3D array of large-spin fermions

3D array of large-spin fermions

In joint theoretical and experimental work with our theory colleagues A.-M. Rey (JILA) and B. Zhu (ITAMP) we investigate dipolar induced magnetization-conserving spin exchange dynamics with fermionic Er in a 3D optical lattice

The ERBIUM lab

The ERBIUM lab

The ERBIUM lab

Excitation spectrum of a trapped dipolar supersolid

Excitation spectrum of a trapped dipolar supersolid

In a combined theory and experimental work, we study the elementary excitations of trapped dipolar quantum gases crossing from regular superfluid to supersolid.

First Dipolar Quantum Mixtures!

First Dipolar Quantum Mixtures!

We have created for the first time a dipolar quantum mixture by combining two highly magnetic atomic species, Erbium and Dysprosium.

Observation of roton quasiparticles in Erbium

Observation of roton quasiparticles in Erbium

In collaboration with our theory collaborators from Innsbruck and Hannover, we have observed for the first time so-called roton quasiparticles in an ultracold bosonic gas of erbium atoms.

Double MOT …

Double MOT …

… of cold erbium (yellow) and dysprosium (red) atoms. © IQOQI

Laser setup …

Laser setup …

… for slowing and trapping erbium and dysprosium atoms. © IQOQI

Our dipolar quantum gas group …

Our dipolar quantum gas group …

…we work with highly magnetic Erbium and Dysprosium atoms, which we cool to Nanokelvin temperatures in oder to explore the fascinating physics of the quantum world.

Working in ultrahigh vacuum

Working in ultrahigh vacuum

All our experiments are carried out at pressures of 10^(-11) mbar. In order to achieve these ultrahigh vacuums, carefully designed chambers need to be machined and assembled.

Trapping and cooling of quantum particles

Trapping and cooling of quantum particles

In order to trap and cool Erbium and Dysprosium in magneto optical traps, we use one of their narrow-linewidth transitions. These transitions need yellow laser light for Erbium and red one for Dysprosium.

The Dipolar Quantum Gas Group is one of the three teams composing the Innsbruck Center for Ultracold Atoms and Quantum Gases. We focus on highly magnetic magnetic Lanthanide atoms, Erbium and Dysprosium, which are a novel and powerful resource for realizing dipolar quantum matter.

The group, led by Francesca Ferlaino, is located at the  Institute for Experimental Physics (IExP) of the University of Innsbruck and at the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences.

We have three experimental apparatuses. The ERBIUM machine operates on Er atoms and produced the first Er Bose-Einstein condensate and degenerate Fermi gas. The ER-DY machine is studying degenerate mixtures of two different lanthanides: Er and Dy. The T-Reqs is currently under construction and aims at studying Rydberg states of Er. A new theory sub-division within our group is under development.

News from the labs
No post found

Group news
We report on the achievement of Bose-Einstein condensation of erbium atoms and on the observation of magnetic Feshbach resonances at low magnetic fields. By means of evaporative cooling in an optical dipole trap, we produce pure condensates of Er168, containing up to 7×104 atoms. Feshbach spectroscopy reveals an extraordinary rich
Keep Reading ...
Welcome and goodbye
No post found