical angular oscillation is shown in Fig. 1(d), for a
“zigzag” modulated state [25]. From such oscillation traces,
we extract the dominant oscillatory frequency f . using a
fit to an exponentially damped sinusoid. Typically, the
statistical error on our measurements of f .. is on the sub-
Hertz level, better than our knowledge of the trap frequen-
cies, due to drifts between calibrations. We perform such
measurements for trap geometries ranging from an elon-
gated cigar shape to pancake shaped, and for different
scattering lengths, as summarized in Fig. 2(a).

Within a single-mode approximation, the angular oscil-
lation frequency f ... can be predicted using either a sum-
rule based approach [19,34], or considerations based on
hydrodynamic flow [5]. For RBR, the angular oscillation

(f2 = f2)p, whereas for IF,

(f2 = f2)/p [19,20]. Here,
[, are the trap frequencies along directions x and y. f =

(x* —y?)/{x*> + y?) is a geometrical factor that quantifies
the degree of elongation of the atomic cloud (but carries no

frequency is given by f;, =

the predicted value is fi, =
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information about the superfluid fraction). As shown in
Fig. 2, f;, and f, are more distinct for smaller values of j.
Remarkably, independent of trap geometry or the presence
of modulation, we observe f . close to the IF prediction
and far from the RBR prediction when the two predictions
differ appreciably.

To gain a deeper understanding of our observations, we
theoretically study the oscillation dynamics using a real-
time simulation of the extended Gross-Pitaevskii equation
(EGPE) [35-37]. To compare to the experimental obser-
vations of Fig. 2(a), first, we calculate the ground state for a
given trap, scattering length, and atom number. Then, we
apply a 0.5° rotation of the trap for 6 ms (we have
confirmed that the character and frequency of the response
do not change for much larger excitations), and then let the
state evolve for 50 ms. Then, we perform the same fitting
procedure as used in the experiment to extract f .. For the
simulation, we calculate /3 directly for the ground state (we
confirm that the exact value of f§ agrees with that extracted
from a Gaussian fit at the 5% level). For simulations
performed on states ranging from the unmodulated BEC to
supersolid (SS) to independent droplet (ID) regimes, with
vanishing superfluid connection between droplets, we
again find that f.. is always very close to f;,, in very
good agreement with the experimental data. For isolated
droplet states in particular, f . can actually be even higher
than the expected value for irrotational flow, indicating that
the oscillation frequency is not necessarily in between
the irrotational and rigid body values.

To further illuminate the dependence f,, on super-
fluidity, we analyze the results of the simulation as a
function of the s-wave scattering length a; (Fig. 3).
Scattering lengths of 854, yield arrays of (nearly) inde-
pendent droplets, while a; = 97a, produces an unmodu-
lated BEC. In between, we find supersolid states, with low-
density connections between droplets. Inspired by the
formulation of Leggett [38], we quantify the degree of
interdroplet density connection as C = [[dx/p(x)]™",
where p(x) is the projected atomic density, evaluated over
the interdroplet connection [Fig. 3(a)] [39].

As shown in Fig. 3, despite the rapid reduction of C with
a,, the simulated f. exhibits a rather constant behavior
with a value always close to the purely irrotational
predictions, f;,, for both a linear (1D) and hexagon state
(2D). This observation indicates that (i) the degree of
interdroplet connection is not actually a major determinant
of the angular oscillation frequency and (ii) that the system
does not undergo RBR even for vanishingly small inter-
droplet density connection. The latter conclusion is par-
ticularly evident for hexagon states, where the rigid-body
prediction substantially departs from the irrotational one.
For the linear array, the elongated geometry means that the
fig and fi, differ only slightly; see Supplemental Material
for further discussion [31].

At this point, we can clearly see the geometrical
limitations of the linear systems. In linear systems, the
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FIG. 3. Impact of scattering length on simulated scissors mode
frequencies. (a) Interdroplet connection C (defined in text) versus
scattering length for different trap geometries. The calculated
ground state in each trap is shown on the right, with correspond-
ing border colors. (b) Scissors mode frequency versus scattering
length. Solid lines are predictions for irrotational flow fi,.
Dashed lines are predictions for rigid body rotation f,. f ranges
from 0.93 to 0.99, and 0.27 to 0.31 in the linear and hexagonal
cases, respectively.

narrowing of the atomic density distribution that occurs
with the onset of modulation causes the dominant con-
tribution to a modification in oscillation frequency as well
as a reduction in sensitivity of the oscillation frequency to
superfluidity. Simultaneously, the transfer of atoms from
the halo to the droplets leads to a reduction of the super-
fluidity of the composite halo-droplet system, which is
accompanied by a small change in the oscillation fre-
quency. However, because the motion induced by rotation
in a linear system is perpendicular to the interdroplet axis,
these effects should not be interpreted as a result of the
weakening superfluid connection along the interdroplet
axis. In contrast, systems with two-dimensional structure
maintain a relatively round aspect ratio in the modulated
regime, and the rotational motion does orient along certain
interdroplet axes.

To better understand the nonrigid nature of the angular
oscillations, we employ a method to extract the character of
the system’s response by analyzing our experimental and
EGPE simulation dynamics in the frequency domain with
respect to time, but in the position domain with respect to
the spatial coordinates. A similar technique has been
applied along one dimension to understand the mode
structure of an elongated condensate [40]. This technique,
which for convenience we refer to as “Fourier transform
image analysis” (FTTIA) [31], allows us to extract a power
spectrum of density fluctuations driven by the angular
excitation, as well as the spatial form of the density
fluctuations at each frequency. For comparison, we also
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FIG. 4. Analysis of mode shapes and response due to angular excitation. Solid lines are the power spectrum obtained from the
rotational signal (@ in the experiment and (xy) in the simulation), and dashed lines are obtained from FTIA (see text, Supplemental
Material [31] for description). Inset panels show the mode shapes for selected modes. Red and blue indicate out-of-phase changes in
density, overlaid onto the average density profile in the panels corresponding to simulation (gray to white). Solid and dashed vertical red
lines represent fi, and fy,, respectively. (a) Responses in elongated traps from simulation (top) and experiment (bottom), for an
unmodulated BEC (left) and a zigzag droplet state (right). Trap frequencies are f,, = [31(1),73(1),128(1)] Hz, and f,,, =
[32,70,122] Hz for the experiment and theory, respectively. (b) Simulated response of supersolid hexagon state (a, = 92a).
(c) Simulated response of droplet crystal hexagon state (a, = 85a,). Note that the ground state has a different orientation for the two

scattering lengths in this trap. Trap frequencies are f, . = [43,53,122] Hz for (b) and (c).

calculate the spectral power of our rotational signal through
a Fourier transform. For computational robustness, we use
the fitted angle 6 in the experimental case, and (xy) for the
simulations. To enhance our frequency resolution, we
analyze simulations with longer durations than are acces-
sible in the experiment (160 to 290 ms).

We apply the FTTA to both simulation and experimental
images in Fig. 4(a). For a BEC, the FTIA gives a dominant
peak in both simulation and experiment, whose frequency
and shape are consistent with a scissors mode oscillation at
the frequency observed from the angular response. For a
zigzag modulated state, we again predominantly observe a
single peak in the FTIA spectrum at the frequency of the
angular oscillation. In the simulation, we can see that the
mode corresponds to the motion of the different droplets in
a pattern reminiscent of IF in an unmodulated superfluid,
and clearly distinct from RBR. In the experiment, the
response of individual droplets is not visible due to shot-to-
shot fluctuations in the exact number and position of
the droplets, but the overall structure is similar to the
simulation.

For hexagonal supersolid [Fig. 4(b)] and isolated droplet
[Fig. 4(c)] states, the FTIA reveals a clear multifrequency
response. For the supersolid, we observe the excitation of
modes near 3 and 25 Hz that do not contribute strongly to
(xy). The droplet motion associated with the 3 Hz mode is
approximately (but not exactly) shape preserving, and the
frequency is much lower than would be expected for a
single-mode RBR response. For the isolated droplet array,
we again observe a nearly shape-preserving low-frequency
response from FTIA, as well as a dominant angular
response that is split into two frequencies, both above
the scissors mode frequency f;, expected for a super-
fluid with the same geometry. In the experiment, the

combination of nonangular excitations associated with
our method used to rotate the trap and relatively rapid
damping of the oscillation prevent us from observing
meaningful mode profiles for small S.

Importantly, the FTIA reveals that, even in cases where
we observe an apparently single-frequency response in
typical rotational observables like 8 or (xy) [as in Figs. 4(a)
and 4(b)], the response of the system may, in fact, be
multimode in nature, breaking the single-mode approxi-
mation used to analytically extract f, and fy, [19,34]. In
the case of a multifrequency response, fi and f,, instead,
provide an upper bound for the frequency of the lowest
energy excitation—an excitation that is difficult to see with
experimentally accessible observables. Features of these
subdominant modes, including the lack of a strong rota-
tional signal in the low-frequency oscillations and the
apparent similarity between the droplet motion (the motion
of the halo is quite different) near 25 Hz to that of the
dominant rotational mode, remain interesting topics for
future investigation.

As we have noted, not only does the dominant angular
response frequency fail to approach the rigid-body value in
the isolated droplet regime, but it also stays near to the
irrotational prediction. A possible intuitive explanation for
this observation is that the flow pattern of Fig. 1(a)
resembles that of a quadrupolar surface mode, and it is
well known that, for sufficiently strong interactions, the
frequency of such modes is predominantly determined by
the trap parameters, rather than the details of the inter-
particle interactions [34].

In conclusion, measurements of angular oscillation
frequencies offer a simple way to demonstrate superfluidity
in certain conditions. However, care must be taken when
making and interpreting such measurements—geometrical
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changes can mask the effects of changing superfluidity, and
usual predictions to which one might compare rely on the
assumption of a single-frequency response of the lowest
energy rotational mode. While the moment of inertia of the
system is defined as the angular momentum of a system in
response to a shape-preserving, steady-state drive, oscil-
lation measurements involve a time-localized change in the
rotation rate of the trap, which may excite modes that do not
meet this criterion. In small, linear systems, the simple exci-
tation spectra means that approximately shape-preserving
oscillations can still be excited [31]. However, we find that
a supersolid with 2D structure, which one might expect to
be an ideal candidate for such measurements, can exhibit an
apparently single-frequency response associated with a
mode that is not the lowest in energy. Further, this exci-
tation frequency is typically very close to that of a purely
superfluid system, even for systems where the effects of
superfluidity are minimal. Therefore, such measurements
do not provide a robust indicator of superfluidity for
modulated systems. In the future, it may be possible to
extract information about superfluidity using a modified
excitation scheme to preferentially excite the lower energy
modes and a more comprehensive analysis scheme suitable
for multifrequency response [41]. However, such tech-
niques would require detailed knowledge of the exact
excitation applied and measurement of response ampli-
tudes, both of which are considerably more challenging
in an experiment than measuring the frequency of an
oscillation.

Finally, we note that, even in the case of single-frequency
response, where the frequency of angular oscillations has a
direct connection to the moment of inertia of the system,
making a clear connection between the moment of inertia
and quantities like a superfluid fraction can be problematic.
Past works have predicted that a system which is partially
superfluid should have a moment of inertia in between the
RBR and IF predictions, linearly interpolated according to
a superfluid fraction [20,38]. While this interpretation may
be valid for systems featuring a rigid crystalline structure
and a uniform distribution of crystalline and superfluid
components, as in [38], it is not necessarily valid for our
small dipolar supersolids, which, in addition to coupled
superfluid-crystalline excitations, feature a nonuniform
degree of modulation across the system.
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EXCITATION PROTOCOL

In both experiment and simulation, we excite the
atoms by suddenly rotating the trap, holding for 6 ms,
then returning it to its initial orientation. This was im-
portant in the experiment, as the trap frequencies gener-
ally change slightly as the trap is rotated, and we want to
observe the evolution of a state that is equilibrated to the
trap prior to the rotation. To explore whether the exact
excitation protocol influences our results, we performed
additional simulations where the trap angle was rotated
and held in the new orientation, but not rotated back.
We find that the same modes are excited in this case,
and the frequency of their responses are the same. For
some parameters the relative contributions of the modes
to the spectrum of (xy) can differ between the two proto-
cols, but for the parameters we explore the frequency of
the peak response remains unchanged. In particular, for
the droplet crystal hexagon shown in Fig. 4¢ of the main
text, the contribution of the low-frequency mode to the
(xy) power spectrum becomes appreciable, though is still
smaller than the contribution of the modes near 60 Hz.
Thus, the multimode response appears to be a generic
feature of possible schemes to excite angular oscillations.
While the spectral content of the excitation may differ,
influencing the relative amplitudes of different modes, the
frequency and character of the modes is determined by
the system, not the drive.

We have also performed excitation in the simulation by
directly imprinting a small phase variation axy onto the
ground-state wavefunction. This protocol produces qual-
itatively similar results to those described above. Again,
the same modes are excited and respond with the same
frequencies, though sometimes with different amplitudes.
The dominant mode excited is the same as the rotate-
and-return protocol for all cases investigated.

EXTRACTING ANGULAR POWER SPECTRUM

Several methods can be used to extract the angular
response of our system. For the experiment, we perform
a two-dimensional Gaussian fit to the in-trap image, and
record the angle of the major and minor axes as a func-
tion of time. For the simulation, we report the angu-

lar response obtained using one of two observables. For
direct comparison to the experiment, we use the state
angle extracted from a 2D Gaussian fit, as in the ex-
periment. For more detailed spectral analysis, we use
the quantity (zy), as this is expected to have a strong
response to a rapid rotation of the trap and we find it
to be numerically more robust. We have confirmed that
these and other similar observables, such as the direc-
tions of maximal and minimal variance, provide consis-
tent results (up to overall normalization). In some cases,
the Fourier spectrum of <f) ») (though not experimentally
accessible) shows different relative response amplitudes
between modes compared to (zy), particularly for those
modes at low frequencies.

FOURIER TRANSFORM IMAGE ANALYSIS

T‘e ﬁ‘e Yiquency

Subtract FFT along
mean time axis
image

In-trap images
(averaged for each
timestep)

FIG. S1. Procedure for Fourier transform image analysis
(FTIA). See text for description.

The goal of our Fourier transform image analysis
(FTTA) protocol is to visualize the density response of our
atomic system in real-space with respect to position, but
in frequency space with respect to time. This provides
a simple way to extract the spatial profile of excitation
modes. The process is illustrated in Fig. S1. To perform
the FTTA, we assemble images of projected density pro-
files corresponding to single time-steps (directly from the
simulation, or averaged over several in-trap images from
the experiment), then subtract the average (over all time-
steps) image from each. We then Fourier transform the
results along the time axis. The output is then a sequence
of real-space images, showing the fluctuation pattern at
a given frequency. Because each pixel is now represented



by a complex number (encoding the amplitude and phase
of the density variations at that location), we plot with
respect to the global phase for each frequency that shows
maximum variation, thus plotting the in-phase quadra-
ture of the oscillation.

In order to obtain a power spectrum (useful for locat-
ing the frequencies of excited modes), we compute the
sum of the absolute square of the fluctuations over a re-
gion of interest containing the atomic cloud for each fre-
quency. This power spectrum can be used to identify the
frequency and spatial character of modes, but is not ex-
pressed in physically meaningful units, and so should not
necessarily be used to compare the strength of different
mode responses.

We note that there are some similarities between the
FTIA method and principal component analysis (PCA)
[1, 2]. Both provide a model-free way of extracting the
form of excitations present in a system. PCA does so
by finding correlated patterns of fluctuations within a
set of images, with no prior information about the time-
sequence of the images. This makes it well-suited to
revealing modes that are excited incoherently, for ex-
ample by thermal or quantum noise. In contrast, our
FTIA method explicitly incorporates the time-domain
information associated with the images. This makes it
well-suited to extracting modes that are coherently ex-
cited (FTTA, as we apply it, would not work for inco-
herently excited modes). In practice, we find that the
FTIA is more robust than PCA at extracting fluctuation
patterns that each exhibit a single-frequency response.
While PCA often returns components whose weights vary
with multiple frequencies (indicating that they actually
correspond to a linear combination of eigenmodes), FTIA
by construction returns a fluctuation pattern associated
with a single frequency. We find that this feature makes
it more robust for identifying eigenmodes of a system
subject to a coherent drive.

SPECTRA/TABLE FOR ALL PARAMS

Excitation power spectra from simulation for a range of
traps and scattering lengths used in the main manuscript
can be found in Fig. S2.

PREDICTIONS FOR ROTATIONAL MODE
FREQUENCIES

The rotational response of a gas can be calculated us-
ing hydrodynamic equations [3] or a sum-rule approach
[4, 5]. From the sum-rule approach, an expression can
be derived for the rotational oscillation frequency, under
the assumption that the response is single-frequency:

m(y® — a?)(wi — wy)

2 _ Y 1
o . 0

Here, O is the moment of inertia associated with steady-
state rotation.

The numerator of Eq. 1 can be interpreted as a ro-
tational spring constant: k, = —7/0, where 7 is the
torque exerted on a state whose major and minor axes
y and z are rotated relative to the their equilibrium po-
sition in the trap by an angle 6. To see this, consider
a mass element m at position (x,y) in a trapping po-
tential V' = (mw,z?* + mwy,y?)/2, which exerts a torque
T = aF, — yF, = zym(w? — wz) We can then calcu-
late k; = —07/00 = —m(ydx /00 + xdy/90)(WF — w}) =
m(y? — 2%)(w? — w2). Summing over mass elements pro-
vides the numerator of Eq. 1. This highlights that the
numerator of this expression is purely geometrical, inde-
pendent of whether the state is superfluid or classical. In
the case of multi-frequency response, Eq. 1 (as defined by
the sum rule) becomes an inequality, defining the upper
bound for the lowest frequency angular excitation in the
system [4].

BETA VERSUS SCATTERING LENGTH FOR 1D
AND 2D

In Fig. S3, we show the change in the anisotropy of the
atomic state in response to a change in scattering length
for a variety of traps, featuring both linear and 2D array
modulated configurations. Here, we consider the quan-
tity 82 = ({22 — y?)/(z% + y?))?, as this quantity gives
the expected change in moment of inertia between irro-
tational flow (IF) and rigid-body rotation (RBR). As 32
approached unity, the difference between the two van-
ishes, so such states can exhibit minimal sensitivity to
superfluidity.

States in more elongated traps generally have values of
B2 closer to one than their rounder counterparts. How-
ever, even in relatively round traps, such as those of
Refs. [5, 6], low atom numbers can lead to the formation
of linear arrays, which are highly elongated. In these
cases, the sensitivity of the state to superfluidity is dra-
matically reduced upon entering the modulated regime.
In contrast, combinations of trap parameters and atom
number that lead to a 2D modulated state typically main-
tain values of 32 substantially different from one even in
the low scattering length, independent droplet regime.

LINEAR CASE

In Fig. S4, we explore the parameters of refs [5, 6],
where a change in scattering length induces a transi-
tion from an unmodulated BEC to a linear array of two
droplets. This transition is accompanied by a dramatic
change in the aspect ratio of the atomic state, as evident
in the near convergence of the predictions for rigid body
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FIG. S2. Response sepctra extracted from simulations for different trap parameters (rows) and scattering lengths (columns).

Upper rows correspond to more elongated traps, while lower rows correspond to more round ones.
f- = 122 Hz for all cases.

(fz, fy) = [(26,87),(32,70), (37,62), (40,57), (43, 53)] Hz.
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correspond to the rigid-body rotation and irrotational flow predictions, respectively. Gray traces are power spectra extracted
from FTIA, while black traces are from (zy). In all cases, as = 97ao corresponds to an unmodulated BEC, while lower scattering
lengths correspond to modulated states, with the overlap between droplets decreasing with scattering length. (f., fy) = (26, 87)
is a linear droplet chain for all scattering lengths that produce a modulated state. All other modulated states have transverse
structure, increasing in prevalence as the trap becomes more round.

and irrotational flow (fis and fir) at lower scattering
lengths, corresponding to the droplet state.

We see that the dominant frequency of angular re-
sponse is between fy, and fi,, indicating a change in
the level of superfluidity in the system. We find that
the angular response in the supersolid regime (as = 90
or 92 ag) has two clear frequency components, though in
this case the dominant frequency observed matches the
prediction from the sum rule (with moment of inertia
calculated under static rotation). Because of the geome-
try of the system, rotation does not lead to a significant
transfer of mass between the two droplets. Thus, we at-
tribute the change in superfluidity to the low-density halo
that surrounds the droplets, rather than the inter-droplet
connection itself.
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4.5. Vortex regime

4.5.1. Quantized vortices

For a simply connected region of space in which the density n(r) of the system is
everywhere non-zero, applying Stokes’ theorem to the curl of Eq.(8) shows that the
integral of v around any closed curve is zero. A more interesting application of Eq. (8)
is to the case in which there is a line in which n(r) vanishes [207]. This happens when
rotating a superfluid above a critical frequency {2.: the system develops a singularity
and the Stokes’ theorem is not valid anymore.

The circulation of the velocity field around a closed loop that includes the singularity
is given by

F:%v-dl. (18)

Using Eq. (8) and the fact that the change in phase around any closed contour must be
an integer multiple of 27 for the wave function to be single-valued, we obtain

h
D =g— 1
g (19)

with ¢ an integer number, different from zero in presence of singularities encompassed
by the loop. This result tells us that the circulation of the velocity field is quantized,
differently from ordinary fluids, where the circulation can take any arbitrary value.

We can also extract the radial dependence of the velocity field around the singularity.
Starting from Eq. (18) and considering a closed circular path in the plane perpendicular
to the singular line, by using polar coordinates one gets

2T
r= / rv - égdf = 2mruyg . (20)
0

Comparing with Eq. (19), we extract the azimuthal velocity around the singularity

h
Vg =q— . 21
6 =dq mr (21)
This flow is diverging at the singularity and it decreases as ~ 1/r at large distances.

Additionally, the singularity contributes to the global vorticity,
h

L8), (22

VXxv=

that is not zero everywhere as for the case of small rotation frequencies (see Eq. (9)).

Therefore, the singularity can be interpreted as a tiny tornado in the quantum fluid
called quantized vortex. A vortex manifests as a density hole (vortex core) characterized
by a 27 phase winding in the phase all around the core, see Fig.4.4. The vortex
core can be intuitively seen as a point where destructive interference between matter-
waves with 7 phase jump occurs, from every radial direction. Quantized vortices are
topological defects that break the time reversal symmetry by imposing a preferred sense
of rotation [208,209]. They are topologically protected because they are associated with
a conserved winding number g around the vortex core. This makes them stable against
small perturbations, ensuring their persistence in the system in absence of dissipation.
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Figure 4.4.: Vortex in a BEC (left) and supersolid (right) state. The vortex creates a hole
in the density and a 27 phase winding. Selecting a random radial direction across the vortex
core (white dashed arrows), the phase of the wave function jumps from 6 to 6 + m, destructively
interfering at the vortex core.

4.5.2. Vortices in dipolar BECs and supersolids

Vortices have been observed in many different superfluid platforms [179-184]. However,
the observation of these phase singularities in an ultracold dipolar system was still
missing. By employing the magnetostirring protocol described in Sec. 4.1 we observed
for the first time vortices in a dipolar BEC and a dipolar supersolid state. These
results have been published in Refs. [192,193], which are reported in Secs. 4.6 and 4.7.
Remarkably, the observation of vortices in dipolar supersolids provides one of the most
unambiguous evidence of their superfluid nature.

The experimental observations have been accompanied by extensive numerical simu-
lations, which have provided crucial insights into the key characteristics of vortex nucle-
ation in dipolar BECs and supersolids. Despite keeping the main features described in
Sec. 4.5, vortices in the two phases differ in several fundamental aspects, including the
quantization of angular momentum, the critical frequency required for their formation,
and their dynamics within the system. In the following, we discuss these properties
highlighting the similarities and differences.

Angular momentum carrier

The angular momentum per particle carried by a vortex in the center of a superfluid
system is quantized. However, the quantization differs between a BEC and a supersolid.
In a BEC, which is a fully superfluid system, the angular momentum per particle is pre-
cisely (L) = h. In contrast, for a supersolid, the presence of a vortex at the center leads
to a jump of the angular momentum per particle (L,) < h. The reduction factor has
been found to be comparable with the fraction of non-classical rotational inertia fycrr,
following the relation (L.) ~ fycrrh [210]. It is important to note that these consider-
ations apply specifically to a vortex positioned at the center of a finite system. When
a vortex is located elsewhere, the angular momentum per particle is reduced even in a
BEC, with its value depending on the vortex’s radial distance from the center [211].
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Critical frequency for vortex nucleation

Vortex nucleation is associated with a discontinuous rotational response that occurs at
frequencies exceeding a critical threshold. There are two relevant critical frequencies
that govern the vortex nucleation dynamics in a superfluid system:

e The energetic critical frequency 2., above which the ground state in the rotating
frame contains one or more vortices.

« The dynamical critical frequency Q%" for vortex nucleation, above which the state
can dynamically achieve the ground state in the rotating frame, containing one or
more vortices, in an experimentally feasible timescale’ [212]. In general, it holds
Qdvn > Q. for both the BEC and supersolid case. This is because a vortex needs
to overcome an energy barrier to enter the system, that can be thought in terms of
energy to create a density depletion, namely the vortex core, inside the system [33].
This energy barrier can be crossed by means of dynamical instabilities [192].

To build some intuition on the physical meaning of these two quantities, one can think
of ). as answering the question “How favourable is it to create a density depletion in
the center of the system?”. In contrast, Q%" corresponds to “Once the vortex wants
to form, how easily can it enter and reach the center of the system?”. The answer to
these questions—and thus the value of these critical frequencies—depends strongly on the
system’s density distribution, particularly on whether the density is modulated or not.
Indeed, a vortex core, which involves a local density depletion, will form and move more
easily through the low density regions of an inhomogeneous density profile.

For an unmodulated BEC, although the critical frequency in which the ground state
contains vortices is relatively low 2. ~ 0.15w |, the system needs to rotate much faster
at QW™ ~ w, /v/2 ~ 0.7w, to nucleate vortices in an experimentally feasible timescale.
This is the frequency at which the quadrupole mode is at resonance, seeding a surface
quadrupole dynamical instability that let vortices enter the system [198]. Thus, Q%" >
Q.. When rotating at this high frequency *, many vortices are nucleated, and it takes
some time for the BEC to equilibrate and form a vortex lattice in equilibrium in the
rotating frame.

Conversely, vortices in a supersolid can enter and very easily move through the low
density regions of the inhomogeneous density profile [193,210]. Due to the double
superfluid-solid nature, the state possess many quadrupole modes associated to the dif-
ferent gapless branches of the excitation spectrum: one from the broken phase symmetry
associated with superfluid nature (superfluid quadrupole mode) and one from each bro-
ken translational symmetry (solid quadrupole mode)?. The superfluid quadrupole mode
instability occurs at a low frequency [210], for which only one or two vortices are nu-
cleated. This sets the value of Q%". Instead, the solid quadrupole mode set a higher
frequency threshold above which vortices are always created. Therefore, for a super-
solid we usually have . ~ 0.1w; and Q%™ ~ 0.2w, [193,199]. As for the BEC, it holds
that Q4" > Q., but the two values are much closer, Q%" ~ Q.. These results highlight
how supersolids provide a good platform for dynamically exploring low-frequency vortex

2Considering the lifetime of the supersolid system, we will consider an experimentally feasible timescale
of approximately 1 second.

3In our case of a 2D supersolid in a cylindrically symmetric trap, the two solid quadrupole modes are
nearly degenerate. They are not perfectly degenerate because of the tilted magnetic field used for the
magnetostirring of the system.
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Figure 4.5.: Schematic relation between the energetic and dynamical frequency for vortex
nucleation in (a) an unmodulated BEC and (b) a supersolid. The orange regions indicate the
range of € for which the ground state in the rotating frame hosts one or more vortices. The
shaded blue regions denote the ranges in €2 where the vortex state can be dynamically accessed
within a reasonable timescale of approximately 1s. The colour intensity correspond to the
timescale at which the system reaches the vortex state by crossing a dynamical instability—
darker shades indicate a faster vortex nucleation. These regions are typically associated to
resonances of quadrupole mode(s), see Secs. 4.8.1 and 4.8.2.

nucleation, very close to the energetic critical limit.

These considerations about the critical velocities are schematically visualized in Fig. 4.5,
while a more detailed discussion on the role of the quadrupole mode instabilities in BECs
and supersolids is given in Sec. 4.8.

Vortex lattice and visibility

Vortices produced in a superfluid arrange themselves in regular lattices. The lattice
structure depends on the phase and interaction properties of the superfluid system. For
a BEC with interactions that are isotropic in the plane perpendicular to the rotation axis
(z—axis), a triangular Abrikosov vortex lattice is energetically favourable [213]. This
is the case for contact-interacting BECs and dipolar BECs with magnetic field aligned
along z [180,181,192]. On the contrary, for dipolar BECs with tilted magnetic field the
structure is not isotropic. Due to magnetostriction and the anisotropic vortex cores, the
resulting vortex configuration is also anisotropic, producing a stripe lattice [192, 214,
215].

Because of the density modulation, vortices in supersolid exhibit a different behaviour.
Indeed, their interaction with the underlying crystalline structure leads to unconven-
tional dynamics. First, vortices within the droplets themselves are unstable [216]. For
this reason, they reside in the interstitial regions between density peaks forming an
honeycomb lattice [210,217]. The droplet structure acts as a pinning potential, forcing
them to snake between the density peaks. While previous studies have shown vortex
pinning through an additional underlying optical lattice [218-222], a supersolid provides
a platform where the pinning effects genuinely arises from the spontaneous translational
symmetry breaking. A key consequence of this pinning effect will be discussed in the
next chapter in the context of glitches, see Sec. 5.3.
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Vortices residing in low-density regions of a supersolid also impact their visibility.
Unlike in unmodulated BECs, where vortices can be directly imaged in-situ [192], their
tendency to localize in low-density areas presents an experimental challenge for detec-
tion. To overcome this, we exploited the topological nature of the vortices and collected
two different type of observations:

o Vortices are nucleated through magnetostirring in a dipolar system in the super-
solid phase. Before imaging the system, the scattering length is quenched to cross
the supersolid-to-BEC transition. The vortex is robust, since the transition does
not affect the phase coherence of the system [223]. Once in the BEC phase, there
is enough density contrast to detect them experimentally. By applying this proto-
col, we explored the rotational response of the system for different rotation time
and frequencies [193].

e Vortices are nucleated through magnetostirring in a dipolar system in the super-
solid phase. We remove the trapping potential, so that the system expands in
free space through 36 ms of time-of-flight. The vortex is topologically protected
and its core cannot be filled during the expansion. By applying this protocol,
we detected the effect of the 2w phase winding of the vortex on the interference
pattern. This interferometric technique for vortex detection has been shown to
be robust and repeatable for different rotation frequencies €2 over different exper-
imental shots [193].

The cumulative observation of the rotational response of the dipolar system and the
interferometric vortex detection provided an unambiguous way to detect vortices in
dipolar supersolids.






4.6. Publication: Observation of vortices and vortex stripes in
a dipolar condensate

Nature Physics 18, 14531458 (2022)%
submitted 15 June 2022; published 31 October 2022;
DOI: https://doi.org/10.1038/s41567-022-01793-8

L. Klaus’?4,T. Bland!>4, E. Poli?, C. Politi}?, G. Lamporesi®, E. Casotti?,
R.N. Bisset?, M. J. Mark!?, and F. Ferlaino'?
L Institut fiir Quantenoptik und Quanteninformation, Osterreichische Akademie der
Wissenschaften, 6020 Innsbruck, Austria
U Institut fiir Experimentalphysik, Universitit Innsbruck, 6020 Innsbruck, Austria
3 INO-CNR BEC Center and Dipartimento di Fisica, Universita di Trento, Povo, Italy.
4 These authors contributed equally.

1 The author of the present thesis performed the numerical simulations together with T.B. and
contributed in writing the manuscript.

141



https://doi.org/10.1038/s41567-022-01793-8




nature physics

Article

https://doi.org/10.1038/s41567-022-01793-8

Observation of vortices and vortex stripesin

adipolar condensate

Received: 15 June 2022

Accepted: 8 September 2022

Published online: 31 October 2022

Lauritz Klaus ®"?#, Thomas Bland ® 24, Elena Poli®?2, Claudia Politi'?,
Giacomo Lamporesi® 3, Eva Casotti ® ', Russell N. Bisset ®?2,
Manfred J. Mark® "2 and Francesca Ferlaino ® 2

% Check for updates

Quantized vortices are a prototypical feature of superfluidity that have

been observed in multiple quantum gas experiments. But the occurrence of
vortices indipolar quantum gases—a class of ultracold gases characterized
by long-range anisotropic interactions—has not been reported yet. Here

we exploit the anisotropic nature of the dipole-dipole interaction of
adysprosium Bose-Einstein condensate toinduce angular symmetry
breaking in an otherwise cylindrically symmetric pancake-shaped trap.
Tilting the magnetic field towards the radial plane deforms the cloud into an
ellipsoid, whichis then setinto rotation. At stirring frequencies approaching
the radial trap frequency, we observe the generation of dynamically
unstable surface excitations, which cause angular momentum to be pumped
into the system through vortices. Under continuous rotation, the vortices
arrange into a stripe configuration along the field, in close agreement with
numerical simulations.

Since the first experiments on gaseous Bose-Einstein condensates
(BECs), the observation of quantized vortices has been considered
the most fundamental and defining signature of the superfluid nature
of such systems. Their very existence sets a unifying concept encom-
passing a variety of quantum fluids from liquid helium' to the core of
neutron stars*and from superconductors’ to quantum fluids of light*.
Their classical counterparts have as well fascinated scientists from dif-
ferentepochsand fields as vortices are found in many scales of physical
systems, from tornadoes in the atmosphere to ferrohydrodynamics.
Inthe quantum realm, a quantized vortex may emerge as a unique
response of a superfluid to rotation. It can be understood as a type
of topologically protected singularity with a 2t phase winding that
preserves the single-valuedness of the superfluid wave function and
theirrotational nature of its velocity field. In contact-interacting BECs,
vortical singularities have been observed experimentally in the form of
single vortices>®, vortex-antivortex pairs’, solitonic vortices®’, vortex
rings'® and vortex lattices®" using a number of different techniques.
Moreover, vortices play a fundamental role in the description of the
Berezinskii—Kosterlitz-Thouless transition in two-dimensional (2D)

systems', as well as in the evolution of quantum turbulence™", and
have been observedininteracting Fermigases along the Bose-Einstein
condensate to Bardeen-Cooper-Schrieffer crossover®®,

Recently, anew class of ultracold quantum gases are being created
in various laboratories around the world, using strongly magnetic
lanthanide atoms'®"”. Such a system, providing a quantum analogue
of classical ferrofluids, enables access to the physics of dipolar BECs,
inwhich atoms feature astrong long-range anisotropic dipole-dipole
interaction (DDI)'*" on top of the traditional contact-type isotropic
one. This intriguing platform provided the key to observe, for exam-
ple, extended Bose-Hubbard dynamics?, roton excitations® 2, the
quantum version of the Rosensweig instability** and supersolid states
of matter?%, and is foreseen to host novel phenomena for quantum
simulation and metrology™”.

Thedipolarinteractionis predicted to also intimately change the
properties of vortices in quantum gases®. For instance, theoretical
works predict single vortices to exhibit an elliptic-shaped core for a
quasi-2D setting with in-plane dipole orientation®"* or the presence
of density oscillations around the vortex core induced by the roton
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Fig.1|Magnetostirring of a Dy dipolar BEC and evolution of the cloud aspect
ratio. a, 3D simulations and corresponding shadow on the x-y plane of a
non-dipolar (i) and dipolar BEC with B # O (ii-iv) in a cylindrically symmetric,
oblate trap. The magnetic-field (green arrows) angle with respect to the z axis
varies from 8= 0° (ii) to 8 = 35° (iii) and rotating at 6 = 35° around z (iv). b, Left
panels show the experimental sequence for the stirring procedure. The grey areas
indicate the stage during which the images in the right panels were taken. The
right panels are representative axial absorption images showing the dipolar BEC
while spinning up the magnetic field for ¢, = [140, 430, 627, 692] ms(top) and
subsequent constantrotationatQ=2mn x36 Hzfort,=[0, 6,11, 17] ms (bottom).
Therotation of the magnetic field in the x-y plane isindicated by the white line.

¢, (left) Time evolution of the magnetic field rotation frequency. Qis linearly
increased toits final value at aspeed of Q = 2z x 50 Hz s~ (right) Cloud AR for
different final rotation frequencies. To mitigate influences of trap anisotropies on
the AR, afull period at the final rotation frequency is probed. The error bars,
representing the standard error on the mean after 100 trials per point, are smaller
than the symbol size. The solid (dashed) black line shows the corresponding eGPE
simulationswitha2 s (1s) ramp and a,=110a,, (w,, ,) =21 % [50,130] Hz, and
N=15,000. Different colors of the experimental point in the right panel indicate
the corresponding time during the ramp in the left panel.

minimum in the dispersion relation®**~**, For vortex pairs, the aniso-
tropic DDI is expected to alter the lifetime and dynamics®* and can
even suppress vortex—antivortex annihilation®. These interaction
propertiesare predicted togiverise toavortex lattice structure thatcan
follow atriangular pattern®***, asis typical for non-dipolar BECs", ora
square lattice for attractive or zero contact interactions®***when the
DDlisisotropic (dipoles aligned with the rotation axis). A very striking
consequence of the dipolestilted towards the planeis the formation of
vortex stripes®****°, Moreover, vortices could provide an unambiguous

smoking gun of superfluidity in supersolid states* . However, despite
these intriguing predictions, vortices in dipolar quantum gases have
not been observed until now.

This Article presents the experimental realization of quan-
tized vortices in a dipolar BEC of highly magnetic dysprosium (Dy)
atoms. Following a method proposed in ref. *°, extended to arbitrary
magnetic-field anglesin ref. **, we show that the many-body phenom-
enon of magnetostriction*, genuinely arising from the anisotropic
DDIamong atoms, provides a natural route to rotate the systems and
nucleate vorticesinadipolar BEC. We carry out studies on the dynam-
icsofthe vortex formation, which agree very well with our theoretical
predictions. Finally, we observe one of the earliest predictions for
vorticesindipolar BECs: the formation of vortex stripesin the system.

Innon-dipolar gases, quantized vortices have been produced using
several conceptually different techniques, for instance, by rotating
non-symmetric optical®" or magnetic*® potentials, by rapidly shaking
thegas', by traversing it with obstacles with large enough velocity”, by
rapidly cooling the gas across the BEC phase transition*®*° or by directly
imprinting the vortex phase pattern®. Dipolar quantum gases, while
ableto formvortices with these same standard procedures®, also offer
unique opportunities that have no counterpartin contact-interacting
gases. Crucially, the DDI givesrise to the phenomenon of magnetostric-
tionin position space*. When dipolar BECs are polarized by an external
magnetic field B—defining the dipole orientation—the DDI causes an
elongation of the cloud along the polarization direction. Thisis adirect
consequence of the system tendency to favour head-to-tail dipole
configurations, which effectively reduces the interaction energy”.

Such amagnetostrictive effect provides asimple method toinduce
an elliptic effective potential and drive rotation with a single control
parameter. This modification of the effective potential is shown in
Fig.1laforaBECin an oblate trap with cylindrical symmetry about the
zaxis. While anon-dipolar BEC takes the same shape as the confining
trap (Fig.1a(i)), introducing dipolar interactions with polarization axis
along z stretches the cloud along this axis yet maintains cylindrical
symmetry (Fig. 1a(ii)). Tilting the magnetic field leads to a breaking
of the cylindrical symmetry, resulting in an ellipsoidal deformation
of the cloud shape, as seen from the density projection onto the x-y
plane (Fig.1a(iii)). Finally, under continuous rotation of the magnetic
field, which we coin ‘magnetostirring’, the condensate is predicted to
rotate (Fig. 1a(iv)). This unique approach to stir a dipolar condensate
caneventually lead to the nucleation of vortices****, realizing genuinely
interaction-driven vorticity through many-body phenomena.

We explore this protocol using a dipolar BEC of *Dy atoms. We
create the BEC similar to our previous work® with the distinction that
here the magnetic-field unit vector, B, is kept tilted at an angle of 8 = 35°
withrespect tothe zaxis both during evaporative cooling and magne-
tostirring (Fig. 1a(iii) and Methods). After preparation, the sample
contains about 2 x 10* condensed atoms confined withina cylindrically
symmetric optical dipole trap (ODT) with typical radial and axial trap
frequencies (v, w,) =21 x [50.8(2), 140(1)] Hz. Here, before stirring,
the magnetostriction is expected from simulations to increase the
cloudaspectratio (AR) inthe horizontal plane from1up to1.03, whereas
thetrap anisotropy is negligible. We use a vertical (z) absorptionimag-
ing to probe the radial (x,y) atomic distribution after a short
time-of-flight (TOF) expansion of 3 ms. The atom number is instead
measured using horizontal absorptionimaging with a TOF of 26 ms.

Similarly to arotation of abucket containing superfluid heliumor
of asmoothly deformed ODT for non-dipolar BECs, magnetostirring
is predicted to transfer angular momentum into a dipolar BEC****. In
response to such an imposed rotation, the shape of an irrotational
cloud is expected to elongate with an amplitude that increases with
the rotation frequency Q. This phenomenon is clearly visible in our
experiments, as shown in Fig. 1b. Here we first revolve the tilted B
around the z axis with a linearly increasing rotation frequency
(Q = 27 x 50 Hz s™Y) and observe that the dipolar BEC starts to rotate
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t, =127 ms 207 ms 314 ms 447 ms

527 ms

607 ms 741 ms 848 ms 981 ms
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Fig.2|Observation of vortices in a dipolar BEC. Each column shows the
simulated (top) and experimental (bottom) images for various rotation times
t,. For the experiment, the atoms are imaged along the zdirection. In each
experimental run, we rotate the magnetic field anticlockwise at 2 = 0.74w, for
different rotation times ¢,,. The magnetic-field value is kept to B=5.333(5) G. The

initial condensed atom number is N=15,000. The decreasing size of the cloud
suggests adecrease in atom number. However, for states with vortices or spiral
shapes, appearing at large ¢,,, our bimodal fit to extract the atom number breaks
down. For the corresponding simulations, the parameters are a, = 112a,, trap
frequencies (w,, w,) =21 x [50,150]Hz, N=8,000and Q= 0.75w, .

at the same angular speed as the field and deforms with increasing
elongation (Fig. 1b, top). We then stop the adiabatic ramp at a given
value of Q and probe the system under continuous rotation. We now
find that the cloud continues rotatingin the radial plane withanalmost
constant shape (Fig. 1b, bottom). Note that B is held constant at
5.333(5) G, where we estimate a contact scattering length of about
a,=111a,, where a, is the Bohr radius (Methods).

We further explore the response of our dipolar BEC to magneto-
stirring by repeating the measurements in Fig. 1b (top), but stopping
the ramp at different final values of Q. The maximum value used for Q
approaches w , corresponding to aramp duration of 1 s. We quantify
the cloud elongation in terms of the aspect ratio AR = 0,,,,/0min, Where
the cloud widths o,,,,, and o.,;, are extracted by fitting a rotated 2D
Gaussian function to the density profiles. Figure 1c summarizes our
results. We observe thatinitially the AR slightly deviates from1dueto
magnetostriction. It then slowly grows withincreasing Q, until arapid
increase ataround 0.6w, occurs, as this allows the angular momentum
to increase, which decreases the energy in the rotating frame®. Sud-
denly, atacritical rotation frequency Q.= 0.74w ,, the AR abruptly col-
lapses back to AR =1, showing how the superfluid irrotational nature
competes withtheimposed rotation. This critical frequency is close to
the value found innon-dipolar gases with arotatingelliptical harmonic
trap, associated with aresonance at the quadrupole frequency®.

To substantiate our observation, we perform numerical simula-
tions of the zero-temperature extended Gross-Pitaevskii equation
(eGPE)** (Methods). Quantum and thermal fluctuations are added to
theinitial states, which are important to seed the dynamicinstabilities
once they emerge at large enough Q; see later discussion. The lines in
Fig.1cshow our results. The dashed lineis obtained through the same
procedure as the experiment, whereas for the solid line, we halve the
ramp rate, spending more time at each frequency. Both ramp proce-
dures show quantitatively the same behaviouruptoQ =0.8w, and are
in excellent agreement with the experimental results. The stability of
the 1sramp exceeds the experimentally observed critical frequency.
We partly attribute this discrepancy to asymmetries of the rotationin
the experimentthat are not presentinthe simulations, which maylead
to an effective speed-up of the dynamical instabilities. However, in all
cases, the AR rapidly decreases to about 1.

The growing ARand subsequent collapse tolis asignature of the
dynamicalinstability of surface modes, known for being animportant
mechanism for seeding vortices and allowing them to penetrate into
the high-density regions of rotated BECs*****, as also predicted for
our dipolar system*’. To search for quantum vortices in our system, we
performanew investigation where we directly set Q close to Q,, aiming
to trigger the instability at an earlier time when more atoms are con-
densed. We then hold the magnetic-field rotation fixed at this constant
frequency for atime ¢,. As shown in Fig. 2 (bottom), the cloud rapidly
elongates, and the density starts to exhibit a spiral pattern, emanating
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Fig. 3| Time evolution of the average vortex number, V;, and cloud AR. 3, Left:
sample image after rotating for ¢, =474 ms. Middle: blurred reference image
(0=2.1pm).Right: residuals with markers (black circles) indicating the identified
vortices. b, The detected vortex number V, (top) and the AR of the cloud
(bottom) after the rotation time ¢,,. Data points and error bars show the mean and
standard error from about ten experimental runs. Solid lines indicate the
averaged results from ten corresponding simulations with different initial noise
for parameters a,=110a,, (w,, w,) = 21 % [50,130] Hz, N=10,000 and Q= 0.75w ;
the shaded areagivesits standard error.

from the tips of the ellipsoid. As early as ¢, =314 ms, clear holes are
observed inthe density profile, forming in the density haloaround the
centre, thefirst clear indication of vortices in adipolar gas. These vorti-
ces, initially nucleated at the edge of the sample, persist as we continue
tostirand eventually migrate towards the central (high-density) region.
Vortices arestill visiblein the experiment after 1 s of magnetostirring,
although our atom number decreases throughout this procedure.
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Fig.4 |Stripe nature of vortices in adipolar BEC. a, Left: ground-state stripe
lattice solution for our experimental parameters a, =109a,, trap frequencies
(0, w,) =21 % [50,130] Hz, N=10,000 and Q = 0.75w, . Middle: corresponding
residualimage, found by subtracting the ground state from the blurred image,
with circles showing the detected vortices. Right: Fourier transform of the
residual image. b, Left: single experimental image after 500 ms of continuous
rotation at Q = 0.75w,. Middle: the corresponding residual image. Right: Fourier
transform of the residual images, averaged over 49 runs, with example shots
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shown to theright. ¢, Left: simulation result for the dynamic experimental
procedure inb. Middle and right: residuals (middle) and FT analysis (right)
(115temporal images) as inb. d, The same as b for 121 runs, but we rotate for

an additional 100 ms and then spiral the magnetic field to 6 = 0° over a further
100 ms before imaging. e, Simulation result for procedurein d. All simulation
images are rotated to have the same magnetic-field direction as the experiment,
asindicated by the white arrow ina and by the circlesind.

Our observations bear a remarkable resemblance to the simulations;
Fig.2 (top) shows the insitu column densities. Taking a fixed atom num-
berof N=38,000, but otherwise repeating the experimental sequence,
we observe many similar features. In the first 100 ms, the systemelon-
gates, consistent with Fig. 1, and aspiral density pattern appears before
theinstability, forming two arms that are filled with vortices closeto the
central density. Next, turbulent dynamics ensue as the density surface
goes unstable and vortices emerge in the central high-density region.
For this scattering length and atom number, the relaxation timescale
to a stable vortex lattice is longer than the experimentally available
(see Extended Data Fig. 3 for more images from this dataset). Note
that at angles 6 deeper into the plane, more atoms align head-to-tail
intheloose radial confinement direction. Thus, when performing the
rotation procedure, we find that the BEC is resilient to instability on
the timescales of the experiment.

The observed evolution of the system under constant rotation
shows some concurrence between the appearance of vortices in the
absorptionimages and the formation of around density patterninthe
radial plane with AR =1 (Fig. 2). Note that the drop in AR observed in
Fig.1is concurrent with the creation of vortices, but they reside in the
low-density regions at this time, and we do not see them. To study this
dynamical evolution in more detail, we adopt an analysis protocol for
both the experiment and theory that allows us to quantitatively track
the evolution of the average number of vortices, N, (Methods). The
result is shown in Fig. 3a. In brief, for each single image (Fig. 3a, left),
we create ablurred reference image by applying a 2D Gaussian filter*®”,
We then calculate the difference between each single image (Fig. 3a,
left) and the corresponding reference (Fig. 3a, middle) to obtain the
residualimage (Fig. 3a, right), from which we count 2 by finding local
minima below a certain threshold.

For the experimental density profiles, which are affected by both
the limited resolution of the imaging system and the weak contrastin

the low-density zones (halo) where the vortices initially nest, we expect
2, to be underestimated relative to the true value and the number
expected by theory. However, to carry out a quantitative comparison
with the simulations, we apply a blurring filter and add noise to the
latter that mimics the actual resolution in the experiment
(Methods).

Figure 3b shows boththe evolution of ;and cloud AR as afunction
of rotationtime, ¢,. Solid lines are the results from the eGPE simulations
without any adjustable parameters. For t, <200 ms, 2\, isbelow1, where
vortices, if present, are at the edge of the cloud. For longer times, 2,
increases and saturates to an average value of about three and a maxi-
mum of six vortices (see Fig. 3a for an example of five vortices). The
observed saturation might be due to the decreased visibility and to the
atom-loss-induced shrinking of the BEC size, which is not accounted
for in the theory. We also compare the course of the average vortex
number with the AR of the cloud. After initial large oscillations, due to
the sudden jump in rotation frequency, the AR declines towards -1
(ref.*®). This happens as the vortex number simultaneously increases.

Onefascinating prediction with vorticesin astrongly dipolar gas
under the influence of a rotating magnetic field relates to the struc-
ture of the resulting vortex lattice. Due to magnetostriction and the
anisotropic vortex cores, the resulting vortex configuration is also
anisotropic, producing astripe phase in the strongly dipolar regime?*°,
instead of the usual triangular lattice in non-dipolar BECs®. The ground
state stripe lattice solution for our parameters is shown in Fig. 4a,
with a cloud AR =1.08. In the vortex stripe phase, vertical planes of
high-density regions, parallel to the magnetic field, alternate with
low-density ones, which host rows of vertical vortex filaments. Such
a configuration promotes head-to-tail dipolar attraction within the
high-density ridges, and thisactsto lower the energy. It should be noted
that these states are distinct from the oscillating vortex sheets states,
which appear after squeezing a triangular vortex lattice™.
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To explore this prediction, we perform two new surveys. First,
we slightly reduce the magnetic-field value, reducing the scattering
length to a, = 109a, and hence making the system relatively more
dipolar. We magnetostir the BEC at a constant rotation frequency
0=0.750, for 500 ms, but during TOF, we stop the magnetic-field
rotationand keepitin place at 8 = 35°. The stripe structure isrevealed
in Fig. 4b (left) for a single experimental run and is clearly visible in
the residual image (Fig. 4b, middle) where the vortices align along
three stripes. The spatial structure of the residual image can be
assessed through the absolute value of 2D Fourier transform (FT).
After takingthe FT of each residual image, we then average the result
(Fig. 4b, right), finding a clear peak at the wave number k of the
inter-stripe spacing. This shows that the stripe spatial structure
survives the averaging, implying that the majority of images show
stripes with the same spacing, and they also have the same orienta-
tion as set by the magnetic field, as evidenced by the example images
shown in the right of Fig. 4. Note that these observations do not
rely on our ability to resolve individual vortices, as the stripes are
an ensemble effect of many aligned vortices. In fact, by comparing
with the numerical simulations of the dynamical procedure (Fig. 4c),
we expect there are more vortices than detected here that fill in the
stripes, forging out this structure. In general, our simulations show
that the stripes appear faster when the scattering length is lower and
when the atom number is larger. In the long time limit of the scenario
presented in Fig. 2, we expect the stationary solution to also be the
stripe state, but this is not observable on our timescales.

Remarkably, the stripe structure washes out when we subse-
quently tilt the magnetic-field orientation to 8 = 0° (parallel to the
trap symmetry axis), as shown in Fig. 4d (left). Here, after 600 ms of
magnetostirring, we add another step in which we spiral up the mag-
netic field to 8 = 0° (with Qfixed) over 100 ms, before imaging. Under
these conditions, all vortex properties are again isotropic within the
plane. The non-equilibrium positioning of the vortices is arbitrary,
and if we average the FT of the residuals directly, we observe ahomo-
geneous ring in the average FT (Fig. 4d, right). Also, this behaviour is
confirmed by the simulations, asshownin Fig. 4e. The vortices survive
long after the magnetostirring has stopped (not shown), due to their
topological protection.

By exploiting magnetostirring—anovel, robust method of gen-
erating angular momentum—we have observed quantized vortices
in a dipolar quantum gas and the appearance of the vortex stripe
configuration. Future works will focus on investigations of the indi-
vidual vortex shape and behaviour, such as the anisotropic nature
of the vortex cores for in-plane magnetic fields**~*, the interplay
between the vortex and roton excitations®°* and exotic vortex pat-
ternssuch as square lattices”, and investigations into anisotropic tur-
bulence®. This work also opens the door to studying more complex
matter under rotation, such as dipolar droplets®®** and supersolid
states*"**!, Such proposals will be challenging due to the intricate
density patterns®’; however, such observations would provide con-
clusive evidence of superfluidity in supersolids. Rotating the mag-
neticfield at frequencies far larger than the radial trap frequencies,
but smaller than the Larmor frequency, has been observed to tune
the signand magnitude of the dipole-dipole interaction®*—a method
also employed in nuclear magnetic resonance spectroscopy—
but there remain open questions on the stability of this proce-
dure®*¢, whichifrectifiable would unlock new research directions®*.
Other vortex generation methods, such as thermally activated
pairsin quasi-two dimensions to assess the Berezinskii-Kosterlitz—
Thouless transition and stochastically generated vortex tangles
through temperature quenches to assess the Kibble-Zurek mecha-
nism, remain unexplored in dipolar gases®. The technique intro-
duced here is also applicable to a wide range of systems governed
by long-range interactions through the manipulation of magnetic
orelectric fields.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41567-022-01793-8.

References

1. Donnelly, R. J. Quantized Vortices in Helium Il (Cambridge Univ.
Press, 1991).

2. Pines, D. & Alpar, M. A. Superfluidity in neutron stars. Nature 316,
27-32(1985).

3. Abrikosov, A. A. Nobel Lecture: Type-ll superconductors and the
vortex lattice. Rev. Mod. Phys. 76, 975 (2004).

4. Lagoudakis, K. G. et al. Quantized vortices in an exciton-polariton
condensate. Nat. Phys. 4, 706-710 (2008).

5. Matthews, M. R. et al. Vortices in a Bose-Einstein condensate.
Phys. Rev. Lett. 83, 2498 (1999).

6. Madison, K. W., Chevy, F., Wohlleben, W. & Dalibard, J. Vortex
formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett.
84, 806 (2000).

7. Neely, . W, Samson, E. C., Bradley, A. S., Davis, M. J. & Anderson,
B. P. Observation of vortex dipoles in an oblate Bose-Einstein
condensate. Phys. Rev. Lett. 104, 160401 (2010).

8. Ku, M. J. H. et al. Motion of a solitonic vortex in the BEC-BCS
crossover. Phys. Rev. Lett. 113, 065301 (2014).

9. Donadello, S. et al. Observation of solitonic vortices in Bose-
Einstein condensates. Phys. Rev. Lett. 113, 065302 (2014).

10. Anderson, B. P. et al. Watching dark solitons decay into vortex
rings in a Bose-Einstein condensate. Phys. Rev. Lett. 86, 2926
(2001).

1. Abo-Shaeer, J. R., Raman, C., Vogels, J. M. & Ketterle, W.
Observation of vortex lattices in Bose-Einstein condensates.
Science 292, 476-479 (2001).

12. Hadzibabic, Z., Kriiger, P., Cheneau, M., Battelier, B. & Dalibard,
J. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic
gas. Nature 441, 1118-1121(2006).

13. Neely, T. W. et al. Characteristics of two-dimensional quantum
turbulence in a compressible superfluid. Phys. Rev. Lett. 11,
235301 (2013).

14. Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Emergence of
a turbulent cascade in a quantum gas. Nature 539, 72-75 (2016).

15.  Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H.
& Ketterle, W. Vortices and superfluidity in a strongly interacting
Fermi gas. Nature 435, 1047-1051(2005).

16. Lu, M., Burdick, N. Q., Youn, S. H. & Lev, B. L. Strongly dipolar
Bose-Einstein condensate of dysprosium. Phys. Rev. Lett. 107,
190401 (2011).

17. Aikawa, K. et al. Bose-Einstein condensation of erbium. Phys. Rev.
Lett. 108, 210401 (2012).

18. Norcia, M. A. & Ferlaino, F. Developments in atomic control using
ultracold magnetic lanthanides. Nat. Phys. 17, 1349-1357 (2021).

19. Chomaz, L. et al. Dipolar physics: a review of experiments
with magnetic quantum gases. Preprint at https://arxiv.org/
abs/2201.02672 (2022).

20. Baier, S. et al. Extended Bose-Hubbard models with ultracold
magnetic atoms. Science 352, 201-205 (2016).

21. Landau, L. Theory of the superfluidity of helium Il. Phys. Rev. 60,
356 (1941).

22. Chomaz, L. et al. Observation of roton mode populationina
dipolar quantum gas. Nat. Phys. 14, 442-446 (2018).

23. Schmidt, J.-N. et al. Roton excitations in an oblate dipolar
quantum gas. Phys. Rev. Lett. 126, 193002 (2021).

24. Kadau, H. et al. Observing the Rosensweig instability of a
quantum ferrofluid. Nature 530, 194-197 (2016).

Nature Physics | Volume 18 | December 2022 | 1453-1458

1457



Article

https://doi.org/10.1038/s41567-022-01793-8

25. Tanzi, L. et al. Observation of a dipolar quantum gas with
metastable supersolid properties. Phys. Rev. Lett. 122, 130405
(2019).

26. Bottcher, F. et al. Transient supersolid properties in an array of
dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).

27. Chomaz, L. et al. Long-lived and transient supersolid behaviors in
dipolar guantum gases. Phys. Rev. X 9, 021012 (2019).

28. Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar
quantum gas. Nature 596, 357-361(2021).

29. Martin, A. M., Marchant, N. G., O'Dell, D. H. J. & Parker, N. G.
Vortices and vortex lattices in quantum ferrofluids. J. Phys.
Condens. Matter 29, 103004 (2017).

30. Yi, S. &Pu, H. Vortex structures in dipolar condensates. Phys. Rev.
A 73, 061602 (2006).

31. Ticknor, C., Wilson, R. M. & Bohn, J. L. Anisotropic superfluidity in
a dipolar Bose gas. Phys. Rev. Lett. 106, 065301 (2011).

32. Mulkerin, B. C., van Bijnen, R. M. W., O’Dell, D. H. J., Martin, A. M.
& Parker, N. G. Anisotropic and long-range vortex interactions in
two-dimensional dipolar Bose gases. Phys. Rev. Lett. 111, 170402
(2013).

33. Mulkerin, B. C., O'Dell, D. H. J., Martin, A. M. & Parker, N. G.
Vortices in the two-dimensional dipolar Bose gas. J. Phys. Conf.
Ser. 497, 012025 (2014).

34. Jona-Lasinio, M., takomy, K. & Santos, L. Roton confinement in
trapped dipolar Bose-Einstein condensates. Phys. Rev. A 88,
013619 (2013).

35. Gautam, S. Dynamics of the corotating vortices in dipolar Bose-
Einstein condensates in the presence of dissipation. J. Phys. B 47,
165301 (2014).

36. Cooper, N., Rezayi, E. & Simon, S. Vortex lattices in rotating
atomic Bose gases with dipolar interactions. Phys. Rev. Lett. 95,
200402 (2005).

37. Zhang, J. & Zhai, H. Vortex lattices in planar Bose-Einstein
condensates with dipolar interactions. Phys. Rev. Lett. 95, 200403
(2005).

38. Kumar, R. K., Sriraman, T., Fabrelli, H., Muruganandam, P. &
Gammal, A. Three-dimensional vortex structures in a rotating
dipolar Bose-Einstein condensate. J. Phys. B 49, 155301 (2016).

39. Cai, Y., Yuan, Y., Rosenkranz, M., Pu, H. & Bao, W. Vortex patterns
and the critical rotational frequency in rotating dipolar Bose-
Einstein condensates. Phys. Rev. A 98, 023610 (2018).

40. Prasad, S. B., Bland, T., Mulkerin, B. C., Parker, N. G. & Martin, A. M.
Vortex lattice formation in dipolar Bose-Einstein condensates via
rotation of the polarization. Phys. Rev. A100, 023625 (2019).

41. Roccuzzo, S. M., Gallemi, A., Recati, A. & Stringari, S. Rotating a
supersolid dipolar gas. Phys. Rev. Lett. 124, 045702 (2020).

42. Gallemi, A., Roccuzzo, S. M., Stringari, S. & Recati, A. Quantized
vortices in dipolar supersolid Bose-Einstein-condensed gases.
Phys. Rev. A102, 023322 (2020).

43. Ancilotto, F., Barranco, M., Pi, M. & Reatto, L. Vortex properties
in the extended supersolid phase of dipolar Bose-Einstein
condensates. Phys. Rev. A 103, 033314 (2021).

44. Prasad, S. B., Mulkerin, B. C. & Martin, A. M. Arbitrary-angle
rotation of the polarization of a dipolar Bose-Einstein condensate.
Phys. Rev. A103, 033322 (2021).

45. Stuhler, J. et al. Observation of dipole-dipole interactionin a
degenerate quantum gas. Phys. Rev. Lett. 95, 150406 (2005).

46. Haljan, P. C., Coddington, I., Engels, P. & Cornell, E. A. Driving
Bose-Einstein condensate vorticity with a rotating normal cloud.
Phys. Rev. Lett. 87, 210403 (2001).

47. Kwon, W. J. et al. Sound emission and annihilationsin a
programmable quantum vortex collider. Nature 600, 64-69
(2021).

48. Corman, L. et al. Quench-induced supercurrents in an annular
Bose gas. Phys. Rev. Lett. 113, 135302 (2014).

49. Liu, I. K. et al. Dynamical equilibration across a quenched phase
transition in a trapped quantum gas. Commun. Phys. 1, 24 (2018).

50. DelPace, G. et al. Imprinting persistent currents in tunable
fermionic rings. Preprint at https://arxiv.org/abs/2204.06542
(2022).

51. Norcia, M. A. et al. Can angular oscillations probe superfluidity in
dipolar supersolids? Phys. Rev. Lett. 129, 040403 (2022).

52. Recati, A., Zambelli, F. & Stringari, S. Overcritical rotation of a
trapped Bose-Einstein condensate. Phys. Rev. Lett. 86, 377 (2001).

53. Madison, K. W., Chevy, F., Bretin, V. & Dalibard, J. Stationary
states of a rotating Bose-Einstein condensate: routes to vortex
nucleation. Phys. Rev. Lett. 86, 4443 (2001).

54. Wachtler, F. & Santos, L. Quantum filaments in dipolar Bose-
Einstein condensates. Phys. Rev. A 93, 061603 (2016).

55. Sinha, S. & Castin, Y. Dynamic instability of a rotating Bose-
Einstein condensate. Phys. Rev. Lett. 87, 190402 (2001).

56. Abo-Shaeer, J. R., Raman, C. & Ketterle, W. Formation and
decay of vortex lattices in Bose-Einstein condensates at finite
temperatures. Phys. Rev. Lett. 88, 070409 (2002).

57. Kwon, W. J., Moon, G., Choi, J.-y, Seo, S. W. & Shin, Y.-i Relaxation
of superfluid turbulence in highly oblate Bose-Einstein
condensates. Phys. Rev. A 90, 063627 (2014).

58. Engels, P, Coddington, I., Haljan, P. C. & Cornell, E. A.
Nonequilibrium effects of anisotropic compression applied to
vortex lattices in Bose-Einstein condensates. Phys. Rev. Lett. 89,
100403 (2002).

59. Bland, T., Stagg, G. W., Galantucci, L., Baggaley, A. W. & Parker,
N. G. Quantum ferrofluid turbulence. Phys. Rev. Lett. 121, 174501
(2018).

60. Cidrim, A., dos Santos, F. E., Henn, E. A. & Macri, T. Vortices in
self-bound dipolar droplets. Phys. Rev. A 98, 023618 (2018).

61. Lee, A.-C., Baillie, D., Bisset, R. N. & Blakie, P. B. Excitations of a
vortex line in an elongated dipolar condensate. Phys. Rev. A 98,
063620 (2018).

62. Ferrier-Barbut, I. et al. Scissors mode of dipolar quantum droplets
of dysprosium atoms. Phys. Rev. Lett. 120, 160402 (2018).

63. Hertkorn, J. et al. Pattern formation in quantum ferrofluids: from
supersolids to superglasses. Phys. Rev. Res. 3, 033125 (2021).

64. Tang, Y., Kao, W., Li, K.-Y. & Lev, B. L. Tuning the dipole-dipole
interaction in a quantum gas with a rotating magnetic field. Phys.
Rev. Lett. 120, 230401 (2018).

65. Prasad, S. B. et al. Instability of rotationally tuned dipolar Bose-
Einstein condensates. Phys. Rev. Lett. 122, 050401 (2019).

66. Baillie, D. & Blakie, P. B. Rotational tuning of the dipole-dipole
interaction in a Bose gas of magnetic atoms. Phys. Rev. A 101,
043606 (2020).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

Nature Physics | Volume 18 | December 2022 | 1453-1458

1458



Article

https://doi.org/10.1038/s41567-022-01793-8

Methods

Experimental procedure

We prepare an ultracold gas of ?Dy atoms in an ODT. Three 1,064 nm
laser beams, overlappingat their foci, form the ODT. The experimental
procedure to BECis similar to the one followed in our previous work®,
but the magnetic-field unit vector, B, is tilted by an angle of 8 = 35° with
respect to the z-axis during the whole sequence. After preparation, the
sample contains about 2 x 10* condensed atoms. The corresponding
trap frequencies are typically (o, w,) = 21 x [50.8(2), 140(1)] Hz. For
all our measurements, the deviation of the trap AR in the x-y plane
AR, = w,/w,from1lisalways smaller than 0.6%. We evaporate theatoms
at B=5.423(5) Gand jump to the final magnetic-field value during the
last evaporation ramp. After the preparation of the BEC, the magnetic
fieldisrotated as described inthe next section. We use standard absorp-
tionimagingtorecord the atomic distribution. We probe the vortices
using the vertical imaging taken along the axis of rotation (z), for which
the dark spots within the condensate correspond to the cores of indi-
vidual vortices. The verticalimages are taken with a short TOF of 3 ms
and a pulse duration of 3-4 ps. For the data in Figs. 1-3, we let the
magnetic-field spinning during TOF, whereas for Fig. 4, we use a static
field orientation.

Control of the magnetic field

Calibration. Three pairs of coils—each oriented along a primary axisin
thelaboratory frame—enable the creation of ahomogeneous field with
arbitrary orientations. The absolute magnetic-field value B of each pair
of coils is independently calibrated using radio frequency (RF) spec-
troscopy. The RF drives transitions to excited Zeeman states, leading to
aresonant dip inthe atom number. The long-term stability—measured
via the peak position of the RF resonance over the course of several
days—is on the order of AB = +1 mG, while shot-to-shot fluctuations,
measured via the width of the RF resonance for a single calibration
set,isAB=15mG.

Rotation. We drive the rotation of the magnetic field by sinusoidally
modulating the magnetic-field value components B, and B, with a
phase difference of 90° between them. As we want to keep the absolute
magnetic-field value B constant during rotation, we measure it for
various values of the azimuthal angle ¢ and fixed 6 = 35° by perform-
ing Feshbach loss spectroscopy around 5.1 G. We find an average shift
of Bof about 10 mG from the 8 = 0° case, which we take into account.
We also find small deviations as a function of ¢ of AB <20 mG, which
mightappear duetoslightly non-orthogonal alignment of the magnetic
fields. We did not correct these deviations for the sake of simplicity.

Scattering length

The scattering length in 2Dy is currently not known with large accu-
racy” 7. To estimate the scattering length in the small magnetic-field
range around B= 5.3 G, relevant to this work, we use the well-known
relation a, = a, [1[1- AB/(B - B, )] (ref.”"), where B, ;and AB; are the
centre position and the width of the i-th feature of the Feshbach loss
measurement reported in ref. ’°, respectively. The value of the back-
ground scattering length, a,, is empirically fixed by measuring the
magnetic-field value at which the supersolid transition occurs and com-
paring it with the corresponding critical a, predicted from simulations.
Such an approach leads to a,=111(9)a, at B=5.333 G. Extended Data
Fig.1showstheresulting scatteringlengths for the relevant magnetic
fields. Although such anapproach gives very good agreement between
theory and experiments, future works on a precise determination of a,,
similar to the one achieved with erbium’, would be desirable.

Magnetostirring

Tilting the magnetic-field vector B away from the symmetry axis of
our cylindrical trap leads to an ellipsoidal deformation of the cloud*
and therefore to a breaking of the cylindrical symmetry. This allows

for the transfer of angular momentum to the sample by rotating the
magnetic field (magnetostirring). In all our measurements, we use a
B tilted with respect to the z axis by 35° and a constant value B. That
valueis B=5.333(5) GforthesurveysinFigs.1-3and B=15.323(5 )G for
Fig.4.Forthese parameters, the deformed magnetostricted AR of the
cloud is AR —1=0.03. For all our measurements, the measured trap
AR, ~1<0.006 ismuch smaller than the deformation due to magne-
tostriction. Additionally, we have confirmed with simulations that even
with trap asymmetries of up to10%, for example, (w,, w,) = (55, 50) Hz,
this procedure canstill generate vortices in a lattice configuration.

Atthescattering lengths considered in this work, 35°is an optimal
choice to see the vortices within ~500 ms of rotation and anisotropic
enough to observe the stripe phase. From the simulations, we find that
tiltangles smaller than35°increase the timescale to vortex nucleation.
Similarly, tilting the angle further into the plane increases the number
of atoms that are aligned head to tail, making the dipolar interaction
dominantly attractive. This attractive force holds the condensate
together during the rotation, alsoincreasing the time to vortex nuclea-
tion. From the experimental side, increasing the tilt angle reduces the
contrast of the absorption imaging, since the magnetic field is not
parallel to the imaging axis. As the TOF is only 3 ms, we do not rotate
up the magnetic field before imaging to avoid undesired effects, such
aslosing the anisotropy given by 6 # 0°.

Adiabatic frequency ramp. We employ different magnetic-field rota-
tion sequences for the different datasets. For the dataset of Fig. 1c, the
rotation frequency of the magnetic fieldis linearly increased to differ-
ent final values at a speed of Q = 2z x 50 Hzs! and for a duration of
ty = 0-1s. The ramp time is muchlonger than the period of the rotation
Q7'for higher rotation frequencies Q = Q,, and, therefore, the ramp is
adiabatic for the regimes considered, until the onset of dynamical
instabilities. After the ramp, the magnetic-field directionis rotated at
the target rotation frequency Q for one final period (as shown in
Fig.1b). We sample ten different final magnetic-field angles during this
last rotation, measuring the corresponding AR and averaging the result
to remove any potential biases due to latent trap anisotropies. Each
data pointis then obtained with eight to ten experimental runs.

Constant rotation frequency. For the dataset of Figs. 2, 3 and 4b, we
directly start to rotate at the final rotation frequency Q without any
acceleration phase. The magnetic field is then rotated for a variable
time¢,, after which theatoms arereleased from the trap and a vertical
image is taken.

Spiral up magnetic field. For the dataset of Fig. 4d, we employ a similar
sequence as described above. However, after constantly rotating the
magneticfieldat Q= 0.75w,, the magnetic fieldis spiralled upin100 ms
to 6= 0°by linearly reducing O while continuing rotating. Afterwards,
the atoms are released from the trap and a vertical image is taken.

Theoretical model

We employ an eGP formalism to model our experimental set-up. In this
scheme, the inter-particleinteractions are described by the two-body
pseudo-potential

4 nla s oh 3n2agq 1- 360 - 1)’

un=— m 3

@

with 6(r)being the Kronecker delta function and r = (x,y,2). The first
termdescribes the short-range interactions governed by the s-wave
scattering length a,, with Planck’s constant 1 and particle mass m.
The second termrepresents the anisotropic and long-range dipole-
dipoleinteractions, characterized by dipolelength agq = pop?,m/12 #2
with magnetic moment x,, and vacuum permeability u,. We always
consider %Dy, such that a4 = 129.2a,, where a, is the Bohr radius.
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The dipoles are polarized uniformly along a time-dependent axis,
given by

€(t) = (sin 6(¢t) cos (), sin O(t) sin ¢(t), cos 6(t)) )

with time-dependent polarization angle 6(¢) and ¢(¢) = fot de'Q(t), for
rotation frequency protocol Q(¢).

Beyond-mean-field effects are treated through the inclusion of a
Lee-Huang-Yang correction term”

12872
Yor = 5\ @ Re{Qs(eaa)}, ®

with O5(eqq) = fé du(l—egq + 3u2edd)5/2being the auxiliary function, and
therelative dipole strengthis given by €44 = a44/a.. Finally, the full eGPE
then reads®*”*7

272
ihalP(x,t) — [_h_V

1 2,2 2,2 2.2
p +-m(wi + w3)? + w22?)

2m 2

“4)
+ S dB3x U = xXDTX, O + Vo P (X, O | (X, D),

where w,,, are the harmonic trap frequencies. The wave function ¥is
normalized to the totalatom number N = [d*x|¥|%. The stationary solu-
tion for Fig. 4a is found through the imaginary time procedure in the
rotating frame, introducing the usual angular momentum operator
01, into equation (4). The initial state ¥(x, 0) of the real-time simula-
tionsis always obtained by adding non-interacting noise to the ground
state ¥,(x). Given the single-particle eigenstates ¢, and the complex
Gaussian random variables a,, sampled with (|a,?) = (e"/sT — 1)1 + 1
for a temperature 7=20 nK and Boltzmann’s constant kg, the initiazl
state canbe describedas v (x, 0) = ¥, (x) + 3" a0, (x) Where the sumis
n

restricted only to the modes with €, < 2k, T (ref. ”’). Throughout, the
density images are presented in situ, with a scaling factor to account
for the 3 ms TOF for the experimental images.

To obtain the average residual FT images for Fig. 4c,e, we first
Fourier transform 115 frames from the simulation between 700 ms and
1.1sintherotating frame before averaging the result.

Atom number

Extended Data Fig. 2 shows the condensed atom number N, for the
measurement with anadiabatic ramp of the magnetic-field rotational
velocity (Q = 2z x 50 Hzs™!), corresponding to the data of Fig. 1c.
Three-body losses are negligible in the low-density BEC phase, with
losses probably coming fromimperfectionsinthe rotation procedure
and heating. To extract theatom number, we use the horizontalimaging
with 26 ms of TOF. About 3 ms before flashing the imaging resonant
light to the atoms, we rotate the magnetic field in the imaging plane
and perform standard absorption imaging. From the absorption
images, we extract N, from a bimodal fit up to 700 ms. At later times,
the systemundergoes adynamicinstability (see discussionin the main
text), and the density profile deviates from a simple bimodal distribu-
tion. During the observation time, we see a slight decrease of N, and
for our theory simulations, we use a constant atom number of
N.=15,000. Note that in all following datasets, in which we abruptly
accelerate the magnetic-field rotation to the desired final velocity, we
observe afaster decay, and our simulations are performed with either
N.=8,0000rN.=10,000.

Vortex detection

Vortex detection algorithm. Since vortices appear asdark holesinthe
density profile of aBEC, which would otherwise have asmooth profile,
our approachto extract the number of vorticesis to look at deviations
between the image and an unmodulated reference image. To extract
the vortex number from the raw images, we proceed as follows.

First, we prepare the image n;,,, the reference image n,cand the
residualimage n,.,. Theimage is normalized such that the maximum
density max(n;) = 1. We create the reference image by blurring the
image viaapplying a 2D Gaussian filter with o = 5 pixel, corresponding
toabout 2.1 pm. Thisblurring smoothens any structure on the length-
scale of the filter width; therefore, any holes in the density profile
wash out. We then normalize the atom number of the reference to be
the same as from the image N, = [[1,et = Nipg = [J1img. The residual
image s calculated as the difference between the image and the refer-
€NCE Nyes = Mimg — Ny - We additionally mask the region where the
density of the reference is below a certain threshold (n,s = 0, where
N, <0.1).

Second, we identify local minima in the residual image
and determine whether they are connected to vortices. For this, we
create a list of local minima (x.;n, Ymin), defined by the condition that
the pixel density n,e(Xmin» Ymin) is lower than of all surrounding pixels.
Then we remove minima with density values above zero
Nyes(Xmin»Ymin) > 0 Or which are within one pixel distance of the mask
border. Now we determine a local contrast for each minimum by cal-
culating the difference between its central density value and the
mean of the density values + 2 pixel values away from it
ncon(xminv.ymin) = nres(xmin’ymin) - mean(nres(xmin +2 PX; Ymin & 2 px)) ’ and
remove minimaabove a certain threshold i, > —0.11. As alast step, we
check the distance d between all remaining minima to avoid double
counting of minima too close to each other. In case d is below the
threshold d <5 pixel, the minimum with the higher residual density
value n,., is discarded.

Preparation of theory density profiles. For the direct comparison of
the vortex number shown in Fig. 3b, we apply additional steps to the
density profiles obtained from theory. First, we reduce the resolution
by a2 x 2 binning to make the pixel size of the theory density profiles
ni"r;? essentially the same as for the experimental images (sizes are
within 5%). After normalizingto max(n?&%") =1, weapply Gaussian white
noise with zero mean and a variance of 0.01 to each pixel, recreating
the noise pattern from empty regions of experimental images. Then
weblur the image using a 2D Gaussian filter with o =1 pixel (-0.42 pm);
this recreates the same resolution condition as our experimental
set-up. Theresulting density profile is taken as the inputimage for the
vortex detection algorithm described above.

Benchmarking the vortex detection algorithm. As the vortex posi-
tions for the simulation images are known a priori due to the avail-
able phase map, we can derive the fidelity of the vortex detection
algorithm for simulation data. For the theory datashownin Fig.3bin
thetime framebetween 600 and 700 ms, the average detected vortex
number in the simulated density profiles (applying the preparation
scheme described above) isabout 9, while the real number of vortices
presentin the same area of the image is about 33 in average. This mis-
match is explained by the conservative choice of the thresholds for
vortex detection together with the added noise, whichresultsin only
counting clear density dips as vortices, throwing out many vortices
inthe low-density region. This conservative choice of thresholds on
the other hand leads to a very high fidelity of >97%, where we define
thefidelity as the percentage of detected vortices that correspond to
actual present vortices in the data. For raw simulation data (without
resolution reduction, added noise and blurring), the vortex detec-
tion algorithm would detect up to 80% of the vortices present with
afidelity of >95%.

Note that for the visualization of the vortex positions for Fig. 4,
we slightly increased the local threshold n,,, > —0.08 and decreased
the minimum distance between vortices d < 3 pixel, which increases
the overallnumber of vortices detected. For the density distributions
obtained from theory, we additionally omit the resolution reduction,
addition of noise and blurring steps.
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simulation repeated experimental runs

Extended Data Fig. 3 | Repeatability of the vortex generation protocol. Each with the trap frequencies being w, = 2 x [50.7(1), 50.8(1), 129(1)] Hz. The

row shows the simulated image (a, b, ¢) and the corresponding vertical TOF magnetic field valueis B = 5.333(5) G. For the simulation the scattering length
images fromindependent experimental runs (a, b;, ¢;) for adifferent rotation used is112 a,, the trap frequencies are (50, 50, 150) Hz, the condensed atom
time: t,=127 ms, t, = 207 ms, and ¢, = 741 ms. The rotation frequency is Q = 0.74w, number is N=8000 and the rotation frequencyis 0.75w, .
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Supersolids are states of matter that spontaneously break two continuous symmetries: translational invariance
due to the appearance of a crystal structure and phase invariance due to phase locking of single-particle wave
functions, responsible for superfluid phenomena. While originally predicted to be present in solid helium'=,
ultracold quantum gases provided a first platform to observe supersolids®'’, with particular success coming
from dipolar atoms®'?. Phase locking in dipolar supersolids has been probed through e.g. measurements of
the phase coherence®™'” and gapless Goldstone modes'?, but quantized vortices, a hydrodynamic fingerprint of
superfluidity, have not yet been observed. Here, with the prerequisite pieces at our disposal, namely a method to
generate vortices in dipolar gases'*'® and supersolids with two-dimensional crystalline order'"'*!?, we report on
the theoretical investigation and experimental observation of vortices in the supersolid phase. Our work reveals
a fundamental difference in vortex seeding dynamics between unmodulated and modulated quantum fluids. This
opens the door to study the hydrodynamic properties of exotic quantum systems with multiple spontaneously

broken symmetries, in disparate domains such as quantum crystals and neutron stars'®.

Rotating fluids on all scales exhibit a whirling motion
known as vorticity. Unique to the quantum world, how-
ever, is the quantization of this rotation due to the single-
valued and continuous nature of the underlying macroscopic
wavefunction'”?°. Observing quantized vortices is regarded
as unambiguous evidence of superfluidity, relevant for a wide
variety of interacting many-body quantum systems from su-
perfluid “He 2% through gaseous bosonic>* and fermionic®*
condensates, exciton-polariton condensates®, to solid-state
type-II superconductors’®?’. Remarkably, this phenomenon
persists over a wide range of interaction scales, since it re-
quires only the irrotational nature of the velocity field. All
of these examples refer to the case in which there is a sin-
gle spontaneously broken symmetry, leading to the question:
what new properties do we expect to arise in systems with
multiple broken symmetries?

The supersolid phase belongs to this category, sponta-
neously breaking phase and translational symmetries. Su-
persolids, characterized by the coexistence of superfluid and
solid properties'™, have been investigated through two dis-
tinct approaches. Either imbuing superfluid properties into a
solid?®=32, or partially crystallizing a superfluid®!'. Among
these systems, supersolids composed of dipolar atoms have
emerged as a versatile platform for exploring the superfluid
characteristics and solid properties of this long sought-after
state'”.  Where these studies have found a roadblock is in
probing the response to rotation. One consequence of irro-
tational flow is the scissors mode oscillation, where the sig-
nature of superfluidity is the lack of a rigid body response
to a sudden rotation of an anisotropic trap>>. However, su-
persolids show a mixture of rotational and irrotational behav-
ior, leading to a multimode response to perturbation. This
complexity hinders a straightforward extraction of the su-
perfluid contribution'®3433, Instead, the presence of quan-

tized vortices is an unequivocal signal of irrotationality, and
thus unambiguously proves the superfluidity of the system.
These vortices are also anticipated to exhibit other distinctive
characteristics, including a reduced angular momentum?637,
and unusual dynamics due to their interplay with the crys-
tal such as pinning and snaking'®3%3. Investigating these
dynamics could provide new insights into flux pinning in
superconductors*® and glitches in neutron stars'®. Neverthe-
less, a critical gap exists in the current experimental explo-
ration of supersolids — an investigation into whether the su-
persolid can maintain its structure and coherence under con-
tinuous stirring, as well as if, and how, vortices may mani-
fest and behave in this unique state. The experimental chal-
lenge lies in the inherent complexity and fragility of the super-
solid phase, which lives in a narrow region within the phase
diagram'?. In our work, we explore this uncharted territory
by investigating the supersolid response to rotation, using a
technique known as magnetostirring'*!>#!. Combining ex-
periment and theory, our study explores both the unmodulated
and modulated states, revealing distinctive signatures associ-
ated with the presence of vortices in the supersolid.

Predicting the supersolid response to rotation

Owing to the inherent long-range interactions among atoms,
a dipolar gas exhibits a density distribution that extends
along the magnetic field direction, a phenomenon known as
magnetostriction*?. This imparts an elliptical shape to the
cloud. The rotation of the magnetic field consequently in-
duces stirring of the gas*!. This method, referred to as magne-
tostirring, has recently been employed to generate vortices in
unmodulated dipolar quantum gases'#. These vortices eventu-
ally organize into distinctive patterns, forming either triangu-

lar or stripe vortex lattices'>*!.

Generating vortices in the supersolid phase through mag-
netostirring has not yet been investigated, therefore, we the-



FIG. 1. Simulation of vortex nucleation in a supersolid and un-
modulated BEC. Density isosurfaces and their corresponding nor-
malized integrated density and phase profiles for the a unmodulated
BEC and b supersolid phases after 1s of rotation at (i) 2 =0.2w,
(ii) 0.4w, , and (iii) 0.7w, . Isosurfaces are shown at 15% of the
max density in all plots, and additionally at 0.5% in the SSP to
show the halo. Vortex tubes are shown in black in the 3D im-
ages and appear as 27 windings in the phase plots. ¢ Compar-
ison of the time-averaged vortex number as a function of {2 be-
tween the SSP (red) and BEC (green), averaged between 0.75s and
1s of rotation, and the colored shading shows the standard devia-
tion. The yellow shaded area highlights Qgsp < Q < Qfgc (see
main text). The results are obtained from eGPE calculations with
(wi, wx)=2m x [50, 103] Hz, magnetic-field angle from the z-axis
# = 30°, atom number N =5 x 10%, and scattering length as = 95a0
(104ao) for the SSP (BEC) phase.

oretically explore the zero temperature dynamics of our state
through the so-called extended Gross—Pitaevskii equation**~4¢
(eGPE). This takes into account the cylindrically symmetric
harmonic trap, the short-range interactions, through the tun-
able s-wave interaction strength as, and long-range interac-
tions, with fixed amplitude agq = 130.8ag for 154Dy. Also in-
cluded are beyond-mean field effects resulting from the zero-
point energy of Bogoliubov quasiparticles—shown to be cru-
cial for the energetic stability in the supersolid phase*®. By
tuning the short-range interactions, we can access both the su-
persolid (typically €4q = aga/as 2, 1.3 for experimentally rel-
evant trap geometries) and unmodulated Bose—Einstein con-
densate (BEC) phases (€49 < 1.3).

Figure 1 comparatively shows exemplar density and phase
distributions of an unmodulated dipolar BEC [a] and super-
solid phase (SSP) [b] rotating the magnetic field at increasing

frequency 2, from left to right. In a BEC, Fig. la, at small
frequencies with respect to the radial trap frequency w, , the
cloud density is almost unchanged from the static result [a(i)].
Rotating faster, the cloud elongates, and we observe an irrota-
tional velocity field in the phase profile [a(ii)]. When rotating
faster than a given Qpp, the irrotational flow can no longer be
maintained, and quantum vortices, observable as density holes
and quantized 27 phase windings, penetrate the condensate
surface following a quadrupole mode instability [a(iii)]'*.

In contrast to unmodulated BECs, supersolids present a new
scenario, see Fig. Ib. Our simulations reveal that the system
is more susceptible to quantized vortex creation, happening at
significantly lower frequencies than the BEC case. At small
frequencies, the crystalline structure and surrounding ‘halo’ of
atoms follow the magnetic field in lockstep without generat-
ing vortices [b(i)]. At higher frequencies, yet still Q < Qfpc,
we now see vortex lines smoothly entering into the interstitial
regions between the crystal sites [b(ii)]*¢7*°. These vortices
persist even at higher frequencies, arranging into a regular lat-
tice structure [b(iii)].

To gain further insight, we study the total vortex number ob-
tained after 1s of rotation as a function of (2. Figure 1c shows
a striking difference in the response to rotation between the
two quantum phases. The BEC shows the well-known reso-
nant behavior, in which the rotation frequency must be at res-
onance with half the collective quadrupole mode frequency
wq. This drives an instability of the condensate surface, al-
lowing vortices to enter the state. For a non-dipolar BEC
wo =w, /v2"* while for dipolar quantum gases, small de-
viations from this value can occur depending on the dipolar
interaction and the trap geometry>®. For our system, we see
the onset of the resonant behavior at 2~ = 0.6w | , reaching
its maximum at ) &~ 0.75w | .

In the supersolid phase, we observe a vastly different be-
havior. The dual superfluid-crystalline nature of the state leads
to two distinguishing features: the reduced superfluidity re-
sults in vortices nucleating at a lower rotation frequency and
the solidity gives rise to a monotonic increase in vortex num-
ber at faster frequencies, reminiscent of rigid body rotation;
see Fig. 1c. This can be understood by studying the excita-
tion spectrum. A two-dimensional supersolid exhibits three
quadrupole modes: one from the broken phase symmetry as-
sociated with superfluidity and one from each direction of the
broken translational symmetry36. In our case, the latter are
nearly degenerate due to the cylindrically symmetric dipole
trap. Excitation of the ‘superfluid’ quadrupole mode is re-
sponsible for the weak resonance starting at {2§gp =~ 0.25w |
and centered around {2~ 0.35w, where just a few vortices
are created. The position of this resonance is highly depen-
dent on the superfluid fraction, eventually vanishing in the so-
called isolated droplet (ID) regime’®. In the ID regime, there
is no phase coherence nor density between the droplets, and
therefore the vortex number is zero. A state that is initially
in the supersolid phase cannot be rotated into the ID regime.
This state is discussed theoretically in more detail in the Meth-
ods. However, we note that it is out of current experimental



reach to create an ID state with a lifetime on the order of the
vortex seeding time. As we will discuss later, the detection
of the low frequency resonance is at the edge of our current
experimental capability, indicating compatibility, albeit with
a low signal strength. Beginning at 2~ 0.45w , the system
exhibits instead a threshold response to rotation, where the an-
gular momentum, and thus vortex number, linearly increases
with Q3% This prominent feature arises due to the near de-
generate crystal quadrupole mode resonance.

Experimental magnetostirring of a dipolar supersolid
Bolstered by the acquired theoretical understanding, we ex-
perimentally explore the suitability of magnetostirring to nu-
cleate vortices in the supersolid phase. We first produce an
optically trapped supersolid quantum gas of highly magnetic
bosonic 154Dy atoms via direct evaporative cooling!%-!1:17:31
and then apply magnetostirring'*'>#! to rotate the gas.

In all the experiments presented, the three-dimensional op-
tical dipole trap (ODT) is cylindrically symmetric, with radial
frequency w, =~ 27 x 50 Hz and a trap aspect ratio w,/w,
that varies between 2 and 3. Throughout the evaporation se-
quence, we apply a uniform magnetic field along the z-axis
and tilt the magnetic field vector by 6 = 30° in the last cooling
stage to prepare for magnetostirring'4. With this sequence, we
obtain a supersolid typically composed of four density max-
ima (droplets) on top of a low-density background (halo) of
coherent atoms, which we verify with a measurement of the
phase coherence after long time-of-flight (see Methods). Tak-
ing phase-contrast images after 3 ms of expansion gives us
access to the 2D density profiles integrated along the axial di-
rection, as illustrated in Fig. 2a. We magnetostir the system
by rotating the magnetic-field vector around the z-axis with a
constant angular velocity 2; see Fig. 2b. As predicted by the-
ory, the droplets align themselves along the magnetic-field di-
rection, breaking the cylindrical symmetry, thus enabling ro-
tation. We are able to stir the supersolid for hundreds of mil-
liseconds without destroying the state, as shown in Fig. 2b(i-
v). This result is particularly relevant since it allows several
full rotations, even for small driving frequencies, giving the
vortices enough time to nucleate and percolate into the sys-
tem.

Observation of vortices in a dipolar supersolid

Based on our simulations, on the one hand, we anticipate
vortex nucleation in the supersolid already at modest rota-
tion frequencies, but on the other hand, the density modu-
lated initial state poses a unique challenge in vortex detec-
tion. Traditional methods for probing quantized vortices in
quasi-homogeneous ultracold quantum gases typically rely on
observing density depletions of an expanded cloud??24>233,
In the context of supersolids, vortices nest within the low-
density interstitial areas between the droplets, reducing the
contrast'®>*, We implement an imaging sequence inspired
by a recent theoretical proposal>* that draws parallels with a
protocol employed to observe vortices in strongly interacting
Fermi gases>*. In particular, we project the SSP into the BEC
phase just before releasing the atoms from the trap by rapidly

FIG. 2. Magnetostirring of a /Dy dipolar supersolid. a Den-
sity isosurfaces shown at 15% and 0.5% of the maximum den-
sity and corresponding integrated density of a four droplet super-
solid. b Column densities of a four droplet supersolid state from
theory (top row) and experiment (bottom row) with 2=0.3w ;
the images were taken after (i-v) 1,19,43,70,274ms. The in-
sets show the rotation of the magnetic field vector in the z-y
plane with white lines. Experimental parameters: B =18.24(2) G,
N=7x10% and (wi,w.)=27 x [50.5(3),135(2)] Hz. Tllus-
trative simulation parameters: as=92.5a9, N =06 X 10%, and
(wi,w:) =27 x [50,135] Hz.

(1 ms) increasing the scattering length. This projection effec-
tively “melts” the high density peaks, providing a more ho-
mogeneous density profile. Since vortices are topologically
protected defects they are expected to survive during this state
projection®*. Finally, we probe the system with vertical ab-
sorption imaging after 3 ms of expansion, without allowing
time for further dynamics in the BEC phase.

Figure 3 summarizes our main results, where we compare
the behavior of a BEC and SSP under magnetostirring. Akin
to theory, we see three regimes. At low frequencies (2 <
Q%gp), we do not observe vortices in either state [a(v)-b(v)].
Here, in the residuals (see Methods), we see the impact of the
interaction quench, imparting small amplitude sound waves
in the density of b(v). For Q§qp < Q < Qfpe, a striking
difference between the BEC and the SSP response to rotation
appears [a(iv)-b(iv)]. While the former does not show vor-
tices, in the supersolid we clearly observe the appearance of
a vortex in the central region of the cloud. Finally, at a larger
frequency (€ > Qfp o), we observe multiple vortices in both
cases [a(iii)-b(iii)]. This confirms the expected reduction in
vortex nucleation frequency, the first characteristic feature of
the impact of supersolidity.

In what follows, we perform a systematic study as a func-
tion of €2 in order to identify the threshold nucleation values
and the vortex number behavior as a function of rotation fre-
quency. We trace the time evolution of the rotating system
both in the SSP and BEC phase and extract for each time step
and ) the number of vortices. We show the average vortex
number obtained for each measurement in Fig. 3 (ii) together
with the corresponding numerical simulations (i). Our proto-
col for extracting the vortex number is detailed in the Methods
section. We demonstrate that, while the exact vortex number
depends on the specifics of the analysis, the overall qualitative
behavior remains consistent.

In the unmodulated case (Fig. 3a), we observe the expected
resonant behavior around Q~0.7w 4. After 0.5s of rota-
tion, both the experiment and theory show Q.- ~0.6w . In



a Unmodulated BEC b Supersolid
0 8 0 7.6
Raw image  Vortex detection 08 [ ] l“ s Raw image  Vortex detection
8 : .
- -
-, —
\ 0.6 0.6 / N
. Pl e Y= { \
-~ o 4 =g
Nl el €2 ’
- N S 3 g \
N oA H > 04 04— < ~~_.7
PiainiN 0.2 0.2 Lo~ .
[ \ 0 250 2 ;
[ i ] ) )
\ / 0.8 - 0.8 ,
\ ’ ii i N
~ -~
©
g5 06 06 %
-~ £ 2% -
s \ 53 T N
2c - / \
{ \ 8 04 04— 3 :
\ t A B )
\
N / - -7
B o 0.2
| 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 —

Time (s)

Time (s)

FIG. 3. Vortex nucleation in a dipolar supersolid and BEC. Average vortex number (colorbar) as a function of rotation time and €2 for an
a unmodulated BEC and b supersolid. Panels show [i] the simulations, [ii] the experimental observation, where in a the absolute value of the
magnetic field is held at 19.30(2) G, but in b is instead ramped from 18.30(2) G to 19.30(2) G in 1 ms at the end of the rotation. Exemplar
images [iii-v] of normalized density taken after 250 ms of rotation are shown for both cases. Detected vortices are shown in color when
the residuals exceed the chosen threshold (0.34), and the condensate radius is marked by a blue dashed line, see Methods for more details.
Insets of [v] show initial states. All images are taken after 3 ms expansion, except the non-rotating supersolid state, which is a phase-contrast
image with @ = 0°. In the experiment, the trap has frequencies (w. , w;) = 27 X [50.3(2), 107(2)] Hz, and the initial condensed atom number
is N~ 3 x 10* For the simulation: (w,, w.) =27 x [50,103] Hz, with a as = 104ay, initial N =2 x 10%, and b a; =93ao, and initial
N =3 x 10%, where three-body recombination losses have been added.

the experiment, atom number losses at fast rotation frequen-
cies can suppress the production of vortices'*. In the super-
solid case (Fig. 3b), we are able to observe clear evidence for
the threshold behavior for vortex nucleation. For driving fre-
quencies greater than {2~ 0.4w, , vortices persist even up to
1s, and there is an increase of vortex number with rotation fre-
quency. This behavior is in contrast to the BEC case, where
above 2 =0.75w, we do not observe vortices, unveiling the
competing superfluid and solid contributions.

Additionally, theory [b(v)] predicts a superfluid quadrupole
resonance centered at )~ 0.3w , with one or at most two
vortices entering the cloud. A detailed analysis of the experi-
mental data reveals a signature compatible with the existence
of this resonance, see Methods. However, a dedicated inves-
tigation beyond the scope of this work would be required to
confirm this feature.

Interference patterns

The modulation of supersolid states presents a unique possi-
bility for extracting the phase information, as the presence or
absence of a vortex strongly impacts the interference pattern
after time-of-flight (TOF)3°. This is readily observable by per-
forming expansion calculations with the eGPE, as shown in
Fig.4a. In the presence of a vortex, the interference pattern
shows a pronounced minimum in the central region of the sig-
nal [a(ii)], which is clearly not the case in a vortex free super-
solid [a(i)]. This remarkable feature is a direct consequence
of the phase winding and can even be reproduced by a simple

toy model simulating the expansion of three non-interacting
Gaussian wavepackets, as shown in the insets of Fig.4a(i)
and (ii). Note that in the eGPE, the expansion time was set
to 36 ms, during which the self-bound nature of the droplets
slows down the expansion corresponding to a few ms in the
toy model. Furthermore, this time is strongly dependent on
interaction and trap parameters, making the pattern very sen-
sitive to parameter variations, see Methods for more details.
Unlike vortex interference patterns from unmodulated states,
there is no longer a simple hole left in the center of the cloud,
but rather a three-pointed star structure reflecting the symme-
tries present in the density. The spiral arms appear due to the
nonlinear azimuthal 27 phase winding®®, where between each
droplet there is a line of minimum signal given by the phase
difference of each droplet, in this case, 27/3. In our calcula-
tion, we opt for an initial state featuring three droplets instead
of the previously used four droplet state. The symmetry of
this state, characterized by equal interdroplet spacing, yields a
singular and simple interference pattern when the vortex is in
the center of the system, facilitating the distinction between a
vortex and vortex-free state.

When performing the experiment with similar parameters
as the theory, we observe a remarkable similarity across the
resulting phase pattern. Figure 4b shows an example interfer-
ence pattern for a non-rotating sample [b(i)] and the one for a
three droplet supersolid when rotating above the theoretically
obtained critical vortex nucleation frequency Q* = 0.1w;



Theory

=2

Experiment

FIG. 4. Time-of-flight interference pattern. a 36 ms real-time
expansion interference pattern for three droplets (i) in the ab-
sence of a vortex and (ii) with a vortex. b Experimental observa-
tion after TOF (i) without rotation and (ii) after 189 ms of rota-
tion at Q=0.3w, with 8 =30°, before spiraling up to 6 =0° in
11 ms, while €2 is kept constant. This was done to ensure that
the radial droplet expansion and interference is perpendicular to
the imaging axis. The supersolid is produced at 18.24(2) G with
(w1, w:)=2m x[50.0(4),113(2)] Hz, the condensed atom num-
ber N=5 x 10%. The theoretical parameters: N =3.5 X 104,
(wi,wz) =27 x [50,113] Hz and as; = 92.5a0.

[b(ii)]. In the latter case, we clearly observe a signal minimum
at the center, providing the observation of vortices directly in
the supersolid state. To test the robustness of this observation,
we repeat the measurement many times, and study the occur-
rence of the non-vortex [b(i)] or vortex [b(ii)] pattern. Among
the images with a clear interference pattern, about 70% con-
tain a vortex signature when rotating above {2 =0.3w_, see
Methods. The remaining fraction can be understood by con-
sidering that supersolid states exist in a very small parameter
regime™, and typical shot-to-shot atom number and magnetic-
field (as) fluctuations can significantly alter the observed in-
terference pattern.

Conclusions
After three decades since the original predictions“, we re-
port on the observations of vortices in a supersolid state. This
result is relevant not only because it adds the final piece to
the cumulative framework of evidence for superfluidity in this
state!2, but also because it reveals a distinctive vortex behav-
ior in the supersolid. The system’s characteristic response
to rotation can serve as a fingerprint to identify supersolid-
ity in diverse systems with multiple broken symmetries, over
scales ranging from solid-state systems2®, high-temperature
superconductors®’8, and helium platforms?>*, to a neutron
star’s inner crust!3°,

Furthermore, in the context of supersolids, a fascinating in-
terplay of competing length scales emerges. These include
the separation between vortices, the wavelength of the self-

forming crystal, and the diameter of the vortex core. This
competition has the potential to lead to intriguing dynamics,
ranging from constrained motion and pinning to avalanche es-
cape. These phenomena are genuinely unique to supersolids.
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Methods

Experimental procedure

We prepare an ultracold gas of '%“Dy atoms in an optical
dipole trap (ODT), similar to our previous work!4. The trap
is formed through three overlapping laser beams, operating
at 1064 nm. All the studies are performed in a cylindrically
symmetric trap, typically with w,; =27 x 50.3(2) Hz, where
w_ is the geometric average w, = ,/w;w,. The aspect ratio
w, /w, varies from 2 to 3; the specific values of w, are stated
in the figures’ captions. The aspect ratio w, /w,, is crucial for
the applicability of magnetostirring'*: throughout the paper,
the deviation of w,, /w,, from 1 is <2%.

For this work, we tilt the magnetic field vector B from the
vertical position to § = 30° from the z-axis in the last stage of
evaporation, while maintaining its magnitude constant. The
values of the magnetic field are: 19.30(2) G for the unmodu-
lated BEC, 18.30(2) G for the SSP in Fig. 3, and 18.24(2) G
for Figs.2 and 4. The small change in magnetic field is re-
quired to maintain supersolidity between the two respective
choices of tight trapping frequency. The magnetic field is cal-
ibrated through radio frequency (RF) spectroscopy. Moreover,
164Dy has a dense spectrum of narrow Feshbach resonances,
as shown in Extended Data Fig. 1. We use the positions of
such resonances as references to compensate for drifts of the
magnetic field. The condensed atom number after the evapo-
ration sequence ranges from 3 x 104 to 7 x 10, depending on
the measurement.

After preparation, the magnetic field is rotated; details can
be found in the following sections. Finally, we image the
quantum gas using a 421 nm light pulse, propagating along
the z-axis. For the data in Figs.2 and 3, we let the atomic
cloud expand for 3 ms and take a phase contrast and absorp-
tion image, respectively. When comparing theoretical and ex-
perimental images, we rescale the image size by 1.36 in the
theory to account for this small expansion time. The results
of Fig.4 are instead obtained with absorption imaging after
36 ms TOF, and following an 11 ms spiral up to § =0°. This
was done to ensure that the radial droplet expansion and inter-
ference is perpendicular to the imaging axis.

For the experimental images in Fig.2, we enhanced the
contrast of the droplets by applying a Gaussian filter of size
0 =1px (~0.5 ym) followed by a sharpening convolution fil-
ter with kernel F:

0 -1 0
-1 5 —1]. (1
0 -1 0

F=

Magnetostirring

To magnetostir the atomic cloud, we rotate the magnetic field
vector around the z-axis'#. In brief, the breaking of cylindri-
cal symmetry that enables the transfer of angular momentum
by rotating the magnetic field vector B (magnetostirring) is
achieved by tilting B into the plane. This is a direct con-
sequence of the phenomenon of magnetostriction*?. For all

the measurements in this paper, B is tilted from the z-axis
by an angle # =30°. At our magnetic field values, this an-
gle is optimal for vortex nucleation within the experimental
time scales!. In general, smaller angles would increase the
nucleation time; at the same time, a much bigger angle would
make the dipolar interaction dominantly attractive, holding the
cloud together and thus also increasing the nucleation time.
From the experimental point of view, § = 30° enables the ob-
servation of the droplets aligning along B while retaining the
ability to discern individual droplets when observing the in-
tegrated density, see Fig.2. For all datasets, we then directly
rotate B at the chosen frequency (2. The rotation is continued
for a rotation time t, after which the ODT is turned off, and
an image is taken after expansion.

Scattering length

The conversion from magnetic field to scattering length for
164Dy at our magnetic field values has not been mapped.
However, combining knowledge on the conversion in other
magnetic field ranges®-%2, together with the theoretical iden-
tification of the critical scattering lengths for the BEC to SSP
transition, allows for an educated guess. It is important to
highlight that the isotope '9“Dy has the advantage of ex-
hibiting supersolidity at the background value of the scat-
tering length, while the BEC phase usually requires some
mild tuning of a,. The specific values used in this paper are
highlighted on the Feshbach loss spectrum in Extended Data
Fig. 1. For our theoretical simulations (see below), we find
that a scattering length a in the range 90a-95aq gives a good
agreement with the experimentally observed supersolid states.

Interaction quench

For the in situ detection of vortices in the supersolid phase, we
map the supersolid into an unmodulated BEC, similar to the
approach used to observe them in the BCS phase of strongly
interacting Fermi gases>*. In particular, we increase the abso-
lute value of the magnetic field from 18.30(2) G t0 19.30(2) G
in 1ms after stopping the rotation, and we then release the
sample from the trap for 3 ms before imaging. We repeat
this sequence for different values of angular velocity (2 and
for different rotation times tn. For each experimental point
in Fig. 3a and 3b, we take 7-9 pictures. Using phase contrast
imaging, we ensured that the ramp time is long enough to melt
the droplets into an unmodulated state, but also short enough
to avoid atom losses when crossing the Feshbach resonances
present between the initial and final magnetic field values (see
Extended Data Fig. 1).

Extended Gross-Pitaevskii equation

At the mean-field level, the ground state solutions, time-
dependent dynamics, and nature of the BEC-to-SSP tran-
sitions are well described by the extended Gross-Pitaevskii
formalism**%. This combines the two-body particle inter-
actions, described by the two-body pseudo-potential,

_ 4drh?as

3h2a4q 1 — 3 (&(t) - )
m

U(r) 5(r) + ORLVES e

r

where the first term describes short-range interactions gov-



erned by the s-wave scattering length a4, with Planck’s con-
stant /2 and particle mass m. This quantity is independently
tunable through Feshbach resonances. The second term rep-
resents the anisotropic and long-ranged dipole-dipole inter-
actions, characterized by dipole length agq = piop2,m/127h?,
with magnetic moment f,,, and vacuum permeability 1y. We
always consider 154Dy, such that agq = 130.8 ag, where aq is
the Bohr radius. For the trap parameters and atom numbers
used here, the supersolid phase is found for scattering lengths
in the range as=[90, 95]ag, i.e.€qa = aaqa/as > 1.37. The
dipoles are polarized uniformly along a time-dependent axis,
given by

é(t) = (sinf(t) cos p(t),sinO(t) sin p(t),cos 8(t))  (3)

with time dependent polarization angle 6(t) and
o(t) = fot dt’Q(t'), for rotation frequency protocol 2(t).

Three-body recombination losses are prevalent in dipo-
lar supersolid experiments due to the increased peak density
when compared to unmodulated states. In the theory, these
are introduced through a time-dependent atom loss

N =—L3(n*)N, 4

for density n. We take the fixed -coefficient
L3=12x10"*'mSs~! for our simulations**. This leads
to an additional non-Hermitian term in the Hamiltonian
—ihL3n?/2.

Beyond-mean-field effects are treated through the inclusion
of a Lee—-Huang—Yang correction term%’

12812
YoF = ——— v/ malRe {Qs(eqa)} , )

3m

where Q,,(z) = fol du (1—x+3xu?)"/2, which has an imag-
inary component for = > 1. Finally, the full extended Gross-

Pitaevskii equation (eGPE) then reads*>—4
O(r, 1) 12v? ihLs
L il e e LUl

+ / & U — ), DI + el (e, )P [0, 1) . ©)

where w;, . are the harmonic trap frequencies in
Vieap = 3 (w222 + win + w?z?). The wavefunction
1 is normalized to the total atom number N = [ d3r|y|°.
Stationary solutions to Eq. (6) are found through the standard
imaginary time procedure. The initial state ¢ (r,0) of the
real-time simulations is obtained by adding non-interacting
noise to the stationary solution to(r). Given the single-
particle eigenstates ¢,, and the complex Gaussian random
variables o, sampled with (|a, |?) = (e=»/#5T —1)~1 + 1 for
a temperature 7' = 20 nK, the initial state can be described as
Y(r,0) =1o(r) + Y. @n¢n(r), where the sum is restricted
only to the modes with ¢, < 2kpT%.

Choosing simulation parameters

In the theory there are two parameters known to high pre-
cision, the atomic mass and the dipolar strength, and seven

parameters that are only known within broad error bars,
{as, L3, wsy,., T, N}. Here, we explore the impact of vary-
ing these parameters in the theory on the main results of the
paper, and justifying their use when comparing to the experi-
mental data.

In Extended Data Fig.2 we show the ground state phase
diagram for different values of atom number and scattering
length as. We identify four different phases: unmodulated
BEC, SSP (supersolid), ID (isolated droplets) and SD (single
droplet). To characterize the different phases we consider the
density contrast C = (Nymaz — Tmin)/ (Mmaz + Nmin ), Where
n is the column density. In the SSP and ID regime, the con-
trast is calculated as the average value between each pair of
droplets. States with more than one droplet and with a con-
trast larger than the threshold value 0.98 are identified as ID.
Rotation of the ID state is discussed in detail in the next sec-
tion.

In Extended Data Fig.3a, we show how the rotational re-
sponse of a BEC is robust against atom number and scattering
length variations. Varying these parameters slightly moves
the exact position and size of the resonance window for vor-
tex nucleation, and although the precise values are difficult to
pin down, all of our simulations show resonance behavior.

In Extended Data Fig. 3b, we show how the rotational be-
havior of a supersolid is robust against atom number varia-
tions. In this case, the scattering length as was also tuned to
maintain supersolidity. As in the BEC case, varying these pa-
rameters slightly moves the exact position of the resonance
and of the threshold but the overall structure of the rotational
response remains consistent.

We finally consider the rotational response of both BEC and
SSP for different temperatures. In Extended Data Fig. 3c we
compare 7' = 20nK, which is the case in the main text, to
30nK and 40nK. In the BEC case, the key difference is that
the higher temperature broadens slightly the resonance win-
dow. In the supersolid case, the higher temperature obscures
the small resonance at smaller (2. Both of these observations
are in keeping with the experimental results, and provide new
perspectives on the observed differences between theory and
experiment, where the resonance at smaller {) may be better
observable at smaller temperatures. Crucially, the physics is
independent of the choice of the initial noise.

Isolated droplet regime

For values of the scattering length a, lower than the ones re-
quired to have a supersolid state, the superfluid connection
between crystal sites disappears and the system enters the so-
called isolated (or independent) droplet (ID) regime. In this
regime, the system does not exhibit global phase coherence
and each droplet evolves as an independent BEC.

The ID regime is not accessible in our experiment for long
trapping times. In the experiment, we have chosen 64Dy,
which, to our best knowledge, is the only isotope showing
long-lived supersolid states with a lifetime up to 1s°'. The
long lifetime is essential for prolonged rotation and vortex
seeding. This particular isotope shows long-lived supersolid-



ity due the fortunate coincidence that the background scatter-
ing length is the one required for supersolidity in our trap,
without any need of Feshbach tuning'’. Instead, to produce a
BEC we need to move between two overlapping Feshbach res-
onances giving the right modulated background value, where
here a moderate tuning is needed and still three-body losses
are modest. To create an ID state, we need instead to go
closer to a resonance and three-body losses destroy the state
in a timescale of 100 ms, too short for applying the rotation
protocol.

In Extended Data Fig. 4 we show the phase coherence mea-
surements that prove the initial state used for the dynamics in
Fig. 3 is in the supersolid regime. In Ref.*® the supersolid ro-
bustness to rotation has been theoretically demonstrated. At
relatively small rotation frequencies, < 0.2w , the angular
momentum dependence was shown to be linear in the absence
of vortices, where vortices present as jumps in the total angu-
lar momentum. The linear regime is only possible if the mo-
ment of inertia of the supersolid, i.e. the density structure and
superfluid connection, remains unchanged in response to ro-
tation. Moreover, at higher rotation frequencies, rotation acts
as centrifugal effect that lowers the peak density of the state,
thus favoring the superfluid density connections between the
droplets. The only system parameter that can change during
the rotation protocol is the atom number due to losses, and
lowering this will bring the state towards the BEC state, as
shown in Extended Data Fig. 2. However, as shown in Fig. 2,
the supersolid survives for a much longer time than the one
needed for seeding vortices.

In the ID regime the droplets are fully separated and there is
no density between them, so the concept of vortices cannot be
applied. Moreover, vortices also not able to enter the droplets
themselves, as the density is very high and the self-bound na-
ture suppresses the vortex nucleation'®, and even if imprinted
in a droplet, they are known to be unstable®>8.

It is worth to discuss whether it is possible that in a vortex
free rotating ID state, a signature of vortices emerge due to the
melting process, caused by the interference of droplets with
different phases. In principle this mechanism is possible, but
it will occur with small probability since the random phase
scrambling must match 27%°. Moreover, this case is com-
pletely independent of the rotation protocol and frequency, it
would even happen without rotating at all. Considering our
protocol and geometry, with a tilt of 30° and melting dynam-
ics of 4ms, the hypothetical vortex line would be unstable
because it will be diagonal to the tight trap confinement, and
will be integrated out during our absorption imaging protocol.

Another perspective pertains to the conservation of angular
momentum during the quench protocol. As we keep the mag-
netic field both tilted and static during the interaction quench
and time-of-flight, the system remains asymmetric, and there
is no conservation of angular momentum. Furthermore, an
azimuthally asymmetric stirred superfluid exhibits non-zero
angular momentum without the need for vortices, in order to
fulfill the irrotational velocity condition’.

In Extended Data Fig.5 we plot the expectation value of

10

the angular momentum operator measured for the wave func-
tion after 1s of rotation. In the ID regime (as = 85ag) the
angular momentum monotonically increases as a function of
Q. On the contrary, in both the BEC (as; = 104 ag) and SS
(as = 95 ap) regimes there are maxima corresponding to vor-
tex nucleation, or, as is the case for the SS regime, a sum
of both the solid-like contribution and vortices. Notice that
when the vortex number is zero at {2 = 0.45w, the angular
momenta are equal for both the ID and supersolid phases, due
to the similar density distributions.

Finally, it is worth discussing what is the behavior of
isolated droplets during long time-of-flight measurements,
following the same protocol of Fig.4. First of all, the
phase of each droplet is initially random and the rotation
would maintain their random character (the effect of a phase
gradient across each droplet due to rotation is negligible).
As a consequence of this, the produced interference pattern
will not be repeatable over many experimental shots and it
would be independent on the rotation frequency, in contrast
to the observation of Extended Data Fig. 10. Furthermore,
the expansion time required for the droplets to unbind in
this geometry is longer than 36 ms because of their stronger
self-bound character. This time-of-flight expansion would
produce a magnified version of the isolated droplet ground
state without any low density halo around or interference
structure in the middle.

Toy model interference pattern

Taking Np static Gaussian wavepackets with parameters of
the j™ wavepacket given by the widths o; = (01 j, 02,73 ;),
positions 19 = (r{ ;79 ;, 79 ;), atom numbers N, and phase
¢;, the initial total wavefunction is

w0 = 3 [N e iay )
7V (@2n)

X

1 1
IT |5 e |5 (n=rdy)* o

On the assumption that these wavepackets are non-interacting,
then their expansion due to kinetic energy alone can be ana-
lytically calculated by applying the free particle propagator in
three dimensions, such that the time-dependent solution is

P(r,t) = /jo a&*r' (v, 0)K (r,t;1',0), )

where

Ketr g (™ o im(r —x')? 9
(r7 I, O) - <27T1h(t — tO) xp < 2h(t - tO) ( )

Applying Eq. (8) to Eq.(7) gives the time-dependent multi-
wavepacket solution. For brevity it is not stated here, but the
exact solution transpires to be a simple time-dependent re-

placement of the widths {Uk,j — 0o,y /1+ iht/(QmJ,%’j)}



appearing in Eq. (7). An example of the evolution of the TOF
pattern is shown in Extended Data Fig. 6 with the parameters
of Fig.4 for longer times. Note that the 3ms TOF pattern,
equivalent to the 36 ms when simulating the eGPE (i.e. in-
cluding interactions), has not yet evolved into the momentum
distribution.

Quadrupole modes calculation

We employ real-time simulations with the extended Gross-
Pitaevskii equation to investigate the quadrupole mode fre-
quency of the system with the tilted magnetic field, both in the
BEC and in the supersolid phase. We initially perturb the sys-
tem with a sudden small quadrupolar deformation of the trap
and, then, we let the system evolve for 1s. The deformation is
done by increasing (decreasing) the trap frequency by 0.5 Hz
in the z-direction (y-direction) for 1 ms and then restoring the
trap to the original value. During the time evolution, the den-
sity distribution in the slice z =0 is fitted with a Gaussian
profile, from which we extract the time-dependent width of
the system during the evolution. The Fourier transform of the
time-dependent width gives the frequency spectrum of all the
expected superfluid and crystal quadrupole modes excited by
the sudden deformation!®3®. These frequencies are in agree-
ment with the features of the rotational response of the BEC
and supersolid discussed in the main text.

In-situ vortex detection algorithm

To count the number of vortices, we identify the number of
voids in the density in the in-situ images, following a similar
procedure of our earlier work'#, the steps of which are shown
in Extended Data Fig. 8. In short, we first apply a Gaussian
filter of size 0 =1 px (=~ 0.5 pm), then the sharpening convo-
lution filter of Eq. (1) to each image 7, for noise reduction.
We then prepare a blurred reference image n,.f by applying a
Gaussian filter of size o =3 px (~ 1.5 um) to each nyy,, and
calculate the residuals between this reference and the origi-
nal image 7nres = Nref — Nimg. Finally, vortices are detected as
peaks in the residual image n,.s using a peak detection algo-
rithm (peak_local_max from the SKIMAGE Python library). To
avoid spurious vortex detection, we discard peaks with a dis-
tance below 3 px, and peaks with an amplitude below a chosen
contrast threshold of 0.34.

We verify the robustness of the vortex detection by varying
this contrast threshold between 0.34 and 0.42, which changes
the number of selected peaks but gives the same qualitative
result on the whole data set (see Extended Data Fig.9). We
remark that any choice of threshold will not completely re-
move all false positive detections, but this method allows for
an unbiased measure impartially applied to all images. In the
experimental data (Extended Data Fig. 9) there is a small peak
centered at {2 =0.35w for all thresholds considered, hinting
towards the expected superfluid quadrupole mode resonance,
see Fig. 3.

Comparison between the vortex number in theory and ex-
periment

The vortex nucleation study conducted in Fig. 3, shows a mis-
match in the detected vortex number between the experiment
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and our simulations, despite the general agreement between
theory and experiment on the dependence on rotation fre-
quency and rotation time. This disagreement is caused by the
different detection methods and by experimental fluctuations,
as explained in the following.

In Figs.1 and 3, the number of vortices is determined
by counting 27 windings in the central slice of the phase,
arg(y(x,y, z=0)). We restrict the search to a circle of radius
6 pm, such that vortices are only counted inside the conden-
sate surface in the BEC case, or within the halo in the super-
solid state. To visualize the vortex tubes plotted in Fig. 1, we
plot isosurfaces of the velocity field.

Since in the experiment we do not have access to the phase,
to have a better comparison, we have also applied the vortex
detection algorithm described in the previous section to the
simulated states. With this aim, we linearly ramp the states
of Fig.3b from a; = 93ag to 104ap over 1ms to melt the
droplets and perform the short 3 ms TOF for each time and
frequency. We apply a Gaussian filter of different sizes o to
match the experimental resolution, and implemented the vor-
tex detection algorithm detailed above to the resulting images.
The same algorithm and filter have also been applied to the
unmodulated BEC data of Fig.3a. The results are shown in
Extended Data Fig. 7. Both methods give the same qualitative
behavior as a function of the rotation frequency. Applying a
Gaussian filter on the theoretical data reduces the vortex num-
ber to the experimental values (which are in general affected
by the imaging noise). Critically, the resonant and threshold
behaviors are robust to all the detection methods.

Time-of-flight vortex detection algorithm

In the interference pattern, a striking difference between a sin-
gle vortex and a vortex-free state is the absence or presence of
a central density feature. This feature provides us with another
fingerprint of vortices, thus allowing for binary classification
of the experimental TOF images and extraction of the vortex
occurrence probability as a function of ). In the following
paragraphs, our classification protocol is described.

First, we prepare all the images, n;, by denoising them with
a Gaussian filter of size ¢ = 2 px and by normalizing to the
maximum density, max(n;) = 1. Among those, we then select
two reference images, one for each case: the presence (n)) or
absence (n?) of a vortex; see insets in Extended Data Fig. 10a.
These will be used to classify all images.

Then, using ‘Powell’ minimization’', we translate and ro-
tate each image to best overlap with the references. To quan-
tify the similarity of the images to each reference image, we
calculate the sum squared differences, S {v, V)}’ between n; and
n{v-9} Here, high values of S1¥-%} indicate large dissimilar-
ity between the images.

We generate a cumulative distribution function for SV and
5%, which are normalized by the total number of images (see
Extended Data Fig. 10a). Using the cumulative distribution,
we generate one subset of images for each reference, which
are the X % most similar images. The remaining images are
not classified. Note that so far, the analysis is rotation fre-



quency independent. Finally, we extract the number of images
within each category as a function of rotation frequency (2),
see Extended Data Fig. 10b. Renormalizing to the total num-
ber of classified images, we obtain the ratio of images that
have a central vortex, see Extended Data Fig. 10c.

At low rotation frequency, the vortex-free interference pat-
tern is dominating. Crucially, the ratio of images with a vortex
increases with increasing {2, consistent with our eGPE simu-
lations and experimental findings shown in Fig.3. This re-
sult is robust against choice of the classification threshold X
as shown in Extended Data Fig. 10c(1-2) for X =15% and
X =30% (see dashed-dotted line in Extended Data Fig. 10a).
Note that fluctuations of the experimental parameters lead to
a non-zero vortex signal even without rotation. Note that the
selection threshold is kept low, ensuring unambiguous catego-
rization of the images.
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Extended Data Fig. 1. Loss spectrum of *®*Dy. The spectrum is obtained from horizontal absorption imaging, by varying the magnetic field
at which the evaporative cooling (7"~ 500 nK) is conducted, with a step size of 20 mG. The magnetic field values used are highlighted in red
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Extended Data Fig. 2. Ground state phase diagram obtained varying the atom number and the scattering length. The results are
obtained from eGPE calculations with (w1, w.) =27 X [50,103] Hz. The identified phases are: BEC, SS (supersolid), SD (single droplet)
and ID (isolated droplets). On the sides, exemplar ground states extracted from the phase diagram.
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Extended Data Fig. 3. Vortex nucleation in a dipolar BEC and supersolid for different parameters. a Vortex nucleation in a dipolar
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temperatures. All the results are obtained from eGPE calculations with (w1, w.) =27 x [50, 103] Hz, magnetic-field angle from the z-axis
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Extended Data Fig. 4. Phase coherence measurement of the initial four droplet state before rotation, after 36 ms TOF. The lower (right)
figure shows the horizontal (vertical) integrated density. The modulation and central interference peak are present on single images (grey lines)
and remain after averaging over 173 images (black line).
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Extended Data Fig. 5. Vortex number and expectation value of the angular momentum. Left: vortex number after 1s of rotation. Right:
expectation value of the angular momentum operator also after 1 s of rotation. The other parameters are the same as Fig. | of the main text.
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Extended Data Fig. 6. Time of flight predictions from the Gaussian toy model. Longer TOF density profiles for the solution shown in
Fig. 4 of the main text. The inset of the first figure shows the initial condition for all states. After 10 ms the density pattern has frozen into
the momentum distribution of the initial cloud. The gray lines show the axis center (0,0), highlighting the immediate difference between a no
vortex and vortex expansion from the central density.
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Extended Data Fig. 7. Comparison of different vortex detection methods applied to the theoretical data. Each point is obtained by
applying the experimental vortex detection algorithm to the states of Fig.3 and averaging over time. For the SSP the scattering length is
ramped from as; = 93ag to as = 104ap in 1 ms and the state is expanded for 3 ms, before applying the algorithm. The results are shown for
different size of Gaussian filter 0 and compared to the standard method of counting the 27 phase windings (black line) and the experimental
data, in green (red) for the BEC (SSP). The shaded area indicates the error on the mean.



20

Extended Data Fig. 8. Image processing for the detection of vortices. Each row indicates different rotation frequency and duration parameters
(indicated on the left), where images are taken following an interaction quench from the supersolid to unmodulated BEC phase. Each column
is a step of the processing protocol which goes as follows. The data (column 1) is normalized and denoised with a Gaussian filter of size 0 =1
(column 2), and a sharpening mask is applied to magnify the presence of vortices (column 3). The reference image is built from the data image
where all density variations are eliminated with a Gaussian filter of size 0 =3 (column 4). The residuals (column 5) are obtained from the
subtraction of the data to the reference, converting the density depletions to a positive signal. The vortices (black circles) are detected with
a peak detection algorithm with threshold 0.38. The last column shows the location of the vortices on the original image data. Varying the
threshold value modifies the absolute vortex count of each individual image but not the overall qualitative result (see Extended Data Fig. 9).
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Extended Data Fig. 9. Experimental vortex detection as a function of the threshold parameter. Normalized vortex occurrence integrated
over 1s of rotation in the BEC phase (left) and in the supersolid phase (right) as a function of the rotation frequency, for varying contrast
threshold between 0.34 and 0.42 (see Extended Data Fig.8). The shaded areas indicate the error on the mean, i.e. the standard deviation
divided by the square root of the number of points (8). The solid lines are visual help. The results of the extended-GPE simulations (see Fig. 3)
are plotted in thick solid lines as a comparison.
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Extended Data Fig. 10. Probability of detecting a vortex as a function of the rotation frequency. a Cumulative distribution function
obtained from the calculated sum squared differences over the whole data set, with each of vortex (solid line) and vortex-free (dashed line)
references (see inset images). b With a defined threshold X (dashed-dotted lines on a) on the cumulative distribution function, each image
is assigned to a category: vortex (red empty circles), vortex-free (blue filled circles), or no classification (grey filled circles). ¢ Probability
of detecting a vortex signal and vortex-free signal out of the selected images in b. The error bars indicate the Clopper-Pearson uncertainty
associated with image classification. Top and bottom rows show the classification result for respective thresholds 0.15 and 0.30 on the
cumulative distribution function, showing the independence of the signal from the threshold.
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4.8. Additional knowledge: quadrupole mode resonances

As seen in the previous sections, the quadrupole mode plays a crucial role in the ro-
tational dynamics for the vortex nucleation. In fact, in both the BEC and supersolid
phases, vortices emerge dynamically through surface instabilities driven by resonant
quadrupole modes. In the following, we explore two aspects of the quadrupole dynam-
ics:

e The aspect ratio oscillations of a rotating BEC prior to vortex nucleation, as
observed in Ref. [192].

e The resonances associated to the quadrupole mode spectrum in the supersolid
regime, which provides insights into the experimental observations in Ref. [193].

4.8.1. Quadrupole modes in rotating BEC

From Ref. [192] in Sec. 4.6, we know that during the magnetostirring the aspect ratio
(AR) of the system undergoes quadrupole deformations®. When the vortices enter,
the AR approaches to 1. The frequency of these quadrupolar oscillations depends on
the scattering length and on the rotation driving frequency, see Fig.4.6(a)-(b) and the
extracted value wag in (c)-(d). In the following, we derive a simple theoretical model
to estimate the value of this AR oscillation frequency.

When the BEC is rotating through magnetostirring, the system can be effectively
described as confined with reduced trapping frequencies. These can be modelled as

~2 2 2
Wy = wi + o —2a8)
5 5, o (23)
W, = wy + a” + 2af)
where a = —3{2 and [ is the geometric deformation of the system at equilibrium at a

given € [198].

For a cylindrically symmetric system, we know that the quadrupole mode frequency
is wy ~ V2w, and in the rotating frame its frequency becomes wg"t ~ow, — 20°.
When the system gets deformed through magnetostirring, the effective trap is no longer
cylindrically symmetric, making the quadrupole frequency not straightforward to derive.
However, we can simplify the problem considering an equivalent cylindrically symmetric
trap obtained from the geometrical average of the new effective frequencies

Weq = /@2 + 2. (24)

Thus, we estimate the quadrupole mode frequency in the new effective trap as

wp® = V2weq — 292, (25)
and we plot the results for different scattering lengths and €2 in Fig. 4.6(c)-(d). Despite
the many rough approximations, this simple approach successfully replicate the trend

of wag, in particular in the range of as comparable to a4q.

“Here, we define AR = 0maz/Omin, With Omaz and omin the maximum and minimum width of the

condensate during rotation.

5Given a collective mode with frequency w., characterized by an azimuthal quantum number m, its
rot

frequency can be easily calculated in the rotating frame as w;y’ = wm — mS2 [224]. In our case, the
quadrupole mode has m = 2.
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Figure 4.6.: Aspect ratio oscillations during vortex nucleation process through magnetostirring.
Phase diagram in (a) shows AR oscillations of a BEC with different a,, rotating at a fixed
Q = 0.7w;. The phase diagram in (b) shows the AR oscillations of a BEC with as = 11549
rotating at different Q. (¢)-(d) Comparison between frequency of AR oscillations and theoretical
estimate. Parameters: N = 30000, trap w/27 = (60, 60, 190) Hz.

4.8.2. Quadrupole modes in rotating supersolids

The rotational response of the system reflects the resonances of the quadrupole modes.
It is possible to highlight this connection by calculating the spectrum of the quadrupole
mode in the rotating frame. We take supersolid state with tilted droplets and we excite
quadrupolar oscillations by deforming the radial trap frequencies

(Wz, wy) = (wz — 0.5, w, + 0.5) Hz (26)

for 1 ms and then restore the initial values. We evolve the state for 1s and fit the aspect
ratio of the system with a Gaussian function as a function of time. The time Fourier
transform of these oscillations gives the spectrum of the quadrupole modes excited by
the protocol. A quadrupole mode with frequency w, in the rotating frame is

wp®t = wy — 29, (27)

so the rotation frequency €2 at which the quadrupole mode is at resonance in the rotating
frame (w;®" = 0) is

0= (28)
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Figure 4.7.: Rotational response of a 2D supersolid for varying rotation time and  (left) with
corresponding quadrupole spectrum in the rotating frame (right). Parameters: N = 50000, trap
w/2m = (50, 50,95) Hz,as = 95 aq.

By rescaling the quadrupole spectrum accordingly, we obtain the results shown in
Fig.4.7. The filled gray peaks corresponds to the values of ) for which one of the
quadrupole modes excited by the protocol is at resonance. The lowest peak sets the
onset of vortex nucleation and it correspond to a superfluid quadrupole mode, whereas
the higher frequency peaks are crystal quadrupolar deformations [199].






Chapter

Glitches in rotating supersolids

In this thesis, quantum effects have so far been explored by studying systems at ex-
tremely low temperatures. Under such conditions, the wave packets associated with
atoms overlap and interfere constructively, leading to the formation of a macroscopic
quantum state known as a Bose-Einstein condensate. However, lowering the tempera-
ture is not the only way to achieve wave-packet overlap and access the quantum regime.
Another approach is to increase the particle density.

While the first method requires cooling to ultralow temperatures, the second demands
reaching exceptionally high densities, far beyond what can be achieved in terrestrial
experiments. Fortunately, the universe provides natural settings where such extreme
densities exist: neutron stars. Despite their vastly different scales and sizes, neutron
stars are predicted to exhibit superfluid properties. In particular, previous studies have
shown that neutron matter in the interior of the star may organize into exotic, density-
modulated superfluid phases, collectively known as nuclear pastas [225,226].

Bose-Einstein condensates have been already associated to astrophysical objects and
events, like black holes or supernovae [227,228]. In this chapter, we go a step further by
establishing for the first time a direct connection between density modulated superfluid
phases in the inner crust of neutron stars and supersolid states. This analogy allows
us to explore with dipolar supersolids one of the most accredited astrophysical theories
for glitches—sudden jumps in the rotation rate of neutron stars—interpreted as collective
vortex unpinning events within the superfluid interior!. We begin by outlining the
internal structure of neutron stars and their rotational dynamics during a glitch. Then,
by exploiting the structural similarities between neutron matter and dipolar supersolids,

we develop a model to simulate glitches in dipolar supersolids.

This project has been developed in collaboration with the group led by Prof. Massimo
Mannarelli, a theoretical astrophysicist working at Gran Sasso National Laboratories in
L’Aquila, Italy. The author also had the possibility to do a research stay there, thanks
to the funding provided by DK-ALM doctoral school in Innsbruck.

!The literature on the possible mechanisms responsible for pulsar glitches is extensive: accretion, mag-
netospheric instabilities, starquakes and others hypothesis. For a review, see Ref. [229].
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Figure 5.1.: Neutron star properties and structure. (a) Schematic of the critical temperature
for superfluidity of neutron pairs for singlet states in the inner crust (red line) and triplet states
in the core (violet line) and critical temperature for proton superconductivity in the singlet state
(green). Reproduced and adapted from Ref. [230]. (b) Structure of the neutron star interior and
exemplar density profile of the neutron-proton matter distribution in the inner crust. Notice
that the layer thicknesses shown in the left plot are not in scale. In reality, of the total ~ 10km
stellar radius, the outer crust spans ~ 100m and the inner crust ~ 1km [230]. Taken from
Ref. [217].

5.1. Interior structure of neutron stars

Neutron stars originate from supernovae, violent cosmic explosions that marks the end
of the life of a heavy star. The remnants of these explosions create an incredibly dense
and compact object, with pressures and densities far beyond human experience. They
usually manifest as pulsars, highly magnetized rotating neutron stars with a mass be-
tween 1-2 solar masses, confined into a sphere with a radius of approximately 10 km.
These systems provide a unique opportunity to study the behaviour of matter under ex-
treme conditions. In this section, we focus on the structural properties of their interior,
while in Sec. 5.2 we will focus on the rotational dynamics.
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A few hundred years after formation, neutron stars reach thermal equilibrium, with
core temperatures typically ranging from 10° to 10® K, several orders of magnitude lower
than the Fermi temperature of nuclear matter [231], see Fig.5.1(a). For these reasons,
they can be considered as cold and dense stellar objects where quantum effects are not
negligible.

Neutron stars are predicted to have distinct layers with different structural properties.
In particular, as the density of the star increases with the radial depth, some of the layers
are expected to have superfluid phases [232]. We start by outlining the basic properties
of each part of the star, understanding the region of interest and then we focus on the
analogies with dipolar supersolids.

The structure of a neutron star is schematically depicted in Fig.5.1(b). Beneath a
very thin atmosphere (of the order of micrometers), we identify the outer crust region.
This layer has densities ranging from 10° to 10! g/cm? and it is composed of a lattice
of fully ionized heavy nuclei immersed in a relativistic electron gas. Microscopically,
the equilibrium state of this solid part of the star is expected to be a body centred
cubic lattice made of well-defined neutron-rich nuclides [232,233]. The neutron fraction
inside the nuclei increases with the radial depth of the star, because of electron capture
processes”. The structure of the crust is completely determined up to a density of the
order ~ 6 x 10'° g cm? by the experimental nuclear data. These information indicate the
presence of different neutron rich nuclei like *Fe, Ni, 86Kr, 82Ge and others [234]. At
higher densities the nuclei are so neutron rich that they have not yet been experimentally
studied, so the composition of the nuclei in these layers is model dependent [232].

The density of the star increases with the depth until it reaches the neutron drip
density pg = 4 x 10" g/cm3. This threshold sets the point at which it becomes en-
ergetically favourable for the neutrons to drip out of the nuclei and form a neutron
bath made of unbound neutrons. This transition defines the onset of the inner crust
region. Additionally, the temperature of the star is lower than the critical temperature
for superfluidity [232,235]. The pairing of neutrons is described by BCS theory: due
to an attractive component of the nucleon-nucleon interaction, neutrons form singlet-
state Cooper pairs [230]. This leads to the formation of a modulated superfluid of
neutron pairs coexisting with an underlying lattice structure given by the nuclides, see
Fig.5.1(b). We will explore the physics of this region more in detail in the following
sections.

Finally, as the density increases even more, it approaches the saturation density pq =
2.5x 10 g/cm?, where the crustal structures completely vanish. This is the core region.
Here, the composition of the star is mostly unknown but, since the nucleons are so tightly
packed that they overlap, it is expected to have liquid-like exotic phases with superfluid
properties [230].

2Electron capture is a process in which a proton-rich nucleus of a neutral atom absorbs an electron from

one of the inner shells. Thus, the proton in the nucleus becomes a neutron causing the emission of
a neutrino. Considering the parameter regimes of the neutron star, this process becomes possible for
densities > 107 g/cm?®.
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5.1.1. Neutron stars and supersolidity

Neutron matter in the inner crust of neutron stars exhibits both superfluid behaviour
and spatial density modulation. These two features, discussed extensively in the pre-
vious chapters in the context of ultracold atomic gases, are hallmarks of a supersolid
phase. However, as often occurs when bridging concepts across different fields, the term
supersolid is rarely used in neutron star physics, except in specific contexts such as
certain studies of quark phases in the star’s core [236]. In the following, we analyse the
main points to connect supersolidity with the neutron matter density distribution in
the inner crust of neutron stars.

The coexistence of superfluid and crystalline properties in the inner crust becomes
evident when looking at the quantum calculations of the inner crust structure pioneered
by Negele and Vautherin [237], which we reproduce as insets on the right of Fig. 5.1(b).
The matter density profile is shown along an axis connecting the center of two adjacent
Wigner-Seitz cells, for two different radial depths of the star. The solid black line
represents the distribution of the protons in the nuclei, forming a well defined crystalline
lattice with a spacing of the order ~ 100fm. The aquamarine distribution highlights
the superfluid neutron density: an array of peaks connected by a superfluid neutron
background. This is very reminiscent of the density profile of a dipolar supersolid state,
like the one seen in Fig.2.3(b) and elsewhere throughout this thesis.

Before jumping to any conclusion, we clarify some points. Previous calculations
showed that, at such extremes densities in the inner crust, well-defined nuclides do
not exist anymore, as neutrons are delocalized through the superfluid background. In
the neutron star framework, the density peaks are usually called nuclear-type clusters
to differentiate them from standard isolated nuclei [238]. This is confirmed by the fact
that the calculations for the pairing field are performed with the pairing field being a
continuous function of position in the whole Wigner-Seitz cell, indicating that behaves
as a coherent superfluid [239]. Furthermore, simulations of excitations in the inner
crust reveal the emergence of collective modes, arising from the interplay between the
nuclear-type clusters and the surrounding neutron sea [240)].

In conclusion, for all these reasons, the modulated superfluid neutron density distri-
bution can be viewed as a supersolid phase of neutron pairs, possessing the periodicity
of the underlying proton crystalline structure.

5.2. Glitches in neutron stars

Neutron stars usually manifest as pulsars, that are highly magnetized rotating stars
that emit electromagnetic radiation out of their magnetic poles [241]. The magnetic
axis is misaligned with the rotation axis, so the emitted radiation can be observed from
Earth when it is pointing towards it, like a galactic lighthouse®. In Fig.5.2(a) we show
an exemplar picture of the on-pulse star PSR B19304-22 taken from the Strasbourg

3The first signal from a pulsar was detected by Jocelyn Bell in 1967, during her PhD in Cambridge
under the supervision of Antony Hewish [242]. The regularity of the lighthouse signal was so perfect
that initially it was interpreted as an attempt of extra-terrestrial communication. For this reason, the
source was humorously called LGM-1, short for little green men. This hypothesis was quickly dismissed
when a similar signal was detected from a completely different region of the sky. The discovery of pulsars
contributed to Hewish being awarded the Nobel Prize in 1974, whereas Bell was unfairly excluded.
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Figure 5.2.: Neutron star glitches. (a) Picture of the PSR B1930+422 pulsar taken from the
Strasbourg astronomical Data Center, using the Aladin Sky Atlas [243]. (b) Rotation frequency
Q and frequency residual AQ of the neutron star PSR B1930+22 during the last 30 years.
Frequency residuals are obtained by subtracting the main linear slope. On the right, schematic
illustration of a glitch. Taken and adapted from Ref. [244].

astronomical Data Center [243]. The measurement of the time interval between two ra-
diation pulses coming from the star provides a very precise measurement of the neutron
star angular velocity [244]. The rotation period T is slightly different for each star. For
the one considered in Fig. 5.2(a) the period is T' ~ 0.14's but, for instance, T' ~ 0.7 s for
the PSR B0329, T' ~ 0.089s for the Vela pulsar, and 7" ~ 0.033 s for the Crab pulsar.

The star is constantly emitting radiation, so it is losing energy in time. As a conse-
quence, an observer from Earth would expect to observe a general slow-down process
due to energy dissipation. However, every once in a while the star suddenly spins
up, originating a glitch event. Glitches for the pulsar PSR B1930+22 are shown in
Fig.5.2(b). The rotation frequency ) slowly decreases but it sometimes jumps up with
AQ ~ 1075 Hz. The size of the glitch is variable and usually very small, it can range
from AQ/Q ~ 1071 — 1075 [244,245].

The most accredited theory to explain the glitch mechanism is a rapid transfer of
angular momentum from a neutron superfluid in the inner crust to the solid outer
crust [246,247]. The idea is the following:

e The star is rotating and the inner crust has superfluid properties. Thus, part of
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the angular momentum is stored in form of quantized vortices. The estimated
number of vortices in the inner crust is ~ 10*® [248]. However, because of the
crystalline structure, vortices are not free to move around as they are pinned in
between the crystal sites.

e During the slow-down process of the star, the inner crust does not keep up and
lags behind for its superfluid character. The angular momentum cannot be lost
in a continuous manner because vortices are pinned and cannot easily move from
their equilibrium position. In this way, the inner part of the star begins to to
accumulate excess angular momentum.

e At a certain point, the star no longer supports this out-of-equilibrium configura-
tion: the accumulated extra angular momentum has to be ejected. This is done
by triggering a sudden collective unpinning of vortices, forming an avalanche to-
wards the outer crust. The estimated number of vortices collectively leaving and
creating a neutron star glitch is predicted to be ~ 107 — 10 [248].

e The vortex angular momentum is ejected from the inner crust and absorbed by
the outer crust, that suddenly spins up originating a glitch.

The observation of glitches offers one of the rare opportunities to indirectly investigate
the interior of a neutron star. Since the structure of the inner crust is very reminiscent
of dipolar supersolids, we investigated how an ultracold dipolar system could simulate
glitches events in analogy of neutron stars.

5.3. Vortex Pinning

The two main ingredients behind the glitch mechanism are quantized vortices and their
pinning. In fact, to achieve a sudden release of angular momentum, it is necessary to lo-
calize vortices using a pinning potential. The angular momentum carried by the vortices
is then released abruptly when the system reaches an out-of-equilibrium configuration.
In ultracold gases, vortices in an unmodulated BEC form a regular Abrikosov lattice
but they are not pinned, see discussion in Sec.4.5.2. Vortex pinning can be realized
either by introducing a pinning potential to a BEC or by spontaneously breaking trans-
lational symmetry to create a density modulation, which acts as an effective pinning
potential for the vortices. The first option has been developed in Ref. [249]. Here, we
investigate the second option by considering a 2D dipolar supersolid. Unlike BECs with
pinning potential, 2D supersolids offer an ideal platform to explore both crystal and
vortex dynamics.

In the following, we investigate the impact of the pinning effect during the slow down
process. To do so, we begin with an initial state—either a BEC or a supersolid-in
equilibrium in the rotating frame. The initial rotation frequency €2 is chosen so that
the system hosts tens of vortices. For the considered set of parameters, this condition
is met for Qp = 0.5w,;. We then apply a slow linear ramp down of Q(t) = Qy — at,
with o = 107°. By performing complex-time numerical simulations (see Sec.1.3.4),
we observe a gradual reduction in the system’s total angular momentum over time.
However, the nature of this process differs significantly depending on whether the initial
state is a BEC or a supersolid.
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Figure 5.3.: Slow down process for a BEC and a supersolid. The upper panels show the expec-
tation value of the angular momentum operator (L.), while the lower panels show the number
of vortices as a function of time. Vortices are counted by identifying the phase singularities.
The time intervals have been properly chosen to capture vortices leaving the system. The two
insets in the upper panels show two density distributions at 3691 ms (BEC) and 2795 ms (su-
persolid), where vortices are leaving. Parameters: N=300000, as; = [100, 90] ag, trap frequencies
(wy,w,) = (50,130) Hz, Qo = 0.5w .

5.3.1. Slowing-down a BEC

First, let us consider a BEC state with a vortex lattice, see an example in inset of
Fig.5.3(a). As expected, the linear ramp down induces vortices to gradually leave the
system. This process occurs in a continuous manner: vortices can slowly move towards
the edge of the system and the others can slowly rearrange deforming the lattice. The
consequence of this behaviour is that the angular momentum decreases almost linearly,
driven by the gradual change of the density distribution. Importantly, there are no
sudden jumps in angular momentum when vortices leave.

5.3.2. Slowing-down a supersolid

Let us now consider a supersolid state with vortices, see an example in inset of Fig. 5.3(b).
The behaviour of a supersolid state during a slow-down process sets the basis for the
development of the glitch model that we developed in Ref. [217], presented in Secs. 5.4
and 5.5. In this case, vortices are pinned in the interstitial low-density regions between
the droplets and cannot continuously migrate toward the system’s edge when slowing
down. Instead, each time a vortex escapes, the angular momentum undergoes a sud-
den jump, corresponding to the abrupt ejection of the angular momentum carried by
the vortex. Following this event, the remaining vortices gradually rearrange among the
pinning sites. Notably, if this sudden release of angular momentum was absorbed by a
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solid outer crust, the crust would spin up, originating a glitch.

5.4. The feedback equation

So far we have seen that dipolar supersolids possess structural properties in analogy to
the inner crust of neutron stars and that, when rotating, they host quantized vortices
that are pinned in the interstitial sites of the droplet crystal. The final missing piece for
the analogy with the neutron star is a coupling with a solid outer crust. Although our
system does not physically include such a crust, we can model its behaviour in presence
of an hypothetical crust by introducing a coupling mechanism. To this end, we propose
an additional equation that mimics this coupling, the so-called feedback equation. In the
following, we derive the feedback equation and we explain the meaning of the different
terms.

The slow down process can be though as a consequence of a constant torque Negp,, SO
that
d{L:)
dt

The subscript em stays for electromagnetic torque, to recall what actually drives the
slow down process in neutron stars. The quantity (L) is the total angular momentum
calculated as expectation value of the angular momentum operator. For a supersolid,

the total angular momentum can be decomposed in two contributions

= Nopm - (1)

<-f/z> — Lvort + Ls = Lvort + ISQ y (2)

where the first component is the vortex contribution, the second component is the linear
response to rotation due to a non-zero moment of inertia I;. Notice that all of these
quantities are time dependent: L.+ changes with the number of vortices, Is changes
with the small perturbations of the mass distributions during the slow down process
and € is the time dependent rotation frequency of the system. After inserting Eq. (2)
into Eq. (1), we obtain the feedback equation

ISQ = _Nem - Lvort - sta (3)

that is a differential equation for the rotation frequency 2.

The physical meaning of this equation is the following: the rotation frequency 2
gradually decreases over time due to the constant external torque Ney,. Every time a
vortex leaves, the term Lyoyt gives a negative contribution to the equation, that makes
Q) spin up because of the minus sign in front of it. The last term contains I and it
accounts for variations in the moment of inertia arising from crystal excitations induced
by vortex dynamics. Altogether, this equation models the behaviour of a supersolid
coupled to a hypothetical outer solid crust, which directly interacts with the “solid”
rotational response of the supersolid, represented by L.

By solving the eGPE and the feedback equation as two coupled differential equations

%% = (1~ i) [Lap — QL] v

ISQ = _Nern - Lvort - jSQa

(4)
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we simulate glitches events in dipolar supersolids, in analogy to neutron star glitches.
These results have been collected in the publication in Ref. [217], that is reported in
the next section of this thesis.
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Glitches, spin-up events in neutron stars, are of prime interest, as they reveal properties of nuclear matter
at subnuclear densities. We numerically investigate the glitch mechanism due to vortex unpinning using
analogies between neutron stars and dipolar supersolids. We explore the vortex and crystal dynamics during
a glitch and its dependence on the supersolid quality, providing a tool to study glitches from different radial
depths of a neutron star. Benchmarking our theory against neutron-star observations, our work will open a
new avenue for the quantum simulation of stellar objects from Earth.
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One of the greatest strengths of ultracold gases is their
ability to simulate the behavior of widely disparate systems
[1]. This extraordinary capability enables quantum gases to
serve as powerful solvers for unmasking fundamental open
questions concerning the underlying dynamics of complex
physical systems. The range of fields where quantum gas
simulators have found applications include metallic super-
conductivity and condensed matter systems, as well as
nuclear matter. Among these examples, nuclear matter
under the extreme conditions existing in neutron stars is
the most elusive to direct microscopic observation [2—4].

Neutron stars are the densest stellar objects known today.
They form through the core collapse of massive progenitor
stars in supernovae type-II events, leading to their extreme
densities in which a giant gravitational mass of a few solar
masses is concentrated in just a tiny radius of about 10 km.
Shortly after their birth, neutron stars cool down to temper-
atures of the order of keV. Compared to ultracold gases
(peV), these temperatures are very high, yet much smaller
than the MeV energy scale typical of nuclear matter. For
this reason, neutron stars can be viewed as cold dense
nuclear matter in which quantum effects become very
important. The current most-widely-accredited descriptions
to explain observations in such systems account for
fermionic pairing and correlations in quantum many-body
systems [5,6].

The 1967 discovery of pulsars [7]—highly magnetized
and rapidly rotating neutron stars [8,9]—provided crucial
hints of superfluidity and fermionic pairing in these stellar
objects. Pulsars can be seen as nearly perfect clocks or
regular radio emitters [10-12]. They emit photons in a
narrow angular beam, similar to that from a lighthouse.
This lighthouse effect results from the misalignment
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between the rotation and magnetization axes and leads
to a secular loss of rotational energy with a corresponding
slow decrease of the pulsar rotation frequency Q.
Remarkably, it has been observed that the rotation fre-
quency of the pulsars occasionally shows anomalous jumps
—called “glitches”—in the form of an abrupt speedup of
the pulsar rotation followed by a slow relaxation close to its
original value. It is precisely the observations of such pulsar
glitches that have provided the first evidence of super-
fluidity in neutron-star interiors.

This surprising observation suggests that the interiors of
neutron stars are indeed made up of several components and
that one among them is irrotational or at least weakly
coupled to the rigid rotation of pulsars. Natural candidates
are superfluids and supersolids, respectively. In this sce-
nario, quantized vortices, forming in the superfluid compo-
nent, can stochastically unpin from the rigid crystalline
component and change the star’s angular momentum.
Understanding whether this is a plausible mechanism
requires addressing several key questions, including: how
do superfluid vortices pin and unpin? How do unpinned
vortices percolate through the crystalline structure? What
information can be extracted from the glitch signal shape?

Tackling these questions from first principles is chal-
lenging, as the properties of the inner crust of neutron stars
are model dependent. Moreover, we have only observa-
tional access to the neutron-star atmosphere; thus, the
underlying dynamics are basically a black box. One
possible way to improve our understanding of pulsar
glitches is to reproduce them in a controllable laboratory,
where we have full access to the entire system [13—15].

Thanks to rapid developments in quantum simulation, it
is now possible to employ dipolar quantum gases—where

© 2023 American Physical Society
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supersolidity and rotational physics have recently been
observed in circularly symmetric systems [16—19]—as
analogous microscopic quantum systems. Here, we dem-
onstrate exactly this and predict the existence of glitches in
a rotating ultracold dipolar supersolid. We show how
quantized vortices unpin from the crystalline structure of
the supersolid and escape, transferring angular momentum.
Varying the interactions, we observe that the glitch size
may depend not only on the number of unpinned vortices,
but also on the superfluid fraction and the supersolid
internal dynamics.

We start by outlining some basic properties of neutron
stars, and then we move to show the analogies with dipolar
supersolids. Neutron stars are expected to possess a
complex internal structure with a sequence of layers
[4,20-26], as shown in Fig. 1(a). Beneath a micrometer-
thick atmosphere, the first layer, the so-called outer crust, is
expected to be a crystalline solid of neutron-rich ions and
electrons that behave as a normal component. At its heart,
the core of the neutron star is instead believed to be in a
liquidlike phase with superfluid properties [27-32]. Here,
the density exceeds the nuclear saturation density pg,
meaning that the nucleons are so closely packed that they
overlap [33]. Sandwiched between the solid outer crust and
the superfluid core, one finds the inner crust: Here, the
density of neutrons exceeds the neutron drip density p, so
that it becomes energetically favorable for them to drip out.
The most accredited theories describe this phase in terms of
unbound superfluid neutron pairs with a periodic density
modulation; see Figs. 1(a;) and 1(a;) and Ref. [36]. The
coexistence of solid and superfluid in the inner crust can be
viewed in modern terms as a supersolid phase. This, as we
shall see, is a key ingredient for the widely accepted
physical explanation of glitches, schematically depicted
in Fig. 1(b), associated with a transfer of angular momen-
tum between the inner and the outer crust [12,57-61].

In the low-energy sector, quantum phases with super-
solid properties have recently been observed in various
settings [16,17,62—-66]. Particularly relevant for drawing
analogies with neutron stars is the case of circular super-
solids of dipolar atoms [17], on which we specifically
concentrate in this work, as shown in Figs. 1(c) and 1(d).
These systems are obtained by trapping and cooling highly
magnetic atoms, like erbium or dysprosium, into quantum
degenerate states known as dipolar Bose-Einstein conden-
sates (BECs) [67,68]. The dipolar supersolid phase exists
due to the competition of three types of interactions: a
repulsive isotropic contact interaction, a momentum-
dependent long-range and anisotropic dipole-dipole inter-
action, and a repulsive higher-order-density interaction
arising from quantum fluctuations [69]. Supersolids are
characterized by the existence of a superfluid connection
between the crystal sites, controlled, in turn, by the strength
of the short-range interactions, governed by the scattering
length a,, which plays the role of the radial depth of the
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FIG. 1. Comparison between a neutron star and a dipolar

supersolid. (a) Structure of a neutron star, together with the
density distributions of neutrons (cyan) and protons (black)
near the inner-to-outer crust, for baryonic density nj,=~
5.77 x 1073 fm™3 (a;) and the inner crust-to-core interface, for
n, ~2.08 x 1072 fm™3 (a,) (adapted with permission from Elsev-
ier from [27]). (b) Illustration of a glitch; see the text. (c),(d)
Density distribution of a dipolar quantum gas, with the corre-
sponding density n cut along y =z =0 at (c) a, = 88a, and
(d) a; = 93ay, where a; is the Bohr radius. In both cases, the
strength of the superfluid connection is quantified by the density
contrast C = (nmax - nmin)/(”max + nmin)-

neutron star. Figure 1(c,) shows a case with weak superfluid
connection, emulating the condition close to the inner-to-
outer crust boundary, whereas Fig. 1(d;) shows one with
stronger superfluid connection, in accordance with the
inner crust-to-core boundary.

The remarkable analogy between a pulsar and a dipolar
supersolid can be also extended to the rotational dynamics.
In both cases, the time evolution of the rotation frequency
Q can be described as [57]

ISQ:_Nem_Lvoﬂ_]SQ’ (1)

where /; is the moment of inertia of the solid part. For a
neutron star, changes in /; are not directly observable and
can be challenging to estimate [6,70-72]. In dipolar
supersolids, we have full access to the system; therefore,
changes in the moment of inertia due to internal dynamics

223401-2



PHYSICAL REVIEW LETTERS 131, 223401 (2023)

(a) (b) 0.45

Q/w,

<
=

—~
o
~

10° AQ/Q
[I\j o V)

—~
o
=
[
=3}

# vortices
[V
(=]

)
=

\
?
V/L\//\h ) () (£

FIG. 2. Glitches in a dipolar supersolid. (a) Rotating supersolid with Q = 0.41w, and a; = 91a,. Top: dipolar supersolid showing two
isosurfaces at 15% (opaque) and 0.05% (translucent) of the maximum density, and vortex lines in black. Middle: column densities normalized
to the peak density. Bottom: phase profile arg[¥(x, y, z = 0)]. (b) Rotation frequency in time, with torque N, = 4.3 x 1073 kgm?/s2.
Arrows indicate glitch positions. (c) Relative change in Q, computed as AQ = [Q(7) — Q] /i, Where Qyy,, is the result of a linear fit of the
curve in (b). (d) Vortex number. The gray shaded area in (b)—(d) highlights the time window in (e) and (f). (e) Column density saturated to
highlight vortex positions and shape, with one vortex escaping (orange circle) and another taking its place (blue circle). (f) Crystal excitations,
showing the column density differences between time steps, n(t) — n(t — At), with Ar = 2.4 ms.

can be accurately accounted for. The quantity N, is a spin-
down torque that linearly reduces the total angular momen-
tum of the star: This process occurs spontaneously in a
pulsar due to the emission of electromagnetic radiation,
whereas in a dipolar supersolid it can be controlled by
slowly ramping down the rotation frequency of the trap.
Finally, L,. is the angular momentum of the super-
fluid part.

Despite its simplicity, Eq. (1) is able to capture very
intriguing dynamics in pulsars. While the crystalline part in
the inner and outer crust rigidly corotates and promptly
responds to the braking torque, the superfluid component in
the inner crust lags behind, storing angular momentum in
the form of quantized vortices. Such vortices are mainly
pinned in the interstitial regions, with a pinning force that
depends on the depth of the superfluid nuclear background
[4,6,27-32,73]. However, during the spin-down of the star,
some vortices can stochastically unpin and escape from the
inner crust, causing a sudden release of angular momen-
tum. This is captured by the L., term in Eq. (1), which
adds a positive contribution to  whenever a vortex leaves.
A glitch corresponds to a collective unpinning of vortices
[74,75]. The outer crust absorbs the released macroscopic
angular momentum and suddenly spins up in a steplike
fashion, before relaxing and resuming its spin-down
behavior; see Fig. 1(b). The glitches bring a fractional
change of the rotation frequency in the range AQ/Q ~
10712 — 1073 [76].

The question now is whether we can validate the above
phenomenological description and observe glitches in a
dipolar supersolid. To this end, we numerically study the
spin-down of an ultracold polarized dipolar BEC in the
supersolid state. The atoms with mass m are harmonically

confined in a three-dimensional pancake-shaped trap,
with  frequencies ® = (w,,w,) =2z x (50, 130) Hz.
They interact via the two-body pseudopotential U(r) =
(4zxh*a,/m)d(r) + (3h2agq/m)[(1 — 3cos?0)/|r]*],  with
tunable short-ranged interactions controlled by a,, long-
range anisotropic dipole-dipole interactions with effective
range given by the dipolar length a4q, and @ as the angle
between the polarization axis (z axis) and the vector joining
two particles. We fix our study to 'Dy with agq =
130.8a,. The evolution of the macroscopic wave function
W(r,t) is governed by the dissipative extended Gross-
Pitaevskii equation (eGPE) [77-80]

ih% = (1-iy)[L]¥;a,. agg, @] — Q(t)iz} ¥ ()

where L is the eGPE operator and we include dissipation
through the small parameter y = 0.05 to tune the coupling
between the system and the rotating trap; see Ref. [36]. The
wave function is normalized to the total atom number
through N = [dr|¥|> =3 x 10°. The operator L, =
xpy — yp, corresponds to rotation about the z axis and
can be used to obtain the total angular momentum
Ly = (L,). The superfluid angular momentum is obtained
from L., = L — Ly, with the second term L, coming
from rigid body rotation of the supersolid [81,82] (see
Ref. [36]). The initial condition is found in imaginary time,
at fixed Q(0) = 0.5w,, giving a vortex lattice embedded
within the supersolid crystal. It has been shown [81-83]
that rotating supersolids host quantized vortices pinned at
local minima of the supersolid density modulation, as
shown in Fig. 2(a), and at saddle points between each
pair of droplets [36].
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The real-time spin-down of the system is obtained by
simultaneously solving Egs. (1) and (2). After generating
the initial conditions, we introduce an external torque. This
acts as a brake on the solid component, reducing Q(¢) over
time. Our findings are shown in Fig. 2(b), where we
selected an appropriate time interval to show multiple
glitch events. Though at first glance the curve appears
linear, dominated by N, there are deviations from this
behavior highlighted by arrows, showing the appearance of
glitches in a dipolar supersolid. Visualizing instead the
relative change of Q in Fig. 2(c), we see signatures similar
to pulsar glitches, with a rapid increase of Q, followed by a
slow relaxation back to linear behavior.

Unlike in pulsars, here we have unprecedented access to
the internal dynamics of the dipolar supersolid. Thus, we
can identify each glitch as the moment when superfluid
vortices unpin and reach the trap boundary [Figs. 2(d) and
2(e)], transferring their angular momenta to the solid
component by the feedback mechanism through Eq. (1).
Furthermore, by tracking the unpinning and repinning of
individual vortices, we are able to determine the origin of
the glitch pulse shape. Here, the observed asymmetry is due
to the fact that, when internal vortices are unpinned (glitch
rise time), it takes some time before they repin (glitch fall
time): They slowly move from one pinning site to the other;
see Figs. 2(e;)-2(e;) [36]. Since vortex energy minima are
separated by saddle points, to go from one pinning site to
the other, a vortex must move across one of them [83]. In
doing this, the vortex core is squeezed and then uncom-
pressed, producing an effective friction on the movement of
the vortex. Thus, the long supersolid postglitch timescale is
associated with this slow percolation of vortices across the
crystalline structure [36]. As far as we know, this process
has never been considered in the description of the pulsar
postglitch behavior.

We also have access to crystal dynamics. As a conse-
quence of the vortex activity, the crystalline structure is
deformed and excited. This is visible in the residual matter
density evolution [Figs. 2(f;)-2(f;)], where, during the
glitch, each droplet is slightly deformed and vibrates.
Then, during the postglitch, the droplets slowly relax
toward a more uniform distribution. These excitations
are due to superfluid fluxes inside the droplets and between
neighboring droplets by means of the superfluid bath.
Typically, we find that strong crystal excitations affect
the postglitch signal of Q, suggesting that we could infer
the crystal properties through analysis of the glitch
pulse shape.

The typical magnitude of a glitch is AQ/Q ~ 1073, a
giant glitch in the context of pulsars. The glitch jumps can
be written as AQ/Q ~ —AL, /Ly as they are domi-
nated by the dispelling of vortices. One may naively expect
to estimate AL, as the number of vortices that unpin and
reach the boundary multiplied by a quantum of angular
momentum 7. Such an estimate is incorrect, because the
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FIG. 3. Glitches originating from different radial depths.
(a) Glitches as a function of the scattering length a,. Note that
a, = 92a, emulates the conditions close to the inner crust-to-core
boundary and a, = 86qa, for those in the outer crust. Inset:
fraction of nonclassical rotational inertia. (b) Relative change in
Q, decreasing amplitude with scattering length. Some glitches
dispel more than one vortex, increasing the amplitude.

angular momentum contribution from a vortex is reduced
by the fraction of nonclassical moment of inertia fycgrg
[36], such that L, is at most fycri2N, < AN, [82], for
the total number of vortices N,. Furthermore, in our finite-
size system, the contribution reduces radially from the
rotation axis. The combination of these phenomena is such
that the effective amount of angular momentum lost by the
superfluid component during a glitch is AL, ~ 1072A
[36]. This suggests that, in neutron-star glitches, the
number of vortices involved in each glitch might be larger
than the one estimated by assuming that each vortex carries
a quantum of angular momentum.

A reduction of the vortex angular momentum due to the
crystal structure also suggests that glitches in the case of
vanishing superfluidity will have a small amplitude. We
investigate the dependence of the glitch size on the super-
fluidity by varying the scattering length, as presented in
Fig. 3. As the scattering length is decreased, we find that the
glitch amplitude tends to decrease. When the state is in the
independent droplet regime (fncrr — 0), glitches do not
occur. The internal dynamics, though, still slightly affect
the response of the system to the external torque, as
indicated by the curvature of AQ/Q. The largest glitches
occur in the states with the biggest superfluid fraction and
the largest pinning force between droplets. These results
suggest that giant glitches in neutron stars occur from deep
within the star, where the superfluid contribution to the
angular momentum is largest. However, the total amplitude
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is also reflective of the number of unpinned vortices. The
large glitch at 6.2 s with a; = 92a, occurs when two
vortices leave together. A possible identifier to discern the
origin of the glitches can arise from the postglitch dynam-
ics, which have the longest decay time at large scattering
lengths.

This work represents a first step in simulating and
understanding the complex dynamics of neutron stars using
rotating quantum gases in the supersolid phase. We show
that these systems exhibit phenomena analogous to neu-
tron-star glitches and are primed to become a powerful tool
for addressing key open questions ranging from the under-
lying mechanism of glitches to the system’s internal
dynamics. In particular, during a supersolid glitch, we
observe rich dynamics: Some vortices unpin and escape
toward the outer crust and, in doing so, trigger an excitation
of the supersolid crystalline structure, as well as core shape
deformation of the remaining migrating vortices. These
dynamics, which cannot be captured in standard glitch
models imposing a fixed lattice structure [70-72], could be
the key for an experimental implementation of the model,
where the dynamical observation of sudden changes in the
droplet positions may be possible by combining optimal
control methods with nondestructive imaging [84-86].
Moreover, we see that reducing the superfluidity of the
supersolid leads to a reduction of the angular momentum
contribution per vortex. This is a feature so far overlooked
in the context of neutron stars and may explain the wide
range of observed glitch amplitudes, where the smallest
glitches are associated with vortex dynamics at the edge of
the star.

Regarding the region of the inner crust close to the core,
its investigation requires testing various lattice sizes and
vortex configurations, allowing us to expand the study to
nuclear vortex pinning expected to occur there [87], akin to
the work in Ref. [88]. Furthermore, one could consider
systems with a radially variable superfluid fraction to
mimic the full structure of the neutron star. Our work
opens the door for a detailed study of the droplet lattice
vibration, in order to ascertain whether it is possible to
extract the elastic properties of the solid from the supersolid
glitch pulse shape. This would be of great astrophysical
interest and would pave the way to extract the elastic
properties of nuclear matter from the observed neutron-star
glitch pulse shape and to test whether a glitch can trigger
superfluid collective excitations [89]. Finally, future work
can investigate the effects of tilting the magnetic field with
respect to the rotation axis [19,90,91], as expected in
pulsars, and include coupling between the supersolid and
the proton type-II superconductor present in the crust,
through an additional Ginzburg-Landau equation [92-94],
introducing a self-consistent feedback mechanism.
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SUPERSOLIDITY IN NEUTRON STARS

Nuclear matter in the interior of neutron stars is ex-
pected to be in a superfluid state [1-3]. In the outer crust
of a neutron star, neutrons and protons form well-defined
neutron-rich nuclides. When approaching the interface
between the inner crust and the outer crust, the neutron
density inside these nuclides increases, the proton popu-
lation is strongly suppressed and pairing effects between
neutrons become sizable. The attractive s-wave interac-
tion combined with the relatively low temperature may
favor the formation of a superfluid state, resulting in a
lattice comprised of clusters of superfluid neutrons. In
the inner crust, corresponding to densities between the
neutron drip density p ~ 4.3 x 10'! g cm™3 and around
the saturation density p ~ 2.8 x 10'* g cm™3, superfluid-
ity leads to interesting effects. Here, nuclear matter con-
sists of connected clumps of approximately one thousand
superfluid neutrons and comparatively few protons, sur-
rounded by dripped neutrons forming a “neutron sea”.
At such extreme densities, well-defined nuclides do not
exist anymore: the clumps of nuclear matter are some-
times referred to in literature as “nuclear-type clusters”
to emphasize the difference with standard nuclides [4].
Nevertheless, it is customary to associate these clumps
with nuclides using their estimated proton number. As
shown in Fig. 1(a1)-(az) of the main text, the fraction of
dripped neutrons increases with the radial depth (and so,
with the density), whilst the overall neutron distribution
remains modulated with the periodicity of a crystalline
structure. This crystalline structure disappears close to
the boundary between the inner crust and the core, where
the system becomes homogeneous.

The first calculations of the matter distribution in the
inner crust were performed in the Hartree-Fock (HF) ap-
proximation, assuming a set of a few non-interacting cells
immersed in a sea of neutrons. This distinction was made
for numerical reasons and it completely neglected neu-
tron pairing. However, pair correlations play a substan-
tial role in the inner crust [5]. For these reasons, more
recent approaches improved the HF calculations using a
self-consistent Hartree-Fock-Bogoliubov (HFB) method,

combining the HF method with BCS pairing, see for in-
stance [6]. Pair correlations can also be taken into ac-
count also using other different approaches, for example
the energy functional method developed in Ref. [4].

In the aforementioned works, the density of neutron
pairs is found to be modulated within the Wigner-Seitz
(WS) cell. In fact, pairing effects are smaller in the low-
density region (corresponding to the neutron sea) and
more relevant in the high-density region (correspond-
ing to the “nuclides”, i.e. the “solid part”). Thus, in
the “solid part”, the pairing and superfluid effects are
stronger than in the neutron sea part, because of the
higher density. In the context of a local density approx-
imation, the pairing field is shown to be a continuous
function of position in the whole WS cell [6], support-
ing the fact that the whole system is superfluid. These
results are in agreement with the numerical observation
of excitations in the inner crust, where the appearance
of new resonances is due to the collective (“nuclides” +
neutron sea) behavior of the system [7]. All these works
confirm the idea that the “solid phase” and the “super-
fluid phase” are not distinct and, thus, that the system
is in a supersolid phase.

FORMALISM

We present here a detailed description of the equation
governing the dynamics of an ultracold dipolar Bose-
Einstein condensate (BEC) of 4Dy atoms. Having a
large intrinsic magnetic moment, these atoms interact
via a long-range and anisotropic dipole-dipole interaction
(DDI). In the presence of an external magnetic field, the
dipolar contribution to the interaction pseudopotential
between two atoms reads

2 1—3cos?d
Vbpi(r) = Kol ; (S1)

Ar P

where ., is the magnetic moment of the atoms, pug is
the vacuum permeability and 6 is the angle between
the vector joining the two atoms, r, and the polar-
ization axis. The typical length scale of the DDI is



agq = ,uoufnm/l%rfﬁ, where m is the atomic mass and
h is the reduced Planck’s constant. In addition to the
DDI, magnetic atoms also interact via a short-range con-
tact interaction. This effect is well-approximated by the
pseudopotential

4 2
Vi(r) = Tha,

i(r), (52)
where the scattering length, as, is the typical length scale
of the contact interatomic force. The ratio between the
dipolar and contact length scales defines the parame-
ter €qa = aga/as that allows us to distinguish systems
in a contact-dominated regime, where egq < 1, from a
dipolar-dominated regime, where eqq > 1. In the latter,
the system can access the supersolid phase, a paradoxical
state of matter that exhibits both superfluid properties
and a periodic structure typical of a solid [8]. Indeed, as
a result of the competition between energy contributions,
it is energetically favorable for the system to develop a
spontaneous density modulation on top of the superfluid
background. For large values of €qq, the superfluid con-
nection between density peaks vanishes, the global phase
coherence disappears, and the system enters the indepen-
dent droplet regime [8].

The ground state and the real-time dynamics of a dipo-
lar gas can be studied by numerically solving the ex-
tended Gross-Pitaevskii equation (eGPE):

zhaa—\f = (a— 1) [L',[\I/;as,add,w] —Q)L.| ®. (S3)
Here, ¥(r,t) is the wave function normalized to the total
atom number through N = [d%r|¥|? and Q(¢) is the
rotation frequency of the trap about the z-axis through
the angular momentum operator L, = xDy—yPz. The
eGPE operator L is given by
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L[V;as,aqq, w] =— o + gm [w?(z® + y?) + w22?]
+/d3r’U(r7r’)|\I!(r’7t)\2
+qr|¥(r, ) - p, (S4)

where w = (wp,w.) = 27 X (f, f») are the frequencies
of the harmonic confinement with cylindrical symmetry,
U(r) = Vo(r) + Vppi(r) is the total interaction potential,
the second to last term is the Lee-Huang-Yang correc-
tion [9]-a beyond mean-field contribution that is partic-
ularly important if the system is in the supersolid phase,
since it is responsible for its stability against collapse [10—
13]-given by [14, 15]

12

8h?
Jor = 57 Re {Qs(ea)} . (S9)

where Qs(€eqq) = fol du (1—egq+3u?eqq)®/?, and finally, p
is the chemical potential. When calculating the dipolar

potential contribution, we use a spherical cutoff to re-
move the effect of alias copies coming from the numerical
Fourier transform [16].

In Eq. (S3) the parameters « and « determine the type
of evolution:

e a =0, v = 1: imaginary time evolution, to find the
ground state of the system.

e o =1, v = 0: real-time evolution, to explore the
dynamics.

ea=1,0< v < 1: complex-time evolution, that
corresponds to a real-time evolution with dissipa-
tion.

For the purpose of this work, we use imaginary time
evolution to generate the initial condition and dissipa-
tive real-time evolution for the study of glitch dynamics.
In both cases, we employ a split-step method modified
to account for rotation, known as the alternate direc-
tion implicit-time splitting pseudospectral (ADI-TSSP)
method [17], for numerically solving the eGPE. Since the
harmonic trap is cylindrically symmetric, the dissipation
parameter ~ is used to impart a rotation to the system,
otherwise the angular momentum along the z—axis would
be conserved during the real-time spin-down evolution.

In addition to the aforementioned method, there are al-
ternative ways to induce rotation in a dipolar supersolid.
These include confining the system within an asymmet-
ric trap in the zy plane or utilizing magnetostirring tech-
niques [18-21].

VORTEX PINNING AND DYNAMICS

Rotating dipolar supersolids host quantized vortices
that are pinned in the interstitial low density regions be-
tween the droplets. To get a general idea of the pin-
ning energy, we compute the energy cost to imprint a
vortex in a specific position (xg,yo) of the ground state
wavefunction Wy(r) for a non-rotating supersolid. With
this aim, we multiply ¥o(r) by the ansatz wave function
b, (x,y, x0,yo) for a vortex density and phase profile cen-
tered at (zo,y0), given by

— )2 )2
@, (2,y,70,y0) = Ve a0l + & -0l :
V(@ —20)% + (y — y0)* + A2
(S6)
where @ = arctan(y/z) and A~ = 1 um [22]. We note in
a dipolar supersolid the phase profile is not an azimuthal
27 winding, but rather a complex pattern modified by
the underlying crystal structure [23], however this simple
ansatz recovers the expected force field and stationary
points.
We compute the total energy E(xg,yo) using the wave-
function ¥(zg,y0) = Yo, (z0,y0) (see, e.g., Eq.(1) of
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FIG. S1. Pinning force felt by a single vortex in a super-
solid. The colorbar shows the normalized column density in
the central region of a supersolid. The overlaid arrows indi-
cate the direction and the strength of the force imparted to
a single vortex in that position. The crosses correspond to
the vortex equilibrium positions, and the circles correspond
to saddle points. Parameters: N = 3 x 10°, as = 90ao and
trap frequency w = (wr,w:) = 27 x (50, 130)Hz.

Ref. [24]) for different vortex positions (zg, o), and the
corresponding pinning force F(zo,y0) = —VE(zo,y0)-
The result is shown in Fig.S1. We identify the stable
pinning sites — the absolute minima of the energy land-
scape — and the saddle points. Both of them are in the
low density regions between the droplets: the former are
located in the interstitial sites of the triangular lattice,
the latter are between every pair of droplets.

This estimate of the energy landscape well approxi-
mates the force field acting on vortices during the com-
plex time evolution. The external torque Ngn, see
Eq. (S7) and discussion, slowly spins down the dipolar
supersolid keeping the position of the droplets almost
constant in time in the rotating frame. In the simula-
tion shown in Fig. 2 in the main text, at around 5.3 and
6.2s, two vortices escape the system, giving rise to two
glitches. Together with these fast dynamics, we observe
a slow rearrangement of the other vortices undergoing
a force field that resembles the one shown in Fig. S1:
they can unpin and re-pin from one stable position to
another, see Fig.S2. The blue circled vortices rearrange
in space, percolating through the crystalline structure,
slowly passing through two different saddle points. As
a consequence, vortex-cores appear stretched until they
both reach new stable positions.

Finally, Figure S1 hints to an unstable maximum at
the centre of the droplet. This is expected, as vortices
inside droplets are known to be unstable, resulting ei-
ther in droplet splitting or vortex-line instabilities [25—
27]. Conversely, in neutron stars, vortices can be pinned
inside nuclei at sufficiently high densities [28]. Further-
more, models considering different scenarios in which the
vortices involved are in the core instead of the crust,
i.e. without a solid component, have been discussed in
other works [29, 30], but are not considered here.

4.8 s

5.3 s

5.5 s

6.1s

6.7 s

-10 0 10
z (pm)

FIG. S2. Vortex dynamics during a glitch. Shown are addi-
tional frames of the simulation from Fig.2 of the main text.
Left column: column density normalized to the peak density.
Right column: saturated column density, highlighting vortex
position and shape before and after glitches. Two vortices
(orange circles) escape, while the others (blue circles) rear-
range in the lattice.

FEEDBACK MECHANISM

We report here the details on the derivation of the
feedback mechanism, Eq. (1) of the main text. During
the dynamics, the constant braking torque N, reduces
the total angular momentum of the system over time,
such that

Ltot (t) = —Nem, (87)

where Liot(t) = (L.)w() is the expectation value of the
angular momentum operator L, computed for the wave



function W¥(¢). Since the system manifests both solid and
superfluid properties, we can decompose the total angu-
lar momentum as [31, 32]

Lot (t) = Ls(t) + Lvort (t)
= L(H)Q(t) + Lot (1) , (S8)

where Lg is the angular momentum associated with the
crystal rotation, Lyo is the angular momentum associ-
ated to the superfluid and, thus, stored in the form of
vortices. The moment of inertia of the supersolid Iy is
time-dependent as well, since the mass distribution of
the system changes during the slow-down dynamics. Af-
ter inserting Eq. (S8) into Eq. (S7) and rearranging, we
obtain the differential equation for Q(t)

I(1)Q(t) = —Nem — Lvors(t) — I5(£)Q(t) , (59)
giving Eq. (1) of the main text.

The supersolid moment of inertia is well-defined in the
static limit by the definition I,o = limg ,0(L.)w,/Q,
where Uy is the ground state wave function of the sys-
tem for vanishingly small values of Q [31, 32]. In this
limit, it is also pertinent to calculate the rigid body mo-
ment of inertia through Ligiao = (#? + y?)w,. The su-
persolid and rigid moment of inertia coincide if the sys-
tem is not superfluid and therefore its density distribu-
tion fully responds to the external rotation. For a su-
persolid, this is not the case: the rotational response
of the system is reduced because of the superfluid na-
ture, meaning that I o/Igid0 < 1. This lets us define
the fraction of non-classical rotational inertia through
fnert = 1 — Is0/Lvigia,0, which is a quantity closely re-
lated to the superfluid fraction [33]. Therefore, assuming
a constant fycgrr throughout the simulation, we calculate
the time-dependent supersolid moment of inertia through
the relation

I5(t)

(1 — fxcrr)lrigia(t) (S10)

that captures the reduced rotational response of the sys-
tem and the change in the density distribution at the
same time.

In practice, at each time ¢ of the numerical simulation,
we compute the total angular momentum Ly (t) and the
rigid moment of inertia Ligia(t) = (22 +y?)w,. As a next
step, we compute the time-dependent supersolid moment
of inertia I4(t) through Eq.(S10), from which we get
the solid contribution to the angular momentum Lg(t) =
L(t)Q(t), see Fig.S3(a). Then, the vortex contribution
to the angular momentum is Lyort(t) = Lot (t) — Ls(t),
see Fig. S3(b). Notice that Lo reduces linearly with gra-
dient Nep, as expected. All the necessary quantities are
inserted in Eq. (S9), providing the updated value of Q
used as an input to the eGPE shown in Eq. (S3). When
a vortex reaches the boundary, its contribution to Lyot
drops to zero due to the negligible matter density around
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FIG. S3. Moment of inertia and angular momenta during the
simulation shown in Fig. 2 of the main text. (a) Rigid moment
of inertia Iyigia and supersolid moment of inertia I5. (b) Total
angular momentum Lo and its two contributions from the
decomposition Ls and Lyors with arrows pointing to glitches.
The inset shows a zoom of the jump ALyers due to vortices
leaving and rearranging during a glitch.

its core, and the linear ramp down of € is interrupted by
the glitch event. We estimate the glitch size by com-
puting AQ/Q = (Q(t) — Qin)/Quin, i.e. the difference
between the observed rotation frequency and the linear
fit Quin that captures the average global spin-down.

In Fig. S4 we show a particular case in which around
t ~ 2s the last two vortices leave the system resulting in
the vortex angular momentum contribution Lyo.y drop-
ping to 0, thus validating the decomposition [Fig. S4(c)].
It is worth noting also that the crystal structure for Q2 =0
shown in Fig. S4(a) is unchanged from Q = 0.5w,., vali-
dating our decision to fix fncri-

ROBUSTNESS OF THE MODEL

In the Letter, we have presented simulations for differ-
ent values of a4, mimicking vortex dynamics for different
radial depths in the inner crust of a neutron star. Here,
we present additional results at constant ay; = 91ag with
the aim to test the robustness of the model and to iden-
tify the appropriate parameter space.

The dynamics of the system for lower rotation frequen-
cies can be studied by setting a smaller value of initial
angular velocity Qg. The value of Qg primarily influ-
ences the number of initial vortices and consequently af-
fects the number of vortices involved in the dynamics
during the glitches. For example, only two are present
when Qp = 0.1w, [see Fig.S4(a)]. In addition to the re-
sults shown in the main text and Fig.S4, we performed
additional simulations setting the initial conditions to
Qp = 0.2w,, 0.3w,, 0.4w, (not shown) observing glitch
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FIG. S4. Glitch for low initial rotation frequency 20 = 0.1w;-.
(a) Density frames before and after the single glitch. (b)
Rotation frequency in time, symbols show the density frames
from (a). (c) Angular momentum decomposition: Lyert drops
to zero when two vortices simultaneously escape.

events analogous to the ones reported and discussed in
this work.

We further discuss how the value of the braking torque
Nem affects the spin-down dynamics, starting from the
same initial condition ¢ = 0.5w, and for constant val-
ues of the dissipation parameter . The results are shown
in Fig. S5: the glitches occur approximately at the same
values of Q ~ 0.44w,., 0.43 w,, 0.41 w;-,0.39 w,, 0.36 w,., al-
beit reached at different times due to the steepness of
the ramp-down process dominated by Ne,,. Except for
the timescales of glitch events, we do not observe any
other significant difference with respect to the simulation
showed in Fig. 2 of the main text.

Finally, we present results for different values of ~, the
parameter responsible for the coupling between the ro-
tating trap and the supersolid. The results are shown
in Fig. S6: we notice that glitches do not always occur
at the same time, which is consistent with the fact that
the system responds differently to the external torque for
varying coupling strengths. Furthermore, v affects the
shape of the curve AQ/Q, see Fig. S6(b): the oscillations
typical of the post-glitch phase are damped (y = 0.1)
or completely absent (y = 0.5) as the dissipation be-
comes more relevant. We notice that for smaller values

FIG. S5. Simulations for different braking torques Nem (units
of 107 kgm?/s?). (a) Rotation frequency in time. (b) Rela-
tive change in 2, computed as AQ = (2(¢) —Qin) /in, where
Quin is the result of a linear fit of the curves in (a).

(v = 0.02), post-glitch oscillations slow down the recov-
ery process towards a linear ramp down, and the slow
rise and fall feature at ¢t = 7.2s is related to an internal
rearrangement of vortices, as opposed to a vortex leaving.
These features indicate that there exists a threshold value
~ 2 0.02 such that the eGPE gives a physical description
of the rotating supersolid. This is not a surprising fact:
we recall that for v = 0 the total angular momentum of
the system is conserved for any external torque. This is
clearly unphysical behavior. Therefore, there must ex-
ist a minimum value of the coupling required to have a
realistic evolution of the system.
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Conclusion and outlook

Conclusion

This thesis presents the work I have carried on for my PhD studies in the Theory Group
of Univ. Prof. Dr. Francesca Ferlaino in Innsbruck. I joined the group at the end of 2020
and, since then, I have developed theoretical calculations and numerical simulations
for the projects discussed in this thesis. I had the opportunity to develop both purely
theoretical works and theory-experiment collaborations with the Er-Dy experimental
team here in Innsbruck. These efforts resulted in 10 publications, among which 8 have
been at the core of this doctoral thesis. Additionally, I am the first author on 4 of
them.

Overall, the results accomplished during my PhD focus on in the theoretical character-
ization of the two-dimensional supersolid state of matter through numerical simulations.
A supersolid state simultaneously exhibits a crystalline structure typical of a solid and
a superfluid behaviour. In our case, we produce them by tuning the contact-interaction
strength in a dipolar Bose-Einstein condensate. With the support of theoretical calcu-
lations, in 2021 it became possible to realize two-dimensional supersolids, an optimal
platform to disentangle the paradoxical coexistence of solid and superfluid properties.
In collaboration with R.Bisset (Innsbruck University) and L. Santos (Hannover Uni-
versity) we built the phase diagram and extracted the control parameter to maintain
supersolidity across the structural transition from 1D-to-2D supersolids. We performed
the numerical simulations with the well-established Gross-Pitaevskii equation and we
developed a variational model to investigate the different crystal configurations. We op-
timized the code for the numerical calculation of the Bogoliubov-de Gennes excitation
spectrum and characterized the low-energy collective modes. We also investigated the
dynamical formation of a two-dimensional supersolid, comparing an interaction ramp
with evaporative cooling. We concluded that the second technique leads to a final state
which is more robust against crystal and phase fluctuations.

In collaboration with P.B. Blakie (Otago University), we investigated deeper the role
of the three gapless branches in the excitation spectrum of an infinite 2D supersolid.
Each gapless branch is related to a spontaneous continuous symmetry breaking, that
for a 2D supersolids corresponds to the U(1) gauge symmetry (phase branch) and the
two translational symmetries in the longitudinal and transverse directions (longitudinal
and transverse density branch). The slopes of these branches is determined by the three
speeds of sound, that in turns depend on the elastic parameters of the system. We
compared the speeds of sound results from the hydrodynamic approach with the ones
from the Bogoliubov-de Gennes, finding an excellent agreement. Among all the elastic
parameters, we extracted the shear modulus. Remarkably, this quantity is non-zero
only for solid systems and it is responsible for supporting the propagation of transverse
waves.
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210 5. Glitches in rotating supersolids

Moving to the superfluid nature of a 2D supersolid, we investigated the behaviour of
the system under rotation. First, we investigated the small angular oscillation dynam-
ics, commonly known as scissor mode. From the simulations and the experiment we
observed that, when undergoing a sudden rotation of the trap axis, the 2D supersolid
exhibits a multi-mode response. The most populated mode has a frequency almost in-
dependent on the superfluid density link between the droplets. This prevents a direct
association of the frequency of the scissor mode with the superfluid fraction of the sys-
tem. We then moved to the full rotational regime, were we expect the nucleation of
quantized vortices. We impart a rotation about the trap axis by stirring the external
magnetic field. Collaborating with G.Lamporesi (Trento University), we validated this
novel protocol by observing and characterizing vortices in a dipolar BEC. Then, ex-
tended the same analysis to 2D dipolar supersolids. While for a BEC quantized vortices
manifest as density depletions that are directly visible from the in-situ density distri-
bution, in a supersolid their visibility is more challenging. Indeed, vortices sits in the
low density regions of the density modulation, sneaking in between the peaks. Boosted
by the theoretical predictions, by exploiting the topologically protected nature of quan-
tized vortices across the supersolid-to-BEC phase transition and performing interference
measurements, we collected for the first time an experimental evidence of vortices in
dipolar supersolids. This result unambiguously confirms the superfluid nature of dipolar
supersolids.

Finally, we used our knowledge on systems with simultaneous solid and superfluid
nature to test the internal dynamics of a neutron star. Collaborating with M. Mannarelli
(Gran Sasso National Laboratory), we learnt that rapidly rotating neutron stars are
expected to have a layered internal structure in which quantum effects are not negligible.
In particular, the neutron density distribution in the inner crust is expected to have
a supersolid structure that hosts quantized vortices. The collective unpinning of these
vortices is believed to create a glitch, a sudden spin up of the star that is experimentally
observed. Exploiting the structural analogy, we simulated the glitch mechanism in
dipolar supersolids and propose them as platform where to test vortex and crystal
dynamics in analogy of neutron stars. This result marks an important step towards
quantum simulations of stellar objects from Earth.

FExamining the dataset of papers submitted to arXiv that include the word supersolid
in the title [250] offers a retrospective view of the historical background of this counter-
intuitive phase. Interestingly, the number of publications forms a roton-like spectrum,
see Fig.5.4. The maxon follows the apparent detection of supersolidity in *He and
the roton develops after the denial. Joining Francesca Ferlaino’s Theory group after the
first experimental observation of 1D supersolids, gave me the opportunity to contribute,
alongside my team, to the rise of the roton minimum. It has been an exciting experience
to be part of this group and explore new quantum phases of matter with ultracold dipolar
atoms.

Outlook

Throughout the chapters of this thesis, we already mentioned possible hints for future
research and next steps related to the various projects presented. In the following, we
collect the main ideas for future research in the field of supersolids.
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Figure 5.4.: Roton spectrum of supersolid papers. Number of papers submitted to arXiv
containing the word supersolid in the last three decades. The papers presented in this PhD
thesis contributed to the brown dots.

First of all, except for the detection of a crystalline structure, a quantitative measure
of how much the system behaves as a solid is still absent. For example, based on
the results shown in Chapter 3, it would be interesting to investigate how to extend
the concept of the shear modulus to finite-size systems, to quantitatively extract a
property which is unique to solid systems. Since the shear modulus is related to the
propagation of transverse waves, one could think about extracting this quantity in a
trapped 2D supersolid from Tkachenko-like modes similar to those occurring in vortex
lattices [251].

Regarding the rotations discussed in Chapter 4, the fast rotation regime at frequencies
close to the radial trapping frequency remains still unexplored. In this regime, rotation
acts as an artificial gauge field, causing the system to mimic the behaviour of charged
particles in a uniform magnetic field. In particular, at these high frequencies the vor-
tex lattice melts and is replaced by a series of highly correlated liquids that are the
analogous of fractional quantum Hall states [252,253]. The influence of supersolidity
in these regimes is still unexplored, yet it could significantly enrich the quantum Hall
physics [254,255].

Finally, the simulation of glitches in rotating dipolar supersolids opens new possi-
bility. First of all, one can characterize the collective modes excited from a glitch
perturbation. The frequency of the crystal excitations can be extracted from the glitch
pulse shape. A particular interest should be given to r-modes [256]. These modes are
counter-propagating with respect to rotation and their instability could be the origin
of gravitational waves [257]. Additionally, it could be interesting to study the glitch
mechanism in a larger system, with more pinning sites and vortices. For dipolar quan-
tum systems the computational cost prevent a large scaling. However, soft-core systems
could be used as toy model to scale the system to larger sizes and larger geometries (in
these systems, supersolidity can also be reached in 3D [130]).






Appendix

Superfluid fraction: when,
where, how it is defined

In the context of supersolids, the superfluid fraction fs is an important concept that
allows to quantify how much the system behaves as a solid and how much as a superfluid.
The general idea behind this concept is the following: given a supersolid system in
equilibrium, one applies a perturbation and measures the corresponding response of
the system. The absence of viscosity due to the superfluid nature, leads to a reduced
response compared to the one that a system with the same mass distribution would
have if it was fully solid. There are two main perturbations that are usually applied:

e A small translation in one direction. The response of the system is calculated
through the expectation value of the linear momentum (P). This approach leads
to the calculation of the fraction of non-classical translational inertia, fyory.

e A small rotation around the center of mass. The response of the system is calcu-

lated through the expectation value of the angular momentum (L). This approach
leads to the calculation of the fraction of non-classical rotational inertia, fNcRry-

Sometimes, these quantities are generically presented as superfluid fraction fs. Since
in the following we will present cases in which they could coincide or not, how they
could be a scalar or a tensor and when they are well-defined or not, we will keep the
distinction and call them fycorr and fyorr. We will use fs only when the two quantities
coincide or when we want to talk about superfluid fraction as a general concept.

Sometimes, fs is associated to a superfluid density ns (see, for example, discussion in
Chapter 3). In particular, it is customary to define

fs = (Al)

where n is the total density and ng is an effective density proportional to the reduced
response of the system. Accordingly, the normal component is given by n, = n —
ns. In the context of superfluid helium, ng and n, arise from the two-fluid model
description [101,258], where the superfluid component has zero viscosity and it vanishes
as the temperature increases above the A-transition.

In contrast to helium, the superfluid fraction remains finite even at zero temperature
in systems that break the translational invariance [118]. This is the case of the dipolar
supersolid discussed in this thesis. In such systems, the decomposition into superfluid
and normal components is not fundamental but rather an effective description. Here,
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ns is not a physical density of superfluid particles; instead, it reflects an effective mass
associated with the system’s superfluid response. As mentioned in Ref. [111], f, should
not be confused with a measure of the amount of particles that are part of a superfluid
system. Indeed, even in the independent droplet regime the droplets are individually
superfluids but the superfluid fraction is zero (see Sec. 1.7). This is because the system
does not behave as a superfluid, in its whole.

In general, calculating f is challenging. A finite superfluid fraction in a system at zero
temperature has recently been measured in two distinct scenarios: in a Bose—Einstein
condensate subjected to an external modulation, via measurements of the speed of
sound [259], and in a dipolar supersolid through the observation of the Josephson ef-
fect [260]. In the following, we discuss theoretically different cases according to the
system’s geometry.

1D infinite supersolid

This geometry, originally discussed in Leggett’s work [117, 118], can be conveniently
visualized using an annular configuration. An infinite 1D system is equivalent to such an
annulus, where rotation around the center corresponds to translation in the “unrolled”
linear system. Based on this geometric considerations, we can already infer that fycorr
= fncrr = fs [261].

Assuming the z—axis as axial direction of the system, we have

_ (P
Inerr =1-— vlzlgﬂ Nimo, (A2)
and for the rotations R
o (L2)
fNCRI =1-— lim (A3)

Q=0 Qyig

In practice, these formulas imply solving the eGPE in either the co-moving or rotat-
ing frame, computing the expectation values of the linear or angular momentum under
infinitesimal perturbations, and comparing them with their classical (rigid-body) coun-
terparts. For a purely solid system, one finds (P,) = Nmuv, and (L.) = Q1,4 yielding
Inerr = fnorr = fs = 0.

Considering the annulus geometry, Leggett proposed an additional formula to extract
the upper and lower bounds of the superfluid fraction [117,118]. For simplicity, let us
denote 6 € [0, 27] as the angular coordinate along which density modulations occur, and
r € [0, L] as the radial coordinate of the annulus. The upper bound for the superfluid

fraction is 1
2m B
ot [21 / S ] (A4)
no |27 Jo ¢ [y drn(r,0)

-1
11 2 1 /L dr
= —— do | — / . A5
Js no 271/0 [L 0 n(r,@)] (A5)
Here, ng denotes the average density over the entire spatial domain of the system.
These bounds are uniquely based on integrals of the ground state density profile. For

and the lower bound is
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the derivation, we refer the reader to Refs. [117,118]. Remarkably, in this geometry,
this upper and lower bounds are in excellent agreement with the values of fyorr and
fnerr [261-263].

2D infinite supersolid

In analogy to the 1D infinite case, also in a 2D infinite system one can calculate the
fnorr in the co-moving frame. Because of the broken translational symmetry in two
directions, fycrr is not a scalar quantity anymore, but it is a tensor [166, 175]

I
Inerrig = 0ij — Uljlglo Nmuv;

(A6)

Each of the indices i,j can be one of the two directions (x,y) in which the density
modulation occurs. For the calculation of the second term of Eq. (A6) it is possible to
use a perturbative approach that includes auxiliary vector functions, see Refs. [171,175].
If the superfluid fraction tensor is diagonal and isotropic, fi;; = fsdi;, the superfluid
fraction can be treated as scalar quantity fs as for the 1D case [175].

Leggett’s upper and lower bounds are also applicable to this geometry. Equations (A4)
and (A5) are valid and it is sufficient to replace the variables r — z and 6 — vy,
both integrated in their respective domain [0, L] [175]. However, these bounds do not
closely match the value obtained from Eq. (A6), particularly near the transition from
an unmodulated BEC to a supersolid state; see Ref. [175].

In the case of a two-dimensional supersolid, there exists an intuitive interpretation of
these bounds in terms of electric circuits, proposed by Jean Dalibard [67] and inspired
by Ref. [264]. Within this analogy, the superfluid current is mapped to an electric
current driven by a potential difference, with the system’s conductance corresponding
to the superfluid fraction [67].

Trapped supersolid

Supersolids realized in experiments are typically confined within harmonic traps, which—
as discussed in Chapter 1—can exhibit either elongated or pancake-shaped geometries.
The presence of a trapping potential carries important implications for the concept of
the superfluid fraction. While, in principle, the previous equations for fs can be applied
locally, extracting a global superfluid fraction becomes significantly more challenging.

If one views the superfluid fraction as the system’s response to being dragged in a par-
ticular direction, the presence of an harmonic potential substantially alters the response.
Consequently, the measured behaviour reflects not only the intrinsic superfluidity of the
system but also spatial distortions introduced by the trap. Thus, fyorr does not pro-
vide a clean measurement that quantifies the superfluid nature of the supersolid.

A more robust and well-defined assessment of the superfluid fraction can be made
in the case of a two-dimensional supersolid confined within a cylindrically symmetric
trap. In such a geometry, a non-zero response to an infinitesimally slow rotation of
the trap unambiguously indicates spontaneous breaking of translational symmetry, and
therefore a finite superfluid fraction. This behaviour is captured by fycgrr—introduced
in Eq.(A3)-which remains valid and meaningful even for finite systems [199,205]. For
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this reason, in Chapters 4 and 5, we have employed fycgrr to quantify the superfluid
properties of the system. The generalization for asymmetric traps can be found in
Ref. [205].
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Alternating-domain supersolidsin binary dipolar condensates
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Two-component dipolar condensates are now experimentally producible, and we theoretically investigate the
nature of supersolidity in this system. We predict the existence of a binary supersolid state in which the two
components form a series of alternating domains, producing an immiscible double supersolid. Remarkably, we
find that a dipolar component can even induce supersolidity in a nondipolar component. In stark contrast to
single-component dipolar supersolids, alternating-domain supersolids do not require quantum stabilization, and
the number of crystal sites is not strictly limited by the condensate populations, with the density hence being
substantially lower. Our results are applicable to a wide range of dipole moment combinations, marking an
important step towards long-lived bulk supersolidity.

DOI: 10.1103/PhysRevA.106.053322

I. INTRODUCTION [36,37]. Recently, these same concepts were extended to
the case of dipolar mixtures, i.e., systems composed of two
Xipolar components, which are now available in experiments
&38—40]. In particular, it was predicted that exotic supersolid

The once elusive supersolid state of matter simultaneousl!
exhibits superfluidity and crystalline ordet][ While early
proposals sought superfluid properties of defects in a soli
[2,3], focusing on helium experimentd][ supersolidity has
yet to be demonstrated in those systerSg [t is instead
the high-degree of flexibility and control offered by ultra- 5
cold gases that led to the first observations of supersolidityg
but of a different kind, with solid properties arising in su- &
perfluids. Supersolid features were observed in systems with
cavity-mediated interactions], while supersolid stripes were Momentum Position
realized with spin-orbit-coupled Bose-Einstein condensates
(BECs) [7,8]. Supersolids have now been observed in ex-
periments with dipolar BECs9F11], and their superfluid
character has been supported by the analysis of their ex-
citations [L2-14]. Note that supersolid proposals have also
been made for gases with soft-core, finite-range interactions
[15-19.

The first dipolar supersolids were realized in single-
component BECs in cigar-shaped traps, exhibiting a periodic
density modulation along one directior®-{l1], whereas
experiments have now also created two-dimensional (2D)
supersolids with density modulations along two directions
[20,21]. From a theoretical perspective, there have been in-
triguing predictions for other exotic 2D supersolid states
[22-27], as well as alluring manifestations of quantum vor-
tices P8-30]. Dipolar supersolids may be created from
unmodulated BECs by inducing a roton instabili§-11].
Dipolar rotons—constituting a local minimum of the en-

Component 2
Component 1
P e /

Density

FIG. 1. (a) Dispersion relation schematic showing a roton insta-
bility in the spin branch with corresponding density modulations on
the right for a dipolar mixture. (b)—(d) Alternating-domain super-
solid for a dysprosium dipolar-nondipolar mixture. Column densities

di . fini d h . . for (b) dipolar and (c) nondipolar components, with (d) double-
ergy dispersion at finite momenta due to the anisotropic an osurface plot at 2% of the peak density for each component. Inter-

Iong-rangeq dipole-dipole |nteract|or8;]{3_2]—were firstob-  Lction scattering lengthsyi, a1z, as) = (100, 98, 100)g,, trapping
served in cigar-shaped$34] and then in pancake-shaped frequencies = (5, 110 150) Hz, and populatiord; = N, = 1.5 x
BECs B5]. An unstable roton mode seeds a periodic densityjg* (e) Corresponding single-component modulated state for the
modulation that can subsequently be stabilized by quantur§ame trapping potentialN = 3 x 10%, and a = 78a. Subplots
fluctuations as the density grows, resulting in a supersoligb)—(e) are drawn to the same length scale.
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states can be seeded by the addition of a second dipolar coraxtended Gross-Pitaevskii equations:
ponent 0,41]. 5
Dipolar mixtures, with their richness stemming from multi- iﬁi% (x) = [_
ple sources of interactions, offer new phases with spontaneous 9t
modulation that go beyond quantum-fluctuation-stabilized su-
persolids. An early example proposed that two immiscible + Z/d3x’ Usor (X' — X)No/ (X')
BECs—displaced relative to one another by nonconcentric o’
confinement—might be used to realize a kind of binary su- ©)
persolid formed by the instability of interface bending modes + ng,rn(,/ (x) + MLHY[n(X)]]\IJ‘T ), )
[42]. Binary dipolar BECs could also open another intriguing o’
possibility. It has already been predicted that unmodulated biwherewxyyyz = 2 fyy,, are the harmonic trapping frequencies;
nary BECs may be destabilized by a spin roton matixy], Ugor (1) = [itotto he /41 3] (1 — 30 0) is the long-ranged
for which a periodic density modulation develops in bothanisotropic dipole-dipole interaction potential, with be-
components, but with the density maxima of one componenihg the angle between the polarization axis (alwaysind
occurring at the minima of the other [see Figa). The key  the vectorr that connects the two interacting particles; and
question is then, in analogy to the dipolar roton producing &, (x) = |¥, (x)|2 is the density of component, normal-
single-component supersolid, could the unstable spin rotonged to N, atoms. The last term in Eq3) is the quantum
point to a novel kind of supersolid? fluctuation correction to the chemical potentidf ), [n(x)] =
In this article, we predict the existence of a phase, whichpe v [n(x)]/8n,, described within the local-density approxi-
we call an alternating-domain supersolid, that exists even ahation framework.
the mean-field level and does not require the regulatory action
of quantum fluctuations. The two components form alternat-
ing domains, with a continuous superfluid connection within
each component that periodically weaves through the other We demonstrate the unique features of alternating-domain
[see Figs.1(b)-1(d]. We uncover rich phase diagrams with supersolids by considering a dipolar-nondipolar mixture in
broad regions in which both components are supersolid, aBig. 1, for which a combined total of 19 domains can be seen.
well as regions where a supersolid component is periodicallyVhile the dipolar component [Fid.(b)] can remain globally
punctuated by the isolated domains of the second componemthase coherent through a continuous superfluid connection
We predict that the alternating-domain supersolid intrinsicallylinking the domains—since we are close to the miscible-
relies on a dipolar imbalance between the two components arichmiscible transition the separation is only partial—the
can exist for far lower atom numbers and peak densities thanondipolar component [FidL(c)] can also maintain a super-
quantum-stabilized supersolids, which has important implicafluid connection along high-density rails encompassing the
tions for the potential size and longevity of supersolid crystalgdipolar domains. The density isosurfaces in Bigl) highlight
in realistic settings. the shape of the dipolar domains, which are not as strongly
elongated as the single-component case [cf. Fig). While
this concrete illustration considers tA&Dy spin projections,
with (i1, n2) = (=10, 0)ug for Bohr magnetonug, domain
We consider a three-dimensional system at zero temperaupersolids are not just a special feature of dipolar-nondipolar
ture made of two bosonic componenis= {1, 2}, consisting  mixtures, but are rather general, as we discuss later.
of atoms with permanent magnetic moments, although These results must be contrasted to the single-component
our work is also applicable to electric dipoles. Following case. In Fig.1(e) we show a modulated state for a single-
Refs. B5,46], we compute the Lee-Huang-Yang (LHY) en- component dipolar BEC for the same trap and total atom
ergy density correction due to quantum fluctuations for anumber as in Figsl(b)-1(d) i.e., N = 3 x 10*. Note that
homogeneous binary mixture with densities= (ny, ny): we had to modify the scattering length, sinae= 100ay
32 1 corresponds to an unm(_)c_iulated BEC. However, Ioweri_ng to
Ly (n) = 16 (l) / du ZVA(U N2, (1) a= 78 passes a transition to a modulated state _that is not
1527 \ 4w h? = ’ a supersolid, where the peak densityo(% 10°* m~3) is im-
mediately more than an order of magnitude larger than the

V2

1
o T Em(wfxz + WfY + i)

I11. ALTERNATING-DOMAIN SUPERSOLIDS

Il. FORMALISM

where we assume equal masses: m, = m, and domain supersolid case.@lx 10?° m~3). Correspondingly,
the number of atoms per lattice site is about an order of
Vi(u,n) = Z Ao Ny + \/(Otnnl — a2op)? + dad,mn,. magnitude larger than for the domain supersolid. For this
o=12 atom number and trap volume, the supersolid phase does not

(2)  exist for the single-component cas#’], which was also the
situation for the regimes considered by Refs/H49.
Here, dyo(U) = oo + . (3u? — 1), where the short- To understand the physical mechanisms involved, it is
ranged and dipolar interaction parameters are, respectivelinstructive to consider the transition from unmodulated to
Qoo = 47 h?a,,/m and g‘(’m, = oMo Me |3 = 4T h_zaﬂa,/m, modulated states. For the formation of a domain supersolid,
with s-wave scattering lengths,,» and dipole moments,, the density modulation is triggered by unstable spin
where uo is the vacuum permeability. The wave function roton excitations [shown schematically in Fig(a)], with

for each componen®, is obtained by solving the coupled wavelengths governed by the BECs width along the direction
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of dipole polarization 43]. Spin modes act to increase the
density difference,|n; — ny|, and the instability is hence
resolved once the components become spatially separated as
alternating immiscible domains [Fig&(b)-1(d]. Crucially,
there is no significant increase of the total densify- ny, =
and the peak density can remain low. This situation shoulds'
be contrasted to that of single-component supersolids, and
the two-component supersolids of Ref4041], for which a
density roton instability would cause a divergence of the peak
density if it were not counterbalanced by the appropriate LHY
term [50], and this necessitates significantly higher densities
[9-11]. Note that while single-component supersolids require
a < a¥, and thus are only stable due to quantum fluctuations
[36,37], domain supersolids can exist for eithay, > a2,
or a,, < al,_, but quantum fluctuations remain qualitatively
important since, for example, if they were neglected the latter
situation could only be at best metastatié][
We focus on regimes where one component without theg
presence of the other will always be unmodulated, but each ¢
component within the binary system can exist in one of three 4 6 8
phases: an unmodulated BEC, a supersolid state with a linear 107°N,
chain of domains (SS), or an array of isolated domains (ID). . : . .
The distinction betENee)n these is SZ’[ by upper-bound estir(’nat)e FIG. 2. Phase diagram for a dipolar-nondipolar mixtur&*by

- . S . a?oms, varying intercomponent scattering lengthandN; = N, =
for the superfluid fractions5@], which in our binary system N/2 with fixed Nf,, from f, = 37.5Hz on the left tof, = 15 Hz

100 |

(=)

80 ¢

60

4 10

100 (b) fs1

2/ao

80

10 4 6 8
103N,

are given by on the right. (a) Total number of domains in the stationary state
(2L)2 L dx -1 o oo solution. Solid lines separate unmodulated miscible and domain
fso = ﬁ[/ T] , Ny = / / dydzn,, supersolid (SS-SS) states whén > 0, and dashed lines separate
f_l_ dxn, L/-L No —00 J—00 SS-SS and isolated domains-supersolid (ID-SS) states. Example iso-

. ) surfaces below are highlighted by the symbols in panel (a). (b) and
for lengthL defined over the central region that encompasseg:) superfluid fractiorf,, of components 1 and 2. The threshold be-
the central 3 (4) domains if the number of domains is oddween the SS and ID regimes is indicated by a change of color scale.
(even). We take the supersolid region to be whigh> 0.1  Other parametersa;; = a = 10080, (141, it2) = (=10, 0)us, and
occurs concurrently with a periodic density modulation, fol- f, = f, = 150 Hz.
lowing Ref. [53] for the arbitrary choice ofs, < 0.1 defining
the crossover to the regime of isolated domains. For reference,
the superfluid fractions in Figl are (b) fs1 = 0.3032, (¢) where the domains of a given component exhibit a con-
fs2 = 0.7940, and (e)fs1 = 0.0001. Note, the total super- tinuous superfluid connectionfd, > 0.1 in Figs. 2(b) and
fluid fraction fs = (Nyfs1 + Nofs2)/N is associated with a  2(c)]. We find that a quench of the intercomponent scattering
reduction in the moment of inertia of the overall mixture. Thelength from the unmodulated miscible state to the domain
periodic spatial ordering can be characterized by the densityupersolid regime generates a globally phase-coherent state—
contrastC, = (N1 — nMn) /(N3 4 nMi") ' wheren™ (nM")  within each component—that is robust against the excitations
are neighboring maxima (minima) as one moves along thénduced by the quench, in-keeping with single-component
trap’s long direction. See Appendik for more discussion studies of supersolids in a cigar-shaped geome®ni 1],
on the calculation of the contrast. The boundary betweemvhich we detail in AppendixB [54]. Note how broad the
unmodulated and modulated states is definedbghanging SS-SS regime is, at least @wide, compared to single-
from zero to a nonzero value. component supersolids where it is typically only a f®wide
[53]. Further increasingy, causes the overlap between com-
ponents to reduce, expanding the distance between domains
whilst decreasing superfluidity [Fig(b)], crossing into the
isolated domain-supersolid (ID-SS) regime (F2p). How-

In Fig. 2 we explore the stationary state phase dia-ever, the nondipolar component maintains a strong superfluid
gram of a dipolar-nondipolar mixture in a cigar-shapedconnection [Fig2(c)]. Note that the superfluid connection of
trap with f = (f,, 150, 150) Hz,N; = N, = N/2, and fixed component 2 can be controlled by adjustifyg with even a
Nf, =3 x 10°Hz to maintain an approximately constant small reduction infy significantly reinforcing the nondipolar
average density 2[7]. At low a;, <603, the station- rails around the dipolar domains.
ary state solution is a miscible unmodulated BEC, with Figure2(a) also shows how the total number of domains
only a small deviation from perfect density overlap be-Np changes in this phase diagram. Throughout, the average
tween components due to magnetostriction in the dipolaatom number per domain 810®. Hence, as the atom number

IV. PHASE DIAGRAM FOR
DIPOLAR-NONDIPOLAR MIXTURE

component (Fig.2, B). Increasinga;, induces a transi-
tion to a domain supersolid state (SS-SS) (FRj. A),

increases the number of domains climbs steadily, reaching
a total of 13 once the system hasx210* atoms (18 per
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100

=L

-1 -0.5 0 0.5

FIG. 3. Phase diagram for dipolar mixtures with varying inter-
component scattering length and relative magnetic moment (note that
w2/pn1 < Oimplies antiparallel dipoles). Compared to Fignote the
new phases: binary isolated domains (ID-ID), macroscopic-domain . . . .
immiscibility (beige region), and the modulated miscible regime. Pa- .FIG' 4. Oper_nng the trap for_ an erbium d|po|ar-n0_nd|polar super-
N _ — N solid. (a) Reducing the long axis trap frequerfgyf a cigar-shaped
rametersN; = N, = 5 x 10%, ag; = ap, = 1008, and (fy, fy, f,) = ; . ; .
(15, 150, 150) Hz. trap increases the number of domaiNs whilst simultaneously
' reducing the peak density. (b) Superfluid fraction (density contrast,
) ) ) C,) of the dipolar component also increases (decreases), indicating
component) on the far right-hand side. In contrast, singlean improving superfluid connection, whilst the second component is
component dipolar supersolids typically requir@0* atoms  always a robust supersolid with the superfluid fraction never drop-

per lattice site $-11]. ping below 0.7 (not shown). Parameters: = —7ug and u, = 0,
(811, @12, @22) = (65, 60, 65)ag, Ny = N, = 20000 atoms, and, =
V. GENERALIZATION TO VARIOUS fz = 150 Hz.
DIPOLE COMBINATIONS
Here, we generalize our findings to mixtures in which both VI. ULTRA-LOW-DENSITY SUPERSOLIDS

components can be dipolar, applicable to a wide range of ex- e investigate weakening the axial confinement of a
periments, e.g., erbium-dysprosium mixtures or spin mixturegjipolar-nondipolar spin mixture of erbium, further demon-
of the same species. In Fig, we construct a phase diagram strating the generality of our results to a broad range of
by fixing 111 and exploring the effect of varying; anda;2. A dipole combinations. On the far right of Fig.is a state
solid line indicates a transition from a miscible to an immis-jn the SS-SS regime fof, = 30 Hz. Decreasindy to 6 Hz
cible state, consistent with Fig. For u2/u1 < O the dipoles  jncreases the total number of domains from 7 to 17, whilst

are antialigned, decreasing the energy for dipoles of separaigmultaneously reducing the peak density by a factoe 5.
components to orient in the side-by-side configuration, thus

causing both immiscibility and domain supersolidity to occur
at low a;, (Fig. 3, B). At u,/u; = —1 the modulation is a
perfect reflection about the= 0 plane between the compo- z
nents, and for the range af, considered, the systemformsa S 0k = = = 0= =% =0- = %= 0= == =@ = (= ©= - - =
binary isolated domain (ID-ID) state with 14 domains for only 3
10* atoms in total (Fig3, A). 2¢ .

For similar dipolesu, ~ u1, there is little energy in- 9 : ' ' ' '
centive from the dipolar interactions for the components to~ “| N ’ |
phase separatet4]; hence, the immiscibility boundary in & (ol - - - = = - o ‘o ‘e >
Fig. 3 is close to the nondipolar resuty, = ./ajiax; = ;
1008y, and the components separate to a macroscopic-domain -2 | ]
immiscible state43] (Fig. 3,¢). While we focus on the immis- 10 5 0 5 10
cible domain regime, smallex,, can trigger the formation
of immiscible quantum-stabilized supersolids€] Miscible
quantum-stabilized supersolids are also possible for smaller FiG. 5. ContrastC, of a dipolar-nondipolar mixture of%*Dy
ay2 following a density branch roton instability, indicated in atoms. The dashed line indicates theosition of the maximum
the lower right corner of Fig3, which is explored further density alongx. Red circles are the peaks’®) and green crosses
in Ref. [41]. If we instead considered,, > ad_, we would  are the troughs{"") of density along the dashed line. Other param-
expect qualitatively the same phases as in Bigpart from  eters: 1, 12) = (=10, O)ug, Ny = N, = N/2 = 7000,a,, = 70ay,
the modulated miscible phase. a1 = a = 1008, and (fy, fy, f,) = (21, 150, 150) Hz.

, (pm)
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The increasing number of domains can be explained by thenonotonically increased from close to the ID-SS to deep in
BEC becoming longer, while the spin roton wavelength isthe SS-SS regime. These results are compared to the density
roughly fixed by the confinement length in the direction of contrast, which shows an improved density linking between
dipole polarization. This behavior starkly contrasts with thatdomains (smalle€, ) for looser confinement.

for quantum-stabilized supersolids, which instead require a
certain atom number for a given trap voluni/], and the
supersolid regime is not possible if this criterion is not met
[47-49]. For example, recall the modulated state in Hi¢g), We predict an alternating-domain supersolid state in two-
for which the atom number is insufficient for this trap to attain component dipolar condensates. This binary supersolid exists
supersolidity. Whilst decreasinfy, the superfluid fraction is over a broad region of parameter space and, importantly, it is

VIl. CONCLUSIONS

FIG. 6. Preparation of a domain supersolid through an interaction quench. Simulation of an instantaneous queagh=fie®a, to
a;, = 70ap att = 0, with other parameters from Fi§. Each labeled frame corresponds to a time during the consequent dynamics, and within

each frame the data can be understood row-by-row. Row 1: 5% density isosurface for component 1 colored to the phase and centered such tha
the phase at the origin is 0. Perfect coherence for component 1 would be light blue. Row 2: Column density for component 1 normalized to

peak value over the whole simulation. Row 3: Same as Row 1 but for the second component, but perfect coherence in component 2 would be
red. Row 4: Same as Row 2 but for the second component, with a smaller peak density. Note that the stationary solution for the final parameters

is the state presented in Fig.A Supplementary Video of this simulation is also includéd][
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robust against the excitations caused by crossing the unmod- 1
ulated BEC-to-domain supersolid transition. There is also a
crossover to an adjacent region where one of the components
is supersolid, but the other forms isolated domains. In contras@

to single-component supersolids—which must be stabilizeg 0.5 (b)(c) (d) (e) (f) 1
by quantum fluctuations—alternating-domain supersolids care \

produce numerous lattice sites with relatively small atom% —o=1
numbers, and they have peak densities similar to those of ---0=2

unmodulated BECs, important for their longevity, which is
largely determined by the inelastic three-body collisions that
depend strongly on the density7].

Our results are applicable to various dipole moment com- g 7. phase coherenag for each component = {1, 2} fol-
binations, such as spin mixtures or binary gases comprised @fwing an instantaneous quench from an unmodulated miscible BEC
two atomic species. Interestingly, we even find that a dipoto a domain supersolid state. Labels in the plot coincide with the
lar component can induce supersolidity within a nondipolarframes shown in Figp.
component via their mutual interactions. Our work opens the

door for future investigations into binary supersolid Statessuperfluid connection along the rails, a feature which can

and their excitations, as well as the exploration of novel 2Dbe captured by our generalization of Egh1j. This con-

domain supersolids W'th exotic strl_Jct_ures and vortex_ state ection can still be lost, however, through tightenifyg for
Our results reveal a rich system, within current experimenta] xample

reach, and mark an important step towards long-lived bulk
supersolidity.

Note added. Very recently, we became aware of a related APPENDIX B: DYNAMIC PREPARATION
work addressing supersolidity in an immiscible dipolar-  The preparation of a single-component supersolid has

50 100 150
Time, (ms)

nondipolar mixture $3]. been achieved either through taking an unmodulated BEC
and quenching the scattering length across the unmodulated
ACKNOWLEDGMENTS BEC-to-supersolid transition9f11] or by direct evapo-

- . . . rative cooling into the supersolid statd1[20,21]. The

forvgﬁir;r:ﬁgtl?nl)agig}éuizzlo“ﬁé Pbg:fuLfB![ﬁlgeéoanqdu\gtigg:P ¥e_two-component case affords a wide range of possibilities for

sults resent?ed here havé been achieved Esin the H main supersolid preparation, due to the large number of
P 9 ttnable interaction parameters in the system. Here, we in-

infrastructure LEO of the University of Innsbruck. T.B. : S . :
. vestigate one possibility through tuning the intercomponent
acknowledges funding from FWF Grant No. 14426. We ac- attering lengthag,. Taking an initially unmodulated mis-

knowledge support of the Deutsche Forschungsgemeinsch : ; ” :
. ible dipolar-nondipolar mixture with the parameters from
glgﬁ;’cgesrtrp;g ReEs)Eégr_%hl;?(’) ng::]'& %;rgiiggeggno%ngfgg "ig. 5 and a;» = 658y, we simulate an instantaneous quench
9y to a;o = 70ay. The consequent dynamics are shown in Big.
3bespite the violent nature of the instantaneous quench, the

programme (Erwin Schrodinger Center for Quantum SCIenC%ystem maintains phase coherence throughout the lifetime

fcokavt\:/t)mology), hosted by the Austrian Academy of Sciencesof the simulation, as indicated by the blue (red) isosurface

for component 1 (2), and the solution resembles the target
stationary solution [Fig5]. We also include a Supplementary
APPENDIX A: DENSITY CONTRAST Video of the dynamicsg4].
The onset of periodic density modulation is character- e can dynamically characterize the supersolid quality by
ized by the density contrast, akin to interferometric visibility, Plotting the phase coherence over time. Following Ref. [

defined as (see also Refs2[1,57]) we define the phase coherence as
max __ min 2 dxd o (X, 2 0,(X,y) —
¢, — ooy (A1) a(,:l——fn Y 1Yo (X, V)16, (X, Y) ﬂl’ (B1)
n(rpax + n(r;nln T fR dXdy Vo (X’ y)|2

for each bosonic componeat= {1, 2} and wherenT® and  whered,(x,y) is the phase oi},(x,y) in thez= 0 plane,

n™" are neighboring maxima and minima in the 3D densityand is a fitting parameter to maximize, at each time. The

as one moves along the long direction of the trap. In Big. integration regioriR encompasses the cloud. From this defi-
we graphically depict the line of maximum 3D density in the nition o, = 1 corresponds to perfect phase coherence across
z =0 plane, showing the maxima (red circles) and minimathe BEC. In Fig.7 we present the dynamical evolution of
(green crosses) in the density along this curve. Typically, fothe phase coherence after the instantaneous quench presented
the component with a larger dipole moment this curve liesn Fig. 6. Throughout the total time evolutiom,, does not
alongy = 0, just as it does for single-component supersolidggo below 0.85 for either component, suggesting excellently
[9-11]. However, the nondipolar component has a greatemaintained phase coherence.
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Synchronization is ubiquitous in nature at various scales and fields. This phenomenon not only offers a
window into the intrinsic harmony of complex systems, but also serves as a robust probe for many-body quantum
systems. One such system is a supersolid: an exotic state that is simultaneously superfluid and solid. Here, we
show that putting a supersolid under rotation leads to a synchronization of the crystal’s motion to an external
driving frequency triggered by quantum vortex nucleation, revealing the system’s dual solid-superfluid response.
Benchmarking the theoretical framework against experimental observations, we exploit this model as a novel
method to investigate the critical frequency required for vortex nucleation. Our results underscore the utility of

synchronization as a powerful probe for quantum systems.

Synchronization is a fundamental process whereby two or
more distinct oscillators, initially operating at different intrin-
sic frequencies, adjust their rhythms, eventually evolving to
oscillate in unison [1]. Huygens’ synchronization, named af-
ter its discoverer in the 17th century, is a remarkable exam-
ple of this phenomenon [2]. He observed that two pendulum
clocks, when attached to a common support, eventually syn-
chronize their frequency. Huygens called this the “sympathy
of two clocks”, noting that the weak motion of the shared
support enabled their synchronization. This early observa-
tion laid the foundation for understanding synchronization as
a coupling-driven adjustment of rhythms. Nowadays, syn-
chronization has become a widely recognized phenomenon
that manifests across a broad range of natural and engineered
systems. For instance, it is at the foundation of biological
phenomena, ranging from the synchronous variation of cell
nuclei [3] and the firing of biological oscillators like heart
cells [4] to the coordinated blinking of fireflies [5]. More re-
cently, the concept of synchronization has expanded into the
realm of quantum physics [6-9], being proposed as a signa-
ture of quantum correlation and entanglement [10, 11] and as
an important mechanism in preventing quantum many-body
systems from dephasing [12].

The study of synchronization in coupled oscillators be-
comes particularly fascinating when these oscillators repre-
sent entangled subsystems within a single many-body quan-
tum state or are linked to distinct spontaneously broken sym-
metries of the same system. In the latter case, critical ques-
tions emerge: How do the oscillatory dynamics associated
with each broken symmetry interact under external driving?
Can their motion uncover novel collective phenomena and of-
fer deeper insights into the coexistence of these symmetries?

Supersolid states of matter offer a compelling example, in
which two symmetries spontaneously break simultaneously
[13-15]. These are global gauge symmetry, responsible for
macroscopic phase coherence, and translational symmetry,
which establishes crystalline order within the system. Re-
cently, many-body quantum states with supersolid proper-

ties have attracted a great interest in a broad range of low-
energy systems, including ultracold atoms [16-20], helium
crystals [21, 22], superconductors [23-25], and are even pre-
dicted in high-energy matter such as neutron stars [26, 27].

Among these diverse platforms, dipolar quantum gases set
the paradigm [28, 29]. In such systems, the interplay be-
tween short-range contact interactions, characterized by a tun-
able s-wave scattering length a, long-range magnetic dipole-
dipole interactions with a fixed dipolar length a44, and dipolar-
enhanced quantum fluctuations leads to the emergence of su-
persolid ground states [29]. What makes a supersolid intrigu-
ing in the context of synchronization is the coexistence of su-
perfluid and solid nature — each distinctly responding to ex-
ternal perturbation, while being described by a single macro-
scopic wave function. This duality raises key questions. For
instance, how can irrotationality of the superfluid flow coex-
ist with rigid body rotation of the solid in a supersolid system
of indistinguishable particles? Is there a “clock sympathy”
between the superfluid and solid components that enable syn-
chronized motion, or do they operate independently in this
unique quantum state?

We address these questions through a combined theoreti-
cal and experimental investigation on the behavior of a rotat-
ing supersolid. Following theoretical predictions [27, 30-34],
such systems have proven to be a fascinating playground to
tackle general problems related to rotational flow [33], non-
classical moment of inertia [27, 31], and quantization of angu-
lar momentum [32] in the broad field of modulated superflu-
ids [30, 34, 35]. Our starting points are the recent realization
of circular supersolids exhibiting two-dimensional crystalline
order [36, 37] and the observation of vortex nucleation in this
system [34]. In this study, we focus on the rotational dynamics
by tracing the trajectory of the solid component and connect it
to the vortex nucleation of the superfluid, presented in Fig. 1.

Figure 1(a) displays the calculated density isosurfaces for
the supersolid ground state of a 64Dy dipolar quantum
gas for our experimental parameters. Our simulations em-
ploy the zero-temperature extended Gross—Pitaevskii equa-
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FIG. 1. Synchronization and concurrent vortex nucleation. (a) Rotating supersolid from eGPE simulation, the isosurfaces are at 20%
(red) and 0.8% (beige) of the maximum density, representing three droplets (one droplet highlighted in plain red color) and the halo, respec-
tively. (b) In-plane trajectory of the droplet’s tip (black) together with its decomposition in guiding center (green) and cyclotron (orange)
motions. The light-blue shaded area highlights the time window in which a vortex is detected inside the system. The 3D isosurfaces (i)-(iv)
correspond to different density frames during the synchronization process, with the black tubes corresponding to vortices. The insets show
a schematic illustration of the droplet epitrochoidal (b;) and circular (bz) trajectory followed by the droplet. (c) Schematic representation
of the decomposition in guiding center and cyclotron coordinates. The results are obtained for parameters: aqq = 130.8 ao, trap frequencies
[wi,w:] = 27 x [50,95] Hz, atom number N = 50000, as = 95 ag, magnetic field tilt angle § = 30°, Q = 27 x 15Hz, and dissipation

constant v = 0.

tion (eGPE), incorporating quantum fluctuations [38—41]; see
Methods. This approach has been previously demonstrated as
highly effective in capturing the complex properties of dipo-
lar supersolid states [34, 36, 37]. Note that, in displaying the
isosurfaces, we have intentionally made the high-density crys-
talline peaks (hereafter referred to as droplets) and the low-
density superfluid isosurface (halo) visually distinguishable.
However, the particles are distributed continuously through-
out the system, and there are not two separate components but
a single, unified quantum state. As shown in the figure, due
to the magnetic nature of the dipolar interactions, the droplets
align along the magnetic field axis, B, whose axis is tilted
relative to the vertical axis.

To impart angular momentum to the system, we rotate the
magnetic field at frequency €2, a technique named magneto-
stirring [34, 42, 43]. Figure 1(b) shows the real-time evolution
of the system responding to rotation. The full dynamics are
captured through following the trajectory of the tip of a sin-
gle droplet (black filled circle in (a)), as shown by the solid
black line in (b). Surprisingly, after a few hundred millisec-
onds, we observe a drastic change in the droplet’s rotational
dynamics. Initially, the motion exhibits a double helicoidal
behavior, as a consequence of precession and revolution pro-
ceeding at different frequencies. This type of trajectory draws
an epitrochoidal path, as illustrated in the inset (b;). On a
longer timescale, the motion evolves into a circular trajec-
tory (bz), in which precession and revolution are frequency
locked. When studying the phase pattern of the supersolid
during the evolution, we remarkably observe a concurrency

between the appearance of vortex nucleation and the abrupt
trajectory change. This behavior can be clearly seen by the
3D density isosurfaces (i)-(iv) where the vortex cores are vi-
sualized by black tubes (see Methods).

To gain further insights, each droplet’s response to rotation
can be decomposed into two circular motions. The revolution
around the trap center axis (guiding center axis) is described
by the coordinates (X,Y"), and the precession around its own
vertical axis (cyclotron axis) is captured by the coordinates
(&,m) [44-46]; see Fig. 1(c).

These two components exhibit notably distinct behaviors,
as shown in Fig. 2(a) and (b). Throughout the time evolution,
the cyclotron coordinates, describing precession, oscillate at
a frequency, w., matching the external driving frequency 2
of the magnetic field B. In contrast, the guiding center fre-
quency, wy, is initially significantly smaller than €}, then grad-
ually increases, and eventually synchronizes with the exter-
nal driving frequency; for the derivation of w. and w, see
Methods. We observe that synchronization occurs concur-
rently with nucleation of vortices in the system. Figure 2(d)
shows the number of vortices extracted within two different
radii of interest, see Fig.2(c). Nucleation in the outer den-
sity region already promotes frequency locking between the
cyclotron and guiding center motion, as evidenced by the in-
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the degree of synchronization (i.e. frequency alignment); see
Fig 2(e). Eventually, fully synchronous motion (x = 1) occurs

as vortices approach the center of the supersolid.

crease in the parameter K = 1 — ‘ , which quantifies

When repeating the calculations of Fig.2 for various 2
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FIG. 2. Quantification of synchronization. Time evolution of the
cyclotron (a) and guiding center (b) coordinates. (c) Two exemplar
frames showing the column density and the central phase slice of
the rotating supersolid at ¢ = 96.2ms and ¢ = 670.7ms. The
solid and dash-dotted circles mark the cutoff radii »* = 6 um and
r* = 4.5 um used to count the vortex number (d) time averaged over
35ms, with the same linestyle as the circles. (e) Frequency align-
ment k, as defined in the main text. (f) Total angular momentum
(L) and angular momentum of the droplets Laropiets, Where (1)-(iv)
refer to the ones of Fig. 1(b). Across all subplots, the blue shaded re-
gion highlights when vortices enter within * = 4.5 yum. Parameters
as in Fig. 1.

(Methods), we find that vortex-induced synchronization is a
robust mechanism, occurring across a wide range of {2 > Q*
values. Here, Q* is the critical frequency required for dy-
namical vortex nucleation [32, 34, 47]. However, when ro-
tating the supersolid at frequencies sufficiently high to have
a ground state energetically supporting vortices, yet still be-
low Q*, our driven supersolid does not reach synchronization,
i. e. equilibrium, in the considered timescale. Similar lack of
equilibration is occurring in the isolated droplet regime; see
Fig. 3 and later discussion.

The concurrency between synchronization and vortex nu-
cleation is clearly reflected by the behavior of the total an-
gular momentum (L), plotted in Fig.2(f). Initially, there
is a low and constant value of (ﬁz), (1). In this regime,
(ﬁz) ~ Ldroplets = I x Q, following a rigid-body rotation but
with a non-classical moment of inertia  [14, 32]. Here, the

FIG. 3. Independent droplet regime. (a) Time evolution of the
droplet’s edge trajectory and corresponding cyclotron (b) and guiding
center coordinate (c). (d) Frequency alignment . All the results are
obtained for the same parameters of Fig. 1, except for as = 90 ao.

response is dominated by the solid nature of the supersolid.
Around t ~ 400 ms, (L) rapidly increases when vortices
move towards the center (ii), marking the onset of synchro-
nization. Once the synchronization is complete (x ~ 1), the
angular momentum stabilizes at a plateau (iii)-(iv), indicat-
ing that an equilibrium state has been reached in the rotating
frame. Here, small oscillations around the equilibrium value
indicate variations in the number of vortices and their posi-
tions (iii) [48], or excitations of the droplet lattice [27].

These results reveal that the synchronization dynamics are
inherent to the dual solid-superfluid response to rotation of the
system. Indeed, by repeating similar real-time simulations but
starting with a droplet crystal, with a negligible superfluid link
connecting the droplets and no vortices, we observe the ab-
sence of synchronization (x < 0.35) as shown in Fig. 3. The
gradual increase might be due to a residual halo connecting
the droplets.

Building on our theoretical predictions, we explore poten-
tial synchronization phenomena experimentally. In brief, our
dipolar supersolid of 14Dy is produced via direct evapora-
tive cooling [20, 36]. We confine the system in a cylindri-
cally symmetric optical dipole trap with harmonic frequencies
(wy,w;). During the last stages of evaporation, we tilt B by
# = 30° and we produce a long-lived supersolid with four
droplets. We then rotate the magnetic field with a constant an-
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FIG. 4. Experimental observation of the synchronization process.
Angular position of the droplets (a;, by) in the rotating frame as a
function of time in experiment (a) and simulation (b). The orange
and green lines are guides to the eye for the unsynchronized and syn-
chronized cases, respectively. (az, az) 2D Fourier transform of the
experimental droplet angular position for early [0,50] ms and late
[60, 110] ms time intervals, respectively. (bz, bs) 2D Fourier trans-
form of the theoretical droplet angular position for early [0, 200] ms
and late [200, 400] ms time intervals, respectively. The colorbars in
(a2, b2) and (as, bg) go from white to orange and white to green, re-
spectively, with the three largest peaks highlighted in black. The
experimental data is taken for 2 = 27 x 9Hz, trap frequencies
[wi,w:] =27 x [50.5(6),137(3)] Hz, B=18.24(2) G, N = 69000.
Theoretical simulations are done for 2 = 27 x 9Hz, N = 60000,
as = 90 ao, trap frequencies [w, ,w.] = 27 x [50, 149] Hz, dissipa-
tion parameter v = 0.08.

gular velocity 2 = 27 x 9 Hz for 300 ms following the mag-
netostirring protocol [34, 43]. Finally, we track the position
of the rotating droplets by taking destructive phase-contrast
images along z after 3 ms of expansion, during which the B
is kept static and tilted. By fitting four Gaussian functions to
the acquired column density profiles, we extract the center-of-
mass position of each droplet and obtain their azimuthal an-
gle ¢ror = arctan(Y/X) to detect the guiding center motion,
which is more convenient when plotting all droplet trajecto-
ries together. We note that the initial tilt of the magnetic field
breaks the cylindrical symmetry of the system, making the
initial position of the four droplets repeatable over different

experimental runs.

Figure 4 presents the experimental (a) and theoretical (b)
results by plotting ¢, of each of the four droplets. Visual-
izing the data in the rotating frame defined by 2 makes the
effect of synchronization strikingly apparent. Constant ¢,
means frequency-locking with 2, whereas deviation from this
behavior signalizes non-synchronous motion. Both theory and
experiment show that ¢, initially traces an oblique path, in-
dicating that the droplets’ center of mass is moving in the ro-
tating frame. For later times, ¢ot becomes constant: the sig-
nature of synchronization with the external driving frequency.
Comparing two-dimensional Fourier transforms in ¢, and ¢
of the data for two selected time intervals, one at early times
and the other at later times, further confirms this behavior. For
each selected time interval, this gives three peaks, reflecting
the periodicity of ¢, in time. At early times, peaks appear
at a finite frequency and produce a tilted pattern (az-bs), indi-
cating an asynchronous motion. At later times, instead, they
align at zero frequency, the signature of synchronization (az-
bs). Both the data and their Fourier transform show an excel-
lent agreement with the theory and confirm the experimental
observation of synchronization. We note that, as is common
in vortex studies, experimental noise and temperature effects
lead to a faster vortex nucleation than the one predicted from
mean-field theory [43, 49-51].

As the theory pinpoints a systematic correlation between
vortex entering the system and the synchronization of the
droplet motion, we can use the latter mechanism to further
extract information on the vortex nucleation in the supersolid.
Particularly interesting is the regime of low rotation frequen-
cies and the quest of the minimal 2 for which a vortex is
energetically stable. To address this point, we now develop
a different protocol. Instead of driving rotations at constant
2, we implement a scheme, in which €2 is slowly increased
linearly from zero to Q = 27w x 8Hz over 200ms. Dur-
ing the initial part of the slow ramp, the system remains syn-
chronized since it adiabatically follows its ground state in the
rotating frame. This is shown in Fig.5 by the constant ¢,
(straight green lines). Around 2 ~ 27 x 5 Hz the trajectory
of the droplets exhibits a sudden change. Here, the system
desynchronizes (orange lines) since it has to adjust to the new
ground state in the rotating frame, now possessing a vortex.
Around 2 ~ 27 X 6 Hz, the system restores the equilibrium
in the rotating frame and the synchronization condition, with
the ¢, forming a straight horizontal path again, suggesting
that the first vortex has entered. Thus, from this dynamics,
we can infer an upper limit for the energetic critical rotation
frequency for vortex nucleation to be 2, < 27 x 6 Hz. This
value is in excellent agreement with the predicted critical fre-
quency, obtained from calculations of the supersolid ground-
state in the rotating frame, as shown in Fig. 5(b). The corre-
sponding angular momentum exhibits a sudden jump around
Q. ~ 2m x 5Hz when the ground state undergoes a transi-
tion from the zero- to the one-vortex state. The amplitude of
the jump quantifies the angular momentum carried by the vor-
tex at the center of the supersolid, which is equal to 0.72h.



FIG. 5. Synchronization during a slow ramp of the driving ro-
tation frequency. (a) ¢.ot measured at different points of the slow
ramp of 2 from 0 to 27 x8 Hz in 200 ms. The orange and green lines
are a guide to the eye for the unsynchronized and synchronized cases,
respectively. Experimental parameters: trap frequency [w,w.] =
21 X [50.3(4),140.1(5)] Hz, N = 69000, B=18.30(2) G. (b) (f,z)
for ground states in the rotating frame varying €2 together with ex-
emplary density isosurfaces. Simulation parameters: N = 70000,
as = 92 ao, trap frequencies 27 x [50, 140] Hz.

As pointed out in Ref.[32], the sub-unity value is directly
connected to the reduced superfluid fraction characteristic of
modulated superfluids. The nucleation of a vortex at this low
frequency is concurrent with a dynamical instability of the su-
perfluid quadrupole mode, so far not observed [34].

In conclusion, we have demonstrated that synchronization
phenomena arise in rotating dipolar supersolids driven by an
external magnetic field. We find that the synchronization pro-
cess, driven by vortex nucleation, reflects the system’s ap-
proach towards equilibrium and reveals the solid-superfluid
dual nature of the supersolid. By decomposing the droplet
motion into cyclotron and guiding center coordinates, we
differentiate between precession around the cyclotron axis,
which consistently synchronizes with the driving frequency,
from global revolution. At large rotation frequencies, the lat-
ter initially displays asynchronous motion. Here, while the
supersolid’s ground state in the rotating frame contains vor-
tices, the driven supersolid begins out of equilibrium and is
vortex-free. As it converges toward its ground state over time,
the system only synchronizes when vortices enter. Further-
more, our analysis of the supersolid’s angular momentum con-
firms that synchronization arises from the delayed superfluid

response, in contrast to the immediate solid-like response. Fi-
nally, we identify the synchronization as a novel diagnostic
tool to measure the critical rotation frequency required for vor-
tex nucleation. Future studies could use desynchronization
and resynchronization during the slow-down of the driving
frequency as a probe to understand vortex emission dynam-
ics in analog to glitches observed in neutron stars [27, 52].
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Methods

Theoretical description

We study the ground state and dynamics of a supersolid
state using an extended Gross-Pitaevskii formalism. We con-
sider a supersolid made of 64Dy dipolar atoms of mass
m trapped in a cylindrically symmetric harmonic potential
V(z,y,z) = sm [w}(2? +y?) + w22?], where wy (w.) is
the radial (axial) trap frequency. At zero temperature, the
inter-particle interaction is described by the pseudo-potential

3h2add 1-— 3(é(t) . I')2
m r3 '

drh2ag

Ur,1) = =—=*4(r) + (S

The first term represents the short-range repulsive con-
tact interaction, characterized by the tunable s-wave scat-
tering length as. The second term represents the long-
range anisotropic dipole-dipole interaction. For %Dy atoms,
aga = 130.8ag. For the experimentally relevant trap ge-
ometries and atom numbers, we find two-dimensional super-
solid ground states for e€gqg = agq/as = 1.3. The unit vector
é(t) = (sinf cos p(t),sinfsin p(t), cosd) indicates the po-
larization direction of the dipoles, which is set by the external
magnetic field B. In our study, B has a fixed angle of § = 30°
with respect to the vertical z—axis. The time-dependent az-
imuthal angle is p(t) = fot dt’Q2 ('), where Q(t) is the angu-
lar velocity at time .

Under this formalism, the extended Gross-Pitaevskii equa-
tion (eGPE) reads [38, 41]

W(r,t
im0 (o i) e e ) By, (52
where Lqp is the Gross-Pitaevskii operator defined as
h2v?2
[’GP [\I/(I‘, t)] - |: om + V(I7 Y, Z)

+/d3r’U(r—r’,t)|\I/(r',t)|2 (S3)

MQFM(mﬂ ,

with U(r,t) being the condensate wave function. The
last term of Lgp represents the Lee-Huang-Yang correc-
tion describing quantum fluctuations [53, 54], with coeffi-
cient yqr = 1?38—”72\/%1% {Q5 (€aq)}, where Qs (eqq) =
fol du (1 —eqa + 3u25dd)5/2. This term is necessary for the
stabilization of the supersolid state against collapse [41].

In Eq. (S2) the parameters o and y determine the type of
evolution. Imaginary time evolution {&v = 0,y = 1} is used
to find the ground state of the system. Real-time evolution
corresponding to {« = 1, = 0} is used in the study of syn-
chronization dynamics in Figs. 1, 2, and 3. Complex-time evo-
lution with {«v = 1,+ # 0} captures the dynamics under dis-
sipation, accelerating the nucleation process [27], and provid-
ing a closer match to the experimental results shown in Fig. 4.
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FIG. S1. Trajectory of the droplet’s tip (black line) and center of
mass (green line) for the (a) unsynchronized and (b) synchronized
state. For the unsynchronized state we show the time dynamics for
t < 300 ms, and for the synchronized state we show the time dynam-
ics for ¢ > 800 ms. The other parameters are the same as Fig. 1 in
the main text.

However, accounting for dissipation through a single constant
parameter < is a simplified approach, whereas in experiments
the situation is more complicated, e. g. the spatial dependence
of the thermal cloud [55]. Indeed, the observed dynamics are
typically faster than the one in the simulation, and may call
for more sophisticated finite temperature theories to reconcile
this difference [56].

It is important to compare the results of the real-time evo-
lution with the actual ground-state, towards which the system
is expected to evolve. We calculate the ground state in the ro-
tating frame. The effective Hamiltonian in this frame includes
aterm —QL, in Eq. (S3), where L. = xp, — yp, is the an-
gular momentum operator. We use this approach to generate
Fig. 5(b).

Both in the real (dynamics) and imaginary (ground-state)
time evolution, we identify the presence of vortices inside the
system by detecting 27 phase windings of the wave function
within a radius r* centered at the origin. In Fig.1 we use
r* = 4.5 ym. To visualize the vortex tubes in Fig. 1 and Fig. 4,
we plot isosurfaces of the velocity field.

Coordinates decomposition

To reveal the dual nature of the system’s response, we de-
compose the droplet trajectory into its center-of-mass motion
(guiding center coordinate) and precession motion (cyclotron
coordinate). These two sets of coordinates are extensively
used in e. g. plasma orbit theory [44] and, more recently, to
study rotating BECs [45, 46]. We extract these coordinates
by identifying the position of the density maxima in two dis-
tinct z-slices of the 3D wavefunction. First, we use the den-
sity slice at z = 0 to determine the position of the center of
mass of each droplet relative to the origin, which we asso-
ciate with the guiding center coordinates (X,Y’). Next, the
density slice at z = 2.5 um is used to identify the position of
the edge of each droplet, denoted as (z4,yq). The cyclotron
vector (£,7) is then obtained by subtracting these two quan-
tities: (&,m) = (x4,yq) — (X,Y) (see Fig. 1(c) in the main



text). The choice of the z-slice for z # 0 influences the mag-
nitude of the cyclotron vector but does not affect its orbital
frequency. Importantly, our results remain robust regardless
of the chosen z-slice and the choice of the droplet. In Fig. S1
we illustrate the in-plane projected position of the droplet’s
tip (black line) and droplet’s center of mass (green line) for
the (a) unsynchronized and (b) synchronized state, highlight-
ing the analogy to the epitrochoidal and circular orbits shown
as a sketch in the insets (b -bs) of Fig. 1. For the calculation of
the frequency alignment x, we extract the instantaneous fre-
quencies of the guiding center vector, w,, and of the cyclotron
vector, w.. We compute those quantities by first extracting the
angle of the guiding center and cyclotron vector at time ¢ from
the respective coordinates, namely ¢, = arctan (Y/X) and
. = arctan (n/£). We then calculate the time derivatives
wg = Ay /At and w. = Ap./At, with At = 3.5ms.

Droplet’s angular momentum calculation

The guiding center and cyclotron coordinates provide a
comprehensive framework to describe the motion of the
droplets during the synchronization process, offering a tool
to estimate the droplet’s angular momentum. In general, the
total angular momentum (ﬁz) of a rotating supersolid can be
decomposed into two contributions, Lg and Ly [27, 31, 32].
Here, Ls represents the angular momentum associated with
the solid response, reflecting the system’s non-zero moment
of inertia, whereas L., is the superfluid angular momen-
tum stored in the form of quantized vortices. We estimate
Lg by summing the contributions from both the cyclotron mo-
tion and the guiding center motion of the droplets, giving the
droplet angular momentum

Ldroplets = Lguid + Lcycl
Ng

= IO Wguid + Idroplets Weyel »
i=1

(54

where N, is the number of droplets in the supersolid state.
Since these motions occur around different axes, we com-
pute two distinct moments of inertia. The moment of inertia
Ii for the ¢-th droplet, rotating around its own axis, is

roplets
calculated through [57]
i (o3 — ‘72)2
Idroplets = §mN1 o,g ¥ O_Z ) (S5)

where o, and o, are the droplet’s widths, obtained by fitting
the column density with a Gaussian, and NN; is the estimated
number of atoms in the droplet. The moment of inertia for the
supersolid as a whole, rotating around the origin, is computed
with

(y* —2%)

Iy=m 2~/
0 (y? + 22)

; (56)
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FIG. S2. Synchronization process for different values of as. (a)
Ground state density distributions with § = 0°, (b) angular momen-
tum (L. ) during the time evolution with = 30° and (c) frequency
alignment x. The other parameters are the same as Fig. 2.

where (-) is the expectation value calculated for the initial to-
tal wave function, with the reference frame centered at (0, 0).
Previous work has shown that this estimate deviates from the
true moment of inertia by approximately 5% [31]. The evolu-
tion of Lgroplets 1s shown in Fig. 2(e).

Synchronization for different scattering lengths

The synchronization process only occurs in the supersolid
phase. This becomes clear when we study the angular mo-
mentum and frequency alignment « for different values of a.
Figure S2 shows these two quantities for initial states at differ-
ent a,, spanning from as; = 95 ag, where the supersolid has
strong superfluid connection between droplets, to as = 90 ag,
in the independent droplet regime. In this data, we magneto-
stir at a constant frequency {2 = 27 x 15 Hz. In the supersolid
regime, the angular momentum exhibits a behavior similar to
Fig.2(e) in the main text: it is initially constant, before sud-
denly increasing and ultimately stabilizing at a plateau when
vortices move to the center. For this dynamical protocol at
constant €2, the onset of vortex nucleation—marking the be-
ginning of synchronization-reflects low frequency quadrupole
mode resonances, which act as a seed for vortex nucleation, as
discussed in Ref. [34]. In contrast, in the independent droplet
regime the angular momentum increases gradually without
any sharp rise, indicating that vortices do not enter and syn-
chronization is not occurring in an experimentally feasible
timescale.
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FIG. S3. Frequency alignment « for different values of rotation fre-
quency 2. The other simulation parameters are the same as Fig. 2.

To quantitatively relate the results across different scat-
tering lengths, we compare the frequency alignment . In
Fig. S2(c) we show that synchronization is only achieved
when the initial state is a supersolid. We interpret these results
as follows: when the density coupling between droplets is
negligible, this dynamical protocol is insufficient to bring the
system to its equilibrium configuration in the rotating frame—
where all droplets rotate at the same frequency—and, thus, syn-
chronization fails to occur within an experimentally accessi-
ble timescale. We hypothesize that synchronization may never
occur in the independent droplet regime in an experiment. In
the theory, we use a single valued wavefunction that is forced
to have a residual coupling between the droplets, eventually
converging to a stationary solution to the underlying equation.

Synchronization for different 2

It is interesting to consider the synchronization process for
different fixed rotation frequencies. In Fig. S3 we extend the
synchronization analysis to three different driving frequencies
Q). To compare the results, we use « as defined earlier. For
Q = 27 x 5 Hz, x never reaches 1, meaning that synchroniza-
tion does not occur within 1 s. However, with 2 = 27 x 10 Hz,
k grows faster than the one for 2 = 27 x 15 Hz. As mentioned
in the previous section, this earlier onset of vortex nucle-
ation could be attributed to a resonance with a low-frequency
quadrupole mode, which facilitates vortex formation, as sug-
gested in Ref. [34]. In this analysis, we focused mainly on
low rotation frequencies to isolate the role of individual vor-
tices on the system’s dynamics and to capture a few hundred
milliseconds of pre-synchronization behavior. However, we
expect similar dynamics to occur at higher rotation frequen-
cies, albeit on faster timescales [34].

Experimental analysis

To measure the angular position of the droplets from ex-
perimental images, we use a fit function. We first apply a

FIG. S4. Exemplar fit procedure. a) Experimental image, b) fit result.
The colored corners of the square, with edge length a, indicate the
fitted positions of the four droplets. The guiding center origin (z.,
yc) is indicated by the solid black dot. For this image, the extracted
rotation is ¢ = —5.15°.

Gaussian filter of size 0 = 1 px (~0.5 pm) for noise reduc-
tion, before normalizing each image to the peak density. Each
image is then fitted with a function defined as follows. Four el-
liptical 2D Gaussian density functions with four variable peak
densities n;, j = 0,1,2,3 are centered on the corners of a
square, with variable length a, phase ¢ and 2D center of mass
position x., y. (guiding center origin), see Fig. S4, defining a
total of 8 free parameters. The widths of the individual Gaus-
sian distributions defining each droplet are not free parame-
ters, but pre-calibrated to minimize fit residuals and fixed for
all images. The orientation of each Gaussian (its cyclotron
rotation) is also fixed and locked to the polarization angle, a
feature we have verified for this dataset and in previous works
[34, 43]. The angular position of the droplets is then given
by ¢, assuming a circularly symmetric supersolid, such that
¢ror,j = ¢ + jm/2. We probe the robustness of our fit by tak-
ing two unique initial conditions for each image. First, we set
¢ = 0 and perform the fit, then this is repeated for ¢ = 7 /4,
i.e. the maximally different angle. We have verified that, inde-
pendent of the initial condition, our results remain unchanged.

Fourier transform analysis

To study the droplets’ angular position in the rotating
frame ¢, as a function of time, we performed a 2D Fourier
transform from (¢yot,t) to (kg, f) space of the diagrams in
Fig. 3(a)-(b), both before and after synchronization. For the
experimental data, we first bin the coordinates (¢yot,t) in a
2D histogram using a 120 x 250 grid and then apply the 2D
Fourier transform for two time intervals, one before synchro-
nization ([0, 50] ms) and one after ([60, 110] ms). The position
of the peaks in Fourier space reflects the periodicity in time
and space. The frequency f corresponds to the droplets’ ro-
tation frequency in the rotating frame, divided by the number
of droplets (four, in our case), and kg, represents the angu-
lar periodicity of the droplets. Since the supersolid state con-
sists of four droplets, spaced by 7/2, all Fourier peaks have
ks = 2/m ~ 0.6rad"'. In presence of Fourier peaks with
a finite value of k4 and f, the system is not synchronized,



whereas when the frequency is peaked at f = 0, the system is
fully synchronized. We applied the same analysis to the theo-
retical data and observed a similar structure, with the peaks at
finite f being closer to zero, reflecting slower dynamics.

~

S Density =

¢rot (rad)
5

/2

0 100 200 300 400 500

FIG. S5. Numerical simulations for synchronization during rotation
frequency ramp. The upper panels show the column density nor-
malized to its maximum value and the central phase slice for some
frames of the supersolid state during the simulation, selected at times
(i)-(iii) indicated by the dashed vertical lines in the lower panel. The
lower panel shows the angular position of the droplets as a func-
tion of time, for a state obtained with parameters: N = 60000,
as = 90 ag, [wz,wy,w:] = 27 X [51,50, 149] Hz, dissipation pa-
rameter v = 0.05.

Numerical simulations of an (2 ramp

In the main text, we have shown that a slow increase of
the rotation frequency leads to a desynchronization and subse-
quent resynchronization following a vortex nucleation. Here,
we numerically simulate this situation with a protocol sim-
ilar to what has been applied in the experiment, see Fig.5.
In Fig. S5 we show an example where the rotation frequency
/27 is linearly increased from 0 to 15 Hz over 500 ms.
Throughout the full evolution, we track the center of mass of
the droplets in the rotating frame, ¢.o¢. The theoretical sim-
ulation reveals the same behavior as the experimental data.
Initially, the droplets remain mostly stationary in the rotat-
ing frame (i). As  exceeds the critical value for vortex nu-
cleation, the droplets begin to lag behind the magnetic field
(moving faster in the rotating frame), indicating a lack of syn-
chronization. Around ¢ ~ 350 ms the vortices approach the
system (ii) and eventually enter, restoring the synchronization
condition and reaching the stationary configuration in the ro-
tating frame (iii).
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