Vortices in a dysprosium gas

Vortices in a dysprosium gas

By stirring the magnetic field which polarizes the atoms in a dysprosium condensate, we were able to generate vortices–tiny quantum tornadoes–in a dipolar gas for the first time!

Bloch Oscillations

Bloch Oscillations

By letting an erbium quantum droplet fall under gravity through an optical lattice, it is possible to understand the inter-atomic interactions and quantum fluctuations through variations of the Bloch oscillation.  

Long-range interactions in the ultracold 2022-registration open

Long-range interactions in the ultracold 2022-registration open

ERC Advanced Grant DymetEr has been funded!

ERC Advanced Grant DymetEr has been funded!

Happy 10th Birthday to the first Erbium BEC!

Happy 10th Birthday to the first Erbium BEC!

Post-Doc Opening 2022!

Post-Doc Opening 2022!

Phase coherence in out-of-equilibrium supersolid states of ultracold dipolar atoms

Phase coherence in out-of-equilibrium supersolid states of ultracold dipolar atoms

By quenching the contact interaction, it is possible to destroy the phase coherence in a dipolar supersolid. However, the supersolidity is “repaired” when reversing the dephasing process.  

3D array of large-spin fermions

3D array of large-spin fermions

In joint theoretical and experimental work with our theory colleagues A.-M. Rey (JILA) and B. Zhu (ITAMP) we investigate dipolar induced magnetization-conserving spin exchange dynamics with fermionic Er in a 3D optical lattice

The ERBIUM lab

The ERBIUM lab

The ERBIUM lab

Excitation spectrum of a trapped dipolar supersolid

Excitation spectrum of a trapped dipolar supersolid

In a combined theory and experimental work, we study the elementary excitations of trapped dipolar quantum gases crossing from regular superfluid to supersolid.

The Dipolar Quantum Gas Group is one of the three teams composing the Innsbruck Center for Ultracold Atoms and Quantum Gases. We focus on highly magnetic Lanthanide atoms, Erbium and Dysprosium, which are a novel and powerful resource for realizing dipolar quantum matter.

The group, led by Francesca Ferlaino, is located at the  Institute for Experimental Physics (IExP) of the University of Innsbruck and at the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences.

We have three experimental apparatuses. The ERBIUM machine operates on Er atoms and produced the first Er Bose-Einstein condensate and degenerate Fermi gas. The ER-DY machine is studying degenerate mixtures of two different lanthanides: Er and Dy. The T-Reqs is currently under construction and aims at studying Rydberg states of Er. A new theory sub-division within our group is under development.

You can follow updates from our labs on .

News from the labs
We have measured and analyzed the hyperfine structure of two lines, one at 583 nm and one at 401 nm, of the only stable fermionic isotope of atomic erbium as well as determined its isotope shift relative to the four most-abundant bosonic isotopes. Our work focuses on the J→J+1 laser
Keep Reading ...
We report on the experimental realization of a robust and efficient magneto-optical trap for erbium atoms, based on a narrow cooling transition at 583 nm. We observe up to N=2×10^8 atoms at a temperature of about T=15 μK. This simple scheme provides better starting conditions for direct loading of dipole
Keep Reading ...

Group news
This week, Maximilian Sohmen started as a PhD student in the Rare lab. He recieved his masters degree from the university of Heidelberg under supervision of Matthias Weidemüller. For his master thesis, he moved for a full year to Cambrige to join the Group of Zoran Hadzibabic to work on
Keep Reading ...
On thursday, Alex held his defense for his master thesis and is now officially a Master of Science! Congratulations! We are happy, that Alex will stay with our team and continue his work in the RARE lab as a PhD student. 🙂
Keep Reading ...
Welcome and goodbye
No post found