Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons

by E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, M. Gustavsson, M. Dalmonte, G. Pupillo, H.-C. Nägerl
Abstract:
Fluctuations arising from Heisenberg’s uncertainty principle enable quantum systems to exhibit phase transitions even at zero temperature. For example, a superfluid-to-insulator transition has been observed for weakly interacting bosonic atomic gases. Here the authors report a novel type of quantum phase transition in a strongly interacting, one-dimensional quantum gas of bosonic caesium atoms. The results open up the experimental study of ultracold gases in a new regime.
Reference:
Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons,
E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, M. Gustavsson, M. Dalmonte, G. Pupillo, H.-C. Nägerl,
Nature, 466, 597-600, 2010.
Bibtex Entry:
@Article{Haller2010,
author={Haller, E. and Hart, R. and Mark, M. J. and Danzl, J. G. and Reichs{"o}llner, L. and Gustavsson, M. and Dalmonte, M. and Pupillo, G. and N{"a}gerl, H.-C.},
title={Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons},
journal={Nature},
year={2010},
month={Jul},
day={01},
volume={466},
number={7306},
pages={597-600},
abstract={Fluctuations arising from Heisenberg's uncertainty principle enable quantum systems to exhibit phase transitions even at zero temperature. For example, a superfluid-to-insulator transition has been observed for weakly interacting bosonic atomic gases. Here the authors report a novel type of quantum phase transition in a strongly interacting, one-dimensional quantum gas of bosonic caesium atoms. The results open up the experimental study of ultracold gases in a new regime.},
issn={1476-4687},
doi={10.1038/nature09259},
  arxiv = {https://arxiv.org/abs/1004.3168},
url={https://doi.org/10.1038/nature09259}
}