Er-Dy Team 2023

Er-Dy Team 2023

Vortices in a dysprosium gas

Vortices in a dysprosium gas

By stirring the magnetic field which polarizes the atoms in a dysprosium condensate, we were able to generate vortices–tiny quantum tornadoes–in a dipolar gas for the first time!

Supersolid in a new dimension

Supersolid in a new dimension

A two-dimensional supersolid system

Phase coherence in out-of-equilibrium supersolid states of ultracold dipolar atoms

Phase coherence in out-of-equilibrium supersolid states of ultracold dipolar atoms

By quenching the contact interaction, it is possible to destroy the phase coherence in a dipolar supersolid. However, the supersolidity is “repaired” when reversing the dephasing process.  

Study of interspecies Feshbach resonances published in PRA

Study of interspecies Feshbach resonances published in PRA

A key step in creating controlled interactions in dipolar quantum mixtures is the characterization of interspecies Feshbach resonances.

First Dipolar Quantum Mixtures!

First Dipolar Quantum Mixtures!

We have created for the first time a dipolar quantum mixture by combining two highly magnetic atomic species, Erbium and Dysprosium.

Double MOT …

Double MOT …

… of cold erbium (yellow) and dysprosium (red) atoms. © IQOQI

Laser setup …

Laser setup …

… for slowing and trapping erbium and dysprosium atoms. © IQOQI

The main vacuum chamber …

The main vacuum chamber …

… where trap and furthermore cool erbium and dysprosium down to degeneracy. © IQOQI

Er-Dy LAB

The Er-Dy LAB focuses on many-body quantum phenomena in a dipolar quantum mixture of two highly magnetic lanthanides, Erbium and Dysprosium.

The designing process of the experimental apparatus started in late 2014 and several concepts have been developed in collaboration with our ERBIUM Team and the Er-Team at Harvard University led by Markus Greiner.

Er-Dy mixtures

In 2018, we produced the first quantum degenerate dipolar mixture of Erbium and Dysprosium!!

This two rare-earth species are highly magnetic with a magnetic moment of 7µB and 10µB for Er and Dy respectively. A crucial aspect is that the have very similar atomic properties such as melting point, mass and the optical spectrum. The Er-Dy LAB is able to either operate on a single species (Er or Dy) or to produce dipolar imbalanced Bose-Bose, Bose-Fermi and Fermi-Fermi Er-Dy mixtures.

A microscope for dipolar atoms

A quantum gas microscope is an optical system that allows to image single atoms in an optical lattice in situ. This conceptually simple, yet technologically demanding technique makes it possible to directly study the interactions between atoms in periodic potentials, a scenario which is only possible to simulate numerically for very limited system sizes. In contrast to other groups, we are aiming to realize such a microscope with atoms featuring a large, permanent magnetic dipole moment. The inter-atomic dipole-dipole interaction adds a new term to the Hamiltonian describing the ensemble, and therefore allows to investigate a whole new class of quantum systems. The behavior of the system will critically depend on the interplay between the different interaction terms, whose magnitude and direction dependence may be tuned experimentally over a wide range. Thus, a large variety of interesting quantum systems can be simulated and investigated.

A full list of the Er-Dy Lab Publications can be found here

Interested in joining us? Check out here.

Lab news
This week, Maximilian Sohmen started as a PhD student in the Rare lab. He recieved his masters degree from the university of Heidelberg under supervision of Matthias Weidemüller. For his master thesis, he moved for a full year to Cambrige to join the Group of Zoran Hadzibabic to work on
Keep Reading ...
On thursday, Alex held his defense for his master thesis and is now officially a Master of Science! Congratulations! We are happy, that Alex will stay with our team and continue his work in the RARE lab as a PhD student. 🙂
Keep Reading ...
After finishing his Ph.D. in the group of Markus Oberthaler in Heidelberg  and a few months of traveling to Asia, Arno has joined our RARE lab to work on the double magneto-optical trap for Dysprosium and Erbium.  Welcome to Innsbruck!  🙂
Keep Reading ...
After doing a summer internship in our group, Moritz Koenemann has joined the RARE team for his master thesis to work on the upcoming Rydberg-chamber.
Keep Reading ...
Originally from Caserta, Claudia Politi and Gabriele Natale are master students of the University of Pisa and now joined us in Innsbruck for the next full year. Welcome! 🙂
Keep Reading ...
This year, from 6.-9. September 2016, the third edition of the workshop on 'Long-range interactions in the ultracold', took place in Ercolano (Naples, IT). Since the event was organised by Francesca (together with Antoine Browaeys and Robert Löw), the whole team joined in for the event, rented a Minibus and
Keep Reading ...
Lab Team

Francesca Ferlaino, Univ.-Prof. Dr.

Group Leader / PI

Manfred Mark, Dr.

Senior Scientist /    Research Assistant

Andrea Di Carli, Dr.

Academy Scientist/ Research Assistant

Andrea Litvinov, Dr.

Post Doc

Eva Casotti, MSc.

PhD Student (Er-Dy)

Lauritz Klaus, MSc.

PhD Student (Er-Dy)

Clemens Ulm, MSc.

PhD Student (Er-Dy)